1
|
Locatelli M, Farina C. Role of copper in central nervous system physiology and pathology. Neural Regen Res 2025; 20:1058-1068. [PMID: 38989937 PMCID: PMC11438321 DOI: 10.4103/nrr.nrr-d-24-00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 07/12/2024] Open
Abstract
Copper is a transition metal and an essential element for the organism, as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs, including the central nervous system. Central copper dysregulations have been evidenced in two genetic disorders characterized by mutations in the copper-ATPases ATP7A and ATP7B, Menkes disease and Wilson's disease, respectively, and also in multifactorial neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. This review summarizes current knowledge about the role of copper in central nervous system physiology and pathology, reports about unbalances in copper levels and/or distribution under disease, describes relevant animal models for human disorders where copper metabolism genes are dysregulated, and discusses relevant therapeutic approaches modulating copper availability. Overall, alterations in copper metabolism may contribute to the etiology of central nervous system disorders and represent relevant therapeutic targets to restore tissue homeostasis.
Collapse
Affiliation(s)
- Martina Locatelli
- Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
2
|
Taguchi H, Sumi D, Uemura A, Matsumoto K, Fujishiro H. Cisplatin caused highly delayed cytotoxicity in the immortalized cells derived from S3 segment of mouse kidney proximal tubules. Toxicol Appl Pharmacol 2025; 494:117171. [PMID: 39592085 DOI: 10.1016/j.taap.2024.117171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
Anti-cancer drug cisplatin (CDDP) causes severe acute kidney injury (AKI). CDDP-induced AKI does not occur immediately after administration, but rather 6 to 10 days after administration. However, the mechanism underling the delayed renal injury by CDDP is not well understood. In a previous investigation using immortalized cells derived from the S1, S2, and S3 segments of the proximal tubules, we found that S3 cells were more sensitive to CDDP than S1 and S2 cells. In this study, we examined whether S1, S2, and S3 cells would be useful in elucidating the mechanism of CDDP-induced delayed renal injury and whether the high sensitivity of S3 cells contributes to CDDP-induced delayed renal injury. Measurement of platinum (Pt) content by ICP-MS showed that Pt accumulation peaked at 15 min after CDDP exposure in each cell type. Even when the medium was replaced with CDDP-free medium after the 15-min CDDP exposure and the cells were further incubated, delayed cytotoxicity was still observed. The S3 cells exhibited greater sensitivity to CCDP than the S1 and S2 cells at all time points after the medium change. To investigate the mechanism of the CDDP-induced delayed cytotoxicity, we examined the cell cycle distribution of cells after CDDP exposure. The results showed that CDDP-induced perturbation of cell cycle was greater in S3 than in S1 and S2 cells. These results suggest that perturbation of the cell cycle in S3 cells due to enhanced CDDP-DNA adduct formation contributes to the high susceptibility of S3 cells to CDDP-induced delayed cytotoxicity.
Collapse
Affiliation(s)
- Hiroki Taguchi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Daigo Sumi
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Ayumi Uemura
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Kanako Matsumoto
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Hitomi Fujishiro
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| |
Collapse
|
3
|
Liao Q, Deng J, Tong J, Gan Y, Hong W, Dong H, Cao M, Xiong C, Chen Y, Xie B, Yang FY, Alifu A, Zhou GB, Huang S, Xiong J, Hao Q, Zhou X. p53 induces circFRMD4A to suppress cancer development through glycolytic reprogramming and cuproptosis. Mol Cell 2024:S1097-2765(24)00918-3. [PMID: 39637854 DOI: 10.1016/j.molcel.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/15/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Cuproptosis is a type of copper-induced cell death that mainly impacts cells relying on mitochondrial metabolism. Although p53 regulates glycolytic metabolism, its role in cuproptosis remains unclear. Here, we report that the circular RNA, circFRMD4A, is crucial for p53-mediated metabolic reprogramming and cuproptosis. CircFRMD4A originates from the transcript of FRMD4A, which is transcriptionally activated by p53, and the formation of circFRMD4A is facilitated by the RNA-binding protein EWSR1. CircFRMD4A functions as a tumor suppressor and enhances the sensitivity of cancer cells to elesclomol-induced cuproptosis. Mechanistic analysis reveals that circFRMD4A interacts with and inactivates the pyruvate kinase PKM2, leading to a decrease in lactate production and a redirection of glycolytic flux toward the tricarboxylic acid cycle. Finally, p53 agonists and elesclomol coordinately suppress the growth of cancer in a xenograft mouse model. Altogether, our study uncovers that p53 promotes glycolytic reprogramming and cuproptosis via circFRMD4A and suggests a potential combination strategy against cancers with wild-type p53.
Collapse
Affiliation(s)
- Quan Liao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang 330006, Jiangxi, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang 330006, Jiangxi, China
| | - Jing Tong
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu Gan
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Weiwei Hong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Hanzhi Dong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang 330006, Jiangxi, China
| | - Mingming Cao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chen Xiong
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yajie Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Bangxiang Xie
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Fu-Ying Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aikede Alifu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guang-Biao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang 330006, Jiangxi, China.
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
Tsai TH, Lo W, Wang HY, Tsai TL. Carbon Dot Micelles Synthesized from Leek Seeds in Applications for Cobalt (II) Sensing, Metal Ion Removal, and Cancer Therapy. J Funct Biomater 2024; 15:347. [PMID: 39590551 PMCID: PMC11595631 DOI: 10.3390/jfb15110347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/22/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Popular photoluminescent (PL) nanomaterials, such as carbon dots, have attracted substantial attention from scientists due to their photophysical properties, biocompatibility, low cost, and diverse applicability. Carbon dots have been used in sensors, cell imaging, and cancer therapy. Leek seeds with anticancer, antimicrobial, and antioxidant functions serve as traditional Chinese medicine. However, leek seeds have not been studied as a precursor of carbon dots. In this study, leek seeds underwent a supercritical fluid extraction process. Leek seed extract was obtained and then carbonized using a dry heating method, followed by hydrolysis to form carbon dot micelles (CD-micelles). CD-micelles exhibited analyte-induced PL quenching against Co2+ through the static quenching mechanism, with the formation of self-assembled Co2+-CD-micelle sphere particles. In addition, CD-micelles extracted metal ion through liquid-liquid extraction, with removal efficiencies of >90% for Pb2+, Al3+, Fe3+, Cr3+, Pd2+, and Au3+. Moreover, CD-micelles exhibited ABTS•+ radical scavenging ability and cytotoxicity for cisplatin-resistant lung cancer cells. CD-micelles killed cisplatin-resistant small-cell lung cancer cells in a dose-dependent manner with a cancer cell survival rate down to 12.8 ± 4.2%, with a similar treatment function to that of cisplatin. Consequently, CD-micelles functionalized as novel antioxidants show great potential as anticancer nanodrugs in cancer treatment.
Collapse
Affiliation(s)
- Teh-Hua Tsai
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Wei Lo
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Hsiu-Yun Wang
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Tsung-Lin Tsai
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701401, Taiwan
| |
Collapse
|
5
|
Lv Z, Ali A, Wang N, Ren H, Liu L, Yan F, Shad M, Hao H, Zhang Y, Rahman FU. Co-targeting CDK 4/6 and C-MYC/STAT3/CCND1 axis and inhibition of tumorigenesis and epithelial-mesenchymal-transition in triple negative breast cancer by Pt(II) complexes bearing NH 3 as trans-co-ligand. J Inorg Biochem 2024; 259:112661. [PMID: 39018748 DOI: 10.1016/j.jinorgbio.2024.112661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
In search of potential anticancer agents, we synthesized SNO-donor salicylaldimine main ligand-based Pt(II) complexes bearing NH3 as co-ligand at trans-position (C1-C6). These complexes showed similarity in structure with transplatin as the two N donor atoms of the main ligand and NH3 co-ligand were coordinated to Pt in trans position to each other. Each complex with different substituents on the main ligand was characterized thoroughly by detailed spectroscopic and spectrophotometric methods. Four of these complexes were studied in solid state by single crystal X-ray analysis. The stability of reference complex C1 was measured in solution state in DMSO‑d6 or its mixture with D2O using 1H NMR methods. These complexes were further investigated for their anticancer activity in triple-negative-breast (TNBC) cells including MDA-MB-231, MDA-MB-468 and MDA-MB-436 cells. All these complexes showed satisfactory cytotoxic effect as revealed by the MTT results. Importantly, the highly active complex C4 anticancer effect was compared to the standard chemotherapeutic agents including cisplatin, oxaliplatin and 5-fluorouracil (5-FU). Functionally, C4 suppressed invasion, spheroids formation ability and clonogenic potential of cancer cells. C4 showed synergistic anticancer effect when used in combination with palbociclib, JQ1 and paclitaxel in TNBC cells. Mechanistically, C4 inhibited cyclin-dependent kinase (CDK)4/6 pathway and targeted the expressions of MYC/STAT3/CCND1/CNNE1 axis. Furthermore, C4 suppressed the EMT signaling pathway that suggested a role of C4 in the inhibition of TNBC metastasis. Our findings may pave further in detailed mechanistic study on these complexes as potential chemotherapeutic agents in different types of human cancers.
Collapse
Affiliation(s)
- Zhimin Lv
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Amjad Ali
- Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, KPK, Pakistan; Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Na Wang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Haojie Ren
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Lijing Liu
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Fufu Yan
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Man Shad
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China; School of Life Sciences, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Huifang Hao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China; School of Life Sciences, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France.
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| |
Collapse
|
6
|
Zhang C, Huang T, Li L. Targeting cuproptosis for cancer therapy: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:68. [PMID: 39152464 PMCID: PMC11328505 DOI: 10.1186/s13045-024-01589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Cuproptosis is a newly identified form of cell death induced by excessive copper (Cu) accumulation within cells. Mechanistically, cuproptosis results from Cu-induced aggregation of dihydrolipoamide S-acetyltransferase, correlated with the mitochondrial tricarboxylic acid cycle and the loss of iron-sulfur cluster proteins, ultimately resulting in proteotoxic stress and triggering cell death. Recently, cuproptosis has garnered significant interest in tumor research due to its potential as a crucial therapeutic strategy against cancer. In this review, we summarized the cellular and molecular mechanisms of cuproptosis and its relationship with other types of cell death. Additionally, we reviewed the current drugs or strategies available to induce cuproptosis in tumor cells, including Cu ionophores, small compounds, and nanomedicine. Furthermore, we targeted cell metabolism and specific regulatory genes in cancer therapy to enhance tumor sensitivity to cuproptosis. Finally, we discussed the feasibility of targeting cuproptosis to overcome tumor chemotherapy and immunotherapy resistance and suggested future research directions. This study suggested that targeting cuproptosis could open new avenues for developing tumor therapy.
Collapse
Affiliation(s)
- Chenliang Zhang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Tingting Huang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Liping Li
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
7
|
Nunes M, Bartosch C, Abreu MH, Richardson A, Almeida R, Ricardo S. Deciphering the Molecular Mechanisms behind Drug Resistance in Ovarian Cancer to Unlock Efficient Treatment Options. Cells 2024; 13:786. [PMID: 38727322 PMCID: PMC11083313 DOI: 10.3390/cells13090786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Ovarian cancer is a highly lethal form of gynecological cancer. This disease often goes undetected until advanced stages, resulting in high morbidity and mortality rates. Unfortunately, many patients experience relapse and succumb to the disease due to the emergence of drug resistance that significantly limits the effectiveness of currently available oncological treatments. Here, we discuss the molecular mechanisms responsible for resistance to carboplatin, paclitaxel, polyadenosine diphosphate ribose polymerase inhibitors, and bevacizumab in ovarian cancer. We present a detailed analysis of the most extensively investigated resistance mechanisms, including drug inactivation, drug target alterations, enhanced drug efflux pumps, increased DNA damage repair capacity, and reduced drug absorption/accumulation. The in-depth understanding of the molecular mechanisms associated with drug resistance is crucial to unveil new biomarkers capable of predicting and monitoring the kinetics during disease progression and discovering new therapeutic targets.
Collapse
Affiliation(s)
- Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Carla Bartosch
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal; (C.B.); (M.H.A.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
- Cancer Biology & Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (CI-IPO-Porto), Health Research Network (RISE@CI-IPO-Porto), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Miguel Henriques Abreu
- Porto Comprehensive Cancer Center Raquel Seruca (PCCC), Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal; (C.B.); (M.H.A.)
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Alan Richardson
- The School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Stoke-on-Trent ST4 7QB, Staffordshire, UK;
| | - Raquel Almeida
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Biology Department, Faculty of Sciences, University of Porto (FCUP), 4169-007 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (M.N.); (R.A.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
8
|
Lai SW, Weng PW, Yadav VK, Pikatan NW, Yeh CT, Hsieh MS, Chou CL. Underlying mechanisms of novel cuproptosis-related dihydrolipoamide branched-chain transacylase E2 (DBT) signature in sunitinib-resistant clear-cell renal cell carcinoma. Aging (Albany NY) 2024; 16:2679-2701. [PMID: 38305803 PMCID: PMC10911363 DOI: 10.18632/aging.205504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/30/2023] [Indexed: 02/03/2024]
Abstract
Renal cell carcinoma (RCC) is the predominant form of malignant kidney cancer. Sunitinib, a primary treatment for advanced, inoperable, recurrent, or metastatic RCC, has shown effectiveness in some patients but is increasingly limited by drug resistance. Recently identified cuproptosis, a copper-ion-dependent form of programmed cell death, holds promise in combating cancer, particularly drug-resistant types. However, its effectiveness in treating drug resistant RCC remains to be determined. Exploring cuproptosis's regulatory mechanisms could enhance RCC treatment strategies. Our analysis of data from the GEO and TCGA databases showed that the cuproptosis-related gene DBT is markedly under expressed in RCC tissues, correlating with worse prognosis and disease progression. In our study, we investigated copper CRGs in ccRCC, noting substantial expression differences, particularly in advanced-stage tumors. We established a connection between CRG expression levels and patient survival, positioning CRGs as potential therapeutic targets for ccRCC. In drug resistant RCC cases, we found distinct expression patterns for DBT and GLS CRGs, linked to treatment resistance. Our experiments demonstrated that increasing DBT expression significantly reduces RCC cell growth and spread, underscoring its potential as a therapeutic target. This research sheds new light on the role of CRGs in ccRCC and their impact on drug resistance.
Collapse
Affiliation(s)
- Shiue-Wei Lai
- Division of Hematology/Oncology, Department of Internal Medicine, Tri-service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Wei Weng
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Vijesh Kumar Yadav
- Department of Medical Research, Taipei Medical University Shuang-Ho Hospital, Taipei, Taiwan
| | - Narpati Wesa Pikatan
- Department of Medical Research, Taipei Medical University Shuang-Ho Hospital, Taipei, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research, Taipei Medical University Shuang-Ho Hospital, Taipei, Taiwan
- Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung, Taiwan
| | - Ming-Shou Hsieh
- Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Medical University-Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, Taiwan
| |
Collapse
|
9
|
Shirbhate E, Singh V, Mishra A, Jahoriya V, Veerasamy R, Tiwari AK, Rajak H. Targeting Lysosomes: A Strategy Against Chemoresistance in Cancer. Mini Rev Med Chem 2024; 24:1449-1468. [PMID: 38343053 DOI: 10.2174/0113895575287242240129120002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 07/23/2024]
Abstract
Chemotherapy is still the major method of treatment for many types of cancer. Curative cancer therapy is hampered significantly by medication resistance. Acidic organelles like lysosomes serve as protagonists in cellular digestion. Lysosomes, however, are gaining popularity due to their speeding involvement in cancer progression and resistance. For instance, weak chemotherapeutic drugs of basic nature permeate through the lysosomal membrane and are retained in lysosomes in their cationic state, while extracellular release of lysosomal enzymes induces cancer, cytosolic escape of lysosomal hydrolases causes apoptosis, and so on. Drug availability at the sites of action is decreased due to lysosomal drug sequestration, which also enhances cancer resistance. This review looks at lysosomal drug sequestration mechanisms and how they affect cancer treatment resistance. Using lysosomes as subcellular targets to combat drug resistance and reverse drug sequestration is another method for overcoming drug resistance that is covered in this article. The present review has identified lysosomal drug sequestration as one of the reasons behind chemoresistance. The article delves deeper into specific aspects of lysosomal sequestration, providing nuanced insights, critical evaluations, or novel interpretations of different approaches that target lysosomes to defect cancer.
Collapse
Affiliation(s)
- Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Vaibhav Singh
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Aditya Mishra
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Varsha Jahoriya
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Ravichandran Veerasamy
- Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Amit K Tiwari
- UAMS College of Pharmacy; UAMS - University of Arkansas for Medical Sciences, (AR) USA
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| |
Collapse
|
10
|
Njenga LW, Mbugua SN, Odhiambo RA, Onani MO. Addressing the gaps in homeostatic mechanisms of copper and copper dithiocarbamate complexes in cancer therapy: a shift from classical platinum-drug mechanisms. Dalton Trans 2023; 52:5823-5847. [PMID: 37021641 DOI: 10.1039/d3dt00366c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The platinum drug, cisplatin, is considered as among the most successful medications in cancer treatment. However, due to its inherent toxicity and resistance limitations, research into other metal-based non-platinum anticancer medications with diverse mechanisms of action remains an active field. In this regard, copper complexes feature among non-platinum compounds which have shown promising potential as effective anticancer drugs. Moreover, the interesting discovery that cancer cells can alter their copper homeostatic processes to develop resistance to platinum-based treatments leads to suggestions that some copper compounds can indeed re-sensitize cancer cells to these drugs. In this work, we review copper and copper complexes bearing dithiocarbamate ligands which have shown promising results as anticancer agents. Dithiocarbamate ligands act as effective ionophores to convey the complexes of interest into cells thereby influencing the metal homeostatic balance and inducing apoptosis through various mechanisms. We focus on copper homeostasis in mammalian cells and on our current understanding of copper dysregulation in cancer and recent therapeutic breakthroughs using copper coordination complexes as anticancer drugs. We also discuss the molecular foundation of the mechanisms underlying their anticancer action. The opportunities that exist in research for these compounds and their potential as anticancer agents, especially when coupled with ligands such as dithiocarbamates, are also reviewed.
Collapse
Affiliation(s)
- Lydia W Njenga
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Simon N Mbugua
- Department of Chemistry, Kisii University, P.O. Box 408-40200, Kisii, Kenya
| | - Ruth A Odhiambo
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Martin O Onani
- Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Belville, 7535, South Africa
| |
Collapse
|
11
|
Ovarian Cancer—Insights into Platinum Resistance and Overcoming It. Medicina (B Aires) 2023; 59:medicina59030544. [PMID: 36984544 PMCID: PMC10057458 DOI: 10.3390/medicina59030544] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy. Platinum-based chemotherapy is the backbone of treatment for ovarian cancer, and although the majority of patients initially have a platinum-sensitive disease, through multiple recurrences, they will acquire resistance. Platinum-resistant recurrent ovarian cancer has a poor prognosis and few treatment options with limited efficacy. Resistance to platinum compounds is a complex process involving multiple mechanisms pertaining not only to the tumoral cell but also to the tumoral microenvironment. In this review, we discuss the molecular mechanism involved in ovarian cancer cells’ resistance to platinum-based chemotherapy, focusing on the alteration of drug influx and efflux pathways, DNA repair, the dysregulation of epigenetic modulation, and the involvement of the tumoral microenvironment in the acquisition of the platinum-resistant phenotype. Furthermore, we review promising alternative treatment approaches that may improve these patients’ poor prognosis, discussing current strategies, novel combinations, and therapeutic agents.
Collapse
|
12
|
Investigations of cellular copper metabolism in ovarian cancer cells using a ratiometric fluorescent copper dye. J Biol Inorg Chem 2023; 28:43-55. [PMID: 36469143 DOI: 10.1007/s00775-022-01978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/08/2022] [Indexed: 12/08/2022]
Abstract
Imbalances in metal homeostasis have been implicated in the progression and drug response of cancer cells. Understanding these changes will enable identification of new treatment regimes and precision medicine approaches to cancer treatment. In particular, there has been considerable interest in the interplay between copper homeostasis and response to platinum-based chemotherapeutic agents. Here, we have studied differences in the Cu uptake and distributions in the ovarian cancer cell line, A2780, and its cisplatin resistant form, A2780.CisR, by measuring total Cu content and the bioavailable Cu pool. Atomic absorption spectroscopy (AAS) revealed a lower total Cu uptake in A2780.CisR compared to A2780 cells. Conversely, live-cell confocal microscopy studies with the ratiometric Cu(I)-sensitive fluorescent dye, InCCu1, revealed higher relative cellular content of labile Cu in A2780.CisR cells compared with A2780 cells. These results demonstrate that Cu trafficking, homeostasis and speciation are different in the Pt-sensitive and resistant cells and may be associated with the predominance of different phenotypes for A2780 (epithelial) and A2780.CisR (mesenchymal) cells.
Collapse
|
13
|
Wang X, Lou Q, Fan T, Zhang Q, Yang X, Liu H, Fan R. Copper transporter Ctr1 contributes to enhancement of the sensitivity of cisplatin in esophageal squamous cell carcinoma. Transl Oncol 2023; 29:101626. [PMID: 36689863 PMCID: PMC9876974 DOI: 10.1016/j.tranon.2023.101626] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/18/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
Increasing evidence has demonstrated that Ctr1 plays a crucial role in the regulation of cisplatin uptake in a variety of tumors. The purpose of this study was to investigate its role in mediating cisplatin sensitivity in ESCC cells. Immunohistochemistry (IHC), In situ hybridization (ISH) and semi-quantitative RT-PCR were used to detect Ctr1 expressions in ESCC tissues. qRT-PCR and Western blot was performed to investigate the levels of Ctr1 mRNA and protein in ESCC cells. CCK-8, Flow cytometry and Transwell chamber assay were carried out to examine cell proliferation, apoptosis, migration and invasion abilities in ESCC cells. We found that ESCC tissues and cells had higher Ctr1 level than normal tissues and Het-1A cell. Ctr1 expression was correlated with histological grade, invasion depth, TNM staging and lymph node metastasis in ESCC patients. Ctr1 depletion reduced the suppressive role of proliferation, migration and invasion as well as the inductive role of cell apoptosis and Caspase-3 activity evoked by cisplatin, whereas Ctr1 upregulation combined with cisplatin exerted the synergistic role in regulation of proliferation, apoptosis, Caspase-3 activity, migration and invasion in ESCC. In conclusion, Ctr1 is implicated in ESCC development and progression and its expression may be a novel predictor for assessment of cisplatin sensitivity in ESCC.
Collapse
Affiliation(s)
- Xin Wang
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Qianqian Lou
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Tianli Fan
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, 100 Kexue Road, Zhengzhou, Henan, 450001, China
| | - Qing Zhang
- Translational Medicine Research Center, Zhengzhou People's Hospital, Zhengzhou, Henan, 450003, China
| | - Xiangxiang Yang
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hongtao Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China,Translational Medicine Research Center, Zhengzhou People's Hospital, Zhengzhou, Henan, 450003, China,Corresponding author at: College of Life Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, China.
| | - Ruitai Fan
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China,Corresponding author at: Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
14
|
Li Y, Fang T, Shan W, Gao Q. Identification of a Novel Model for Predicting the Prognosis and Immune Response Based on Genes Related to Cuproptosis and Ferroptosis in Ovarian Cancer. Cancers (Basel) 2023; 15:cancers15030579. [PMID: 36765541 PMCID: PMC9913847 DOI: 10.3390/cancers15030579] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
(1) Background: Ovarian cancer (OV) presents a high degree of malignancy and a poor prognosis. Cell death is necessary to maintain tissue function and morphology. Cuproptosis and ferroptosis are two novel forms of death, and we look forward to finding their relationship with OV and providing guidance for treatment. (2) Methods: We derived information about OV from public databases. Based on cuproptosis-related and ferroptosis-related genes, a risk model was successfully constructed, and exceptional subtypes were identified. Next, various methods are applied to assess prognostic value and treatment sensitivity. Besides, the comprehensive analysis of the tumor environment, together with immune cell infiltration, immune function status, immune checkpoint, and human HLA genes, is expected to grant assistance for the prognosis and treatment of OV. (3) Results: Specific molecular subtypes and models possessed excellent potential to predict prognosis. Immune infiltration abundance varied between groups. The susceptibility of individuals to different chemotherapy drugs and immunotherapies could be predicted based on specific groups. (4) Conclusions: Our molecular subtypes and risk model, with strong immune prediction and prognostic prediction capabilities, are committed to guiding ovarian cancer treatment.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tian Fang
- Key Laboratory of the Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wanying Shan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (W.S.); (Q.G.)
| | - Qinglei Gao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (W.S.); (Q.G.)
| |
Collapse
|
15
|
Zhang B, Zhang T, Zheng Z, Lin Z, Wang Q, Zheng D, Chen Z, Ma Y. Development and validation of a cuproptosis-associated prognostic model for diffuse large B-cell lymphoma. Front Oncol 2023; 12:1020566. [PMID: 36713586 PMCID: PMC9877310 DOI: 10.3389/fonc.2022.1020566] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous disease. Therefore, more reliable biomarkers are required to better predict the prognosis of DLBCL. Cuproptosis is a novel identified form of programmed cell death (PCD) that is different from oxidative stress-related cell death (e.g., apoptosis, ferroptosis, and necroptosis) by Tsvetkov and colleagues in a recent study released in Science. Cuproptosis is copper-dependent PCD that is closely tied to mitochondrial metabolism. However, the prognostic value of cuproptosis-related genes (CRGs) in DLBCL remains to be further elucidated. In the present study, we systematically evaluated the molecular changes of CRGs in DLBCL and found them to be associated with prognosis. Subsequently, based on the expression profiles of CRGs, we characterized the heterogeneity of DLBCL by identifying two distinct subtypes using consensus clustering. Two isoforms exhibited different survival, biological functions, chemotherapeutic drug sensitivity, and immune microenvironment. After identifying differentially expressed genes (DEGs) between CRG clusters, we built a prognostic model with the Least absolute shrinkage and selection operator (LASSO) Cox regression analysis and validated its prognostic value by Cox regression analysis, Kaplan-Meier curves, and receiver operating characteristic (ROC) curves. In addition, the risk score can predict clinical characteristics, levels of immune cell infiltration, and prognosis. Furthermore, a nomogram incorporating clinical features and risk score was generated to optimize risk stratification and quantify risk assessment. Compared to the International Prognostic Index (IPI), the nomogram has demonstrated more accuracy in survival prediction. Furthermore, we validated the prognostic gene expression levels through external experiments. In conclusion, cuproptosis-related gene signature can serve as a potential prognostic predictor in DLBCL patients and may provide new insights into cancer therapeutic targets.
Collapse
Affiliation(s)
- Bingxin Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tianyu Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ziwei Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhili Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Quanqiang Wang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dong Zheng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zixing Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongyong Ma
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Yongyong Ma,
| |
Collapse
|
16
|
Zhao Q, Qi T. The implications and prospect of cuproptosis-related genes and copper transporters in cancer progression. Front Oncol 2023; 13:1117164. [PMID: 36925927 PMCID: PMC10011146 DOI: 10.3389/fonc.2023.1117164] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Currently, cancer has become one of the major public health problems worldwide. Apoptosis is an important anti-cancer defense mechanism, which is used in the development of targeted drugs. Because cancer cells have endogenous resistance to apoptosis,the clinical efficacy of related drugs is not ideal. Therefore, non-apoptotic regulatory cell death may bring new therapeutic strategies for cancer treatment. Cuproptosis is a novel form of regulatory cell death which is copper-dependent, regulated and distinct from other known cell death regulatory mechanisms. FDX1,LIAS,and DLAT named cuproptosis-related genes play an essential role in regulating cuproptosis. Meanwhile, abnormal accumulation of copper can be observed in various malignant tumors. The correlation has been established between elevated copper levels in serum and tissues and the progression of several cancers. Copper transporters, CTR1 and Copper-transporting ATPases(ATP7A and ATP7B), are mainly involved in regulating the dynamic balance of copper concentration to maintain copper homeostasis. Thus,cuproptosis-related genes and copper transporters will be the focus of cancer research in future. This review elaborated the basic functions of cuproptosis-related genes and copper transporters by retrievalling PubMed. And then we analyzed their potential relationship with cancer aiming to provide theoretical support and reference in cancer progression, diagnosis and treatment for future study.
Collapse
Affiliation(s)
- Qianwen Zhao
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Tonggang Qi
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
17
|
Nunes M, Duarte D, Vale N, Ricardo S. The Antineoplastic Effect of Carboplatin Is Potentiated by Combination with Pitavastatin or Metformin in a Chemoresistant High-Grade Serous Carcinoma Cell Line. Int J Mol Sci 2022; 24:ijms24010097. [PMID: 36613537 PMCID: PMC9820586 DOI: 10.3390/ijms24010097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The combination of Carboplatin with Paclitaxel is the mainstay treatment for high-grade serous carcinoma; however, many patients with advanced disease undergo relapse due to chemoresistance. Drug repurposing coupled with a combination of two or more compounds with independent mechanisms of action has the potential to increase the success rate of the antineoplastic treatment. The purpose of this study was to explore whether the combination of Carboplatin with repurposed drugs led to a therapeutic benefit. Hence, we assessed the cytotoxic effects of Carboplatin alone and in combination with several repurposed drugs (Pitavastatin, Metformin, Ivermectin, Itraconazole and Alendronate) in two tumoral models, i.e., Carboplatin (OVCAR8) and Carboplatin-Paclitaxel (OVCAR8 PTX R P) chemoresistant cell lines and in a non-tumoral (HOSE6.3) cell line. Cellular viability was measured using the Presto Blue assay, and the synergistic interactions were evaluated using the Chou-Talalay, Bliss Independence and Highest Single Agent reference models. Combining Carboplatin with Pitavastatin or Metformin displayed the highest cytotoxic effect and the strongest synergism among all combinations for OVCAR8 PTX R P cells, resulting in a chemotherapeutic effect superior to Carboplatin as a single agent. Concerning HOSE6.3 cells, combining Carboplatin with almost all the repurposed drugs demonstrated a safe pharmacological profile. Overall, we propose that Pitavastatin or Metformin could act synergistically in combination with Carboplatin for the management of high-grade serous carcinoma patients with a Carboplatin plus Paclitaxel resistance profile.
Collapse
Affiliation(s)
- Mariana Nunes
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Diana Duarte
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal
- Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Sara Ricardo
- Differentiation and Cancer Group, Institute for Research and Innovation in Health (i3S) of the University of Porto, 4200-135 Porto, Portugal
- Toxicology Research Unit (TOXRUN), University Institute of Health Sciences, Polytechnic and University Cooperative (CESPU), 4585-116 Gandra, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- Correspondence:
| |
Collapse
|
18
|
Forgie BN, Prakash R, Telleria CM. Revisiting the Anti-Cancer Toxicity of Clinically Approved Platinating Derivatives. Int J Mol Sci 2022; 23:15410. [PMID: 36499737 PMCID: PMC9793759 DOI: 10.3390/ijms232315410] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Cisplatin (CDDP), carboplatin (CP), and oxaliplatin (OXP) are three platinating agents clinically approved worldwide for use against a variety of cancers. They are canonically known as DNA damage inducers; however, that is only one of their mechanisms of cytotoxicity. CDDP mediates its effects through DNA damage-induced transcription inhibition and apoptotic signalling. In addition, CDDP targets the endoplasmic reticulum (ER) to induce ER stress, the mitochondria via mitochondrial DNA damage leading to ROS production, and the plasma membrane and cytoskeletal components. CP acts in a similar fashion to CDDP by inducing DNA damage, mitochondrial damage, and ER stress. Additionally, CP is also able to upregulate micro-RNA activity, enhancing intrinsic apoptosis. OXP, on the other hand, at first induces damage to all the same targets as CDDP and CP, yet it is also capable of inducing immunogenic cell death via ER stress and can decrease ribosome biogenesis through its nucleolar effects. In this comprehensive review, we provide detailed mechanisms of action for the three platinating agents, going beyond their nuclear effects to include their cytoplasmic impact within cancer cells. In addition, we cover their current clinical use and limitations, including side effects and mechanisms of resistance.
Collapse
Affiliation(s)
- Benjamin N. Forgie
- Experimental Pathology Unit, Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Rewati Prakash
- Experimental Pathology Unit, Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Carlos M. Telleria
- Experimental Pathology Unit, Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
19
|
Schoeberl A, Gutmann M, Theiner S, Corte-Rodríguez M, Braun G, Vician P, Berger W, Koellensperger G. The copper transporter CTR1 and cisplatin accumulation at the single-cell level by LA-ICP-TOFMS. Front Mol Biosci 2022; 9:1055356. [PMID: 36518851 PMCID: PMC9742377 DOI: 10.3389/fmolb.2022.1055356] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/15/2022] [Indexed: 09/17/2023] Open
Abstract
More than a decade ago, studies on cellular cisplatin accumulation via active membrane transport established the role of the high affinity copper uptake protein 1 (CTR1) as a main uptake route besides passive diffusion. In this work, CTR1 expression, cisplatin accumulation and intracellular copper concentration was assessed for single cells revisiting the case of CTR1 in the context of acquired cisplatin resistance. The single-cell workflow designed for in vitro experiments enabled quantitative imaging at resolutions down to 1 µm by laser ablation-inductively coupled plasma-time-of-flight mass spectrometry (LA-ICP-TOFMS). Cisplatin-sensitive ovarian carcinoma cells A2780 as compared to the cisplatin-resistant subline A2780cis were investigated. Intracellular cisplatin and copper levels were absolutely quantified for thousands of individual cells, while for CTR1, relative differences of total CTR1 versus plasma membrane-bound CTR1 were determined. A markedly decreased intracellular cisplatin concentration accompanied by reduced copper concentrations was observed for single A2780cis cells, along with a distinctly reduced (total) CTR1 level as compared to the parental cell model. Interestingly, a significantly different proportion of plasma membrane-bound versus total CTR1 in untreated A2780 as compared to A2780cis cells was observed. This proportion changed in both models upon cisplatin exposure. Statistical analysis revealed a significant correlation between total and plasma membrane-bound CTR1 expression and cisplatin accumulation at the single-cell level in both A2780 and A2780cis cells. Thus, our study recapitulates the crosstalk of copper homeostasis and cisplatin uptake, and also indicates a complex interplay between subcellular CTR1 localization and cellular cisplatin accumulation as a driver for acquired resistance development.
Collapse
Affiliation(s)
- Anna Schoeberl
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Michael Gutmann
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sarah Theiner
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Mario Corte-Rodríguez
- Department of Physical and Analytical Chemistry, Faculty of Chemistry and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - Gabriel Braun
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Petra Vician
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Su Y, Zhang X, Li S, Xie W, Guo J. Emerging roles of the copper-CTR1 axis in tumorigenesis. Mol Cancer Res 2022; 20:1339-1353. [PMID: 35604085 DOI: 10.1158/1541-7786.mcr-22-0056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
Physiological roles of copper in metabolic homeostasis have been well established, however, whether and how copper is dysregulated in tumors and contributes to tumorigenesis are not recapitulated. Here, we comprehensively summarize the potential origins of copper accumulation in diseases especially in cancers by dysregulating copper transporter 1 (CTR1) or ATPase copper transporting alpha/beta (ATP7A/B) and further demonstrate the underlying mechanism of copper contributing to tumorigenesis. Specifically, in addition to modulating reactive oxygen species (ROS), angiogenesis, immune response, and metabolic homeostasis, copper recently has drawn more attention by directly binding to oncoproteins such as MEK, ULK, Memo, and PDK1 to activate distinct oncogenic signals and account for tumorigenesis. In the end, we disclose the emerging applications of copper in cancer diagnosis and highlight the promising strategies to target the copper-CTR1 axis for cancer therapies.
Collapse
Affiliation(s)
- Yaqing Su
- First Affiliated Hospital of Sun Yat-sen University, guangzhou, guangdong, China
| | - Xiaomei Zhang
- First Affiliated Hospital of Sun Yat-sen University, China
| | - Shaoqiang Li
- The First Affiliatd Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Xie
- First Affiliated Hospital of Sun Yat-sen University, China
| | - Jianping Guo
- First Affiliated Hospital of Sun Yat-sen University, guangzhou, guangdong, China
| |
Collapse
|
21
|
Valente A, Podolski-Renić A, Poetsch I, Filipović N, López Ó, Turel I, Heffeter P. Metal- and metalloid-based compounds to target and reverse cancer multidrug resistance. Drug Resist Updat 2021; 58:100778. [PMID: 34403910 DOI: 10.1016/j.drup.2021.100778] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Drug resistance remains the major cause of cancer treatment failure especially at the late stage of the disease. However, based on their versatile chemistry, metal and metalloid compounds offer the possibility to design fine-tuned drugs to circumvent and even specifically target drug-resistant cancer cells. Based on the paramount importance of platinum drugs in the clinics, two main areas of drug resistance reversal strategies exist: overcoming resistance to platinum drugs as well as multidrug resistance based on ABC efflux pumps. The current review provides an overview of both aspects of drug design and discusses the open questions in the field. The areas of drug resistance covered in this article involve: 1) Altered expression of proteins involved in metal uptake, efflux or intracellular distribution, 2) Enhanced drug efflux via ABC transporters, 3) Altered metabolism in drug-resistant cancer cells, 4) Altered thiol or redox homeostasis, 5) Altered DNA damage recognition and enhanced DNA damage repair, 6) Impaired induction of apoptosis and 7) Altered interaction with the immune system. This review represents the first collection of metal (including platinum, ruthenium, iridium, gold, and copper) and metalloid drugs (e.g. arsenic and selenium) which demonstrated drug resistance reversal activity. A special focus is on compounds characterized by collateral sensitivity of ABC transporter-overexpressing cancer cells. Through this approach, we wish to draw the attention to open research questions in the field. Future investigations are warranted to obtain more insights into the mechanisms of action of the most potent compounds which target specific modalities of drug resistance.
Collapse
Affiliation(s)
- Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Isabella Poetsch
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nenad Filipović
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
22
|
Mogi K, Kamiya I, Makino A, Hirao A, Abe R, Doi Y, Shimizu T, Ando H, Morito K, Takayama K, Ishida T, Nagasawa K. Liposomalization of Oxaliplatin Exacerbates the Non-Liposomal Formulation-Induced Decrease of Sweet Taste Sensitivity in Rats. J Pharm Sci 2021; 110:3937-3945. [PMID: 34246630 DOI: 10.1016/j.xphs.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 11/15/2022]
Abstract
Here, we investigated whether or not the characteristics of the oxaliplatin-induced sweet taste sensitivity were altered by PEGylated liposomalization of oxaliplatin (liposomal oxaliplatin), which enhances its anticancer efficacy. Liposomal oxaliplatin and oxaliplatin were intravenously and intraperitoneally, respectively, administered to male Sprague-Dawley rats at the total dose of 8 mg/kg. A brief-access test for evaluation of sweet taste sensitivity on day 7 revealed that both liposomal oxaliplatin and oxaliplatin decreased the sensitivity of rats, the degree with the former being greater than in the case of the latter. Liposomalization of oxaliplatin increased the accumulation of platinum in lingual non-epithelial tissues, through which taste nerves passed. The lingual platinum accumulation induced by not only liposomal oxaliplatin but also oxaliplatin was decreased on cooling of the tongue during the administration. In the current study, we revealed that liposomalization of oxaliplatin exacerbated the oxaliplatin-induced decrease of sweet taste sensitivity by increasing the accumulation of platinum/oxaliplatin in lingual non-epithelial tissues. These findings may suggest that reduction of liposomal oxaliplatin distribution to the tongue on cooling during the administration prevents exacerbation of the decrease of sweet taste sensitivity, maintaining the quality of life and chemotherapeutic outcome in patients.
Collapse
Affiliation(s)
- Keisuke Mogi
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Ikumi Kamiya
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Aimi Makino
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Ayaka Hirao
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Reina Abe
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Yusuke Doi
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, JAPAN
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, JAPAN
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, JAPAN
| | - Katsuya Morito
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Kentaro Takayama
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, JAPAN
| | - Kazuki Nagasawa
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, JAPAN.
| |
Collapse
|
23
|
Raudenska M, Balvan J, Fojtu M, Gumulec J, Masarik M. Unexpected therapeutic effects of cisplatin. Metallomics 2020; 11:1182-1199. [PMID: 31098602 DOI: 10.1039/c9mt00049f] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cisplatin is a widely used chemotherapeutic agent that is clinically approved to fight both carcinomas and sarcomas. It has relatively high efficiency in treating ovarian cancers and metastatic testicular cancers. It is generally accepted that the major mechanism of cisplatin anti-cancer action is DNA damage. However, cisplatin is also effective in metastatic cancers and should, therefore, affect slow-cycling cancer stem cells in some way. In this review, we focused on the alternative effects of cisplatin that can support a good therapeutic response. First, attention was paid to the effects of cisplatin at the cellular level such as changes in intracellular pH and cellular mechanical properties. Alternative cellular targets of cisplatin, and the effects of cisplatin on cancer cell metabolism and ER stress were also discussed. Furthermore, the impacts of cisplatin on the tumor microenvironment and in the whole organism context were reviewed. In this review, we try to reveal possible causes of the unexpected effectiveness of this anti-cancer drug.
Collapse
Affiliation(s)
- Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | - Jan Balvan
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Michaela Fojtu
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | - Jaromir Gumulec
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, CZ-252 50 Vestec, Czech Republic
| |
Collapse
|
24
|
Muley H, Fadó R, Rodríguez-Rodríguez R, Casals N. Drug uptake-based chemoresistance in breast cancer treatment. Biochem Pharmacol 2020; 177:113959. [PMID: 32272110 DOI: 10.1016/j.bcp.2020.113959] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most prevalent type of tumor and the second leading cause of death due to cancer among women. Although screening methods, diagnosis and therapeutic options have improved in the last decade, chemoresistance remains an important challenge. There is evidence relating breast cancer resistance with signaling pathways involving hormone and growth receptors, survival, apoptosis and the activation of efflux pumps. However, the resistance mechanisms linked to drug uptake are poorly understood, despite it often being observed that the drug content is lower in resistant cancer cells and that the entry of the drug into these cells is a limiting process for the subsequent therapeutic effect.In this review, we provide an overview of drug uptake-based resistance mechanisms developed by cancer cells in the four main types of chemotherapy used in breast cancer: anthracyclines, taxanes, oxazaphosphorines and platinum-based drugs. The contribution of tumor microenvironment to reduced drug-uptake and multidrug resistance is also analyzed. As a developing field, nanomedicine-based approaches provide promising opportunities to improve drug specific targeting, cell interaction and uptake into cancer cells. The endocytic-mediated pathways attributed to the different types of nanoformulations as well as the contribution of nanotherapeutics to overcoming chemoresistance affecting drug uptake in breast cancer will be described. New approaches focusing on drug uptake mechanisms could improve breast cancer chemotherapy, obtaining better dose-response outcomes and reducing toxic side effects.
Collapse
Affiliation(s)
- Helena Muley
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
| | - Rut Fadó
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain.
| |
Collapse
|
25
|
Fernández-Delgado E, de la Cruz-Martínez F, Galán C, Franco L, Espino J, Viñuelas-Zahínos E, Luna-Giles F, Bejarano I. Pt(II) and Pd(II) complexes with a thiazoline derivative ligand: Synthesis, structural characterization, antiproliferative activity and evaluation of pro-apoptotic ability in tumor cell lines HT-29 and U-937. J Inorg Biochem 2019; 202:110870. [PMID: 31689624 DOI: 10.1016/j.jinorgbio.2019.110870] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022]
Abstract
Eluding apoptosis represents the hallmark of tumoral cell behavior. Cisplatin (CisPt) is a very common chemotherapeutic agent to treat cancer by reestablishing apoptotic mechanisms of cell death. However, certain patients acquire resistance to CisPt as well as suffer nephrotoxicity, neurotoxicity, nausea and vomiting. The synthesis of new Pt(II) compounds represents an alternative to CisPt to avoid resistance and undesirable side effects. Pd(II) could be a Pt(II) surrogate given the similarity of coordination chemistry between them, thus widening the spectra of available anticancer drugs. Herein, we have synthesized and characterized two Pt(II) or Pd(II) complexes with TdTn (2-(3,4-dichlorophenyl)imino-N-(2-thiazolin-2-yl)thiazolidine), a thiazoline derivative ligand, with formula [PtCl2(TdTn)] and [PdCl2(TdTn)]. The potential anticancer ability was evaluated in human colon adenocarcinoma HT-29 and human histiocytic lymphoma U-937 cell lines. To that aim, U-937 and HT-29 cells were treated with TdTn, [PtCl2(TdTn)] and [PdCl2(TdTn)] for 24 h. The microscopy monitoring indicated that TdTn, [PtCl2(TdTn)] and [PdCl2(TdTn)] arrested the cell proliferation of U-937 and HT-29 cells with respect to control, in agreement with MTT (3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide) analysis. Moreover, it is noteworthy that the ligand by its own showed antiproliferative effects in both cell lines. [PtCl2(TdTn)] and [PdCl2(TdTn)] caused caspase-3 activation in U-937 cells, simultaneously with caspase-9 activation due to complexes; however, in HT-29 caspase-3 activation occurred simultaneously with caspase-8 activation induced by the ligand TdTn. Only metal complexes were able to induce ROS (Reactive Oxygen Species) generation in U-937 cells, but not TdTn. In HT-29 cells neither the metal complexes, nor the ligand induced ROS generation.
Collapse
Affiliation(s)
- Elena Fernández-Delgado
- Department of Physiology (Neuroimmunophysiology and Chrononutrition Research Group), University of Extremadura, 06006 Badajoz, Spain
| | - Felipe de la Cruz-Martínez
- Department of Organic and Inorganic Chemistry (Coordination Chemistry Group), University of Extremadura, 06006 Badajoz, Spain
| | - Carmen Galán
- Department of Physiology (Neuroimmunophysiology and Chrononutrition Research Group), University of Extremadura, 06006 Badajoz, Spain
| | - Lourdes Franco
- Department of Physiology (Neuroimmunophysiology and Chrononutrition Research Group), University of Extremadura, 06006 Badajoz, Spain
| | - Javier Espino
- Department of Physiology (Neuroimmunophysiology and Chrononutrition Research Group), University of Extremadura, 06006 Badajoz, Spain
| | - Emilio Viñuelas-Zahínos
- Department of Organic and Inorganic Chemistry (Coordination Chemistry Group), University of Extremadura, 06006 Badajoz, Spain
| | - Francisco Luna-Giles
- Department of Organic and Inorganic Chemistry (Coordination Chemistry Group), University of Extremadura, 06006 Badajoz, Spain.
| | - Ignacio Bejarano
- Department of Physiology and Pharmacology, University of Cantabria, 39011 Santander, Spain.
| |
Collapse
|
26
|
Theotoki EI, Velentzas AD, Katarachia SA, Papandreou NC, Kalavros NI, Pasadaki SN, Giannopoulou AF, Giannios P, Iconomidou VA, Konstantakou EG, Anastasiadou E, Papassideri IS, Stravopodis DJ. Targeting of copper-trafficking chaperones causes gene-specific systemic pathology in Drosophila melanogaster: prospective expansion of mutational landscapes that regulate tumor resistance to cisplatin. Biol Open 2019; 8:bio.046961. [PMID: 31575544 PMCID: PMC6826294 DOI: 10.1242/bio.046961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Copper, a transition metal, is an essential component for normal growth and development. It acts as a critical co-factor of many enzymes that play key roles in diverse cellular processes. The present study attempts to investigate the regulatory functions decisively controlling copper trafficking during development and aging of the Drosophila model system. Hence, through engagement of the GAL4/UAS genetic platform and RNAi technology, we herein examined the in vivo significance of Atox1 and CCS genes, products of which pivotally govern cellular copper trafficking in fly tissue pathophysiology. Specifically, we analyzed the systemic effects of their targeted downregulation on the eye, wing, neuronal cell populations and whole-body tissues of the fly. Our results reveal that, in contrast to the eye, suppression of their expression in the wing leads to a notable increase in the percentage of malformed organs observed. Furthermore, we show that Atox1 or CCS gene silencing in either neuronal or whole-body tissues can critically affect the viability and climbing capacity of transgenic flies, while their double-genetic targeting suggests a rather synergistic mode of action of the cognate protein products. Interestingly, pharmacological intervention with the anti-cancer drug cisplatin indicates the major contribution of CCS copper chaperone to cisplatin's cellular trafficking, and presumably to tumor resistance often acquired during chemotherapy. Altogether, it seems that Atox1 and CCS proteins serve as tissue/organ-specific principal regulators of physiological Drosophila development and aging, while their tissue-dependent downregulation can provide important insights for Atox1 and CCS potential exploitation as predictive gene biomarkers of cancer-cell chemotherapy responses. Summary: We demonstrate the essential roles of Atox1 and CCS copper-trafficking chaperones in Drosophila development and aging. We also provide insights for their therapeutic exploitation as cisplatin regulators during cancer chemotherapy.
Collapse
Affiliation(s)
- Eleni I Theotoki
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens 15701, Greece
| | - Athanassios D Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens 15701, Greece
| | - Stamatia A Katarachia
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens 15701, Greece
| | - Nikos C Papandreou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens 15701, Greece
| | - Nikolas I Kalavros
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens 11527, Greece
| | - Sofia N Pasadaki
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens 15701, Greece
| | - Aikaterini F Giannopoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens 15701, Greece
| | - Panagiotis Giannios
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Vassiliki A Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens 15701, Greece
| | - Eumorphia G Konstantakou
- Harvard Medical School, Massachusetts General Hospital Cancer Center (MGHCC), Charlestown, Massachusetts (MA) 021004, USA
| | - Ema Anastasiadou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens 11527, Greece
| | - Issidora S Papassideri
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens 15701, Greece
| | - Dimitrios J Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens 15701, Greece
| |
Collapse
|
27
|
Chen SH, Chang JY. New Insights into Mechanisms of Cisplatin Resistance: From Tumor Cell to Microenvironment. Int J Mol Sci 2019; 20:ijms20174136. [PMID: 31450627 PMCID: PMC6747329 DOI: 10.3390/ijms20174136] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
Although cisplatin has been a pivotal chemotherapy drug in treating patients with various types of cancer for decades, drug resistance has been a major clinical impediment. In general, cisplatin exerts cytotoxic effects in tumor cells mainly through the generation of DNA-platinum adducts and subsequent DNA damage response. Accordingly, considerable effort has been devoted to clarify the resistance mechanisms inside tumor cells, such as decreased drug accumulation, enhanced detoxification activity, promotion of DNA repair capacity, and inactivated cell death signaling. However, recent advances in high-throughput techniques, cell culture platforms, animal models, and analytic methods have also demonstrated that the tumor microenvironment plays a key role in the development of cisplatin resistance. Recent clinical successes in combination treatments with cisplatin and novel agents targeting components in the tumor microenvironment, such as angiogenesis and immune cells, have also supported the therapeutic value of these components in cisplatin resistance. In this review, we summarize resistance mechanisms with respect to a single tumor cell and crucial components in the tumor microenvironment, particularly focusing on favorable results from clinical studies. By compiling emerging evidence from preclinical and clinical studies, this review may provide insights into the development of a novel approach to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Shang-Hung Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jang-Yang Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan.
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
28
|
Yong L, Ma Y, Liang C, He G, Zhao Z, Yang C, Hai B, Pan X, Liu Z, Liu X. Oleandrin sensitizes human osteosarcoma cells to cisplatin by preventing degradation of the copper transporter 1. Phytother Res 2019; 33:1837-1850. [PMID: 31050072 DOI: 10.1002/ptr.6373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Lei Yong
- Department of OrthopedicsPeking University Third Hospital Beijing 100191 China
| | - Yunlong Ma
- The Center for Pain MedicinePeking University Third Hospital Beijing 100191 China
| | - Chen Liang
- Department of OrthopedicsPeking University Third Hospital Beijing 100191 China
| | - Guanping He
- Department of OrthopedicsPeking University Third Hospital Beijing 100191 China
| | - Zhigang Zhao
- Department of OrthopedicsPeking University Third Hospital Beijing 100191 China
| | - Chenlong Yang
- Department of OrthopedicsPeking University Third Hospital Beijing 100191 China
| | - Bao Hai
- Department of OrthopedicsPeking University Third Hospital Beijing 100191 China
| | - Xiaoyu Pan
- Department of OrthopedicsPeking University Third Hospital Beijing 100191 China
| | - Zhongjun Liu
- Department of OrthopedicsPeking University Third Hospital Beijing 100191 China
| | - Xiaoguang Liu
- Department of OrthopedicsPeking University Third Hospital Beijing 100191 China
| |
Collapse
|
29
|
CRISP-R/Cas9 Mediated Deletion of Copper Transport Genes CTR1 and DMT1 in NSCLC Cell Line H1299. Biological and Pharmacological Consequences. Cells 2019; 8:cells8040322. [PMID: 30959888 PMCID: PMC6523758 DOI: 10.3390/cells8040322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 12/27/2022] Open
Abstract
Copper, the highly toxic micronutrient, plays two essential roles: it is a catalytic and structural cofactor for Cu-dependent enzymes, and it acts as a secondary messenger. In the cells, copper is imported by CTR1 (high-affinity copper transporter 1), a transmembrane high-affinity copper importer, and DMT1 (divalent metal transporter). In cytosol, enzyme-specific chaperones receive copper from CTR1 C-terminus and deliver it to their apoenzymes. DMT1 cannot be a donor of catalytic copper because it does not have a cytosol domain which is required for copper transfer to the Cu-chaperons that assist the formation of cuproenzymes. Here, we assume that DMT1 can mediate copper way required for a regulatory copper pool. To verify this hypothesis, we used CRISPR/Cas9 to generate H1299 cell line with CTR1 or DMT1 single knockout (KO) and CTR1/DMT1 double knockout (DKO). To confirm KOs of the genes qRT-PCR were used. Two independent clones for each gene were selected for further studies. In CTR1 KO cells, expression of the DMT1 gene was significantly increased and vice versa. In subcellular compartments of the derived cells, copper concentration dropped, however, in nuclei basal level of copper did not change dramatically. CTR1 KO cells, but not DMT1 KO, demonstrated reduced sensitivity to cisplatin and silver ions, the agents that enter the cell through CTR1. Using single CTR1 and DMT1 KO, we were able to show that both, CTR1 and DMT1, provided the formation of vital intracellular cuproenzymes (SOD1, COX), but not secretory ceruloplasmin. The loss of CTR1 resulted in a decrease in the level of COMMD1, XIAP, and NF-κB. Differently, the DMT1 deficiency induced increase of the COMMD1, HIF1α, and XIAP levels. The possibility of using CTR1 KO and DMT1 KO cells to study homeodynamics of catalytic and signaling copper selectively is discussed.
Collapse
|
30
|
The modulatory effect of green tea catechin on drug resistance in human ovarian cancer cells. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02324-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
31
|
Al-Abdulla R, Perez-Silva L, Abete L, Romero MR, Briz O, Marin JJG. Unraveling ‘The Cancer Genome Atlas’ information on the role of SLC transporters in anticancer drug uptake. Expert Rev Clin Pharmacol 2019; 12:329-341. [DOI: 10.1080/17512433.2019.1581605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ruba Al-Abdulla
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Laura Perez-Silva
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Lorena Abete
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Marta R. Romero
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Jose J. G. Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
32
|
Myint K, Biswas R, Li Y, Jong N, Jamieson S, Liu J, Han C, Squire C, Merien F, Lu J, Nakanishi T, Tamai I, McKeage M. Identification of MRP2 as a targetable factor limiting oxaliplatin accumulation and response in gastrointestinal cancer. Sci Rep 2019; 9:2245. [PMID: 30783141 PMCID: PMC6381153 DOI: 10.1038/s41598-019-38667-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/21/2018] [Indexed: 01/05/2023] Open
Abstract
Oxaliplatin is important for the clinical treatment of colorectal cancer and other gastrointestinal malignancies, but tumour resistance is limiting. Several oxaliplatin transporters were previously identified but their relative contributions to determining oxaliplatin tumour responses and gastrointestinal tumour cell sensitivity to oxaliplatin remains unclear. We studied clinical associations between tumour expression of oxaliplatin transporter candidate genes and patient response to oxaliplatin, then experimentally verified associations found with MRP2 in models of human gastrointestinal cancer. Among 18 oxaliplatin transporter candidate genes, MRP2 was the only one to be differentially expressed in the tumours of colorectal cancer patients who did or did not respond to FOLFOX chemotherapy. Over-expression of MRP2 (endogenously in HepG2 and PANC-1 cells, or induced by stable transfection of HEK293 cells) decreased oxaliplatin accumulation and cytotoxicity but those deficits were reversed by inhibition of MRP2 with myricetin or siRNA knockdown. Mice bearing subcutaneous HepG2 tumour xenografts were sensitised to oxaliplatin antitumour activity by concurrent myricetin treatment with little or no increase in toxicity. In conclusion, MRP2 limits oxaliplatin accumulation and response in human gastrointestinal cancer. Screening tumour MRP2 expression levels, to select patients for treatment with oxaliplatin-based chemotherapy alone or in combination with a MRP2 inhibitor, could improve treatment outcomes.
Collapse
Affiliation(s)
- Khine Myint
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Riya Biswas
- AUT-Roche Diagnostics Laboratory, School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Yan Li
- AUT-Roche Diagnostics Laboratory, School of Science, Auckland University of Technology, Auckland, New Zealand.,School of Interprofessional Health Studies, Auckland University of Technology, Auckland, New Zealand
| | - Nancy Jong
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Stephen Jamieson
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand.,Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Johnson Liu
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Catherine Han
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand.,Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Christopher Squire
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Fabrice Merien
- AUT-Roche Diagnostics Laboratory, School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Jun Lu
- AUT-Roche Diagnostics Laboratory, School of Science, Auckland University of Technology, Auckland, New Zealand.,School of Interprofessional Health Studies, Auckland University of Technology, Auckland, New Zealand
| | - Takeo Nakanishi
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Ikumi Tamai
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Mark McKeage
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand. .,Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
33
|
Cadoni E, Vanhara P, Valletta E, Pinna E, Vascellari S, Caddeo G, Isaia F, Pani A, Havel J, Pivetta T. Mass spectrometric discrimination of phospholipid patterns in cisplatin-resistant and -sensitive cancer cells. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:97-106. [PMID: 30376198 DOI: 10.1002/rcm.8320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/20/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Development of therapy-resistant cancer is a major problem in clinical oncology, and there is an urgent need for novel markers identifying development of the resistant phenotype. Lipidomics represents a promising approach to discriminate lipid profiles of malignant phenotype cells. Alterations in phospholipid distribution or chemical composition have been reported in various pathologies including cancer. Here we were curious whether quantitative differences in phospholipid composition between cisplatin-resistant and -sensitive model cancer cell lines could be revealed by mass spectrometric means. METHODS The phospholipid contents of cell membranes of the cancer cell lines CCRF-CEM and A2780, both responsive and resistant to cisplatin, were analyzed by solid-phase extraction (SPE) and electrospray ionization mass spectrometry (ESI-MS and tandem mass spectrometry (MS/MS)). Extracts were obtained by disruption of cells with a dounce tissue grinder set followed by centrifugation. To minimize the enzymatic activity, phospholipids were extracted from cell extracts by SPE immediately after the cell lysis and analyzed by MS. Both supernatant and pellet fractions of cell extracts were analyzed. RESULTS A phospholipid profile specific for cell lines and their phenotypes was revealed. We have documented by quantitative analysis that phosphocholines PC P-34:0, PC 34:1, PC 20:2_16:0, LPC 18:1 and LPC 16:0 PLs were present in the 200-400 μM concentration range in CCRF-CEM cisplatin-responsive cells, but absent in their cisplatin-resistant cells. Similarly, PC 34:1, LPC 18:1 and LPC 16:0 were increased in cisplatin-responsive A2780 cells, and PC 20:2_16:0 was downregulated in cisplatin-resistant A2780 cells. CONCLUSIONS In this work we showed that the ESI-MS analysis of the lipid content of the therapy-resistant and -sensitive cells can clearly distinguish the phenotypic pattern and determine the potential tumor response to cytotoxic therapy. Lipid entities revealed by mass spectrometry and associated with development of therapy resistance can thus support molecular diagnosis and provide a potential complementary cancer biomarker.
Collapse
Affiliation(s)
- Enzo Cadoni
- Dipartimento di Scienze Chimiche e Geologiche, University of Cagliari, Cagliari, Italy
| | - Petr Vanhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Elisa Valletta
- Dipartimento di Scienze Chimiche e Geologiche, University of Cagliari, Cagliari, Italy
| | - Elisabetta Pinna
- Dipartimento di Scienze Biomediche, University of Cagliari, Cagliari, Italy
| | - Sarah Vascellari
- Dipartimento di Scienze Biomediche, University of Cagliari, Cagliari, Italy
| | - Graziano Caddeo
- Dipartimento di Scienze Chimiche e Geologiche, University of Cagliari, Cagliari, Italy
| | - Francesco Isaia
- Dipartimento di Scienze Chimiche e Geologiche, University of Cagliari, Cagliari, Italy
| | - Alessandra Pani
- Dipartimento di Scienze Biomediche, University of Cagliari, Cagliari, Italy
| | - Josef Havel
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tiziana Pivetta
- Dipartimento di Scienze Chimiche e Geologiche, University of Cagliari, Cagliari, Italy
| |
Collapse
|
34
|
Fujita S, Hirota T, Sakiyama R, Baba M, Ieiri I. Identification of drug transporters contributing to oxaliplatin-induced peripheral neuropathy. J Neurochem 2018; 148:373-385. [PMID: 30295925 DOI: 10.1111/jnc.14607] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/19/2018] [Accepted: 10/01/2018] [Indexed: 12/23/2022]
Abstract
Oxaliplatin is widely used as a key drug in the treatment of colorectal cancer. However, its administration is associated with the dose-limiting adverse effect, peripheral neuropathy. Platinum accumulation in the dorsal root ganglion (DRG) is the major mechanism responsible for oxaliplatin-induced neuropathy. Some drug transporters have been identified as platinum complex transporters in kidney or tumor cells, but not yet in DRG. In the present study, we investigated oxaliplatin transporters and their contribution to peripheral neuropathy. We identified 12 platinum transporters expressed in DRG with real-time PCR, and their transiently overexpressing cells were established. After exposure to oxaliplatin, the accumulation of platinum in these overexpressing cells was evaluated using a coupled plasma mass spectrometer. Octn1/2- and Mate1-expressing cells showed the intracellular accumulation of oxaliplatin. In an animal study, peripheral neuropathy developed after the administration of oxaliplatin (4 mg/kg, intravenously, twice a week) to siRNA-injected rats (0.5 nmol, intrathecally, once a week) was demonstrated with the von Frey test. The knockdown of Octn1 in DRG ameliorated peripheral neuropathy, and decreased platinum accumulation in DRG, whereas the knockdown of Octn2 did not. Mate1 siRNA-injected rats developed more severe neuropathy than control rats. These results indicate that Octn1 and Mate1 are involved in platinum accumulation at DRG and oxaliplatin-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Shunsuke Fujita
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Hirota
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryo Sakiyama
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Misaki Baba
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Ichiro Ieiri
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
35
|
Zhang W, Shi H, Chen C, Ren K, Xu Y, Liu X, He L. Curcumin enhances cisplatin sensitivity of human NSCLC cell lines through influencing Cu-Sp1-CTR1 regulatory loop. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 48:51-61. [PMID: 30195880 DOI: 10.1016/j.phymed.2018.04.058] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/10/2018] [Accepted: 04/22/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Curcumin is a naturally occurring polyphenol which has been demonstrated to possess diverse biological activities. We previously reported that curcumin is a biologically active copper chelator with antitumor activity. Copper transporter 1 (CTR1) on the plasma membrane of eukaryotic cells mediates both copper as well as anticancer drug cisplatin uptake. PURPOSE This study aims to investigate whether curcumin enhances cisplatin sensitivity of human non-small cell lung cancer (NSCLC) through influencing Cu-Sp1-CTR1 regulatory loop. METHODS The combination effect of curcumin and cisplatin on cell proliferation and apoptosis was determined in vitro and in vivo. Platinum level in A549 cells and tumor tissue was measured by atomic absorption spectrometry (AAS). The binding ability of specificity protein 1 (Sp1) to CTR1 and Sp1 promoters was detected by ChIP assay and luciferase reporter assay system. RESULTS Here we show that combined curcumin and cisplatin treatment markedly inhibited A549 cells proliferation and induced its apoptosis. Using a mouse model of A549 xenograft, we demonstrated that curcumin inhibits copper influx and increases uptake of platinum ion in tumor. Curcumin treatment enhances the binding of Sp1 to CTR1 and Sp1 promoters, thus induces CTR1 expression and chemosensitization to cisplatin treatment. This process is regulated by the Cu-Sp1-CTR1 regulatory loop. Moreover, the enhancement mediated by curcumin on cisplatin therapeutic efficacy in cultured human NSCLC cell lines (A549, H460, H1299) was dependent on CTR1. CONCLUSIONS Our results demonstrated copper chelator curcumin enhances the benefits of platinum-containing chemotherapeutic agents and CTR1 could be a promising therapeutic target for non-small cell lung cancer treatment.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pathogen Biology and Immunology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Hengfei Shi
- State Key Laboratory of Pharmaceutical Biotechnology and Medical School, Nanjing University, Nanjing, China
| | - Changmai Chen
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ke Ren
- School of Basic Medical Sciences, Chengdu Medical College, Sichuan, China
| | - Yujun Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Medical School, Nanjing University, Nanjing, China
| | - Xiaoyi Liu
- Department of Pathogen Biology and Immunology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Long He
- Department of Pathogen Biology and Immunology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
36
|
Ergothioneine ameliorates oxaliplatin-induced peripheral neuropathy in rats. Life Sci 2018; 207:516-524. [DOI: 10.1016/j.lfs.2018.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/26/2018] [Accepted: 07/04/2018] [Indexed: 11/18/2022]
|
37
|
Wang Q, Wei J, Wang C, Zhang T, Huang D, Wei F, He F, Cai W, Yang P, Zeng S, Li W, Cao J. Gambogic acid reverses oxaliplatin resistance in colorectal cancer by increasing intracellular platinum levels. Oncol Lett 2018; 16:2366-2372. [PMID: 30008940 PMCID: PMC6036459 DOI: 10.3892/ol.2018.8916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/05/2018] [Indexed: 01/14/2023] Open
Abstract
Resistance to oxaliplatin (L-OHP) is a major obstacle to successful chemotherapy in colorectal cancer (CRC). In the present study, the ability of gambogic acid (GA) to reverse L-OHP resistance in CRC LoVo cells was investigated. L-OHP-resistant LoVo/L-OHP cells were established by exposing them to increasing concentrations of L-OHP. GA-reversed L-OHP-sensitive LoVo/L-OHP/GA cells were established by exposure to 0.5 µmol/l GA for 2 weeks. A Cell Counting Kit-8 assay was used to assess levels of proliferation. Flow cytometry was applied to detect apoptosis rates. Transwell assays were used to analyse invasion. Inductively coupled plasma mass spectrometry was used to determine intracellular platinum (Pt) content. Western blot analysis was used to reveal the protein levels of Human copper transporter 1 (hCTR1), Copper-transporting p-type adenosine triphosphatases 1 (ATP7A) and Copper-transporting p-type adenosine triphosphatases 2 (ATP7B). LoVo/L-OHP and LoVo/L-OHP/GA cell lines were successfully established, and it was identified that L-OHP inhibited the proliferation of LoVo, LoVo/L-OHP and LoVo/L-OHP/GA cells in a dose-dependent manner. Compared with the parent LoVo cells, the anti-apoptosis and invasion properties of LoVo/L-OHP cells were enhanced, and were reversed by GA treatment. Intracellular Pt content was highest in the LoVo cells, followed by LoVo/L-OHP/GA cells, and then lowest in the LoVo/L-OHP cells. Downregulated hCTP1 and upregulated ATP7A and ATP7B were associated with L-OHP resistance, and GA reversed the resistance by increasing levels of hCTR1 and decreasing levels of ATP7A and ATP7B. In conclusion, GA has the potential ability to reverse L-OHP resistance in CRC cells by increasing intracellular Pt content, which it achieves by increasing hCTR1 levels and decreasing ATP7A and ATP7B levels. GA may represent a promising treatment agent for L-OHP resistance.
Collapse
Affiliation(s)
- Qiang Wang
- Department of General Surgery, Guangzhou Digestive Disease Centre, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Jianchang Wei
- Department of General Surgery, Guangzhou Digestive Disease Centre, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Chengxing Wang
- Department of General Surgery, Guangzhou Digestive Disease Centre, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Department of Gastrointestinal Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, Guangdong 529000, P.R. China
| | - Tong Zhang
- Department of General Surgery, Guangzhou Digestive Disease Centre, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Di Huang
- Department of General Surgery, Guangzhou Digestive Disease Centre, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Fang Wei
- Department of General Surgery, Guangzhou Digestive Disease Centre, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Feng He
- Department of General Surgery, Guangzhou Digestive Disease Centre, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Wensong Cai
- Department of General Surgery, Guangzhou Digestive Disease Centre, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Ping Yang
- Department of General Surgery, Guangzhou Digestive Disease Centre, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Shanqi Zeng
- Department of General Surgery, Guangzhou Digestive Disease Centre, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Wanglin Li
- Department of General Surgery, Guangzhou Digestive Disease Centre, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Jie Cao
- Department of General Surgery, Guangzhou Digestive Disease Centre, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
38
|
Lai YH, Kuo C, Kuo MT, Chen HHW. Modulating Chemosensitivity of Tumors to Platinum-Based Antitumor Drugs by Transcriptional Regulation of Copper Homeostasis. Int J Mol Sci 2018; 19:ijms19051486. [PMID: 29772714 PMCID: PMC5983780 DOI: 10.3390/ijms19051486] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 12/21/2022] Open
Abstract
Platinum (Pt)-based antitumor agents have been effective in treating many human malignancies. Drug importing, intracellular shuffling, and exporting—carried out by the high-affinity copper (Cu) transporter (hCtr1), Cu chaperone (Ato x1), and Cu exporters (ATP7A and ATP7B), respectively—cumulatively contribute to the chemosensitivity of Pt drugs including cisplatin and carboplatin, but not oxaliplatin. This entire system can also handle Pt drugs via interactions between Pt and the thiol-containing amino acid residues in these proteins; the interactions are strongly influenced by cellular redox regulators such as glutathione. hCtr1 expression is induced by acute Cu deprivation, and the induction is regulated by the transcription factor specific protein 1 (Sp1) which by itself is also regulated by Cu concentration variations. Copper displaces zinc (Zn) coordination at the zinc finger (ZF) domains of Sp1 and inactivates its DNA binding, whereas Cu deprivation enhances Sp1-DNA interactions and increases Sp1 expression, which in turn upregulates hCtr1. Because of the shared transport system, chemosensitivity of Pt drugs can be modulated by targeting Cu transporters. A Cu-lowering agent (trientine) in combination with a Pt drug (carboplatin) has been used in clinical studies for overcoming Pt-resistance. Future research should aim at further developing effective Pt drug retention strategies for improving the treatment efficacy.
Collapse
Affiliation(s)
- Yu-Hsuan Lai
- Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Chin Kuo
- Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Macus Tien Kuo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | - Helen H W Chen
- Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
39
|
Sun C, Zhang Z, Qie J, Wang Y, Qian J, Wang J, Wu J, Li Q, Bai C, Han B, Gao Z, Xu J, Lu D, Jin L, Wang H. Genetic polymorphism of SLC31A1 is associated with clinical outcomes of platinum-based chemotherapy in non-small-cell lung cancer patients through modulating microRNA-mediated regulation. Oncotarget 2018; 9:23860-23877. [PMID: 29844858 PMCID: PMC5963629 DOI: 10.18632/oncotarget.24794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/27/2018] [Indexed: 01/27/2023] Open
Abstract
SLC31A1 is the major transporter for platinum drug intake, its expression correlates with drug disposition and response. In 1004 Chinese NSCLC patients with platinum-based chemotherapy, we investigated the association between SLC31A1 polymorphisms and clinical outcomes. Heterozygotes of rs10759637 at 3′UTR was associated with severe thrombocytopenia (odds ratio [OR]: 2.69; P = 0.012) and shorter overall survival (hazard ratio [HR]: 1.24; P = 0.005). Variant homozygote of rs2233914 was correlated with longer overall survival (hazard ratio [HR]: 0.73; P = 0.008). Haplotype and diplotype of these linked SNPs were associated with hematologic toxicities. In stratification analyses, rs10759637 and rs2233914 consistently correlated with overall survival in specific subgroups such as men, smoker, patients older than 58 years, or with ECOG PS 0-1, or with squamous cell carcinoma. rs10759637 could change the local structure of 3′UTR harboring putative binding sites for hsa-miR-29, whose transfection into 16HBE cells resulted in remarkable suppression of gene expression. The rs10759637 variant significantly correlated with lowered luciferase activity in reporter assays and decreased expression of SLC31A1 transcript in tumorous tissues. The study thereby identified functional polymorphism of SLC31A1 that modulates miRNA-3′UTR interaction and gene expression as potential pharmacogenetic biomarker for clinical outcomes of platinum-based chemotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Chang Sun
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhuojun Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingbo Qie
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yi Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Ji Qian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Junjie Wu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Respiratory and Critical Care Medicine, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Qiang Li
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Chunxue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Baohui Han
- Department of Pneumology, Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhiqiang Gao
- Department of Pneumology, Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jibin Xu
- Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Haijian Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Ilijazi D, Abufaraj M, Hassler MR, Ertl IE, D'Andrea D, Shariat SF. Waiting in the wings: the emerging role of molecular biomarkers in bladder cancer. Expert Rev Mol Diagn 2018. [PMID: 29542328 DOI: 10.1080/14737159.2018.1453808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Bladder cancer (BCa) is the fifth most frequently diagnosed cancer worldwide and is, in fact, the most expensive cancer on a per-patient to treat basis. There is a critical need to implement new tests into clinical practice to improve the quality of clinical care, decrease unnecessary invasive therapies and ultimately save costs. Currently, no molecular or genetic biomarker has been widely integrated into daily clinical practice. However, major milestones have been achieved in our understanding of the molecular alterations in BCa that will provide the basis for integrating molecular and genetic biomarkers into clinical decision making to guide management. Clinical implementation of such novel molecular and genetic concepts is the cornerstone in an effort to usher the age of precision medicine into patient care. Areas covered: In this review, the authors discuss the emerging role of molecular biomarkers in patients receiving BCG immunotherapy as well as neoadjuvant and adjuvant chemotherapy in BCa. Expert commentary: Molecular predictive and prognostic biomarkers in BCa are promising diagnostic options that will pave the way for molecular-based personalized medicine.
Collapse
Affiliation(s)
- Dafina Ilijazi
- a Department of Urology , Medical University of Vienna , Vienna , Austria
| | - Mohammad Abufaraj
- a Department of Urology , Medical University of Vienna , Vienna , Austria.,b Department of Special Surgery , Jordan University Hospital, The University of Jordan , Amman , Jordan
| | - Melanie R Hassler
- a Department of Urology , Medical University of Vienna , Vienna , Austria
| | - Iris E Ertl
- a Department of Urology , Medical University of Vienna , Vienna , Austria
| | - David D'Andrea
- a Department of Urology , Medical University of Vienna , Vienna , Austria
| | - Shahrokh F Shariat
- a Department of Urology , Medical University of Vienna , Vienna , Austria.,c Karl Landsteiner Institute of Urology and Andrology , Vienna , Austria.,d Department of Urology , University of Texas Southwestern Medical Center , Dallas , TX , USA.,e Department of Urology , Weill Cornell Medical College, New York-Presbyterian Hospital , New York , NY , USA
| |
Collapse
|
41
|
Wu X, Yuan S, Wang E, Tong Y, Ma G, Wei K, Liu Y. Platinum transfer from hCTR1 to Atox1 is dependent on the type of platinum complex. Metallomics 2018; 9:546-555. [PMID: 28383086 DOI: 10.1039/c6mt00303f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In spite of their wide application, the cellular uptake of platinum based anticancer drugs is still unclear. The copper transport protein, hCTR1, is proposed to facilitate the cellular uptake of cisplatin, whereas organic cation transport (OCT) is more important for oxaliplatin. It has been reported that both N-terminal and C-terminal metal binding motifs of hCTR1 are highly reactive to cisplatin, which is the initial step of protein assisted cellular uptake of cisplatin. It is still unknown how the platinum drugs in hCTR1 transfer to cytoplasmic media, and whether various platinum complexes possess different activities in this process. Herein, we investigated the reaction of the platinated C-terminal metal binding motif of hCTR1 (C8) with the down-stream protein Atox1. Results show that Atox1 is highly reactive to the platinated C8 adducts of cisplatin and transplatin, whereas the oxaliplatin/C8 adduct is much less reactive. The platinum transfer from C8 to Atox1 occurs in the reaction, which results in the protein unfolding of Atox1. These results demonstrated that the platinated intracellular-domain of hCTR1 is reactive to Atox1, and the reactivity is dependent on the ligand and the coordination structure of platinum complexes. The different reactivity is consistent with the hypothesis that hCTR1 is more significant in the transport of cisplatin than that of oxaliplatin.
Collapse
Affiliation(s)
- Xuelei Wu
- CAS Key Laboratory of Soft Matter Chemistry, CAS High Magnetic Field Laboratory, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | | | | | | | |
Collapse
|
42
|
Pan H, Kim E, Rankin GO, Rojanasakul Y, Tu Y, Chen YC. Theaflavin-3,3'-Digallate Enhances the Inhibitory Effect of Cisplatin by Regulating the Copper Transporter 1 and Glutathione in Human Ovarian Cancer Cells. Int J Mol Sci 2018; 19:E117. [PMID: 29301278 PMCID: PMC5796066 DOI: 10.3390/ijms19010117] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/24/2017] [Accepted: 12/29/2017] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancer has the highest fatality rate among the gynecologic cancers. The side effects, high relapse rate, and drug resistance lead to low long-term survival rate (less than 40%) of patients with advanced ovarian cancer. Theaflavin-3,3'-digallate (TF3), a black tea polyphenol, showed less cytotoxicity to normal ovarian cells than ovarian cancer cells. We aimed to investigate whether TF3 could potentiate the inhibitory effect of cisplatin against human ovarian cancer cell lines. In the present study, combined treatment with TF3 and cisplatin showed a synergistic cytotoxicity against A2780/CP70 and OVCAR3 cells. Treatment with TF3 could increase the intracellular accumulation of platinum (Pt) and DNA-Pt adducts and enhanced DNA damage induced by cisplatin in both cells. Treatment with TF3 decreased the glutathione (GSH) levels and upregulated the protein levels of the copper transporter 1 (CTR1) in both cells, which led to the enhanced sensitivity of both ovarian cancer cells to cisplatin. The results imply that TF3 might be used as an adjuvant to potentiate the inhibitory effect of cisplatin against advanced ovarian cancer.
Collapse
Affiliation(s)
- Haibo Pan
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China.
- College of Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA.
| | - Eunhye Kim
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China.
| | - Gary O Rankin
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, USA.
| | - Youying Tu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China.
| | - Yi Charlie Chen
- College of Science, Technology and Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA.
| |
Collapse
|
43
|
Guttmann S, Chandhok G, Groba SR, Niemietz C, Sauer V, Gomes A, Ciarimboli G, Karst U, Zibert A, Schmidt HH. Organic cation transporter 3 mediates cisplatin and copper cross-resistance in hepatoma cells. Oncotarget 2017; 9:743-754. [PMID: 29416650 PMCID: PMC5787505 DOI: 10.18632/oncotarget.23142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/15/2017] [Indexed: 12/12/2022] Open
Abstract
Platinum-based drugs are first-line compounds in the treatment of many solid cancers. Major obstacles are tumors that become resistant and toxic side effects, both largely due to the expression of transporters that mediate the cellular processing of platinum. In this study, we addressed the establishment of cisplatin resistance in the absence of copper transporter ATP7B that has been previously found to be overexpressed in various resistant cells. Cisplatin sensitivity, induction of apoptosis, drug accumulation, and transporter gene expression were determined in hepatoma cell lines. Knockout or overexpression of copper transporter ATP7B did not affect cisplatin sensitivity. Cisplatin resistant cells showed a stably reduced cisplatin accumulation and a downregulation of organic cation transporter 3 (OCT3). In contrast, OCT3 overexpression could reverse resistance. Reduced MT1 expression was detected in the resistant cell line, however transient and highly dependent on the presence of cisplatin. Cross-resistance to copper was also associated with OCT3 downregulation. Our results suggest that a decreased level of OCT3 expression results in resistance to cisplatin and copper. OCT3 may represent a novel target for improved prognosis and anticancer therapy, including HCC.
Collapse
Affiliation(s)
- Sarah Guttmann
- Medizinische Klinik B für Gastroenterologie und Hepatologie, Universitätsklinikum Münster, Münster, Germany
| | - Gursimran Chandhok
- Medizinische Klinik B für Gastroenterologie und Hepatologie, Universitätsklinikum Münster, Münster, Germany.,Present address: Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Sara Reinartz Groba
- Medizinische Klinik B für Gastroenterologie und Hepatologie, Universitätsklinikum Münster, Münster, Germany
| | - Christoph Niemietz
- Medizinische Klinik B für Gastroenterologie und Hepatologie, Universitätsklinikum Münster, Münster, Germany
| | - Vanessa Sauer
- Medizinische Klinik B für Gastroenterologie und Hepatologie, Universitätsklinikum Münster, Münster, Germany
| | - Amanda Gomes
- Medizinische Klinik B für Gastroenterologie und Hepatologie, Universitätsklinikum Münster, Münster, Germany.,Present address: Wilson Disease Clinic, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Mumbai, India
| | - Giuliano Ciarimboli
- Universitätsklinikum Münster, Medizinische Klinik D, Experimentelle Nephrologie, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Andree Zibert
- Medizinische Klinik B für Gastroenterologie und Hepatologie, Universitätsklinikum Münster, Münster, Germany
| | - Hartmut H Schmidt
- Medizinische Klinik B für Gastroenterologie und Hepatologie, Universitätsklinikum Münster, Münster, Germany
| |
Collapse
|
44
|
Schneider V, Chaib S, Spanier C, Knapp M, Moscvin V, Scordovillo L, Ewertz A, Jaehde U, Kalayda GV. Transporter-Mediated Interaction Between Platinum Drugs and Sorafenib at the Cellular Level. AAPS JOURNAL 2017; 20:9. [PMID: 29192345 DOI: 10.1208/s12248-017-0169-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/02/2017] [Indexed: 12/19/2022]
Abstract
Combining the multikinase inhibitor sorafenib with the platinum-based chemotherapy of solid tumors was expected to improve treatment outcome. However, in many clinical trials, no benefit from sorafenib addition to the platinum-containing regimen could be demonstrated. Moreover, in some studies, decreased survival of ovarian cancer patients as well as non-small cell lung cancer patients with squamous cell histology was observed. The aim of this study was to investigate the cellular mechanisms of the pharmacological interaction between platinum drugs and sorafenib in different cancer cell lines. The interaction was characterized by combination index analysis, platinum accumulation and DNA platination were determined using flameless atomic absorption spectrometry, and protein expression was assessed with Western blot. In the sensitive A2780 ovarian carcinoma and H520 squamous cell lung carcinoma cell lines, sorafenib induced downregulation of Na+,K+-ATPase. In A2780 cells, the kinase inhibitor also decreased the expression of copper transporter 1 (CTR1). As a result, sorafenib treatment led to a diminished cellular accumulation of cisplatin and carboplatin and to a decrease in DNA platination in these cell lines. This was not the case in the cisplatin-resistant A2780cis ovarian carcinoma and H522 lung adenocarcinoma cell lines featuring lower basal expression of the above-mentioned transporters. In all cell lines studied, an antagonistic interaction between platinum drugs and sorafenib was found. Our results suggest that sorafenib impairs cisplatin and carboplatin uptake through downregulation of CTR1 and/or Na+,K+-ATPase resulting in reduction of DNA platination. This effect is not observed in cancer cells with defects in platinum accumulation.
Collapse
Affiliation(s)
- Verena Schneider
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Selim Chaib
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Claudia Spanier
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Mandy Knapp
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Violeta Moscvin
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Laura Scordovillo
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Alessandra Ewertz
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Ulrich Jaehde
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Ganna V Kalayda
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany.
| |
Collapse
|
45
|
Starobova H, Vetter I. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Front Mol Neurosci 2017; 10:174. [PMID: 28620280 PMCID: PMC5450696 DOI: 10.3389/fnmol.2017.00174] [Citation(s) in RCA: 380] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/17/2017] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy-induced neuropathy is a common, dose-dependent adverse effect of several antineoplastics. It can lead to detrimental dose reductions and discontinuation of treatment, and severely affects the quality of life of cancer survivors. Clinically, chemotherapy-induced peripheral neuropathy presents as deficits in sensory, motor, and autonomic function which develop in a glove and stocking distribution due to preferential effects on longer axons. The pathophysiological processes are multi-factorial and involve oxidative stress, apoptotic mechanisms, altered calcium homeostasis, axon degeneration and membrane remodeling as well as immune processes and neuroinflammation. This review focusses on the commonly used antineoplastic substances oxaliplatin, cisplatin, vincristine, docetaxel, and paclitaxel which interfere with the cancer cell cycle-leading to cell death and tumor degradation-and cause severe acute and chronic peripheral neuropathies. We discuss drug mechanism of action and pharmacokinetic disposition relevant to the development of peripheral neuropathy, the epidemiology and clinical presentation of chemotherapy-induced neuropathy, emerging insight into genetic susceptibilities as well as current understanding of the pathophysiology and treatment approaches.
Collapse
Affiliation(s)
- Hana Starobova
- Centre for Pain Research, Institute for Molecular Bioscience, University of QueenslandSt Lucia, QLD, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, University of QueenslandSt Lucia, QLD, Australia.,School of Pharmacy, University of QueenslandSt Lucia, QLD, Australia
| |
Collapse
|
46
|
Interactions of cisplatin and the copper transporter CTR1 in human colon cancer cells. J Biol Inorg Chem 2017; 22:765-774. [PMID: 28516214 DOI: 10.1007/s00775-017-1467-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023]
Abstract
There is much interest in understanding the mechanisms by which platinum-based anticancer agents enter cells, and the copper transporter CTR1 has been the focus of many recent studies. While there is a clinical correlation between CTR1 levels and platinum efficacy, cellular studies have provided conflicting evidence relating to the relationship between cisplatin and CTR1. We report here our studies of the relationship between cisplatin and copper homeostasis in human colon cancer cells. While the accumulation of copper and platinum do not appear to compete with each other, we did observe that cisplatin perturbs CTR1 distribution within 10 min, a far shorter incubation time than commonly employed in cellular studies of cisplatin. Furthermore, on these short time-scales, cisplatin caused an increase in the cytoplasmic labile copper pool. While the predominant focus of studies to date has been on CTR1, these studies highlight the importance of investigating the interaction of cisplatin with other copper proteins.
Collapse
|
47
|
Alaaeldin E, Abu Lila AS, Ando H, Fukushima M, Huang CL, Wada H, Sarhan HA, Khaled KA, Ishida T. Co-administration of liposomal l-OHP and PEGylated TS shRNA-lipoplex: A novel approach to enhance anti-tumor efficacy and reduce the immunogenic response to RNAi molecules. J Control Release 2017; 255:210-217. [PMID: 28461099 DOI: 10.1016/j.jconrel.2017.04.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 04/20/2017] [Accepted: 04/26/2017] [Indexed: 12/17/2022]
Abstract
Many therapeutic strategies have been applied in efforts to conquer the development and/or progression of cancer. The combination of chemotherapy and an RNAi-based approach has proven to be an efficient anticancer therapy. However, the feasibility of such a therapeutic strategy has been substantially restricted either by the failure to achieve the efficient delivery of RNAi molecules to tumor tissue or by the immunostimulatory response triggered by RNAi molecules. In this study, therefore, we intended to investigate the efficacy of using liposomal oxaliplatin (liposomal l-OHP) to guarantee the efficient delivery of RNAi molecules, namely shRNA against thymidylate synthase (TS shRNA) complexed with cationic liposome (TS shRNA-lipoplex), to solid tumors, and to suppress the immunostimulatory effect of RNAi molecules, TS shRNA, following intravenous administration. Herein, we describe how liposomal l-OHP enhanced the intra-tumor accumulation of TS shRNA-lipoplex and significantly reduced the immunostimulatory response triggered by TS shRNA. Consequently, such enhanced accumulation of TS shRNA-lipoplex along with the cytotoxic effect of liposomal l-OHP led to a remarkable tumor growth suppression (compared to mono-therapy) following systemic administration. Our results, therefore, may have important implications for the provision of a safer and more applicable combination therapy of RNAi molecules and anti-cancer agents that can produce a more reliable anti-tumor effect.
Collapse
Affiliation(s)
- Eman Alaaeldin
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Amr S Abu Lila
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; Department of Pharmaceutics, College of Pharmacy, Hail University, Hail 81442, Saudi Arabia
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan; Department of Cancer Metabolism and Therapy, Institute of Biomedical Sciences,Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Masakazu Fukushima
- Department of Cancer Metabolism and Therapy, Institute of Biomedical Sciences,Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Cheng-Long Huang
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromi Wada
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Hatem A Sarhan
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Khaled A Khaled
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan; Department of Cancer Metabolism and Therapy, Institute of Biomedical Sciences,Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan.
| |
Collapse
|
48
|
Copper transporter 1 in human colorectal cancer cell lines: Effects of endogenous and modified expression on oxaliplatin cytotoxicity. J Inorg Biochem 2017; 177:249-258. [PMID: 28551160 DOI: 10.1016/j.jinorgbio.2017.04.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/13/2017] [Accepted: 04/23/2017] [Indexed: 11/23/2022]
Abstract
Oxaliplatin-based chemotherapy is the mainstay for the treatment of advanced colorectal cancer. Copper transporter proteins have been implicated in the transport of platinum-based anticancer drugs, but their expression in human colorectal cancer cell lines and roles in controlling their sensitivity to oxaliplatin are not well studied or understood. The endogenous and modified expression of copper uptake transporter 1 (hCTR1) was studied in a panel of human colorectal cancer cell lines (DLD-1, SW620, HCT-15 and COLO205) with ~20-fold variation in oxaliplatin sensitivity. hCTR1 protein was expressed more abundantly than ATP7A and ATP7B proteins, but with broadly similar levels and patterns of expression across four colorectal cancer cell lines. In a colorectal cancer cell-line background (DLD-1), stable transfection of the hCtr1 gene enhanced hCTR1 protein expression and increased the sensitivity of the cells to the cytotoxicity of copper and oxaliplatin. Treatment with copper chelators (ammonium tetrathiomolybdate, bathocuproinedisulfonic acid and D-penicillamine) increased expression of hCTR1 protein in DLD-1 and SW620 cells, and potentiated the cytotoxicity of oxaliplatin in DLD-1 but not SW620 cells. Treatment with copper chloride altered neither the expression of copper transporters nor cytotoxicity of oxaliplatin in colorectal cancer lines. In conclusion, human colorectal cancer cell lines consistently express hCTR1 protein despite their variable sensitivity to oxaliplatin. Genetic or pharmacological modification of hCTR1 protein expression may potentiate oxaliplatin sensitivity in some but not all colorectal cancer cell lines.
Collapse
|
49
|
Chen C, Ni S, Zheng Q, Yu M, Wang H. Synthesis, Structure, Biological Evaluation, and Catalysis of Two Pyrazole-Functionalized NHC-RuIIComplexes. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chao Chen
- College of Life Sciences; Huzhou University; East 2nd Road 313000 Huzhou China
| | - Shengliang Ni
- College of Life Sciences; Huzhou University; East 2nd Road 313000 Huzhou China
| | - Qing Zheng
- College of Life Sciences; Huzhou University; East 2nd Road 313000 Huzhou China
| | - Meifang Yu
- College of Life Sciences; Huzhou University; East 2nd Road 313000 Huzhou China
| | - Hangxiang Wang
- The First Affiliated Hospital; School of Medicine; Zhejiang University; 310003 Hangzhou China
| |
Collapse
|
50
|
In vivo effect of copper status on cisplatin-induced nephrotoxicity. Biometals 2016; 29:841-9. [DOI: 10.1007/s10534-016-9955-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022]
|