1
|
Murchan P, Ó Broin P, Baird AM, Sheils O, P Finn S. Deep feature batch correction using ComBat for machine learning applications in computational pathology. J Pathol Inform 2024; 15:100396. [PMID: 39398947 PMCID: PMC11470259 DOI: 10.1016/j.jpi.2024.100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024] Open
Abstract
Background Developing artificial intelligence (AI) models for digital pathology requires large datasets from multiple sources. However, without careful implementation, AI models risk learning confounding site-specific features in datasets instead of clinically relevant information, leading to overestimated performance, poor generalizability to real-world data, and potential misdiagnosis. Methods Whole-slide images (WSIs) from The Cancer Genome Atlas (TCGA) colon (COAD), and stomach adenocarcinoma datasets were selected for inclusion in this study. Patch embeddings were obtained using three feature extraction models, followed by ComBat harmonization. Attention-based multiple instance learning models were trained to predict tissue-source site (TSS), as well as clinical and genetic attributes, using raw, Macenko normalized, and Combat-harmonized patch embeddings. Results TSS prediction achieved high accuracy (AUROC > 0.95) with all three feature extraction models. ComBat harmonization significantly reduced the AUROC for TSS prediction, with mean AUROCs dropping to approximately 0.5 for most models, indicating successful mitigation of batch effects (e.g., CCL-ResNet50 in TCGA-COAD: Pre-ComBat AUROC = 0.960, Post-ComBat AUROC = 0.506, p < 0.001). Clinical attributes associated with TSS, such as race and treatment response, showed decreased predictability post-harmonization. Notably, the prediction of genetic features like MSI status remained robust after harmonization (e.g., MSI in TCGA-COAD: Pre-ComBat AUROC = 0.667, Post-ComBat AUROC = 0.669, p=0.952), indicating the preservation of true histological signals. Conclusion ComBat harmonization of deep learning-derived histology features effectively reduces the risk of AI models learning confounding features in WSIs, ensuring more reliable performance estimates. This approach is promising for the integration of large-scale digital pathology datasets.
Collapse
Affiliation(s)
- Pierre Murchan
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin D08 W9RT, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Dublin, Ireland
| | - Pilib Ó Broin
- The SFI Centre for Research Training in Genomics Data Science, Dublin, Ireland
- School of Mathematical & Statistical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Anne-Marie Baird
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin D02 A440, Ireland
| | - Orla Sheils
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin D02 A440, Ireland
| | - Stephen P Finn
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin D08 W9RT, Ireland
- Department of Histopathology, St. James's Hospital, James's Street, Dublin D08 X4RX, Ireland
| |
Collapse
|
2
|
Foldi J, Blenman KRM, Marczyk M, Gunasekharan V, Polanska A, Gee R, Davis M, Kahn AM, Silber A, Pusztai L. Peripheral blood immune parameters, response, and adverse events after neoadjuvant chemotherapy plus durvalumab in early-stage triple-negative breast cancer. Breast Cancer Res Treat 2024; 208:369-377. [PMID: 39002068 DOI: 10.1007/s10549-024-07426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE We evaluated T- and B-cell receptor (TCR and BCR) repertoire diversity and 38 serum cytokines in pre- and post-treatment peripheral blood of 66 patients with triple-negative breast cancer (TNBC) who received neoadjuvant chemotherapy plus durvalumab and assessed associations with pathologic response and immune-related adverse events (irAEs) during treatment. METHODS Genomic DNA was isolated from buffy coat for TCR and BCR clonotype profiling using the Immunoseq platform and diversity was quantified with Pielou's evenness index. MILLIPLEX MAP Human Cytokine/Chemokine Magnetic Bead Panel was used to measure serum cytokine levels, which were compared between groups using moderated t-statistic with Benjamini-Hochberg correction for multiple testing. RESULTS TCR and BCR diversity was high (Pielou's index > 0.75) in all samples. Baseline receptor diversities and change in diversity pre- and post-treatment were not associated with pathologic response or irAE status, except for BCR diversity that was significantly lower post-treatment in patients who developed irAE (unadjusted p = 0.0321). Five cytokines increased after treatment in patients with pathologic complete response (pCR) but decreased in patients with RD, most prominently IL-8. IFNγ, IL-7, and GM-CSF levels were higher in pre-treatment than in post-treatment samples of patients who developed irAEs but were lower in those without irAEs. CONCLUSION Baseline peripheral blood cytokine levels may predict irAEs in patients treated with immune checkpoint inhibitors and chemotherapy, and increased post-treatment B-cell clonal expansion might mediate irAEs.
Collapse
Affiliation(s)
- Julia Foldi
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA.
- Division of Hematology and Oncology, Department of Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- University of Pittsburgh School of Medicine, 300 Halket Street, Room 3524, Pittsburgh, PA, USA.
| | - Kim R M Blenman
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
- Yale Cancer Center, Yale University, New Haven, CT, USA
| | - Michal Marczyk
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Vignesh Gunasekharan
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
| | - Alicja Polanska
- Mullard Space Science Laboratory, University College London, London, UK
| | - Renelle Gee
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
| | - Mya Davis
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
| | - Adriana M Kahn
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
| | - Andrea Silber
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
- Yale Cancer Center, Yale University, New Haven, CT, USA
| | - Lajos Pusztai
- Department of Internal Medicine, Section of Medical Oncology, Yale University, New Haven, CT, USA
- Yale Cancer Center, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Bao R, Hutson A, Madabhushi A, Jonsson VD, Rosario SR, Barnholtz-Sloan JS, Fertig EJ, Marathe H, Harris L, Altreuter J, Chen Q, Dignam J, Gentles AJ, Gonzalez-Kozlova E, Gnjatic S, Kim E, Long M, Morgan M, Ruppin E, Valen DV, Zhang H, Vokes N, Meerzaman D, Liu S, Van Allen EM, Xing Y. Ten challenges and opportunities in computational immuno-oncology. J Immunother Cancer 2024; 12:e009721. [PMID: 39461879 DOI: 10.1136/jitc-2024-009721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Immuno-oncology has transformed the treatment of cancer, with several immunotherapies becoming the standard treatment across histologies. Despite these advancements, the majority of patients do not experience durable clinical benefits, highlighting the imperative for ongoing advancement in immuno-oncology. Computational immuno-oncology emerges as a forefront discipline that draws on biomedical data science and intersects with oncology, immunology, and clinical research, with the overarching goal to accelerate the development of effective and safe immuno-oncology treatments from the laboratory to the clinic. In this review, we outline 10 critical challenges and opportunities in computational immuno-oncology, emphasizing the importance of robust computational strategies and interdisciplinary collaborations amid the constantly evolving interplay between clinical needs and technological innovation.
Collapse
Affiliation(s)
- Riyue Bao
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Anant Madabhushi
- Emory University, Atlanta, Georgia, USA
- Georgia Institute of Technology, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
| | - Vanessa D Jonsson
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, California, USA
| | - Spencer R Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Jill S Barnholtz-Sloan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
- Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, Maryland, USA
| | - Elana J Fertig
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Himangi Marathe
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Lyndsay Harris
- Cancer Diagnosis Program, National Cancer Institute Division of Cancer Treatment and Diagnosis, Bethesda, Maryland, USA
| | | | - Qingrong Chen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, Maryland, USA
| | - James Dignam
- Department of Public Health Sciences, University of Chicago Division of the Biological Sciences, Chicago, Illinois, USA
| | - Andrew J Gentles
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Edgar Gonzalez-Kozlova
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sacha Gnjatic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Erika Kim
- Informatics and Data Science Program, Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland, USA
| | - Mark Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Martin Morgan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, Maryland, USA
| | - David Van Valen
- Division of Computing and Mathematical Science, Caltech, Pasadena, California, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Hong Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Natalie Vokes
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, Maryland, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Eliezer M Van Allen
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Yi Xing
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Molero A, Hernandez S, Alonso M, Peressini M, Curto D, Lopez-Rios F, Conde E. Assessment of PD-L1 expression and tumour infiltrating lymphocytes in early-stage non-small cell lung carcinoma with artificial intelligence algorithms. J Clin Pathol 2024:jcp-2024-209766. [PMID: 39419594 DOI: 10.1136/jcp-2024-209766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
AIMS To study programmed death ligand 1 (PD-L1) expression and tumour infiltrating lymphocytes (TILs) in patients with early-stage non-small cell lung carcinoma (NSCLC) with artificial intelligence (AI) algorithms. METHODS The study included samples from 50 early-stage NSCLCs. PD-L1 immunohistochemistry (IHC) stained slides (clone SP263) were scored manually and with two different AI tools (PathAI and Navify Digital Pathology) by three pathologists. TILs were digitally assessed on H&E and CD8 IHC stained sections with two different algorithms (PathAI and Navify Digital Pathology, respectively). The agreement between observers and methods for each biomarker was analysed. For PD-L1, the turn-around time (TAT) for manual versus AI-assisted scoring was recorded. RESULTS Agreement was higher in tumours with low PD-L1 expression regardless of the approach. Both AI-powered tools identified a significantly higher number of cases equal or above 1% PD-L1 tumour proportion score as compared with manual scoring (p=0.00015), a finding with potential therapeutic implications. Regarding TAT, there were significant differences between manual scoring and AI use (p value <0.0001 for all comparisons). The total TILs density with the PathAI algorithm and the total density of CD8+ cells with the Navify Digital Pathology software were significantly correlated (τ=0.49 (95% CI 0.37, 0.61), p value<0.0001). CONCLUSIONS This preliminary study supports the use of AI algorithms for the scoring of PD-L1 and TILs in patients with NSCLC.
Collapse
Affiliation(s)
- Aida Molero
- Pathology, Complejo Asistencial de Segovia, Segovia, Spain
| | - Susana Hernandez
- Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Marta Alonso
- Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Melina Peressini
- Tumor Microenvironment and Immunotherapy Research Group, Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Daniel Curto
- Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Fernando Lopez-Rios
- Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 de Octubre (i+12), CIBERONC, Universidad Complutense de Madrid, Madrid, Spain
| | - Esther Conde
- Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 de Octubre (i+12), CIBERONC, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Behera A, Dharmalingam Jothinathan MK. Artificial intelligence transforms the future of oncology care. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101915. [PMID: 38762121 DOI: 10.1016/j.jormas.2024.101915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Affiliation(s)
- Archana Behera
- Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Mukesh Kumar Dharmalingam Jothinathan
- Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| |
Collapse
|
6
|
Waqas A, Tripathi A, Ramachandran RP, Stewart PA, Rasool G. Multimodal data integration for oncology in the era of deep neural networks: a review. Front Artif Intell 2024; 7:1408843. [PMID: 39118787 PMCID: PMC11308435 DOI: 10.3389/frai.2024.1408843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Cancer research encompasses data across various scales, modalities, and resolutions, from screening and diagnostic imaging to digitized histopathology slides to various types of molecular data and clinical records. The integration of these diverse data types for personalized cancer care and predictive modeling holds the promise of enhancing the accuracy and reliability of cancer screening, diagnosis, and treatment. Traditional analytical methods, which often focus on isolated or unimodal information, fall short of capturing the complex and heterogeneous nature of cancer data. The advent of deep neural networks has spurred the development of sophisticated multimodal data fusion techniques capable of extracting and synthesizing information from disparate sources. Among these, Graph Neural Networks (GNNs) and Transformers have emerged as powerful tools for multimodal learning, demonstrating significant success. This review presents the foundational principles of multimodal learning including oncology data modalities, taxonomy of multimodal learning, and fusion strategies. We delve into the recent advancements in GNNs and Transformers for the fusion of multimodal data in oncology, spotlighting key studies and their pivotal findings. We discuss the unique challenges of multimodal learning, such as data heterogeneity and integration complexities, alongside the opportunities it presents for a more nuanced and comprehensive understanding of cancer. Finally, we present some of the latest comprehensive multimodal pan-cancer data sources. By surveying the landscape of multimodal data integration in oncology, our goal is to underline the transformative potential of multimodal GNNs and Transformers. Through technological advancements and the methodological innovations presented in this review, we aim to chart a course for future research in this promising field. This review may be the first that highlights the current state of multimodal modeling applications in cancer using GNNs and transformers, presents comprehensive multimodal oncology data sources, and sets the stage for multimodal evolution, encouraging further exploration and development in personalized cancer care.
Collapse
Affiliation(s)
- Asim Waqas
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL, United States
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, United States
| | - Aakash Tripathi
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL, United States
| | - Ravi P. Ramachandran
- Department of Electrical and Computer Engineering, Rowan University, Glassboro, NJ, United States
| | - Paul A. Stewart
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, United States
| | - Ghulam Rasool
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL, United States
| |
Collapse
|
7
|
Bas TG, Duarte V. Biosimilars in the Era of Artificial Intelligence-International Regulations and the Use in Oncological Treatments. Pharmaceuticals (Basel) 2024; 17:925. [PMID: 39065775 PMCID: PMC11279612 DOI: 10.3390/ph17070925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
This research is based on three fundamental aspects of successful biosimilar development in the challenging biopharmaceutical market. First, biosimilar regulations in eight selected countries: Japan, South Korea, the United States, Canada, Brazil, Argentina, Australia, and South Africa, represent the four continents. The regulatory aspects of the countries studied are analyzed, highlighting the challenges facing biosimilars, including their complex approval processes and the need for standardized regulatory guidelines. There is an inconsistency depending on whether the biosimilar is used in a developed or developing country. In the countries observed, biosimilars are considered excellent alternatives to patent-protected biological products for the treatment of chronic diseases. In the second aspect addressed, various analytical AI modeling methods (such as machine learning tools, reinforcement learning, supervised, unsupervised, and deep learning tools) were analyzed to observe patterns that lead to the prevalence of biosimilars used in cancer to model the behaviors of the most prominent active compounds with spectroscopy. Finally, an analysis of the use of active compounds of biosimilars used in cancer and approved by the FDA and EMA was proposed.
Collapse
Affiliation(s)
- Tomas Gabriel Bas
- Escuela de Ciencias Empresariales, Universidad Católica del Norte, Coquimbo 1781421, Chile;
| | | |
Collapse
|
8
|
Sholl LM, Awad M, Basu Roy U, Beasley MB, Cartun RW, Hwang DM, Kalemkerian G, Lopez-Rios F, Mino-Kenudson M, Paintal A, Reid K, Ritterhouse L, Souter LA, Swanson PE, Ventura CB, Furtado LV. Programmed Death Ligand-1 and Tumor Mutation Burden Testing of Patients With Lung Cancer for Selection of Immune Checkpoint Inhibitor Therapies: Guideline From the College of American Pathologists, Association for Molecular Pathology, International Association for the Study of Lung Cancer, Pulmonary Pathology Society, and LUNGevity Foundation. Arch Pathol Lab Med 2024; 148:757-774. [PMID: 38625026 DOI: 10.5858/arpa.2023-0536-cp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/17/2024]
Abstract
CONTEXT.— Rapid advancements in the understanding and manipulation of tumor-immune interactions have led to the approval of immune therapies for patients with non-small cell lung cancer. Certain immune checkpoint inhibitor therapies require the use of companion diagnostics, but methodologic variability has led to uncertainty around test selection and implementation in practice. OBJECTIVE.— To develop evidence-based guideline recommendations for the testing of immunotherapy/immunomodulatory biomarkers, including programmed death ligand-1 (PD-L1) and tumor mutation burden (TMB), in patients with lung cancer. DESIGN.— The College of American Pathologists convened a panel of experts in non-small cell lung cancer and biomarker testing to develop evidence-based recommendations in accordance with the standards for trustworthy clinical practice guidelines established by the National Academy of Medicine. A systematic literature review was conducted to address 8 key questions. Using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach, recommendations were created from the available evidence, certainty of that evidence, and key judgments as defined in the GRADE Evidence to Decision framework. RESULTS.— Six recommendation statements were developed. CONCLUSIONS.— This guideline summarizes the current understanding and hurdles associated with the use of PD-L1 expression and TMB testing for immune checkpoint inhibitor therapy selection in patients with advanced non-small cell lung cancer and presents evidence-based recommendations for PD-L1 and TMB testing in the clinical setting.
Collapse
Affiliation(s)
- Lynette M Sholl
- From the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Sholl)
| | - Mark Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (Awad)
| | - Upal Basu Roy
- Translational Science Research Program, LUNGevity Foundation, Chicago, Illinois (Basu Roy)
| | - Mary Beth Beasley
- the Department of Anatomic Pathology and Clinical Pathology, Mt. Sinai Medical Center, New York, New York (Beasley)
| | - Richard Walter Cartun
- the Department of Anatomic Pathology, Hartford Hospital, Hartford, Connecticut (Cartun)
| | - David M Hwang
- the Department of Laboratory Medicine & Pathobiology, Sunnybrook Health Science Centre, Toronto, Ontario, Canada (Hwang)
| | - Gregory Kalemkerian
- the Department of Medical Oncology and Internal Medicine, University of Michigan Health, Ann Arbor (Kalemkerian)
| | - Fernando Lopez-Rios
- Pathology Department, Hospital Universitario 12 de Octubre, Madrid, Spain (Lopez-Rios)
| | - Mari Mino-Kenudson
- the Department of Pathology, Massachusetts General Hospital, Boston (Mino-Kenudson)
| | - Ajit Paintal
- the Department of Pathology, NorthShore University Health System, Evanston, Illinois (Paintal)
| | - Kearin Reid
- Governance (Reid) and the Pathology and Laboratory Quality Center for Evidence-based Guidelines, College of American Pathologists, Northfield, Illinois(Ventura)
| | - Lauren Ritterhouse
- the Department of Pathology, Foundation Medicine, Cambridge, Massachusetts (Ritterhouse)
| | | | - Paul E Swanson
- the Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle (Swanson)
| | - Christina B Ventura
- Governance (Reid) and the Pathology and Laboratory Quality Center for Evidence-based Guidelines, College of American Pathologists, Northfield, Illinois(Ventura)
| | - Larissa V Furtado
- the Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee (Furtado)
| |
Collapse
|
9
|
Perez-Lopez R, Ghaffari Laleh N, Mahmood F, Kather JN. A guide to artificial intelligence for cancer researchers. Nat Rev Cancer 2024; 24:427-441. [PMID: 38755439 DOI: 10.1038/s41568-024-00694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
Artificial intelligence (AI) has been commoditized. It has evolved from a specialty resource to a readily accessible tool for cancer researchers. AI-based tools can boost research productivity in daily workflows, but can also extract hidden information from existing data, thereby enabling new scientific discoveries. Building a basic literacy in these tools is useful for every cancer researcher. Researchers with a traditional biological science focus can use AI-based tools through off-the-shelf software, whereas those who are more computationally inclined can develop their own AI-based software pipelines. In this article, we provide a practical guide for non-computational cancer researchers to understand how AI-based tools can benefit them. We convey general principles of AI for applications in image analysis, natural language processing and drug discovery. In addition, we give examples of how non-computational researchers can get started on the journey to productively use AI in their own work.
Collapse
Affiliation(s)
- Raquel Perez-Lopez
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Narmin Ghaffari Laleh
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
| | - Faisal Mahmood
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Harvard Data Science Initiative, Harvard University, Cambridge, MA, USA
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany.
- Department of Medicine I, University Hospital Dresden, Dresden, Germany.
- Medical Oncology, National Center for Tumour Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
10
|
Murchan P, Baird AM, Ó Broin P, Sheils O, Finn SP. Surrogate Biomarker Prediction from Whole-Slide Images for Evaluating Overall Survival in Lung Adenocarcinoma. Diagnostics (Basel) 2024; 14:462. [PMID: 38472935 DOI: 10.3390/diagnostics14050462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Recent advances in computational pathology have shown potential in predicting biomarkers from haematoxylin and eosin (H&E) whole-slide images (WSI). However, predicting the outcome directly from WSIs remains a substantial challenge. In this study, we aimed to investigate how gene expression, predicted from WSIs, could be used to evaluate overall survival (OS) in patients with lung adenocarcinoma (LUAD). METHODS Differentially expressed genes (DEGs) were identified from The Cancer Genome Atlas (TCGA)-LUAD cohort. Cox regression analysis was performed on DEGs to identify the gene prognostics of OS. Attention-based multiple instance learning (AMIL) models were trained to predict the expression of identified prognostic genes from WSIs using the TCGA-LUAD dataset. Models were externally validated in the Clinical Proteomic Tumour Analysis Consortium (CPTAC)-LUAD dataset. The prognostic value of predicted gene expression values was then compared to the true gene expression measurements. RESULTS The expression of 239 prognostic genes could be predicted in TCGA-LUAD with cross-validated Pearson's R > 0.4. Predicted gene expression demonstrated prognostic performance, attaining a cross-validated concordance index of up to 0.615 in TCGA-LUAD through Cox regression. In total, 36 genes had predicted expression in the external validation cohort that was prognostic of OS. CONCLUSIONS Gene expression predicted from WSIs is an effective method of evaluating OS in patients with LUAD. These results may open up new avenues of cost- and time-efficient prognosis assessment in LUAD treatment.
Collapse
Affiliation(s)
- Pierre Murchan
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland
- The SFI Centre for Research Training in Genomics Data Science, University of Galway, H91 CF50 Galway, Ireland
- Trinity St. James's Cancer Institute (TSJCI), St. James's Hospital, D08 RX0X Dublin, Ireland
| | - Anne-Marie Baird
- Trinity St. James's Cancer Institute (TSJCI), St. James's Hospital, D08 RX0X Dublin, Ireland
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D02 A440 Dublin, Ireland
| | - Pilib Ó Broin
- School of Mathematical & Statistical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Orla Sheils
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Trinity St. James's Cancer Institute (TSJCI), St. James's Hospital, D08 RX0X Dublin, Ireland
| | - Stephen P Finn
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland
- Trinity St. James's Cancer Institute (TSJCI), St. James's Hospital, D08 RX0X Dublin, Ireland
- Department of Histopathology, St. James's Hospital, James's Street, D08 X4RX Dublin, Ireland
| |
Collapse
|
11
|
Zhang X, Zhang G, Qiu X, Yin J, Tan W, Yin X, Yang H, Wang H, Zhang Y. Non-invasive decision support for clinical treatment of non-small cell lung cancer using a multiscale radiomics approach. Radiother Oncol 2024; 191:110082. [PMID: 38195018 DOI: 10.1016/j.radonc.2024.110082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
BACKGROUND Selecting therapeutic strategies for cancer patients is typically based on key target-molecule biomarkers that play an important role in cancer onset, progression, and prognosis. Thus, there is a pressing need for novel biomarkers that can be utilized longitudinally to guide treatment selection. METHODS Using data from 508 non-small cell lung cancer (NSCLC) patients across three institutions, we developed and validated a comprehensive predictive biomarker that distinguishes six genotypes and infiltrative immune phenotypes. These features were analyzed to establish the association between radiological phenotypes and tumor genotypes/immune phenotypes and to create a radiological interpretation of molecular features. In addition, we assessed the sensitivity of the models by evaluating their performance at five different voxel intervals, resulting in improved generalizability of the proposed approach. FINDINGS The radiomics model we developed, which integrates clinical factors and multi-regional features, outperformed the conventional model that only uses clinical and intratumoral features. Our combined model showed significant performance for EGFR, KRAS, ALK, TP53, PIK3CA, and ROS1 mutation status with AUCs of 0.866, 0.874, 0.902, 0.850, 0.860, and 0.900, respectively. Additionally, the predictive performance for PD-1/PD-L1 was 0.852. Although the performance of all models decreased to different degrees at five different voxel space resolutions, the performance advantage of the combined model did not change. CONCLUSIONS We validated multiscale radiomic signatures across tumor genotypes and immunophenotypes in a multi-institutional cohort. This imaging-based biomarker offers a non-invasive approach to select patients with NSCLC who are sensitive to targeted therapies or immunotherapy, which is promising for developing personalized treatment strategies during therapy.
Collapse
Affiliation(s)
- Xingping Zhang
- School of Medical Information Engineering, Gannan Medical University, 341000, Ganzhou, China; Cyberspace Institute of Advanced Technology, Guangzhou University, 510006 Guangzhou, China; Institute for Sustainable Industries and Liveable Cities, Victoria University, 3011, Melbourne, Australia; Department of New Networks, Peng Cheng Laboratory, 518000, Shenzhen, China
| | - Guijuan Zhang
- Department of Respiratory and Critical Care, First Affiliated Hospital of Gannan Medical University, 341000, Ganzhou, China
| | - Xingting Qiu
- Department of Radiology, First Affiliated Hospital of Gannan Medical University, 341000, Ganzhou, China
| | - Jiao Yin
- Institute for Sustainable Industries and Liveable Cities, Victoria University, 3011, Melbourne, Australia
| | - Wenjun Tan
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, 110189, Shenyang, China
| | - Xiaoxia Yin
- Cyberspace Institute of Advanced Technology, Guangzhou University, 510006 Guangzhou, China
| | - Hong Yang
- Cyberspace Institute of Advanced Technology, Guangzhou University, 510006 Guangzhou, China
| | - Hua Wang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, 3011, Melbourne, Australia.
| | - Yanchun Zhang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, 3011, Melbourne, Australia; School of Computer Science and Technology, Zhejiang Normal University, 321000, Jinhua, China; Department of New Networks, Peng Cheng Laboratory, 518000, Shenzhen, China.
| |
Collapse
|
12
|
S Alshuhri M, Al-Musawi SG, Al-Alwany AA, Uinarni H, Rasulova I, Rodrigues P, Alkhafaji AT, Alshanberi AM, Alawadi AH, Abbas AH. Artificial intelligence in cancer diagnosis: Opportunities and challenges. Pathol Res Pract 2024; 253:154996. [PMID: 38118214 DOI: 10.1016/j.prp.2023.154996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/22/2023]
Abstract
Since cancer is one of the world's top causes of death, early diagnosis is critical to improving patient outcomes. Artificial intelligence (AI) has become a viable technique for cancer diagnosis by using machine learning algorithms to examine large volumes of data for accurate and efficient diagnosis. AI has the potential to alter the way cancer is detected fundamentally. Still, it has several disadvantages, such as requiring a large amount of data, technological limitations, and ethical concerns. This overview looks at the possibilities and restrictions of AI in cancer detection, as well as current applications and possible future developments. We can better understand how to use AI to improve patient outcomes and reduce cancer mortality rates by looking at its potential for cancer detection.
Collapse
Affiliation(s)
- Mohammed S Alshuhri
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Kharj, Saudi Arabia
| | | | | | - Herlina Uinarni
- Department of Anatomy, School of Medicine and Health Sciences Atma Jaya Catholic University of Indonesia, Indonesia; Radiology department of Pantai Indah Kapuk Hospital Jakarta, Jakarta, Indonesia.
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, 54 Mustaqillik Ave., Tashkent 100007, Uzbekistan; Department of Public Health, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Abha, Asir, Kingdom of Saudi Arabia
| | | | - Asim Muhammed Alshanberi
- Department of Community Medicine & Pilgrim Healthcare, Umm Alqura University, Makkah 24382, Saudi Arabia; General Medicine Practice Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Hashim Abbas
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| |
Collapse
|
13
|
Chatterji S, Niehues JM, van Treeck M, Loeffler CML, Saldanha OL, Veldhuizen GP, Cifci D, Carrero ZI, Abu-Eid R, Speirs V, Kather JN. Prediction models for hormone receptor status in female breast cancer do not extend to males: further evidence of sex-based disparity in breast cancer. NPJ Breast Cancer 2023; 9:91. [PMID: 37940649 PMCID: PMC10632426 DOI: 10.1038/s41523-023-00599-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023] Open
Abstract
Breast cancer prognosis and management for both men and women are reliant upon estrogen receptor alpha (ERα) and progesterone receptor (PR) expression to inform therapy. Previous studies have shown that there are sex-specific binding characteristics of ERα and PR in breast cancer and, counterintuitively, ERα expression is more common in male than female breast cancer. We hypothesized that these differences could have morphological manifestations that are undetectable to human observers but could be elucidated computationally. To investigate this, we trained attention-based multiple instance learning prediction models for ERα and PR using H&E-stained images of female breast cancer from the Cancer Genome Atlas (TCGA) (n = 1085) and deployed them on external female (n = 192) and male breast cancer images (n = 245). Both targets were predicted in the internal (AUROC for ERα prediction: 0.86 ± 0.02, p < 0.001; AUROC for PR prediction = 0.76 ± 0.03, p < 0.001) and external female cohorts (AUROC for ERα prediction: 0.78 ± 0.03, p < 0.001; AUROC for PR prediction = 0.80 ± 0.04, p < 0.001) but not the male cohort (AUROC for ERα prediction: 0.66 ± 0.14, p = 0.43; AUROC for PR prediction = 0.63 ± 0.04, p = 0.05). This suggests that subtle morphological differences invisible upon visual inspection may exist between the sexes, supporting previous immunohistochemical, genomic, and transcriptomic analyses.
Collapse
Affiliation(s)
- Subarnarekha Chatterji
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Aberdeen Cancer Centre, University of Aberdeen, Aberdeen, UK
| | - Jan Moritz Niehues
- Else Kröner Fresenius Centre for Digital Health, Carl Gustav Carus Faculty of Medicine, Technical University of Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Aachen, Germany
| | - Marko van Treeck
- Else Kröner Fresenius Centre for Digital Health, Carl Gustav Carus Faculty of Medicine, Technical University of Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Aachen, Germany
| | - Chiara Maria Lavinia Loeffler
- Else Kröner Fresenius Centre for Digital Health, Carl Gustav Carus Faculty of Medicine, Technical University of Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Aachen, Germany
- Department of Medicine I, University Hospital and Faculty of Medicine, Technical University of Dresden, Dresden, Germany
| | - Oliver Lester Saldanha
- Else Kröner Fresenius Centre for Digital Health, Carl Gustav Carus Faculty of Medicine, Technical University of Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Aachen, Germany
| | - Gregory Patrick Veldhuizen
- Else Kröner Fresenius Centre for Digital Health, Carl Gustav Carus Faculty of Medicine, Technical University of Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Aachen, Germany
| | - Didem Cifci
- Else Kröner Fresenius Centre for Digital Health, Carl Gustav Carus Faculty of Medicine, Technical University of Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Aachen, Germany
| | - Zunamys Itzell Carrero
- Else Kröner Fresenius Centre for Digital Health, Carl Gustav Carus Faculty of Medicine, Technical University of Dresden, Dresden, Germany
| | - Rasha Abu-Eid
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Aberdeen Cancer Centre, University of Aberdeen, Aberdeen, UK
- Institute of Dentistry, University of Aberdeen, Aberdeen, UK
| | - Valerie Speirs
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
- Aberdeen Cancer Centre, University of Aberdeen, Aberdeen, UK.
| | - Jakob Nikolas Kather
- Else Kröner Fresenius Centre for Digital Health, Carl Gustav Carus Faculty of Medicine, Technical University of Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Aachen, Germany
- Department of Medicine I, University Hospital and Faculty of Medicine, Technical University of Dresden, Dresden, Germany
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| |
Collapse
|
14
|
Zhong NN, Wang HQ, Huang XY, Li ZZ, Cao LM, Huo FY, Liu B, Bu LL. Enhancing head and neck tumor management with artificial intelligence: Integration and perspectives. Semin Cancer Biol 2023; 95:52-74. [PMID: 37473825 DOI: 10.1016/j.semcancer.2023.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Head and neck tumors (HNTs) constitute a multifaceted ensemble of pathologies that primarily involve regions such as the oral cavity, pharynx, and nasal cavity. The intricate anatomical structure of these regions poses considerable challenges to efficacious treatment strategies. Despite the availability of myriad treatment modalities, the overall therapeutic efficacy for HNTs continues to remain subdued. In recent years, the deployment of artificial intelligence (AI) in healthcare practices has garnered noteworthy attention. AI modalities, inclusive of machine learning (ML), neural networks (NNs), and deep learning (DL), when amalgamated into the holistic management of HNTs, promise to augment the precision, safety, and efficacy of treatment regimens. The integration of AI within HNT management is intricately intertwined with domains such as medical imaging, bioinformatics, and medical robotics. This article intends to scrutinize the cutting-edge advancements and prospective applications of AI in the realm of HNTs, elucidating AI's indispensable role in prevention, diagnosis, treatment, prognostication, research, and inter-sectoral integration. The overarching objective is to stimulate scholarly discourse and invigorate insights among medical practitioners and researchers to propel further exploration, thereby facilitating superior therapeutic alternatives for patients.
Collapse
Affiliation(s)
- Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Han-Qi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xin-Yue Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Fang-Yi Huo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
15
|
Parra ER, Ilié M, Wistuba II, Hofman P. Quantitative multiplexed imaging technologies for single-cell analysis to assess predictive markers for immunotherapy in thoracic immuno-oncology: promises and challenges. Br J Cancer 2023; 129:1417-1431. [PMID: 37391504 PMCID: PMC10628288 DOI: 10.1038/s41416-023-02318-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/05/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023] Open
Abstract
The past decade has witnessed a revolution in cancer treatment by the shift from conventional drugs (chemotherapies) towards targeted molecular therapies and immune-based therapies, in particular the immune-checkpoint inhibitors (ICIs). These immunotherapies selectively release the host immune system against the tumour and have shown unprecedented durable remission for patients with cancers that were thought incurable such as advanced non-small cell lung cancer (aNSCLC). The prediction of therapy response is based since the first anti-PD-1/PD-L1 molecules FDA and EMA approvals on the level of PD-L1 tumour cells expression evaluated by immunohistochemistry, and recently more or less on tumour mutation burden in the USA. However, not all aNSCLC patients benefit from immunotherapy equally, since only around 30% of them received ICIs and among them 30% have an initial response to these treatments. Conversely, a few aNSCLC patients could have an efficacy ICIs response despite low PD-L1 tumour cells expression. In this context, there is an urgent need to look for additional robust predictive markers for ICIs efficacy in thoracic oncology. Understanding of the mechanisms that enable cancer cells to adapt to and eventually overcome therapy and identifying such mechanisms can help circumvent resistance and improve treatment. However, more than a unique universal marker, the evaluation of several molecules in the tumour at the same time, particularly by using multiplex immunostaining is a promising open room to optimise the selection of patients who benefit from ICIs. Therefore, urgent further efforts are needed to optimise to individualise immunotherapy based on both patient-specific and tumour-specific characteristics. This review aims to rethink the role of multiplex immunostaining in immuno-thoracic oncology, with the current advantages and limitations in the near-daily practice use.
Collapse
Affiliation(s)
- Edwin Roger Parra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Marius Ilié
- Laboratory of Clinical and Experimental Pathology, Biobank Côte d'Azur BB-0033-00025, FHU OncoAge, IHU RespirERA, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Biobank Côte d'Azur BB-0033-00025, FHU OncoAge, IHU RespirERA, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France.
| |
Collapse
|
16
|
Farahinia A, Zhang W, Badea I. Recent Developments in Inertial and Centrifugal Microfluidic Systems along with the Involved Forces for Cancer Cell Separation: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115300. [PMID: 37300027 DOI: 10.3390/s23115300] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/23/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
The treatment of cancers is a significant challenge in the healthcare context today. Spreading circulating tumor cells (CTCs) throughout the body will eventually lead to cancer metastasis and produce new tumors near the healthy tissues. Therefore, separating these invading cells and extracting cues from them is extremely important for determining the rate of cancer progression inside the body and for the development of individualized treatments, especially at the beginning of the metastasis process. The continuous and fast separation of CTCs has recently been achieved using numerous separation techniques, some of which involve multiple high-level operational protocols. Although a simple blood test can detect the presence of CTCs in the blood circulation system, the detection is still restricted due to the scarcity and heterogeneity of CTCs. The development of more reliable and effective techniques is thus highly desired. The technology of microfluidic devices is promising among many other bio-chemical and bio-physical technologies. This paper reviews recent developments in the two types of microfluidic devices, which are based on the size and/or density of cells, for separating cancer cells. The goal of this review is to identify knowledge or technology gaps and to suggest future works.
Collapse
Affiliation(s)
- Alireza Farahinia
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Wenjun Zhang
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
17
|
Perez-Lopez R, Reis-Filho JS, Kather JN. A framework for artificial intelligence in cancer research and precision oncology. NPJ Precis Oncol 2023; 7:43. [PMID: 37198249 DOI: 10.1038/s41698-023-00383-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023] Open
Affiliation(s)
- Raquel Perez-Lopez
- Radiomics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany.
- Department of Medicine I, University Hospital Dresden, Dresden, Germany.
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
18
|
Seraphin TP, Luedde M, Roderburg C, van Treeck M, Scheider P, Buelow RD, Boor P, Loosen SH, Provaznik Z, Mendelsohn D, Berisha F, Magnussen C, Westermann D, Luedde T, Brochhausen C, Sossalla S, Kather JN. Prediction of heart transplant rejection from routine pathology slides with self-supervised deep learning. EUROPEAN HEART JOURNAL. DIGITAL HEALTH 2023; 4:265-274. [PMID: 37265858 PMCID: PMC10232288 DOI: 10.1093/ehjdh/ztad016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/07/2023] [Indexed: 06/03/2023]
Abstract
Aims One of the most important complications of heart transplantation is organ rejection, which is diagnosed on endomyocardial biopsies by pathologists. Computer-based systems could assist in the diagnostic process and potentially improve reproducibility. Here, we evaluated the feasibility of using deep learning in predicting the degree of cellular rejection from pathology slides as defined by the International Society for Heart and Lung Transplantation (ISHLT) grading system. Methods and results We collected 1079 histopathology slides from 325 patients from three transplant centres in Germany. We trained an attention-based deep neural network to predict rejection in the primary cohort and evaluated its performance using cross-validation and by deploying it to three cohorts. For binary prediction (rejection yes/no), the mean area under the receiver operating curve (AUROC) was 0.849 in the cross-validated experiment and 0.734, 0.729, and 0.716 in external validation cohorts. For a prediction of the ISHLT grade (0R, 1R, 2/3R), AUROCs were 0.835, 0.633, and 0.905 in the cross-validated experiment and 0.764, 0.597, and 0.913; 0.631, 0.633, and 0.682; and 0.722, 0.601, and 0.805 in the validation cohorts, respectively. The predictions of the artificial intelligence model were interpretable by human experts and highlighted plausible morphological patterns. Conclusion We conclude that artificial intelligence can detect patterns of cellular transplant rejection in routine pathology, even when trained on small cohorts.
Collapse
Affiliation(s)
- Tobias Paul Seraphin
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstr. 5, 40225 Dusseldorf, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Mark Luedde
- Department of Cardiology and Angiology, Christian-Albrechts-University of Kiel, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstr. 5, 40225 Dusseldorf, Germany
| | - Marko van Treeck
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Pascal Scheider
- Institute of Pathology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Roman D Buelow
- Institute of Pathology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sven H Loosen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstr. 5, 40225 Dusseldorf, Germany
| | - Zdenek Provaznik
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Daniel Mendelsohn
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Filip Berisha
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Hospital Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Potsdamer Str. 58, 10785 Berlin, Germany
| | - Christina Magnussen
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Hospital Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Potsdamer Str. 58, 10785 Berlin, Germany
| | - Dirk Westermann
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Hospital Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Potsdamer Str. 58, 10785 Berlin, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University, Moorenstr. 5, 40225 Dusseldorf, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Samuel Sossalla
- Clinic for Cardiology and Pneumology, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site Göttingen, Potsdamer Str. 58, 10785 Berlin, Germany
- Department of Internal Medicine II, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Jakob Nikolas Kather
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, United Kingdom
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
19
|
Saldanha OL, Loeffler CML, Niehues JM, van Treeck M, Seraphin TP, Hewitt KJ, Cifci D, Veldhuizen GP, Ramesh S, Pearson AT, Kather JN. Self-supervised attention-based deep learning for pan-cancer mutation prediction from histopathology. NPJ Precis Oncol 2023; 7:35. [PMID: 36977919 PMCID: PMC10050159 DOI: 10.1038/s41698-023-00365-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/17/2023] [Indexed: 03/30/2023] Open
Abstract
The histopathological phenotype of tumors reflects the underlying genetic makeup. Deep learning can predict genetic alterations from pathology slides, but it is unclear how well these predictions generalize to external datasets. We performed a systematic study on Deep-Learning-based prediction of genetic alterations from histology, using two large datasets of multiple tumor types. We show that an analysis pipeline that integrates self-supervised feature extraction and attention-based multiple instance learning achieves a robust predictability and generalizability.
Collapse
Affiliation(s)
- Oliver Lester Saldanha
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Chiara M L Loeffler
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Jan Moritz Niehues
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Marko van Treeck
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Tobias P Seraphin
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University Duesseldorf, Düsseldorf, Germany
| | - Katherine Jane Hewitt
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Didem Cifci
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Gregory Patrick Veldhuizen
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Siddhi Ramesh
- Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Alexander T Pearson
- Biological Sciences Division, University of Chicago, Chicago, IL, USA
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany.
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
- Department of Medicine 1, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
20
|
Couetil J, Liu Z, Huang K, Zhang J, Alomari AK. Predicting melanoma survival and metastasis with interpretable histopathological features and machine learning models. Front Med (Lausanne) 2023; 9:1029227. [PMID: 36687402 PMCID: PMC9853175 DOI: 10.3389/fmed.2022.1029227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction Melanoma is the fifth most common cancer in US, and the incidence is increasing 1.4% annually. The overall survival rate for early-stage disease is 99.4%. However, melanoma can recur years later (in the same region of the body or as distant metastasis), and results in a dramatically lower survival rate. Currently there is no reliable method to predict tumor recurrence and metastasis on early primary tumor histological images. Methods To identify rapid, accurate, and cost-effective predictors of metastasis and survival, in this work, we applied various interpretable machine learning approaches to analyze melanoma histopathological H&E images. The result is a set of image features that can help clinicians identify high-risk-of-metastasis patients for increased clinical follow-up and precision treatment. We use simple models (i.e., logarithmic classification and KNN) and "human-interpretable" measures of cell morphology and tissue architecture (e.g., cell size, staining intensity, and cell density) to predict the melanoma survival on public and local Stage I-III cohorts as well as the metastasis risk on a local cohort. Results We use penalized survival regression to limit features available to downstream classifiers and investigate the utility of convolutional neural networks in isolating tumor regions to focus morphology extraction on only the tumor region. This approach allows us to predict survival and metastasis with a maximum F1 score of 0.72 and 0.73, respectively, and to visualize several high-risk cell morphologies. Discussion This lays the foundation for future work, which will focus on using our interpretable pipeline to predict metastasis in Stage I & II melanoma.
Collapse
Affiliation(s)
- Justin Couetil
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ziyu Liu
- Department of Statistics, Purdue University, West Lafayette, IN, United States
| | - Kun Huang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ahmed K. Alomari
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
21
|
Conde E, Hernandez S, Lopez-Rios F. Rethinking the role of biomarkers for operable non-small cell lung carcinoma: an effective collaboration with artificial intelligence algorithms. Mod Pathol 2022; 35:1754-1756. [PMID: 36207496 PMCID: PMC9708573 DOI: 10.1038/s41379-022-01167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Esther Conde
- grid.4795.f0000 0001 2157 7667Pathology Department, 12 de Octubre University Hospital, Universidad Complutense de Madrid, Research Institute 12 de Octubre University Hospital (i+12), CIBERONC, Madrid, Spain
| | - Susana Hernandez
- grid.144756.50000 0001 1945 5329Pathology Department, 12 de Octubre University Hospital, Research Institute 12 de Octubre University Hospital (i+12), Madrid, Spain
| | - Fernando Lopez-Rios
- Pathology Department, 12 de Octubre University Hospital, Universidad Complutense de Madrid, Research Institute 12 de Octubre University Hospital (i+12), CIBERONC, Madrid, Spain.
| |
Collapse
|