1
|
Gardano L, Ferreira J, Le Roy C, Ledoux D, Varin-Blank N. The survival grip-how cell adhesion promotes tumor maintenance within the microenvironment. FEBS Lett 2024. [PMID: 39704141 DOI: 10.1002/1873-3468.15074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024]
Abstract
Cell adhesion is warranted by proteins that are crucial for the maintenance of tissue integrity and homeostasis. Most of these proteins behave as receptors to link adhesion to the control of cell survival and their expression or regulation are often altered in cancers. B-cell malignancies do not evade this principle as they are sustained in relapsed niches by interacting with the microenvironment that includes cells and their secreted factors. Focusing on chronic lymphocytic leukemia and mantle cell lymphoma, this Review delves with the molecules involved in the dialog between the adhesion platforms and signaling pathways known to regulate both cell adhesion and survival. Current therapeutic strategies disrupt adhesive structures and compromise the microenvironment support to tumor cells, rendering them sensitive to immune recognition. The development of organ-on-chip and 3D culture systems, such as spheroids, have revealed the importance of mechanical cues in regulating signaling pathways to organize cell adhesion and survival. All these elements contribute to the elaboration of the crosstalk of lymphoma cells with the microenvironment and the education processes that allow the establishment of the supportive niche.
Collapse
Affiliation(s)
- Laura Gardano
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| | - Jordan Ferreira
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| | - Christine Le Roy
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| | - Dominique Ledoux
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| | - Nadine Varin-Blank
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| |
Collapse
|
2
|
Bauvois B, Nguyen-Khac F, Merle-Béral H, Susin SA. CD38/NAD + glycohydrolase and associated antigens in chronic lymphocytic leukaemia: From interconnected signalling pathways to therapeutic strategies. Biochimie 2024; 227:135-151. [PMID: 39009062 DOI: 10.1016/j.biochi.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Chronic lymphocytic leukaemia (CLL) is a heterogenous disease characterized by the accumulation of neoplastic CD5+/CD19+ B lymphocytes. The spreading of the leukaemia relies on the CLL cell's ability to survive in the blood and migrate to and proliferate within the bone marrow and lymphoid tissues. Some patients with CLL are either refractory to the currently available therapies or relapse after treatment; this emphasizes the need for novel therapeutic strategies that improving clinical responses and overcome drug resistance. CD38 is a marker of a poor prognosis and governs a set of survival, proliferation and migration signals that contribute to the pathophysiology of CLL. The literature data evidence a spatiotemporal association between the cell surface expression of CD38 and that of other CLL antigens, such as the B-cell receptor (BCR), CD19, CD26, CD44, the integrin very late antigen 4 (VLA4), the chemokine receptor CXCR4, the vascular endothelial growth factor receptor-2 (VEGF-R2), and the neutrophil gelatinase-associated lipocalin receptor (NGAL-R). Most of these proteins contribute to CLL cell survival, proliferation and trafficking, and cooperate with CD38 in multilayered signal transduction processes. In general, these antigens have already been validated as therapeutic targets in cancer, and a broad repertoire of specific monoclonal antibodies and derivatives are available. Here, we review the state of the art in this field and examine the therapeutic opportunities for cotargeting CD38 and its partners in CLL, e.g. by designing novel bi-/trispecific antibodies.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- ADP-ribosyl Cyclase 1/metabolism
- ADP-ribosyl Cyclase 1/immunology
- Signal Transduction
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/immunology
- Animals
Collapse
Affiliation(s)
- Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| | - Florence Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013, Paris, France.
| | - Hélène Merle-Béral
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| | - Santos A Susin
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| |
Collapse
|
3
|
Tissino E, Gaglio A, Nicolò A, Pozzo F, Bittolo T, Rossi FM, Bomben R, Nanni P, Cattarossi I, Zaina E, Zimbo AM, Ianna G, Capasso G, Forestieri G, Moia R, Datta M, Härzschel A, Olivieri J, D'Arena G, Laurenti L, Zaja F, Chiarenza A, Palumbo GA, Martino EA, Gentile M, Rossi D, Gaidano G, Del Poeta G, Laureana R, Del Principe MI, Maity PC, Jumaa H, Hartmann TN, Zucchetto A, Gattei V. The VLA-4 integrin is constitutively active in circulating chronic lymphocytic leukemia cells via BCR autonomous signaling: a novel anchor-independent mechanism exploiting soluble blood-borne ligands. Leukemia 2024; 38:2127-2140. [PMID: 39143370 PMCID: PMC11436378 DOI: 10.1038/s41375-024-02376-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
In chronic lymphocytic leukemia (CLL), survival of neoplastic cells depends on microenvironmental signals at lymphoid sites where the crosstalk between the integrin VLA-4 (CD49d/CD29), expressed in ~40% of CLL, and the B-cell receptor (BCR) occurs. Here, BCR engagement inside-out activates VLA-4, thus enhancing VLA-4-mediated adhesion of CLL cells, which in turn obtain pro-survival signals from the surrounding microenvironment. We report that the BCR is also able to effectively inside-out activate the VLA-4 integrin in circulating CD49d-expressing CLL cells through an autonomous antigen-independent BCR signaling. As a consequence, circulating CLL cells exhibiting activated VLA-4 express markers of BCR pathway activation (phospho-BTK and phospho-PLC-γ2) along with higher levels of phospho-ERK and phospho-AKT indicating parallel activation of downstream pathways. Moreover, circulating CLL cells expressing activated VLA-4 bind soluble blood-borne VCAM-1 leading to increased VLA-4-dependent actin polymerization/re-organization and ERK phosphorylation. Finally, evidence is provided that ibrutinib treatment, by affecting autonomous BCR signaling, impairs the constitutive VLA-4 activation eventually decreasing soluble VCAM-1 binding and reducing downstream ERK phosphorylation by circulating CLL cells. This study describes a novel anchor-independent mechanism occurring in circulating CLL cells involving the BCR and the VLA-4 integrin, which help to unravel the peculiar biological and clinical features of CD49d+ CLL.
Collapse
MESH Headings
- Humans
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Cell Adhesion
- Integrin alpha4beta1/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Ligands
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- Pyrazoles/therapeutic use
- Pyrimidines/pharmacology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
- Vascular Cell Adhesion Molecule-1/metabolism
Collapse
Affiliation(s)
- Erika Tissino
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy.
| | - Annalisa Gaglio
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Antonella Nicolò
- Institut für Immunologie, Universitätsklinikum Ulm, Ulm, Germany
| | - Federico Pozzo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Tamara Bittolo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Francesca Maria Rossi
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Paola Nanni
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Ilaria Cattarossi
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Eva Zaina
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Anna Maria Zimbo
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
- Haematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Giulia Ianna
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Guido Capasso
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Gabriela Forestieri
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Riccardo Moia
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Moumita Datta
- Institut für Immunologie, Universitätsklinikum Ulm, Ulm, Germany
| | - Andrea Härzschel
- Department of Internal Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jacopo Olivieri
- Clinica Ematologica, Centro Trapianti e Terapie Cellulari "Carlo Melzi" DISM, Azienda Ospedaliera Universitaria S. Maria Misericordia, Udine, Italy
| | - Giovanni D'Arena
- Hematology, "S. Luca" Hospital, ASL Salerno, Vallo della Lucania, Italy
| | - Luca Laurenti
- Fondazione Policlinico Universitario A Gemelli, IRCCS, Rome, Italy
| | - Francesco Zaja
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Annalisa Chiarenza
- Division of Hematology, Ferrarotto Hospital, University of Catania, Catania, Italy
| | - Giuseppe A Palumbo
- Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", University of Catania, Catania, Italy
| | | | - Massimo Gentile
- Haematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende, Italy
| | - Davide Rossi
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | | | | | | | - Palash C Maity
- Institut für Experimentelle Tumorforschung, Universitätsklinikum Ulm, Ulm, Germany
| | - Hassan Jumaa
- Institut für Immunologie, Universitätsklinikum Ulm, Ulm, Germany
| | - Tanja Nicole Hartmann
- Department of Internal Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Antonella Zucchetto
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy.
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy.
| |
Collapse
|
4
|
Vom Stein AF, Hallek M, Nguyen PH. Role of the tumor microenvironment in CLL pathogenesis. Semin Hematol 2024; 61:142-154. [PMID: 38220499 DOI: 10.1053/j.seminhematol.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/02/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024]
Abstract
Chronic lymphocytic leukemia (CLL) cells extensively interact with and depend on their surrounding tumor microenvironment (TME). The TME encompasses a heterogeneous array of cell types, soluble signals, and extracellular vesicles, which contribute significantly to CLL pathogenesis. CLL cells and the TME cooperatively generate a chronic inflammatory milieu, which reciprocally reprograms the TME and activates a signaling network within CLL cells, promoting their survival and proliferation. Additionally, the inflammatory milieu exerts chemotactic effects, attracting CLL cells and other immune cells to the lymphoid tissues. The intricate CLL-TME interactions also facilitate immune evasion and compromise leukemic cell surveillance. We also review recent advances that have shed light on additional aspects that are substantially influenced by the CLL-TME interplay.
Collapse
Affiliation(s)
- Alexander F Vom Stein
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Center for Molecular Medicine Cologne; CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Michael Hallek
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Center for Molecular Medicine Cologne; CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Phuong-Hien Nguyen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Center for Molecular Medicine Cologne; CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany.
| |
Collapse
|
5
|
Xue X, Wen Z, Zhang X, Yang Y, Li Y, Liao R, Zheng Q, Fu Y, Liu Y, Liao H. CXCR4 overexpression in chronic lymphocytic leukemia associates with poorer prognosis: A prospective, single-center, observational study. Genes Immun 2024; 25:117-123. [PMID: 38366101 DOI: 10.1038/s41435-024-00258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Controversial data have been reported on the prognostic value of C-X-C motif chemokine receptor 4 (CXCR4) in chronic lymphocytic leukemia (CLL). This prospective, single-center, observational study aimed to evaluate the role of CXCR4 in the pathophysiology of CLL and its prognostic role. A total of 158 patients of CLL were enrolled, and CXCR4 expression on CLL cells was detected by flow cytometry (FCM) at initial diagnosis. The patients were divided into 2 groups according to the CXCR4 mean fluorescence intensity (MFI) median. Also, four patient specimens from the CXCR4low and CXCR4high groups were selected for RNASeq analysis. The progression-free survival (PFS) of CLL patients in the CXCR4high group was significantly shorter than the CXCR4low group, with a median follow-up time of 27 months (log-rank P < 0.001). Moreover, CXCR4 overexpression (MFI > 3376) was an independent marker of poor PFS in CLL patients (P < 0.001). Analysis of RNASeq results revealed that CXCR4 plays an important role in the migration of CLL. Collectively, CXCR4 expression levels on leukemia cells can be detected rapidly by FCM. CXCR4 overexpression was significantly associated with poorer prognosis in CLL patients within a shorter follow-up time.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Prospective Studies
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Signal Transduction
- Prognosis
Collapse
Affiliation(s)
- Xinran Xue
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhihao Wen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yifei Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruoxi Liao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qin Zheng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Fu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongyan Liao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Moia R, Gaidano G. Prognostication in chronic lymphocytic leukemia. Semin Hematol 2024; 61:83-90. [PMID: 38523019 DOI: 10.1053/j.seminhematol.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in Western countries. CLL is a highly heterogeneous disease: some patients may never require therapy and others relapse several times after different therapeutic strategies. Therefore, in CLL, prognostic markers are essential to capture high-risk patients for different clinical endpoints including early treatment requirement, early progression after BTK or BCL2 inhibitors and Richter transformation. In early stage CLL, different biological and clinical biomarkers have been identified to predict time to treatment requirement that could be used to identify the most appropriate population for early intervention clinical trial. However, at the moment, the standard of care for early stage CLL remains watch & wait since no survival benefit has been identified in clinical trials with chemoimmunotherapy and with BTK inhibitors. In patients requiring treatment TP53 disruptions identify high-risk patients who benefit the most from long-term continuous therapy with BTKi. On the opposite side of the spectrum, IGHV mutated patients devoid of TP53 disruption benefit the most from fixed-duration therapy with venetoclax-obinutuzumab. In between, the highly heterogenous subgroup of patients with IGHV unmutated genes represents the group in which further efforts are needed to identify additional prognostic biomarkers aimed at selecting patients who can benefit from fixed-duration and patients who can benefit from long term BTKi therapy. In the context of the aggressive transformation of CLL, namely Richter syndrome, the clonal relationship to the CLL counterpart represents the strongest prognostic biomarker. Clonally related Richter syndrome still represents an unmet clinical need which requires further efforts to identify new therapeutic strategies.
Collapse
MESH Headings
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Humans
- Prognosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Mutation
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Riccardo Moia
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy.
| |
Collapse
|
7
|
Hartmann TN. Ibrutinib and the chemotactic lymph node choreography. Haematologica 2024; 109:698-700. [PMID: 37608775 PMCID: PMC10905102 DOI: 10.3324/haematol.2023.283651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Affiliation(s)
- Tanja N Hartmann
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg.
| |
Collapse
|
8
|
Cerreto M, Foà R, Natoni A. The Role of the Microenvironment and Cell Adhesion Molecules in Chronic Lymphocytic Leukemia. Cancers (Basel) 2023; 15:5160. [PMID: 37958334 PMCID: PMC10647257 DOI: 10.3390/cancers15215160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy whose progression largely depends on the lymph node and bone marrow microenvironment. Indeed, CLL cells actively proliferate in specific regions of these anatomical compartments, known as proliferation centers, while being quiescent in the blood stream. Hence, CLL cell adhesion and migration into these protective niches are critical for CLL pathophysiology. CLL cells are lodged in their microenvironment through a series of molecular interactions that are mediated by cellular adhesion molecules and their counter receptors. The importance of these adhesion molecules in the clinic is demonstrated by the correlation between the expression levels of some of them, in particular CD49d, and the prognostic likelihood. Furthermore, novel therapeutic agents, such as ibrutinib, impair the functions of these adhesion molecules, leading to an egress of CLL cells from the lymph nodes and bone marrow into the circulation together with an inhibition of homing into these survival niches, thereby preventing disease progression. Several adhesion molecules have been shown to participate in CLL adhesion and migration. Their importance also stems from the observation that they are involved in promoting, directly or indirectly, survival signals that sustain CLL proliferation and limit the efficacy of standard and novel chemotherapeutic drugs, a process known as cell adhesion-mediated drug resistance. In this respect, many studies have elucidated the molecular mechanisms underlying cell adhesion-mediated drug resistance, which have highlighted different signaling pathways that may represent potential therapeutic targets. Here, we review the role of the microenvironment and the adhesion molecules that have been shown to be important in CLL and their impact on transendothelial migration and cell-mediated drug resistance. We also discuss how novel therapeutic compounds modulate the function of this important class of molecules.
Collapse
Affiliation(s)
| | | | - Alessandro Natoni
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00100 Rome, Italy; (M.C.); (R.F.)
| |
Collapse
|