1
|
Andrea AE, Chiron A, Sarrabayrouse G, Bessoles S, Hacein-Bey-Abina S. A structural, genetic and clinical comparison of CAR-T cells and CAR-NK cells: companions or competitors? Front Immunol 2024; 15:1459818. [PMID: 39430751 PMCID: PMC11486669 DOI: 10.3389/fimmu.2024.1459818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
In recent years, following the groundbreaking achievements of chimeric antigen receptor (CAR) T cell therapy in hematological cancers, and advancements in cell engineering technologies, the exploration of other immune cells has garnered significant attention. CAR-Therapy extended beyond T cells to include CAR natural killer (NK) cells and CAR-macrophages, which are firmly established in the clinical trial landscape. Less conventional immune cells are also making their way into the scene, such as CAR mucosal-associated invariant T (MAIT) cells. This progress is advancing precision medicine and facilitating the development of ready-to-use biological treatments. However, in view of the unique features of natural killer cells, adoptive NK cell immunotherapy has emerged as a universal, allogenic, "off-the shelf" therapeutic strategy. CAR-NK cytotoxic cells present targeted tumor specificity but seem to be devoid of the side effects associated with CAR-T cells. CAR-NK cells appear to be potentially promising candidates for cancer immunotherapy. However, their application is hindered by significant challenges, particularly the limited persistence of CAR-NK cells in the body, which poses a hurdle to their sustained effectiveness in treating cancer. Based upon the foregoing, this review discusses the current status and applications of both CAR-T cells and CAR-NK cells in hematological cancers, and provides a comparative analysis of the structure, genetics, and clinical outcomes between these two types of genetically modified immune cells.
Collapse
Affiliation(s)
- Alain E. Andrea
- Department of Biology, Faculty of Arts and Sciences, Saint George University of Beirut, Beirut, Lebanon
| | - Andrada Chiron
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| | - Guillaume Sarrabayrouse
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
| | - Stéphanie Bessoles
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
| | - Salima Hacein-Bey-Abina
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| |
Collapse
|
2
|
Mao Z, Hu Y, Zhao Y, Zhang X, Guo L, Wang X, Zhang J, Miao M. The Mutual Regulatory Role of Ferroptosis and Immunotherapy in Anti-tumor Therapy. Apoptosis 2024; 29:1291-1308. [PMID: 38853203 PMCID: PMC11416416 DOI: 10.1007/s10495-024-01988-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
Ferroptosis is a form of cell death that is triggered by the presence of ferrous ions and is characterized by lipid peroxidation induced by these ions. The mechanism exhibits distinct morphological characteristics compared to apoptosis, autophagy, and necrosis. A notable aspect of ferroptosis is its ability to inhibit uncontrolled tumor replication and immortalization, especially in malignant, drug-resistant, and metastatic tumors. Additionally, immunotherapy, a novel therapeutic approach for tumors, has been found to have a reciprocal regulatory relationship with ferroptosis in the context of anti-tumor therapy. A comprehensive analysis of ferroptosis and immunotherapy in tumor therapy is presented in this paper, highlighting the potential for mutual adjuvant effects. Specifically, we discuss the mechanisms underlying ferroptosis and immunotherapy, emphasizing their ability to improve the tumor immune microenvironment and enhance immunotherapeutic effects. Furthermore, we investigate how immunotherapeutic factors may increase the sensitivity of tumor cells to ferroptosis. We aim to provide a prospective view of the promising value of combined ferroptosis and immunotherapy in anticancer therapy by elucidating the mutual regulatory network between each.
Collapse
Affiliation(s)
- Zhiguo Mao
- Department of Pharmacology, Zhengdong New District, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
- Collaborative Innovation Center of Research and Development, Whole Industry Chain of Yu-Yao in Henan Province, Henan, China
| | - Yilong Hu
- Department of Pharmacology, Zhengdong New District, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
- Collaborative Innovation Center of Research and Development, Whole Industry Chain of Yu-Yao in Henan Province, Henan, China
| | - Yinan Zhao
- Department of Pharmacology, Zhengdong New District, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
- Collaborative Innovation Center of Research and Development, Whole Industry Chain of Yu-Yao in Henan Province, Henan, China
| | - Xiaolei Zhang
- Department of Pharmacology, Zhengdong New District, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
- Collaborative Innovation Center of Research and Development, Whole Industry Chain of Yu-Yao in Henan Province, Henan, China
| | - Lin Guo
- Department of Pharmacology, Zhengdong New District, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
- Collaborative Innovation Center of Research and Development, Whole Industry Chain of Yu-Yao in Henan Province, Henan, China
| | - Xiaoran Wang
- Department of Pharmacology, Zhengdong New District, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
- Collaborative Innovation Center of Research and Development, Whole Industry Chain of Yu-Yao in Henan Province, Henan, China
| | - Jinying Zhang
- Department of Pharmacology, Zhengdong New District, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, Henan, China
- Collaborative Innovation Center of Research and Development, Whole Industry Chain of Yu-Yao in Henan Province, Henan, China
| | - Mingsan Miao
- Department of Pharmacology, Zhengdong New District, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, Henan, China.
- Collaborative Innovation Center of Research and Development, Whole Industry Chain of Yu-Yao in Henan Province, Henan, China.
| |
Collapse
|
3
|
Fang K, Zhang H, Kong Q, Ma Y, Xiong T, Qin T, Li S, Zhu X. Recent Progress in Photothermal, Photodynamic and Sonodynamic Cancer Therapy: Through the cGAS-STING Pathway to Efficacy-Enhancing Strategies. Molecules 2024; 29:3704. [PMID: 39125107 PMCID: PMC11314065 DOI: 10.3390/molecules29153704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Photothermal, photodynamic and sonodynamic cancer therapies offer opportunities for precise tumor ablation and reduce side effects. The cyclic guanylate adenylate synthase-stimulator of interferon genes (cGAS-STING) pathway has been considered a potential target to stimulate the immune system in patients and achieve a sustained immune response. Combining photothermal, photodynamic and sonodynamic therapies with cGAS-STING agonists represents a newly developed cancer treatment demonstrating noticeable innovation in its impact on the immune system. Recent reviews have concentrated on diverse materials and their function in cancer therapy. In this review, we focus on the molecular mechanism of photothermal, photodynamic and sonodynamic cancer therapies and the connected role of cGAS-STING agonists in treating cancer.
Collapse
Affiliation(s)
- Kelan Fang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Huiling Zhang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- Department of Medicine and Pharmacy, Shizhen College of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, China
| | - Qinghong Kong
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yunli Ma
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
| | - Tianchan Xiong
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Tengyao Qin
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Sanhua Li
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xinting Zhu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
4
|
Caforio M, Iacovelli S, Quintarelli C, Locatelli F, Folgiero V. GMP-manufactured CRISPR/Cas9 technology as an advantageous tool to support cancer immunotherapy. J Exp Clin Cancer Res 2024; 43:66. [PMID: 38424590 PMCID: PMC10905844 DOI: 10.1186/s13046-024-02993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND CRISPR/Cas9 system to treat human-related diseases has achieved significant results and, even if its potential application in cancer research is improving, the application of this approach in clinical practice is still a nascent technology. MAIN BODY CRISPR/Cas9 technology is not yet used as a single therapy to treat tumors but it can be combined with traditional treatment strategies to provide personalized gene therapy for patients. The combination with chemotherapy, radiation and immunotherapy has been proven to be a powerful means of screening, identifying, validating and correcting tumor targets. Recently, CRISPR/Cas9 technology and CAR T-cell therapies have been integrated to open novel opportunities for the production of more efficient CAR T-cells for all patients. GMP-compatible equipment and reagents are already available for several clinical-grade systems at present, creating the basis and framework for the accelerated development of novel treatment methods. CONCLUSION Here we will provide a comprehensive collection of the actual GMP-grade CRISPR/Cas9-mediated approaches used to support cancer therapy highlighting how this technology is opening new opportunities for treating tumors.
Collapse
Affiliation(s)
- M Caforio
- U.O. Cellular and Genetic Therapy of Hematological Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - S Iacovelli
- U.O Officina Farmaceutica, Good Manufacturing Practice Facility, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - C Quintarelli
- U.O. Cellular and Genetic Therapy of Hematological Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - F Locatelli
- U.O. Cellular and Genetic Therapy of Hematological Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Valentina Folgiero
- U.O. Cellular and Genetic Therapy of Hematological Diseases, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
- IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146, Rome, Italy.
| |
Collapse
|
5
|
Yang F, Dai L, Shi K, Liu Q, Pan M, Mo D, Deng H, Yuan L, Lu Y, Pan L, Yang T, Qian Z. A facile boronophenylalanine modified polydopamine dual drug-loaded nanoparticles for enhanced anti-tumor immune response in hepatocellular carcinoma comprehensive treatment. Biomaterials 2024; 305:122435. [PMID: 38150771 DOI: 10.1016/j.biomaterials.2023.122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/28/2023] [Accepted: 12/16/2023] [Indexed: 12/29/2023]
Abstract
Hepatocellular carcinoma (HCC) has an insidious onset and high malignancy. Most patients have progressed to intermediate and advanced stages by the time of diagnosis, and the long-term efficacy of traditional treatments is not satisfactory. Immunotherapy has shown great promise in the treatment of HCC in recent years; however, the low immunogenicity and severe immunosuppressive tumor microenvironment result in a low response rate to immunotherapy in HCC patients. Therefore, it is of great significance to improve the immunogenicity of HCC and thus enhance its sensitivity to immunotherapy. Here, we prepared the boronophenylalanine-modified dual drug-loaded polydopamine nanoparticles by a facile method. This system used boronophenylalanine-modified polydopamine nanoparticles as a delivery vehicle and photothermal material for the chemotherapeutic drug doxorubicin and the immune agonist CpG oligodeoxynucleotides (CpG-ODN), with both active targeting and lysosomal escape functions. The cancer cells are rapidly killed by photothermal treatment, and then chemotherapy is used to further kill cancer cells that are inadequately treated by photothermal treatment. The combination of photothermal-chemotherapy synergistically induces the release of relevant antigens from tumor cells, thus initiating anti-tumor immunity; and then cooperates with CpG-ODN to trigger a powerful anti-tumor immune memory effect, potently and durably inhibiting HCC recurrence.
Collapse
Affiliation(s)
- Fan Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liqun Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kun Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qingya Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Meng Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dong Mo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hanzhi Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liping Yuan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Lu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tingyu Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
6
|
Lv M, Guo S, Zhang X, Zou Y, Chen Q, Zang C, Huang S, Hu Y, Wang Y, Wang Q, Zhong J. Attenuated Salmonella-delivered PD-1 siRNA enhances the antitumor effects of EZH2 inhibitors in colorectal cancer. Int Immunopharmacol 2023; 124:110918. [PMID: 37708707 DOI: 10.1016/j.intimp.2023.110918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
Immunotherapy has made significant progress in the treatment of malignant tumors. However, strategies to combine immunotherapy with anticancer drugs have attracted great attention due to the low response rate and unique toxicity profile of immunotherapies and the subsequent development of acquired resistance in some initial responders. EZH2, a histone methyl transferase subunit of a Polycomb repressor complex,is highly expressed in a variety of tumors, and targeting EZH2 has become a new strategy for tumor therapy and drug combination. Here,we studied the effect of EZH2 inhibitors on colorectal cancer cells and their combination with immunotherapy. Our results demonstrated that EZH2 inhibitors can not only significantly inhibit the survival of colorectal cancer (CRC) cells and induce apoptosis, effectively inhibit cell invasion and migration, but also cause an increase in the expression of PD-L1 receptors on the cell surface. To determine the effect of EZH2 in combination with immunotherapy, we combine EZH2 inhibitors with PD-1 siRNA delivered by attenuated Salmonella. The vivo experiments have shown that the combination of EZH2 inhibitors and Salmonella-delivered PD-1 siRNA can further inhibit the development of CRC, trigger effective anti-tumor immunity, and improve therapeutic efficacy. Its underlying mechanisms mainly involve synergistic immunomodulation and apoptosis. This study suggests an emerging strategy based on a combination of EZH2 inhibitor and immunotherapy based on PD-1 inhibition.
Collapse
Affiliation(s)
- Mengmeng Lv
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Sheng Guo
- Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China, Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xinyu Zhang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yan Zou
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Qiang Chen
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chongyi Zang
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Shuo Huang
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuhan Hu
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yanling Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Qianqing Wang
- Department of Gynecology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, China.
| | - Jiateng Zhong
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China; Department of Gynecology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
7
|
Micevic G, Daniels A, Flem-Karlsen K, Park K, Talty R, McGeary M, Mirza H, Blackburn HN, Sefik E, Cheung JF, Hornick NI, Aizenbud L, Joshi NS, Kluger H, Iwasaki A, Bosenberg MW, Flavell RA. IL-7R licenses a population of epigenetically poised memory CD8 + T cells with superior antitumor efficacy that are critical for melanoma memory. Proc Natl Acad Sci U S A 2023; 120:e2304319120. [PMID: 37459511 PMCID: PMC10372654 DOI: 10.1073/pnas.2304319120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/08/2023] [Indexed: 07/20/2023] Open
Abstract
Recurrence of advanced melanoma after therapy is a major risk factor for reduced survival, and treatment options are limited. Antitumor immune memory plays a critical role in preventing melanoma recurrence and memory T cells could be a potent cell-based therapy, but the identity, and functional properties of the required immune cells are incompletely understood. Here, we show that an IL-7Rhi tumor-specific CD8+ population is critical for antitumor memory and can be epigenetically augmented to drive powerful antitumor immune responses. Using a model of functional antimelanoma memory, we found that high IL-7R expression selectively marks a CD8+ population in lymphoid organs that plays critical roles in maintaining tumor remission after immunotherapy or surgical resection. This population has intrinsic cytotoxic activity, lacks markers of exhaustion and has superior antitumor efficacy. IL-7Rhi cells have a functionally poised epigenetic landscape regulated by DNA methylation, which can be augmented by hypomethylating agents to confer improved survival and complete melanoma clearance in naive mice. Importantly, greater than 95% of tumor-specific T cells in draining lymph nodes after therapy express high levels of IL-7R. This overlap between IL-7Rhi and antigen-specific T cells allows for enrichment of a potent functional CD8+ population without determining antigen-specificity, which we demonstrate in a melanoma model without a known antigen. We identify that IL-7R expression in human melanoma is an independent prognostic factor of improved survival. These findings advance our basic understanding of antitumor memory and suggest a cell-based therapy using high IL-7R expression to enrich for a lymph node population with superior antitumor activity that can be augmented by hypomethylating agents.
Collapse
Affiliation(s)
- Goran Micevic
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
- Department of Dermatology, Yale School of Medicine, New Haven, CT06520
| | - Andrew Daniels
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
- Department of Pathology, Yale School of Medicine, New Haven, CT06520
| | | | - Koonam Park
- Department of Dermatology, Yale School of Medicine, New Haven, CT06520
| | - Ronan Talty
- Department of Pathology, Yale School of Medicine, New Haven, CT06520
| | - Meaghan McGeary
- Department of Pathology, Yale School of Medicine, New Haven, CT06520
| | - Haris Mirza
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
- Department of Pathology, Yale School of Medicine, New Haven, CT06520
| | - Holly N. Blackburn
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
- Department of Surgery, Yale School of Medicine, New Haven, CT06520
| | - Esen Sefik
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
| | - Julie F. Cheung
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
| | - Noah I. Hornick
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
| | - Lilach Aizenbud
- Yale Cancer Center, Yale School of Medicine, New Haven, CT06520
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT06520
| | - Nikhil S. Joshi
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
| | - Harriet Kluger
- Yale Cancer Center, Yale School of Medicine, New Haven, CT06520
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT06520
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT06520
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT06520
- HHMI, Chevy Chase, MD20815
| | - Marcus W. Bosenberg
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
- Department of Dermatology, Yale School of Medicine, New Haven, CT06520
- Department of Pathology, Yale School of Medicine, New Haven, CT06520
- Yale Cancer Center, Yale School of Medicine, New Haven, CT06520
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT06520
- Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT06520
| | - Richard A. Flavell
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
- Yale Cancer Center, Yale School of Medicine, New Haven, CT06520
- HHMI, Chevy Chase, MD20815
| |
Collapse
|