1
|
Han R, Lu C, He Y. Rebuilding TME may open new doors for improving the prognosis of EGFR mutation patients. Cancer Lett 2025; 608:217323. [PMID: 39551426 DOI: 10.1016/j.canlet.2024.217323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Affiliation(s)
- Rui Han
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
2
|
Gazzeri S, Zubchuk N, Montaudon E, Nemati F, Huot-Marchand S, Berardi G, Pucciarelli A, Dib Y, Nerini D, Oddou C, Pezet M, David-Boudet L, Ardin C, de Fraipont F, Maraver A, Girard N, Decaudin D, Toffart AC, Eymin B. PPP3CB overexpression mediates EGFR TKI resistance in lung tumors via calcineurin/MEK/ERK signaling. Life Sci Alliance 2024; 7:e202402873. [PMID: 39353739 PMCID: PMC11447527 DOI: 10.26508/lsa.202402873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Despite initial high response rates to first-line EGFR TKI, all non-small-cell lung cancer (NSCLC) with EGFR-activating mutation will ultimately develop resistance to treatment. Identification of resistance mechanisms is critical to adapt treatment and improve patient outcomes. Here, we show that a PPP3CB transcript that encodes full-length catalytic subunit 2B of calcineurin accumulates in EGFR-mutant NSCLC cells with acquired resistance against different EGFR TKIs and in post-progression biopsies of NSCLC patients treated with EGFR TKIs. Neutralization of PPP3CB by siRNA or inactivation of calcineurin by cyclosporin A induces apoptosis in resistant cells treated with EGFR TKIs. Mechanistically, EGFR TKIs increase the cytosolic level of calcium and trigger activation of a calcineurin/MEK/ERK pathway that prevents apoptosis. Combining EGFR, calcineurin, and MEK inhibitors overcomes resistance to EGFR TKI in both in vitro and in vivo models. Our results identify PPP3CB overexpression as a new mechanism of acquired resistance to EGFR TKIs, and provide a promising therapeutic approach for NSCLC patients that progress under TKI treatment.
Collapse
Affiliation(s)
- Sylvie Gazzeri
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team RNA Splicing, Cell Signaling and Response to Therapy, Institute for Advanced Biosciences, Grenoble, France
| | - Nadiia Zubchuk
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team RNA Splicing, Cell Signaling and Response to Therapy, Institute for Advanced Biosciences, Grenoble, France
| | - Elodie Montaudon
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL Research University, Paris, France
| | - Fariba Nemati
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL Research University, Paris, France
| | - Sarah Huot-Marchand
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team RNA Splicing, Cell Signaling and Response to Therapy, Institute for Advanced Biosciences, Grenoble, France
| | - Giulia Berardi
- Department of Pneumology and Physiology, Grenoble-Alpes University Hospital, Grenoble, France
| | - Amelie Pucciarelli
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team RNA Splicing, Cell Signaling and Response to Therapy, Institute for Advanced Biosciences, Grenoble, France
| | - Yassir Dib
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team RNA Splicing, Cell Signaling and Response to Therapy, Institute for Advanced Biosciences, Grenoble, France
| | - Dylan Nerini
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team RNA Splicing, Cell Signaling and Response to Therapy, Institute for Advanced Biosciences, Grenoble, France
| | - Christiane Oddou
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Institute for Advanced Biosciences, Grenoble, France
| | - Mylène Pezet
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Platform MicroCell, Institute for Advanced Biosciences, Grenoble, France
| | - Laurence David-Boudet
- Department of Cytology and Pathology, Grenoble-Alpes University Hospital, Grenoble, France
| | - Camille Ardin
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team RNA Splicing, Cell Signaling and Response to Therapy, Institute for Advanced Biosciences, Grenoble, France
- Department of Pneumology and Physiology, Grenoble-Alpes University Hospital, Grenoble, France
| | - Florence de Fraipont
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team RNA Splicing, Cell Signaling and Response to Therapy, Institute for Advanced Biosciences, Grenoble, France
- Medical Unit of Molecular Genetic (Hereditary Diseases and Oncology), Grenoble-Alpes University Hospital, Grenoble, France
| | - Antonio Maraver
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194-ICM-Université de Montpellier, Montpellier, France
| | - Nicolas Girard
- Institut du Thorax Curie-Montsouris, Institut Curie, Paris, France
| | - Didier Decaudin
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL Research University, Paris, France
- Department of Medical Oncology, Institut Curie, Paris, France
| | - Anne-Claire Toffart
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team RNA Splicing, Cell Signaling and Response to Therapy, Institute for Advanced Biosciences, Grenoble, France
- Department of Pneumology and Physiology, Grenoble-Alpes University Hospital, Grenoble, France
| | - Beatrice Eymin
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team RNA Splicing, Cell Signaling and Response to Therapy, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
3
|
Amato L, Omodei D, De Rosa C, Ariano A, Capaldo S, Tufano CC, Buono R, Terlizzi C, Nardelli A, Del Vecchio V, Palumbo R, Tuccillo C, Morgillo F, Papaccio F, Tirino V, Iommelli F, Della Corte CM, De Rosa V. Combined Therapeutic Strategies Based on the Inhibition of Non-Oncogene Addiction to Improve Tumor Response in EGFR- and KRAS-Mutant Non-Small-Cell Lung Cancer. Cancers (Basel) 2024; 16:3941. [PMID: 39682133 DOI: 10.3390/cancers16233941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Oncogene-driven NSCLC is usually treated with targeted therapies using tyrosine kinase inhibitors (TKIs) to inhibit oncogene downstream signaling pathways, affecting tumor survival and proliferation. EGFR- and KRAS-mutant NSCLCs are the most represented subtypes, and they are treated in clinical practice with oncogene-targeting drugs in the first and second line, respectively. Unfortunately, the development of oncogene-independent resistant clones limits TKI efficacy. Here, we used non-oncogene addiction (NOA) as an innovative therapeutic strategy to target other essential proteins that support changes in tumor phenotype. Specifically, we tested, for the first time, a combination of inhibitors, namely ATR, involved in DNA damage response, and pyruvate dehydrogenase kinases (PDKs), involved in energy metabolism. METHODS Sensitive PC9 and the corresponding EGFR-TKI-resistant PC9/OR, EGFR-mutant H1975, and KRAS-mutant A549 NSCLC cells, were treated with TKIs (osimertinib and selumetinib, respectively). In parallel, cells were exposed to two combination regimens: one using the TKI with an ATR inhibitor and the other one combining the two selected NOA inhibitors (ATR inhibitor, M4344; and PDK inhibitor, DCA). RESULTS The effect of these two combined approaches, compared to TKI alone, produced similar results in terms of cell proliferation, cell death, and migration. Thus, depending on tumor biology, selecting between the proposed therapeutic strategies will be different, to maximize tumor response. CONCLUSIONS The major translational relevance of this study is to exploit new targets for the development of innovative and improved therapeutic strategies with NOA drugs, over combinations including target genes within the oncogene pathway, to overcome resistance to TKI therapies in patients with NSCLC who are oncogene-addicted.
Collapse
Affiliation(s)
- Luisa Amato
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Daniela Omodei
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| | - Caterina De Rosa
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Annalisa Ariano
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Sara Capaldo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Camilla Carmela Tufano
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Rossella Buono
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| | - Cristina Terlizzi
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| | - Anna Nardelli
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| | - Vitale Del Vecchio
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Department of Life Sciences, Health and Health Professions, Link Campus University, 00165 Rome, Italy
| | - Rosanna Palumbo
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| | - Concetta Tuccillo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Floriana Morgillo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Federica Papaccio
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, 84084 Baronissi, Italy
- Clinical Pharmacology Unit, San Giovanni di Dio e Ruggi d'Aragona University Hospital, 84131 Salerno, Italy
| | - Virginia Tirino
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Francesca Iommelli
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| | | | - Viviana De Rosa
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| |
Collapse
|
4
|
Kong W, Feng X, Yu Z, Qi X, Zhao Z. USP8-mediated PTK7 promotes PIK3CB-related pathway to accelerate the malignant progression of non-small cell lung cancer. Thorac Cancer 2024. [PMID: 39552193 DOI: 10.1111/1759-7714.15485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Protein tyrosine kinase 7 (PTK7) has been found to be highly expressed in non-small cell lung cancer (NSCLC), but its specific molecular mechanism needs to be further explored. METHODS PTK7 mRNA expression in NSCLC tumor tissues was examined by quantitative real-time PCR. The protein levels of PTK7, ubiquitin-specific peptidase 8 (USP8), PIK3CB, and PI3K/AKT were determined by western blot. Human monocytes (THP-1) were induced into macrophages and then co-cultured with the conditioned medium of NSCLC cells. Macrophage M2 polarization was assessed by detecting CD206+ cells using flow cytometry. The interaction between PTK7 and USP8 or PIK3CB was assessed by Co-IP assay. Animal study was performed to evaluate the effects of PTK7 knockdown and PIK3CB on NSCLC tumorigenesis in vivo. RESULTS PTK7 expression was higher in NSCLC tumor tissues and cells. After silencing of PTK7, NSCLC cell proliferation, invasion, and macrophage M2 polarization were inhibited, while cell apoptosis was promoted. USP8 enhanced PTK7 protein expression by deubiquitination, and the repressing effects of USP8 knockdown on NSCLC cell growth, invasion, and macrophage M2 polarization were reversed by PTK7 overexpression. PTK7 interacted with PIK3CB, and PIK3CB overexpression could abolish the regulation of PTK7 silencing on NSCLC cell progression. USP8 positively regulated PIK3CB expression by PTK7, thus activating PI3K/AKT pathway. Downregulation of PTK7 reduced NSCLC tumorigenesis by decreasing PIK3CB expression. CONCLUSION USP8-deubiquitinated PTK7 facilitated NSCLC malignant behavior via activating the PIK3CB/PI3K/AKT pathway, providing new idea for NSCLC treatment.
Collapse
Affiliation(s)
- Wencui Kong
- Department of Respiratory, Fuzong Clinical Medical College of Fujian Medical University/The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, China
| | - Xuegang Feng
- Department of Cardio-Thoracic Surgery, Fuzong Clinical Medical College of Fujian Medical University/The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, China
| | - Zongyang Yu
- Department of Respiratory, Fuzong Clinical Medical College of Fujian Medical University/The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, China
| | - Xingfeng Qi
- Department of Pathology, Fuzong Clinical Medical College of Fujian Medical University/The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, China
| | - Zhongquan Zhao
- Department of Respiratory, Fuzong Clinical Medical College of Fujian Medical University/The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, China
| |
Collapse
|
5
|
Chen Z, Vallega KA, Wang D, Quan Z, Fan S, Wang Q, Leal T, Ramalingam SS, Sun SY. Inhibition of hTERT/telomerase/telomere mediates therapeutic efficacy of osimertinib in EGFR mutant lung cancer. J Exp Med 2024; 221:e20240435. [PMID: 39297884 PMCID: PMC11413468 DOI: 10.1084/jem.20240435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/07/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
The inevitable acquired resistance to osimertinib (AZD9291), an FDA-approved third-generation EGFR tyrosine kinase inhibitor (EGFR-TKI) for the treatment of patients with advanced non-small cell lung cancer (NSCLC) harboring EGFR activating or T790M resistant mutations, limits its long-term clinical benefit. Telomere maintenance via telomerase reactivation is linked to uncontrolled cell growth and is a cancer hallmark and an attractive cancer therapeutic target. Our effort toward understanding the action mechanisms, including resistance mechanisms, of osimertinib has led to the identification of a novel and critical role in maintaining c-Myc-dependent downregulation of hTERT, a catalytic subunit of telomerase, and subsequent inhibition of telomerase/telomere and induction of telomere dysfunction in mediating therapeutic efficacy of osimertinib. Consequently, osimertinib combined with the telomere inhibitor, 6-Thio-dG, which is currently tested in a phase II trial, effectively inhibited the growth of osimertinib-resistant tumors, regressed EGFRm NSCLC patient-derived xenografts, and delayed the emergence of acquired resistance to osimertinib, warranting clinical validation of this strategy to manage osimertinib acquired resistance.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Karin A. Vallega
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Dongsheng Wang
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Zihan Quan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Ticiana Leal
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Suresh S. Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
6
|
Ma Y, Wang R, Liao J, Guo P, Wang Q, Li W. Xanthohumol overcomes osimertinib resistance via governing ubiquitination-modulated Ets-1 turnover. Cell Death Discov 2024; 10:454. [PMID: 39468027 PMCID: PMC11519634 DOI: 10.1038/s41420-024-02220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a prevalent and fatal malignancy with a significant global impact. Recent advancements have introduced targeted therapies like tyrosine kinase inhibitors (TKIs) such as osimertinib, which have improved patient outcomes, particularly in those with EGFR mutations. Despite these advancements, acquired resistance to TKIs remains a significant challenge. Hence, one of the current research priorities is understanding the resistance mechanisms and identifying new therapeutic targets to improve therapeutic efficacy. Herein, we identified high expression of c-Met in osimertinib-resistant NSCLC cells, and depletion of c-Met significantly inhibited the proliferation of osimertinib-resistant cells and prolonged survival in mice, suggesting c-Met as an attractive therapeutic target. To identify effective anti-tumor agents targeting c-Met, we screened a compound library containing 641 natural products and found that only xanthohumol exhibited potent inhibitory effects against osimertinib-resistant NSCLC cells. Moreover, combination treatment with xanthohumol and osimertinib sensitized osimertinib-resistant NSCLC cells to osimertinib both in vitro and in vivo. Mechanistically, xanthohumol disrupted the interaction between USP9X and Ets-1, and inhibited the phosphorylation of Ets-1 at Thr38, promoting its degradation, thereby targeting the Ets-1/c-Met signaling axis and inducing intrinsic apoptosis in osimertinib-resistant NSCLC cells. Overall, the research highlights the critical role of targeting c-Met to address osimertinib resistance in NSCLC. By demonstrating the efficacy of xanthohumol in overcoming resistance and enhancing therapeutic outcomes, this study provides valuable insights and potential new strategies for improving the clinical management of NSCLC.
Collapse
Affiliation(s)
- Ying Ma
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- NHC key laboratory of translantional research on transplantation medicine, Department of Transplant Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Pengfei Guo
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Qiang Wang
- NHC key laboratory of translantional research on transplantation medicine, Department of Transplant Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
7
|
Ntzifa A, Marras T, Kallergi G, Kotsakis A, Georgoulias V, Lianidou E. Comprehensive liquid biopsy analysis for monitoring NSCLC patients under second-line osimertinib treatment. Front Oncol 2024; 14:1435537. [PMID: 39497713 PMCID: PMC11532185 DOI: 10.3389/fonc.2024.1435537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/09/2024] [Indexed: 11/07/2024] Open
Abstract
Background The heterogeneous and complex genetic landscape of NSCLC impacts the clinical outcomes of patients who will eventually develop resistance to osimertinib. Liquid biopsy (LB) analysis as a minimally invasive approach is a key step to efficiently identify resistance mechanisms and adjust to proper subsequent treatments. Materials and methods In the present study, we combined plasma-cfDNA and CTC analysis from 30 NSCLC patients in samples collected before treatment and at the progression of disease (PD). We detected molecular alterations at the DNA mutation (EGFR, PIK3CA, KRAS G12C, BRAF V600E), DNA methylation (RASSF1A, BRMS1, FOXA1, SLFN1, SHISA3, RARβ,, WIF-1, RASSF10 and APC), gene expression (CK-19, CK-18, CK-8, AXL, TWIST-1, PD-L1, PIM-1, Vimentin, ALDH-1, and B2M) and chromosomal level (HER2 and MET amplification) as possible resistance mechanisms and druggable targets. We also studied the expression of PD-L1 in single CTCs using immunofluorescence. Results In some cases, T790M resistance EGFR mutation was detected at baseline in CTCs but not in the corresponding plasma cfDNA. PIK3CA mutations were detected only in plasma-cfDNA but not in corresponding CTCs. KRAS G12C and BRAF V600E mutations were not detected in the samples analyzed. MET amplification was detected in the CTCs of two patients before treatment whereas HER2 amplification was detected in the CTCs of three patients at baseline and in one patient at PD. DNA methylation analysis revealed low concordance between CTCs and cfDNA, indicating the complementary information obtained through parallel LB analysis. Results from gene expression analysis indicated high rates of vimentin-positive CTCs detected at all time points during osimertinib. Moreover, there was an increased number of NSCLC patients at PD harboring CTCs positive in PD-L1. AXL and PIM-1 expression detected in CTCs during treatment suggesting new possible therapeutic strategies. Discussion Our results reveal that comprehensive liquid biopsy analysis can efficiently represent the heterogeneous molecular landscape and provide prominent information on subsequent treatments for NSCLC patients at PD since druggable molecular alterations were detected in CTCs.
Collapse
Affiliation(s)
- Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Marras
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Galatea Kallergi
- Laboratory of Biochemistry/Metastatic Signaling, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece
| | - Athanasios Kotsakis
- Department of Medical Oncology, General University Hospital of Larissa, Larissa, Greece
| | - Vasilis Georgoulias
- First Department of Medical Oncology, Metropolitan General Hospital of Athens, Cholargos, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
8
|
Wang X, Li N, Liu YH, Wu J, Liu QG, Niu JB, Xu Y, Huang CZ, Zhang SY, Song J. Targeting focal adhesion kinase (FAK) in cancer therapy: A recent update on inhibitors and PROTAC degraders. Eur J Med Chem 2024; 276:116678. [PMID: 39029337 DOI: 10.1016/j.ejmech.2024.116678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024]
Abstract
Focal adhesion kinase (FAK) is considered as a pivotal intracellular non-receptor tyrosine kinase, and has garnered significant attention as a promising target for anticancer drug development. As of early 2024, a total of 12 drugs targeting FAK have been approved for clinical or preclinical studies worldwide, including three PROTAC degraders. In recent three years (2021-2023), significant progress has been made in designing targeted FAK anticancer agents, including the development of a novel benzenesulfofurazan type NO-releasing FAK inhibitor and the first-in-class dual-target inhibitors simultaneously targeting FAK and HDACs. Given the pivotal role of FAK in the discovery of anticancer drugs, as well as the notable advancements achieved in FAK inhibitors and PROTAC degraders in recent years, this review is underbaked to present a comprehensive overview of the function and structure of FAK. Additionally, the latest findings on the inhibitors and PROTAC degraders of FAK from the past three years, along with their optimization strategies and anticancer activities, were summarized, which might help to provide novel insights for the development of novel targeted FAK agents with promising anticancer potential and favorable pharmacological profiles.
Collapse
Affiliation(s)
- Xiao Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Na Li
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yun-He Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ji Wu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Qiu-Ge Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jin-Bo Niu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Xu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chen-Zheng Huang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention &Treatment, Zhengzhou, 450001, China.
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
9
|
Matsui Y, Yamada T, Katayama Y, Hirai S, Sawada R, Tachibana Y, Ishida M, Kawachi H, Nakamura R, Nishioka N, Morimoto K, Iwasaku M, Horinaka M, Sakai T, Tokuda S, Takayama K. Initial AXL and MCL-1 inhibition contributes to abolishing lazertinib tolerance in EGFR-mutant lung cancer cells. Cancer Sci 2024; 115:3333-3345. [PMID: 39039802 PMCID: PMC11447890 DOI: 10.1111/cas.16292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024] Open
Abstract
Lazertinib, a novel third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), demonstrates marked efficacy in EGFR-mutant lung cancer. However, resistance commonly develops, prompting consideration of therapeutic strategies to overcome initial drug resistance mechanisms. This study aimed to elucidate the adaptive resistance to lazertinib and advocate novel combination treatments that demonstrate efficacy in preventing resistance as a first-line treatment for EGFR mutation-positive NSCLC. We found that AXL knockdown significantly inhibited lung cancer cell viability in the presence of lazertinib, indicating that AXL activation contributes to lazertinib resistance. However, long-term culture with a combination of lazertinib and AXL inhibitors led to residual cell proliferation and increased the MCL-1 expression level, which was mediated by the nuclear translocation of the transcription factor YAP. Triple therapy with an MCL-1 or YAP inhibitor in combination with lazertinib and an AXL inhibitor significantly reduced cell viability and increased the apoptosis rate. These results demonstrate that AXL and YAP/MCL-1 signals contribute to adaptive lazertinib resistance in EGFR-mutant lung cancer cells, suggesting that the initial dual inhibition of AXL and YAP/MCL-1 might be a highly effective strategy in eliminating lazertinib-resistant cells.
Collapse
Affiliation(s)
- Yohei Matsui
- Department of Pulmonary Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Yuki Katayama
- Department of Pulmonary Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Soichi Hirai
- Department of Pulmonary Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Ryo Sawada
- Department of Pulmonary Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Yusuke Tachibana
- Department of Pulmonary Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Masaki Ishida
- Department of Pulmonary Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Hayato Kawachi
- Department of Pulmonary Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Ryota Nakamura
- Department of Pulmonary Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Naoya Nishioka
- Department of Pulmonary Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Kenji Morimoto
- Department of Pulmonary Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Masahiro Iwasaku
- Department of Pulmonary Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Mano Horinaka
- Department of Drug Discovery Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Shinsaku Tokuda
- Department of Pulmonary Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
10
|
Eltayeb K, Alfieri R, Fumarola C, Bonelli M, Galetti M, Cavazzoni A, Digiacomo G, Galvani F, Vacondio F, Lodola A, Mor M, Minari R, Tiseo M, La Monica S, Giorgio Petronini P. Targeting metabolic adaptive responses induced by glucose starvation inhibits cell proliferation and enhances cell death in osimertinib-resistant non-small cell lung cancer (NSCLC) cell lines. Biochem Pharmacol 2024; 228:116161. [PMID: 38522556 DOI: 10.1016/j.bcp.2024.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Osimertinib, a tyrosine kinase inhibitor targeting mutant EGFR, has received approval for initial treatment in patients with Non-Small Cell Lung Cancer (NSCLC). While effective in both first- and second-line treatments, patients eventually develop acquired resistance. Metabolic reprogramming represents a strategy through which cancer cells may resist and adapt to the selective pressure exerted by the drug. In the current study, we investigated the metabolic adaptations associated with osimertinib-resistance in NSCLC cells under low glucose culture conditions. We demonstrated that, unlike osimertinib-sensitive cells, osimertinib-resistant cells were able to survive under low glucose conditions by increasing the rate of glucose and glutamine uptake and by shifting towards mitochondrial metabolism. Inhibiting glucose/pyruvate contribution to mitochondrial respiration, glutamine deamination to glutamate, and oxidative phosphorylation decreased the proliferation and survival abilities of osimertinib-resistant cells to glucose starvation. Our findings underscore the remarkable adaptability of osimertinib-resistant NSCLC cells in a low glucose environment and highlight the pivotal role of mitochondrial metabolism in mediating this adaptation. Targeting the metabolic adaptive responses triggered by glucose shortage emerges as a promising strategy, effectively inhibiting cell proliferation and promoting cell death in osimertinib-resistant cells.
Collapse
Affiliation(s)
- Kamal Eltayeb
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Maricla Galetti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL-Italian Workers' Compensation Authority, Monte Porzio Catone, 00078 Rome, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Graziana Digiacomo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Francesca Galvani
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Federica Vacondio
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Alessio Lodola
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Marco Mor
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | |
Collapse
|
11
|
Hendriks LEL, Remon J, Faivre-Finn C, Garassino MC, Heymach JV, Kerr KM, Tan DSW, Veronesi G, Reck M. Non-small-cell lung cancer. Nat Rev Dis Primers 2024; 10:71. [PMID: 39327441 DOI: 10.1038/s41572-024-00551-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/28/2024]
Abstract
Non-small-cell lung cancer (NSCLC) is one of the most frequent cancer types and is responsible for the majority of cancer-related deaths worldwide. The management of NSCLC has improved considerably, especially in the past 10 years. The systematic screening of populations at risk with low-dose CT, the implementation of novel surgical and radiotherapeutic techniques and a deeper biological understanding of NSCLC that has led to innovative systemic treatment options have improved the prognosis of patients with NSCLC. In non-metastatic NSCLC, the combination of various perioperative strategies and adjuvant immunotherapy in locally advanced disease seem to enhance cure rates. In metastatic NSCLC, the implementation of novel drugs might prolong disease control together with preserving quality of life. The further development of predictive clinical and genetic markers will be essential for the next steps in individualized treatment concepts.
Collapse
Affiliation(s)
- Lizza E L Hendriks
- Department of Pulmonary Diseases, GROW-School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jordi Remon
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Corinne Faivre-Finn
- Radiotherapy Related Research, University of Manchester and The Christie NHS Foundation, Manchester, UK
| | - Marina C Garassino
- Thoracic Oncology Program, Section of Hematology Oncology, Department of Medicine, the University of Chicago, Chicago, IL, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas, M. D. Anderson Cancer Center, Houston, TX, USA
| | - Keith M Kerr
- Department of Pathology, Aberdeen Royal Infirmary and Aberdeen University Medical School, Aberdeen, UK
| | - Daniel S W Tan
- National Cancer Centre Singapore, Duke-NUS Medical School, Singapore, Singapore
| | - Giulia Veronesi
- Department of Thoracic Surgery, San Raffaele Scientific Institute, Milan, Italy
| | - Martin Reck
- Airway Research Center North, German Center of Lung Research, Grosshansdorf, Germany.
| |
Collapse
|
12
|
Lv L, Hua X, Liu J, Zhan S, Zhang Q, Liang X, Feng J, Song Y. Anlotinib reverses osimertinib resistance via inhibiting epithelial-to-mesenchymal transition and angiogenesis in non-small cell lung cancer. J Biomed Res 2024; 38:1-15. [PMID: 39375945 DOI: 10.7555/jbr.38.20240045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
In the present, we aimed to investigate the effect of anlotinib on the potential reversal of osimertinib resistance by inhibiting the formation of epithelial-to-mesenchymal transition (EMT) and angiogenesis. In a clinical case, anlotinib reversed osimertinib resistance in Non-small cell lung cancer (NSCLC). We performed an immunohistochemical experiment on tumor tissues from three non-small cell lung cancer patients exhibiting osimertinib resistance to analyze alterations in the expression levels of EMT markers and vascular endothelial growth factor A (VEGFA) before and after osimertinib resistance. The results revealed the downregulation of E-cadherin, coupled with the upregulation of vimentin and VEGFA in tumor tissues of patients exhibiting osimertinib resistance, compared with the expression in tissues of patients before taking osimertinib. Subsequently, we established osimertinib-resistant cell lines and found that the osimertinib-resistant cells acquired the EMT features. Then, we analyzed the synergistic effects of the combination therapy to verify whether anlotinib could reverse osimertinib resistance by inhibiting EMT. The expression levels of VEGFA and micro-vessels were analyzed in the combination group in vitro. Finally, we explored the reversal of osimertinib resistance in combination with anlotinib in vivo with 20 nude mice. The combined treatment of osimertinib and anlotinib effectively prevented the metastasis of resistant cells, which also inhibited tumor growth, exerted anti-tumor activity, and ultimately reversed osimertinib resistance in mice. The co-administration of osimertinib and anlotinib demonstrated their synergistic efficacy in inhibiting EMT and angiogenesis in three NSCLC patients, ultimately reversing osimertinib resistance.
Collapse
Affiliation(s)
- Liting Lv
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu 210002, China
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xin Hua
- Southeast University Medical College, Nanjing, Jiangsu, 210003, China
| | - Jiaxin Liu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Sutong Zhan
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210002, China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu 210002, China
| | - Xiao Liang
- Department of Oncology, Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu 214400, China
| | - Jian Feng
- Department of Pulmonary and Critical Care Medicine, Nantong Key Laboratory of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu 210002, China
| |
Collapse
|
13
|
Ferrari V, Mograbi B, Gal J, Milano G. Companion Tests and Personalized Cancer Therapy: Reaching a Glass Ceiling. Int J Mol Sci 2024; 25:9991. [PMID: 39337479 PMCID: PMC11431990 DOI: 10.3390/ijms25189991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The use of companion diagnostics has become a standard in precision oncology in the context of ongoing therapeutic innovation. However, certain limitations make their application imperfect in current practice. This position paper underscores the need to broaden the notion of companion testing, considering the potential of emerging technologies, including computational biology, to overcome these limitations. This wave of progress should impact not only our representation of the analytical tool itself but also the nature of the tumoral sample under analysis (liquid biopsies). The complex inter-relationship between companion test guided-personalized therapy, and health agency policies for new drug agreements will also be discussed.
Collapse
Affiliation(s)
- Victoria Ferrari
- Department of Medical Oncology, Centre Antoine Lacassagne, University Côte d’Azur, 06189 Nice, France
| | - Baharia Mograbi
- FHU OncoAge, IHU RespirERA, IRCAN, Inserm, University Côte d’Azur, CNRS 7284, U1081, 06000 Nice, France
| | - Jocelyn Gal
- Epidemiology and Biostatistics Department, Centre Antoine Lacassagne, University Côte d’Azur, 06189 Nice, France
| | - Gérard Milano
- Oncopharmacology Unit, Centre Antoine Lacassagne, University Côte d’Azur, 06189 Nice, France
| |
Collapse
|
14
|
He W, Huang W, Zhang L, Wu X, Zhang S, Zhang B. Radiogenomics: bridging the gap between imaging and genomics for precision oncology. MedComm (Beijing) 2024; 5:e722. [PMID: 39252824 PMCID: PMC11381657 DOI: 10.1002/mco2.722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 09/11/2024] Open
Abstract
Genomics allows the tracing of origin and evolution of cancer at molecular scale and underpin modern cancer diagnosis and treatment systems. Yet, molecular biomarker-guided clinical decision-making encounters major challenges in the realm of individualized medicine, consisting of the invasiveness of procedures and the sampling errors due to high tumor heterogeneity. By contrast, medical imaging enables noninvasive and global characterization of tumors at a low cost. In recent years, radiomics has overcomes the limitations of human visual evaluation by high-throughput quantitative analysis, enabling the comprehensive utilization of the vast amount of information underlying radiological images. The cross-scale integration of radiomics and genomics (hereafter radiogenomics) has the enormous potential to enhance cancer decoding and act as a catalyst for digital precision medicine. Herein, we provide a comprehensive overview of the current framework and potential clinical applications of radiogenomics in patient care. We also highlight recent research advances to illustrate how radiogenomics can address common clinical problems in solid tumors such as breast cancer, lung cancer, and glioma. Finally, we analyze existing literature to outline challenges and propose solutions, while also identifying future research pathways. We believe that the perspectives shared in this survey will provide a valuable guide for researchers in the realm of radiogenomics aiming to advance precision oncology.
Collapse
Affiliation(s)
- Wenle He
- Department of Radiology The First Affiliated Hospital of Jinan University Guangzhou Guangdong China
| | - Wenhui Huang
- Department of Radiology The First Affiliated Hospital of Jinan University Guangzhou Guangdong China
| | - Lu Zhang
- Department of Radiology The First Affiliated Hospital of Jinan University Guangzhou Guangdong China
| | - Xuewei Wu
- Department of Radiology The First Affiliated Hospital of Jinan University Guangzhou Guangdong China
| | - Shuixing Zhang
- Department of Radiology The First Affiliated Hospital of Jinan University Guangzhou Guangdong China
| | - Bin Zhang
- Department of Radiology The First Affiliated Hospital of Jinan University Guangzhou Guangdong China
| |
Collapse
|
15
|
Ko JC, Chen JC, Huang CH, Chen PJ, Chang QZ, Mu BC, Chen JJ, Tai TY, Suzuki K, Wang YX, Lin YW. Downregulation of Rad51 Expression and Activity Potentiates the Cytotoxic Effect of Osimertinib in Human Non-Small Cell Lung Cancer Cells. Chemotherapy 2024:1-14. [PMID: 39128459 DOI: 10.1159/000540867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Osimertinib (AZD9291) is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has shown significant clinical benefits in patients with EGFR-sensitizing mutations or the EGFR T790M mutation. The homologous recombination (HR) pathway is crucial for repairing DNA double-strand breaks (DSBs). Rad51 plays a central role in HR, facilitating the search for homology and promoting DNA strand exchange between homologous DNA molecules. Rad51 is overexpressed in numerous types of cancer cells. B02, a specific small molecule inhibitor of Rad51, inhibits the DNA strand exchange activity of Rad51. Previous studies have indicated that B02 disrupted Rad51 foci formation in response to DNA damage and inhibited DSBs repair in human cells and sensitized them to chemotherapeutic drugs in vitro and in vivo. However, the potential therapeutic effects of combining osimertinib with a Rad51 inhibitor are not well understood. The aim of this study was to elucidate whether the downregulation of Rad51 expression and activity can enhance the osimertinib-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells. METHODS We used the MTS, trypan blue dye exclusion and colony-formation ability assay to determine whether osimertinib alone or in combination with B02 had cytotoxic effects on NSCLC cell lines. Real-time polymerase chain reaction was conducted to measure the amounts of Rad51 mRNA. The protein levels of phosphorylated AKT and Rad51 were determined by Western blot analysis. RESULTS We found that osimertinib reduced Rad51 expression by inactivating AKT activity. Rad51 knockdown using small interfering RNA or AKT inactivation through the phosphatidylinositol 3-kinase inhibitor LY294002 or si-AKT RNA transfection enhanced the cytotoxic and growth inhibitory effects of osimertinib. In contrast, AKT-CA (a constitutively active form of AKT) vector-enforced expression could mitigate the cytotoxic and cell growth inhibitory effects of osimertinib. Furthermore, B02 significantly enhanced the cytotoxic and cell growth inhibitory effects of osimertinib in NSCLC cells. Compared to parental cells, the activation of AKT and Rad51 expression in osimertinib-resistant cells could not be significantly inhibited by osimertinib treatment. Moreover, the increased expression of Rad51 is associated with the resistance mechanism in osimertinib-resistant H1975 and A549 cells. CONCLUSION Collectively, the downregulation of Rad51 expression and activity enhances the cytotoxic effect of osimertinib in human NSCLC cells.
Collapse
Affiliation(s)
- Jen-Chung Ko
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Jyh-Cheng Chen
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | - Ching-Hsiu Huang
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | - Pei-Jung Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Qiao-Zhen Chang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Bo-Cheng Mu
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Jun-Jie Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Tzu-Yuan Tai
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | - Kasumi Suzuki
- Division of Fundamental and Applied Sciences, Iwate University, Morioka, Japan
| | - Yi-Xuan Wang
- School of Medicine, Chung Shan Medical University, Taichung City, Taiwan
| | - Yun-Wei Lin
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
16
|
Zhang C, Sun YX, Yi DC, Jiang BY, Yan LX, Liu ZD, Peng LS, Zhang WJ, Sun H, Chen ZY, Wang DH, Peng D, Chen SA, Li SQ, Zhang Z, Tan XY, Yang J, Zhao ZY, Zhang WT, Su J, Li YS, Liao RQ, Dong S, Xu CR, Zhou Q, Yang XN, Wu YL, Zhang ZM, Zhong WZ. Neoadjuvant sintilimab plus chemotherapy in EGFR-mutant NSCLC: Phase 2 trial interim results (NEOTIDE/CTONG2104). Cell Rep Med 2024; 5:101615. [PMID: 38897205 PMCID: PMC11293361 DOI: 10.1016/j.xcrm.2024.101615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
The clinical efficacy of neoadjuvant immunotherapy plus chemotherapy remains elusive in localized epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC). Here, we report interim results of a Simon's two-stage design, phase 2 trial using neoadjuvant sintilimab with carboplatin and nab-paclitaxel in resectable EGFR-mutant NSCLC. All 18 patients undergo radical surgery, with one patient experiencing surgery delay. Fourteen patients exhibit confirmed radiological response, with 44% achieving major pathological response (MPR) and no pathological complete response (pCR). Similar genomic alterations are observed before and after treatment without influencing the efficacy of subsequent EGFR-tyrosine kinase inhibitors (TKIs) in vitro. Infiltration and T cell receptor (TCR) clonal expansion of CCR8+ regulatory T (Treg)hi/CXCL13+ exhausted T (Tex)lo cells define a subtype of EGFR-mutant NSCLC highly resistant to immunotherapy, with the phenotype potentially serving as a promising signature to predict immunotherapy efficacy. Informed circulating tumor DNA (ctDNA) detection in EGFR-mutant NSCLC could help identify patients nonresponsive to neoadjuvant immunochemotherapy. These findings provide supportive data for the utilization of neoadjuvant immunochemotherapy and insight into immune resistance in EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Pulmonary Surgery, Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; School of Medicine, South China University of Technology, Guangzhou, China
| | - Yu-Xuan Sun
- School of Life Sciences, Peking University, Beijing, China
| | - Ding-Cheng Yi
- School of Life Sciences, Peking University, Beijing, China
| | - Ben-Yuan Jiang
- Department of Pulmonary Surgery, Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Li-Xu Yan
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ze-Dao Liu
- School of Life Sciences, Peking University, Beijing, China
| | - Li-Shan Peng
- Department of Pulmonary Surgery, Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wen-Jie Zhang
- School of Life Sciences, Peking University, Beijing, China
| | - Hao Sun
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhi-Yong Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Department of Radiation Therapy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | | | - Di Peng
- Burning Rock Biotech, Guangzhou, China
| | | | - Si-Qi Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ze Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Xiao-Yue Tan
- PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jie Yang
- Department of Pulmonary Surgery, Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhang-Yi Zhao
- School of Life Sciences, Peking University, Beijing, China
| | - Wan-Ting Zhang
- School of Life Sciences, Peking University, Beijing, China
| | - Jian Su
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yang-Si Li
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ri-Qiang Liao
- Department of Pulmonary Surgery, Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Song Dong
- Department of Pulmonary Surgery, Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chong-Rui Xu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xue-Ning Yang
- Department of Pulmonary Surgery, Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ze-Min Zhang
- School of Life Sciences, Peking University, Beijing, China; BIOPIC, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Wen-Zhao Zhong
- Department of Pulmonary Surgery, Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
17
|
Li J, Gong C, Zhou H, Liu J, Xia X, Ha W, Jiang Y, Liu Q, Xiong H. Kinase Inhibitors and Kinase-Targeted Cancer Therapies: Recent Advances and Future Perspectives. Int J Mol Sci 2024; 25:5489. [PMID: 38791529 PMCID: PMC11122109 DOI: 10.3390/ijms25105489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Over 120 small-molecule kinase inhibitors (SMKIs) have been approved worldwide for treating various diseases, with nearly 70 FDA approvals specifically for cancer treatment, focusing on targets like the epidermal growth factor receptor (EGFR) family. Kinase-targeted strategies encompass monoclonal antibodies and their derivatives, such as nanobodies and peptides, along with innovative approaches like the use of kinase degraders and protein kinase interaction inhibitors, which have recently demonstrated clinical progress and potential in overcoming resistance. Nevertheless, kinase-targeted strategies encounter significant hurdles, including drug resistance, which greatly impacts the clinical benefits for cancer patients, as well as concerning toxicity when combined with immunotherapy, which restricts the full utilization of current treatment modalities. Despite these challenges, the development of kinase inhibitors remains highly promising. The extensively studied tyrosine kinase family has 70% of its targets in various stages of development, while 30% of the kinase family remains inadequately explored. Computational technologies play a vital role in accelerating the development of novel kinase inhibitors and repurposing existing drugs. Recent FDA-approved SMKIs underscore the importance of blood-brain barrier permeability for long-term patient benefits. This review provides a comprehensive summary of recent FDA-approved SMKIs based on their mechanisms of action and targets. We summarize the latest developments in potential new targets and explore emerging kinase inhibition strategies from a clinical perspective. Lastly, we outline current obstacles and future prospects in kinase inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.L.)
| |
Collapse
|
18
|
Chen Z, Vallega KA, Wang D, Quan Z, Fan S, Wang Q, Leal T, Ramalingam SS, Sun SY. DNA topoisomerase II inhibition potentiates osimertinib's therapeutic efficacy in EGFR-mutant non-small cell lung cancer models. J Clin Invest 2024; 134:e172716. [PMID: 38451729 PMCID: PMC11093598 DOI: 10.1172/jci172716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
Development of effective strategies to manage the inevitable acquired resistance to osimertinib, a third-generation EGFR inhibitor for the treatment of EGFR-mutant (EGFRm) non-small cell lung cancer (NSCLC), is urgently needed. This study reports that DNA topoisomerase II (Topo II) inhibitors, doxorubicin and etoposide, synergistically decreased cell survival, with enhanced induction of DNA damage and apoptosis in osimertinib-resistant cells; suppressed the growth of osimertinib-resistant tumors; and delayed the emergence of osimertinib-acquired resistance. Mechanistically, osimertinib decreased Topo IIα levels in EGFRm NSCLC cells by facilitating FBXW7-mediated proteasomal degradation, resulting in induction of DNA damage; these effects were lost in osimertinib-resistant cell lines that possess elevated levels of Topo IIα. Increased Topo IIα levels were also detected in the majority of tissue samples from patients with NSCLC after relapse from EGFR tyrosine kinase inhibitor treatment. Enforced expression of an ectopic TOP2A gene in sensitive EGFRm NSCLC cells conferred resistance to osimertinib, whereas knockdown of TOP2A in osimertinib-resistant cell lines restored their susceptibility to osimertinib-induced DNA damage and apoptosis. Together, these results reveal an essential role of Topo IIα inhibition in mediating the therapeutic efficacy of osimertinib against EGFRm NSCLC, providing scientific rationale for targeting Topo II to manage acquired resistance to osimertinib.
Collapse
MESH Headings
- Humans
- Acrylamides/pharmacology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/enzymology
- Aniline Compounds/pharmacology
- ErbB Receptors/genetics
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/enzymology
- Lung Neoplasms/metabolism
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/metabolism
- Cell Line, Tumor
- Topoisomerase II Inhibitors/pharmacology
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Animals
- Mice
- Mutation
- Poly-ADP-Ribose Binding Proteins/genetics
- Poly-ADP-Ribose Binding Proteins/metabolism
- Poly-ADP-Ribose Binding Proteins/antagonists & inhibitors
- Drug Synergism
- DNA Damage
- Piperazines/pharmacology
- Etoposide/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Zhen Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, USA
| | - Karin A. Vallega
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, USA
| | - Dongsheng Wang
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, USA
| | - Zihan Quan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Ticiana Leal
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, USA
| | - Suresh S. Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Lee JH. Is Real-World Evidence on Acquired Resistance to Osimertinib Relevant Clinically? J Thorac Oncol 2024; 19:187-189. [PMID: 38325976 DOI: 10.1016/j.jtho.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 02/09/2024]
Affiliation(s)
- Jih-Hsiang Lee
- Department of Oncology, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu City, Taiwan; Department of Oncology, National Taiwan University Hospital, Taipei City, Taiwan; Graduate Institute of Oncology, National Taiwan University, Taipei City, Taiwan.
| |
Collapse
|
20
|
Remon J, Saw SPL, Cortiula F, Singh PK, Menis J, Mountzios G, Hendriks LEL. Perioperative Treatment Strategies in EGFR-Mutant Early-Stage NSCLC: Current Evidence and Future Challenges. J Thorac Oncol 2024; 19:199-215. [PMID: 37783386 DOI: 10.1016/j.jtho.2023.09.1451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/21/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Treatment with 3 years of adjuvant osimertinib is considered a new standard in patients with completely resected stage I to IIIA NSCLC harboring a common sensitizing EGFR mutation. This therapeutic approach significantly prolonged the disease-free survival and the overall survival versus placebo and revealed a significant role in preventing the occurrence of brain metastases. However, many unanswered questions remain, including the optimal duration of this therapy, whether all patients benefit from adjuvant osimertinib, and the role of adjuvant chemotherapy in this population. Indeed, there is a renewed interest in neoadjuvant strategies with targeted therapies in resectable NSCLC harboring oncogenic drivers. In light of these considerations, we discuss the past and current treatment options, and the clinical challenges that should be addressed to optimize the treatment outcomes in this patient population.
Collapse
Affiliation(s)
- Jordi Remon
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France.
| | - Stephanie P L Saw
- Department of Medical Oncology, National Cancer Centre Singapore, Duke-National University of Singapore Oncology Academic Clinical Programme, Singapore
| | | | - Pawan Kumar Singh
- Pandit Bhagwat Dayal Sharma Postgraduate Institute of Medical Science, Rothak, India
| | - Jessica Menis
- Medical Oncology Department, University and Hospital Trust of Verona, Verona, Italy
| | - Giannis Mountzios
- Fourth Department of Medical Oncology and Clinical Trials Unit, Henry Dunant Hospital Center, Athens, Greece
| | - Lizza E L Hendriks
- Department of Respiratory Medicine, Maastricht University Medical Centre, GROW School for Oncology and Reproduction, Maastricht, The Netherlands
| |
Collapse
|