1
|
Linzer J, Phelps Z, Vummidi S, Lee BYE, Coant N, Haley JD. Mass Spectrometry and Pharmacological Approaches to Measuring Cooption and Reciprocal Activation of Receptor Tyrosine Kinases. Proteomes 2023; 11:20. [PMID: 37368466 PMCID: PMC10304582 DOI: 10.3390/proteomes11020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/11/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) can show extensive crosstalk, directly and indirectly. Elucidating RTK crosstalk remains an important goal in the clinical combination of anti-cancer therapies. Here, we present mass spectrometry and pharmacological approaches showing the hepatocyte growth factor receptor (MET)-promoting tyrosine phosphorylation of the epidermal growth factor receptor (EGFR) and other membrane receptors in MET-amplified H1993 NSCLC cells. Conversely, in H292 wt-EGFR NSCLC cells, EGFR promotes the tyrosine phosphorylation of MET. Reciprocal regulation of the EGFR and insulin receptor (IR) was observed in the GEO CRC cells, where inhibition of the EGFR drives tyrosine phosphorylation of the insulin receptor. Similarly, in platelet-derived growth factor receptor (PDGFR)-amplified H1703 NSCLC cells, inhibition of the EGFR promotes the tyrosine phosphorylation of the PDGFR. These RTK interactions are used to illustrate basic principles applicable to other RTK signaling networks. More specifically, we focus on two types of RTK interaction: (1) co-option of one RTK by another and (2) reciprocal activation of one receptor following the inhibition of a distinct receptor.
Collapse
Affiliation(s)
| | | | | | | | | | - John D. Haley
- Department of Pathology and Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
2
|
Kan Y, Miller WT. Activity of the nonreceptor tyrosine kinase Ack1 is regulated by tyrosine phosphorylation of its Mig6 homology region. FEBS Lett 2022; 596:2808-2820. [PMID: 36178070 PMCID: PMC9879303 DOI: 10.1002/1873-3468.14505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/19/2022] [Indexed: 01/28/2023]
Abstract
Ack1 is a proto-oncogenic tyrosine kinase with homology to the tumour suppressor Mig6, an inhibitor of the epidermal growth factor receptor (EGFR). The residues critical for binding of Mig6 to EGFR are conserved within the Mig6 homology region (MHR) of Ack1. We tested whether intramolecular interactions between the Ack1 MHR and kinase domain (KD) are regulated by phosphorylation. We identified two Src phosphorylation sites within the MHR (Y859, Y860). Addition of Src-phosphorylated MHR to the Ack1 KD enhanced enzymatic activity. Co-expression of Src in cells led to increased Ack1 activity; mutation of Y859/Y860 blocked this increase. Collectively, the data suggest that phosphorylation of the Ack1 MHR regulates its kinase activity. Phosphorylation of Y859/Y860 occurs in cancers of the brain, breast, colon, and prostate, where genomic amplification or somatic mutations of Ack1 play a role in disease progression. Our findings suggest that MHR phosphorylation could contribute to Ack1 dysregulation in tumours.
Collapse
Affiliation(s)
- Yağmur Kan
- Department of Physiology and Biophysics, School of Medicine Stony Brook University NY USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, School of Medicine Stony Brook University NY USA
| |
Collapse
|
3
|
Gupta G, Sun Y, Das A, Stang PJ, Lee CY. BODIPY based Metal-Organic Macrocycles and Frameworks: Recent Therapeutic Developments. Coord Chem Rev 2022; 452:214308. [PMID: 35001940 PMCID: PMC8730361 DOI: 10.1016/j.ccr.2021.214308] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Boron dipyrromethene, commonly known as BODIPY, based metal-organic macrocycles (MOCs) and metal-organic frameworks (MOFs) represent an interesting part of materials due to their versatile tunability of structure and functionality as well as significant physicochemical properties, thus broadening their applications in various scientific domains, especially in biomedical sciences. With increasing concern over the efficacy of cancer drugs versus quality of patient's life dilemma, scientists have been trying to fabricate novel comprehensive therapeutic strategies along with the discovery of novel safer drugs where research with BODIPY metal complexes has shown vital advancements. In this review, we have exclusively examined the articles involving studies related to light harvesting and photophysical properties of BODIPY based MOCs and MOFs, synthesized through self-assembly process, with a special focus on biomolecular interaction and its importance in anti-cancer drug research. In the end, we also emphasized the possible practical challenges involved during the synthetic process, based on our experience on dealing with BODIPY molecules and steps to overcome them along with their future potentials. This review will significantly help our fellow research groups, especially the budding researchers, to quickly and comprehensively get the near to wholesome picture of BODIPY based MOCs and MOFs and their present status in anti-cancer drug discovery.
Collapse
Affiliation(s)
- Gajendra Gupta
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Yan Sun
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Abhishek Das
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal 700054, India
| | - Peter J. Stang
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Chang Yeon Lee
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
4
|
Zhao F, Sun X, Lu W, Xu L, Shi J, Yang S, Zhou M, Su F, Lin F, Cao F. Synthesis of novel, DNA binding heterocyclic dehydroabietylamine derivatives as potential antiproliferative and apoptosis-inducing agents. Drug Deliv 2020; 27:216-227. [PMID: 31984809 PMCID: PMC7034089 DOI: 10.1080/10717544.2020.1716879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/05/2020] [Accepted: 01/13/2020] [Indexed: 11/14/2022] Open
Abstract
Several dehydroabietylamine derivatives containing heterocyclic moieties such as thiophene and pyrazine ring were successfully synthesized. The antiproliferative activities of these thiophene-based Schiff-bases, thiophene amides, and pyrazine amides were investigated in vitro against Hela (cervix), MCF-7 (breast), A549 (lung), HepG2 (liver), and HUVEC (umbilical vein) cells by MTT assay. The toxicity of L1-L10 (IC50 = 5.92- >100 μM) was lower than L0 (1.27 μM) and DOX (4.40 μM) in every case. Compound L1 had higher anti-HepG2 (0.66 μM), anti-MCF-7 (5.33 μM), and anti-A549 (2.11 μM) and compound L3 had higher anti-HepG2 (1.63 μM) and anti-MCF-7 (2.65 μM) activities. Both of these compounds were recognized with high efficiency in apoptosis induction in HepG2 cells and intercalated binding modes with DNA. Moreover, with average IC50 values of 0.66 and 5.98 μM, L1 was nine times more effective at suppressing cultured HepG2 cells viability than normal cells (SI = 9). The relative tumor proliferation rate (T/C) was 38.6%, the tumor inhibition rate was up to 61.2%, which indicated that L1 had no significant toxicity but high anti-HepG2 activity in vivo. Thus, it may be a potential antiproliferation drug with nontoxic side effects.
Collapse
Affiliation(s)
- Fengyi Zhao
- Co-Innovation Center for Sustainable Forestry
in Southern China, Nanjing Forestry University, Nanjing, PR
China
- College of Forestry, Nanjing Forestry
University, Nanjing, PR China
- College of Science, Nanjing Forestry
University, Nanjing, PR China
| | - Xu Sun
- College of Science, Nanjing Forestry
University, Nanjing, PR China
- College of Information Science and Technology,
Nanjing Forestry University, Nanjing, PR China
| | - Wen Lu
- College of Science, Nanjing Forestry
University, Nanjing, PR China
| | - Li Xu
- Co-Innovation Center for Sustainable Forestry
in Southern China, Nanjing Forestry University, Nanjing, PR
China
- College of Science, Nanjing Forestry
University, Nanjing, PR China
| | - Jiuzhou Shi
- College of Science, Nanjing Forestry
University, Nanjing, PR China
| | - Shilong Yang
- Advanced Analysis and Testing Center, Nanjing
Forestry University, Nanjing, PR China
| | - Mengyi Zhou
- Advanced Analysis and Testing Center, Nanjing
Forestry University, Nanjing, PR China
| | - Fan Su
- Advanced Analysis and Testing Center, Nanjing
Forestry University, Nanjing, PR China
| | - Feng Lin
- Advanced Analysis and Testing Center, Nanjing
Forestry University, Nanjing, PR China
| | - Fuliang Cao
- Co-Innovation Center for Sustainable Forestry
in Southern China, Nanjing Forestry University, Nanjing, PR
China
- College of Forestry, Nanjing Forestry
University, Nanjing, PR China
| |
Collapse
|
5
|
Mao Y, Soni K, Sangani C, Yao Y. An Overview of Privileged Scaffold: Quinolines and Isoquinolines in Medicinal Chemistry as Anticancer Agents. Curr Top Med Chem 2020; 20:2599-2633. [PMID: 32942976 DOI: 10.2174/1568026620999200917154225] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/01/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
Abstract
Cancer is one of the most difficult diseases and causes of death for many decades. Many pieces of research are continuously going on to get a solution for cancer. Quinoline and isoquinoline derivatives have shown their possibilities to work as an antitumor agent in anticancer treatment. The members of this privileged scaffold quinoline and isoquinoline have shown their controlling impacts on cancer treatment through various modes. In particular, this review suggests the current scenario of quinoline and isoquinoline derivatives as antitumor agents and refine the path of these derivatives to find and develop new drugs against an evil known as cancer.
Collapse
Affiliation(s)
- Yanna Mao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Children's Hospital,
Zhengzhou University, Zhengzhou 450018, China
| | - Kunjal Soni
- Shri Maneklal M. Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya University, Gandhinagar, Gujarat 362024, India
| | - Chetan Sangani
- Shri Maneklal M. Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya University, Gandhinagar, Gujarat 362024, India
| | - Yongfang Yao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Zhengzhou Children's Hospital,
Zhengzhou University, Zhengzhou 450018, China,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Pauli FP, Martins JR, Paschoalin T, Ionta M, Barbosa MLC, Barreiro EJ. Novel VEGFR‐2 inhibitors with an
N
‐acylhydrazone scaffold. Arch Pharm (Weinheim) 2020; 353:e2000130. [DOI: 10.1002/ardp.202000130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Fernanda P. Pauli
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Institute of Biomedical Sciences Federal University of Rio de Janeiro, CCS Rio de Janeiro RJ Brazil
- Graduate Program in Chemistry (PGQu) Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Juliana R. Martins
- Department of Drugs and Medicines, Institute of Biomedical Sciences Federal University of Alfenas Alfenas Brazil
| | - Thaysa Paschoalin
- Department of Biophysics Federal University of São Paulo São Paulo Brazil
| | - Marisa Ionta
- Department of Drugs and Medicines, Institute of Biomedical Sciences Federal University of Alfenas Alfenas Brazil
| | - Maria Leticia C. Barbosa
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Institute of Biomedical Sciences Federal University of Rio de Janeiro, CCS Rio de Janeiro RJ Brazil
- Faculty of Pharmacy Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Eliezer J. Barreiro
- Laboratory of Evaluation and Synthesis of Bioactive Substances (LASSBio), Institute of Biomedical Sciences Federal University of Rio de Janeiro, CCS Rio de Janeiro RJ Brazil
| |
Collapse
|
7
|
Zhu GH, Dai HP, Shen Q, Zhang Q. Downregulation of LPXN expression by siRNA decreases the malignant proliferation and transmembrane invasion of SHI-1 cells. Oncol Lett 2018; 17:135-140. [PMID: 30655748 PMCID: PMC6313184 DOI: 10.3892/ol.2018.9605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 08/30/2018] [Indexed: 01/03/2023] Open
Abstract
The aim of the present study was to investigate the effects of decreasing leupaxin (LPXN) expression on the proliferation and invasion of human acute monocytic leukemia SHI-1 cells. The transfection efficiency of fluorescein amidite (FAM)-small interfering RNA (siRNA) was determined using flow cytometry, and the protein expression levels of LPXN, phosphorylated (p)-c-Jun N-terminal kinase (JNK), p-p38 mitogen-activated protein kinase (p38 MAPK) and p-extracellular-signal-regulated kinase (ERK) were detected by western blot analysis. Proliferation was determined using the cell counting kit-8 reagent and cellular transmembrane invasion ability was determined using a Transwell chamber system. The gelatinase levels of matrix metalloproteinase (MMP)-2 and MMP-9 in the cell culture supernatant were also analyzed by gelatin zymography. In SHI-1 cells, the optimal transfection conditions of siRNA were a cell density of 4×105 cells/ml and a ratio of siRNA/Lipofectamine® 2000 of 200 pmol/1 µl. The highest transfection efficiency of FAM-siRNA was 74.5%. In the present study, L2-siRNA was selected to effectively decrease the expression of LPXN. Following downregulation of LPXN expression by L2-siRNA, proliferation inhibition rates increased to 27.043±2.051 and cell transmembrane invasion rates decreased to 25.270±2.145 (P<0.05). The results of the western blot analysis and the gelatin zymography indicated that downregulation of LPXN expression increased the expression of p-p38 MAPK and p-JNK, and attenuated the secretion levels of MMP-2 and MMP-9. However, downregulation of LPXN expression had no effect on p-ERK expression in SHI-1 cells. The results of the present study indicated that downregulation of LPXN expression decreased the malignant proliferation and transmembrane invasion of SHI-1 cells by activating JNK and p38 MAPK, and inhibiting MMP-2 and MMP-9 secretion.
Collapse
Affiliation(s)
- Guo-Hua Zhu
- First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Hai-Ping Dai
- Leukemia Research Unit, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qun Shen
- First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China.,Department of Hematology, First Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210009, P.R. China
| | - Qi Zhang
- First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
8
|
朱 国, 戴 海, 段 元, 余 泽. [Small interfering RNA-mediated LPXN silencing suppresses proliferation and enhances drug sensitivity of human acute monocytic leukemia SHI-1 cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:807-811. [PMID: 33168498 PMCID: PMC6765540 DOI: 10.3969/j.issn.1673-4254.2018.07.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the effect of silencing LPXN expression by RNA interference on the proliferation and drug sensitivity of human acute monocytic leukemia SHI-1 cells in vitro. METHODS Small interfering RNA (siRNA) sequences targeting LPXN were designed and transiently transfected in SHI-1 cells via Lipofectamine 2000, and the most efficient siRNA sequence for LPXN silencing was identified using Western blotting. The protein expression levels of LPXN, p-JNK, p-P38 MAPK and p-ERK were in the cells transfected with the selected siRNA were detected using Western blotting, and the cell proliferation changes were assessed using CCK-8 reagent. RESULTS LPXN silencing by siRNA transfection resulted in significant proliferation suppression in SHI-1 cells with an inhibition rate of(27.04±2.05) % (P < 0.05). Western blotting showed that treatment of the siRNA-transfected SHI-1 cells with 0-25 μmol/L curcumin or with 0-2.0 μmol/L Ara-C further increased the cell inhibition rate and obviously enhanced the expressions of p-P38 MAPK and p-JNK without significantly affecting p-ERK expression. CONCLUSIONS Down-regulation of LPXN expression by siRNA transfection can suppress the proliferation and increase the drug sensitivity of SHI-1 cells probably by activating JNK and P38 MAPK.
Collapse
Affiliation(s)
- 国华 朱
- 南京中医药大学第一临床医学院,江苏 南京 210023First Clinical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - 海萍 戴
- 苏州大学第一附属医院血液科,江苏 苏州 215006Department of Hematology, First Hospital Affiliated to Suzhou University, Suzhou 215006, China
| | - 元勋 段
- 南京中医药大学第一临床医学院,江苏 南京 210023First Clinical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - 泽霖 余
- 南京中医药大学第一临床医学院,江苏 南京 210023First Clinical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
9
|
Danahy KE, Cooper JC, Van Humbeck JF. Benzylic Fluorination of Aza-Heterocycles Induced by Single-Electron Transfer to Selectfluor. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801280] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kelley E. Danahy
- Department of Chemistry; Massachusetts Institute of Technology; 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Julian C. Cooper
- Department of Chemistry; Massachusetts Institute of Technology; 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Jeffrey F. Van Humbeck
- Department of Chemistry; University of Calgary; 2500 University Drive N.W. Calgary Alberta T2N 1N4 Canada
| |
Collapse
|
10
|
Danahy KE, Cooper JC, Van Humbeck JF. Benzylic Fluorination of Aza-Heterocycles Induced by Single-Electron Transfer to Selectfluor. Angew Chem Int Ed Engl 2018; 57:5134-5138. [PMID: 29486098 DOI: 10.1002/anie.201801280] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 01/20/2023]
Abstract
A selective and mild method for the benzylic fluorination of aromatic azaheterocycles with Selectfluor is described. These reactions take place by a previously unreported mechanism, in which electron transfer from the heterocyclic substrate to the electrophilic fluorinating agent Selectfluor eventually yields a benzylic radical, thus leading to the desired C-F bond formation. This mechanism enables high intra- and intermolecular selectivity for aza-heterocycles over other benzylic components with similar C-H bond-dissociation energies.
Collapse
Affiliation(s)
- Kelley E Danahy
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Julian C Cooper
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Jeffrey F Van Humbeck
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
11
|
Gupta G, Das A, Panja S, Ryu JY, Lee J, Mandal N, Lee CY. Self-Assembly of Novel Thiophene-Based BODIPY Ru II Rectangles: Potential Antiproliferative Agents Selective Against Cancer Cells. Chemistry 2017; 23:17199-17203. [PMID: 28961334 DOI: 10.1002/chem.201704368] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Indexed: 01/30/2023]
Abstract
Novel Ru (2+2) rectangles were designed and synthesized by self-assembly of a new thiophene-functionalized dipyridyl BODIPY ligand, BDPS, and ruthenium(II) precursors. The complexes exhibited dose-dependent antiproliferative activities against cancer cells, in which some compounds selectively kill cancer cells. The net fluorescence due to BODIPY allowed us to visualize their location inside cancer cells. Moreover, the metalla-rectangles displayed substantial propensity to bind with biomolecules.
Collapse
Affiliation(s)
- Gajendra Gupta
- Department of Energy and Chemical Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Abhishek Das
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VIIM, Kolkata-, 700054, West Bengal, India
| | - Sourav Panja
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VIIM, Kolkata-, 700054, West Bengal, India
| | - Ji Yeon Ryu
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Junseong Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Nripendranath Mandal
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VIIM, Kolkata-, 700054, West Bengal, India
| | - Chang Yeon Lee
- Department of Energy and Chemical Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.,Innovation Center for Chemical Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| |
Collapse
|
12
|
Regulators of Actin Dynamics in Gastrointestinal Tract Tumors. Gastroenterol Res Pract 2015; 2015:930157. [PMID: 26345720 PMCID: PMC4539459 DOI: 10.1155/2015/930157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 07/09/2015] [Accepted: 07/21/2015] [Indexed: 02/07/2023] Open
Abstract
Reorganization of the actin cytoskeleton underlies cell migration in a wide variety of physiological and pathological processes, such as embryonic development, wound healing, and tumor cell invasion. It has been shown that actin assembly and disassembly are precisely regulated by intracellular signaling cascades that respond to changes in the cell microenvironment, ligand binding to surface receptors, or oncogenic transformation of the cell. Actin-nucleating and actin-depolymerizing (ANFs/ADFs) and nucleation-promoting factors (NPFs) regulate cytoskeletal dynamics at the leading edge of migrating cells, thereby modulating cell shape; these proteins facilitate cellular movement and mediate degradation of the surrounding extracellular matrix by secretion of lytic proteases, thus eliminating barriers for tumor cell invasion. Accordingly, expression and activity of these actin-binding proteins have been linked to enhanced metastasis and poor prognosis in a variety of malignancies. In this review, we will summarize what is known about expression patterns and the functional role of actin regulators in gastrointestinal tumors and evaluate first pharmacological approaches to prevent invasion and metastatic dissemination of malignant cells.
Collapse
|
13
|
Haley JA, Haughney E, Ullman E, Bean J, Haley JD, Fink MY. Altered Transcriptional Control Networks with Trans-Differentiation of Isogenic Mutant-KRas NSCLC Models. Front Oncol 2014; 4:344. [PMID: 25538889 PMCID: PMC4259114 DOI: 10.3389/fonc.2014.00344] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/17/2014] [Indexed: 01/05/2023] Open
Abstract
Background: The capacity of cancer cells to undergo epithelial mesenchymal trans-differentiation has been implicated as a factor driving metastasis, through the acquisition of enhanced migratory/invasive cell programs and the engagement of anti-apoptotic mechanisms promoting drug and radiation resistance. Our aim was to define molecular signaling changes associated with mesenchymal trans-differentiation in two KRas mutant NSCLC models. We focused on central transcription and epigenetic regulators predicted to be important for mesenchymal cell survival. Experimental design: We have modeled trans-differentiation and cancer stemness in inducible isogenic mutant-KRas H358 and A549 non-small cell lung cell backgrounds. As expected, our models show mesenchymal-like tumor cells acquire novel mechanisms of cellular signaling not apparent in their epithelial counterparts. We employed large-scale quantitative phosphoproteomic, proteomic, protein–protein interaction, RNA-Seq, and network function prediction approaches to dissect the molecular events associated with the establishment and maintenance of the mesenchymal state. Results: Gene-set enrichment and pathway prediction indicated BMI1, KDM5B, RUNX2, MYC/MAX, NFκB, LEF1, and HIF1 target networks were significantly enriched in the trans-differentiation of H358 and A549 NSCLC models. Physical overlaps between multiple networks implicate NR4A1 as an overlapping control between TCF and NFκB pathways. Enrichment correlations also indicated marked decrease in cell cycling, which occurred early in the EMT process. RNA abundance time course studies also indicated early expression of epigenetic and chromatin regulators within 8–24 h, including CITED4, RUNX3, CMBX1, and SIRT4. Conclusion: Multiple transcription and epigenetic pathways where altered between epithelial and mesenchymal tumor cell states, notably the polycomb repressive complex-1, HP1γ, and BAF/Swi-Snf. Network analysis suggests redundancy in the activation and inhibition of pathway regulators, notably factors controlling epithelial cell state. Through large-scale transcriptional and epigenetic cell reprograming, mesenchymal trans-differentiation can promote diversification of signaling networks potentially important in resistance to cancer therapies.
Collapse
Affiliation(s)
- John A Haley
- Department of Biomedical Sciences, LIU Post , Brookville, NY , USA
| | | | - Erica Ullman
- Regeneron Pharmaceuticals Inc. , Tarrytown, NY , USA
| | - James Bean
- Infectious Disease Division, Memorial Sloan Kettering Cancer Center , New York, NY , USA
| | - John D Haley
- Department of Pathology, Cancer Center, Stony Brook School of Medicine , Stony Brook, NY , USA
| | - Marc Y Fink
- Department of Biomedical Sciences, LIU Post , Brookville, NY , USA
| |
Collapse
|
14
|
Chitu V, Nacu V, Charles JF, Henne WM, McMahon HT, Nandi S, Ketchum H, Harris R, Nakamura MC, Stanley ER. PSTPIP2 deficiency in mice causes osteopenia and increased differentiation of multipotent myeloid precursors into osteoclasts. Blood 2012; 120:3126-35. [PMID: 22923495 PMCID: PMC3471520 DOI: 10.1182/blood-2012-04-425595] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/07/2012] [Indexed: 12/11/2022] Open
Abstract
Missense mutations that reduce or abrogate myeloid cell expression of the F-BAR domain protein, proline serine threonine phosphatase-interacting protein 2 (PSTPIP2), lead to autoinflammatory disease involving extramedullary hematopoiesis, skin and bone lesions. However, little is known about how PSTPIP2 regulates osteoclast development. Here we examined how PSTPIP2 deficiency causes osteopenia and bone lesions, using the mouse PSTPIP2 mutations, cmo, which fails to express PSTPIP2 and Lupo, in which PSTPIP2 is dysfunctional. In both models, serum levels of the pro-osteoclastogenic factor, MIP-1α, were elevated and CSF-1 receptor (CSF-1R)-dependent production of MIP-1α by macrophages was increased. Treatment of cmo mice with a dual specificity CSF-1R and c-Kit inhibitor, PLX3397, decreased circulating MIP-1α and ameliorated the extramedullary hematopoiesis, inflammation, and osteopenia, demonstrating that aberrant myelopoiesis drives disease. Purified osteoclast precursors from PSTPIP2-deficient mice exhibit increased osteoclastogenesis in vitro and were used to probe the structural requirements for PSTPIP2 suppression of osteoclast development. PSTPIP2 tyrosine phosphorylation and a functional F-BAR domain were essential for PSTPIP2 inhibition of TRAP expression and osteoclast precursor fusion, whereas interaction with PEST-type phosphatases was only required for suppression of TRAP expression. Thus, PSTPIP2 acts as a negative feedback regulator of CSF-1R signaling to suppress inflammation and osteoclastogenesis.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kuang YH, Patel JP, Sodani K, Wu CP, Liao LQ, Patel A, Tiwari AK, Dai CL, Chen X, Fu LW, Ambudkar SV, Korlipara VL, Chen ZS. OSI-930 analogues as novel reversal agents for ABCG2-mediated multidrug resistance. Biochem Pharmacol 2012; 84:766-74. [PMID: 22750060 DOI: 10.1016/j.bcp.2012.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/16/2012] [Accepted: 06/19/2012] [Indexed: 01/23/2023]
Abstract
OSI-930, a dual c-Kit and KDR tyrosine kinase inhibitor, is reported to have undergone a Phase I dose escalation study in patients with advanced solid tumors. A series of fifteen pyridyl and phenyl analogues of OSI-930 were designed and synthesized. Extensive screening of these compounds led to the discovery that nitropyridyl and ortho-nitrophenyl analogues, VKJP1 and VKJP3, were effective in reversing ABC subfamily G member 2 (ABCG2) transporter-mediated multidrug resistance (MDR). VKJP1 and VKJP3 significantly sensitized ABCG2-expressing cells to established substrates of ABCG2 including mitoxantrone, SN-38, and doxorubicin in a concentration-dependent manner, but not to the non-ABCG2 substrate cisplatin. However, they were unable to reverse ABCB1- or ABCC1-mediated MDR indicating their selectivity for ABCG2. Western blotting analysis was performed to evaluate ABCG2 expression and it was found that neither VKJP1 nor VKJP3 significantly altered ABCG2 protein expression for up to 72 h. [(3)H]-mitoxantrone accumulation study demonstrated that VKJP1 and VKJP3 increased the intracellular accumulation of [(3)H]-mitoxantrone, a substrate of ABCG2. VKJP1 and VKJP3 also remarkably inhibited the transport of [(3)H]-methotrexate by ABCG2 membrane vesicles. Importantly, both VKJP1 and VKJP3 were efficacious in stimulating the activity of ATPase of ABCG2 and inhibited the photoaffinity labeling of this transporter by its substrate [(125)I]-iodoarylazidoprazosin. The results suggested that VKJP1 and VKJP3, specifically inhibit the function of ABCG2 through direct interaction with its substrate binding site(s). Thus VKJP1 and VKJP3 represent a new class of drugs for reducing MDR in ABCG2 over-expressing tumors.
Collapse
Affiliation(s)
- Ye-Hong Kuang
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, NY 11439, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Granitzka M, Pöppler AC, Schwarze EK, Stern D, Schulz T, John M, Herbst-Irmer R, Pandey SK, Stalke D. Aggregation of Donor Base Stabilized 2-Thienyllithium in a Single Crystal and in Solution: Distances from X-ray Diffraction and the Nuclear Overhauser Effect. J Am Chem Soc 2011; 134:1344-51. [DOI: 10.1021/ja210382c] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Markus Granitzka
- Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Ann-Christin Pöppler
- Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Eike K. Schwarze
- Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Daniel Stern
- Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Thomas Schulz
- Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Michael John
- Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Sushil K. Pandey
- Department of Chemistry, University of Jammu, Jammu-180 006, India
| | - Dietmar Stalke
- Institut für Anorganische Chemie der Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| |
Collapse
|
17
|
Pflieger D, Gonnet F, de la Fuente van Bentem S, Hirt H, de la Fuente A. Linking the proteins--elucidation of proteome-scale networks using mass spectrometry. MASS SPECTROMETRY REVIEWS 2011; 30:268-297. [PMID: 21337599 DOI: 10.1002/mas.20278] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 10/05/2009] [Accepted: 10/05/2009] [Indexed: 05/30/2023]
Abstract
Proteomes are intricate. Typically, thousands of proteins interact through physical association and post-translational modifications (PTMs) to give rise to the emergent functions of cells. Understanding these functions requires one to study proteomes as "systems" rather than collections of individual protein molecules. The abstraction of the interacting proteome to "protein networks" has recently gained much attention, as networks are effective representations, that lose specific molecular details, but provide the ability to see the proteome as a whole. Mostly two aspects of the proteome have been represented by network models: proteome-wide physical protein-protein-binding interactions organized into Protein Interaction Networks (PINs), and proteome-wide PTM relations organized into Protein Signaling Networks (PSNs). Mass spectrometry (MS) techniques have been shown to be essential to reveal both of these aspects on a proteome-wide scale. Techniques such as affinity purification followed by MS have been used to elucidate protein-protein interactions, and MS-based quantitative phosphoproteomics is critical to understand the structure and dynamics of signaling through the proteome. We here review the current state-of-the-art MS-based analytical pipelines for the purpose to characterize proteome-scale networks.
Collapse
Affiliation(s)
- Delphine Pflieger
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Université d'Evry Val d'Essonne, CNRS UMR 8587, Evry, France
| | | | | | | | | |
Collapse
|
18
|
Thomson S, Petti F, Sujka-Kwok I, Mercado P, Bean J, Monaghan M, Seymour SL, Argast GM, Epstein DM, Haley JD. A systems view of epithelial-mesenchymal transition signaling states. Clin Exp Metastasis 2010; 28:137-55. [PMID: 21194007 PMCID: PMC3040305 DOI: 10.1007/s10585-010-9367-3] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 12/07/2010] [Indexed: 12/13/2022]
Abstract
Epithelial–mesenchymal transition (EMT) is an important contributor to the invasion and metastasis of epithelial-derived cancers. While considerable effort has focused in the regulators involved in the transition process, we have focused on consequences of EMT to prosurvival signaling. Changes in distinct metastable and ‘epigentically-fixed’ EMT states were measured by correlation of protein, phosphoprotein, phosphopeptide and RNA transcript abundance. The assembly of 1167 modulated components into functional systems or machines simplified biological understanding and increased prediction confidence highlighting four functional groups: cell adhesion and migration, metabolism, transcription nodes and proliferation/survival networks. A coordinate metabolic reduction in a cluster of 17 free-radical stress pathway components was observed and correlated with reduced glycolytic and increased oxidative phosphorylation enzyme capacity, consistent with reduced cell cycling and reduced need for macromolecular biosynthesis in the mesenchymal state. An attenuation of EGFR autophosphorylation and a switch from autocrine to paracrine-competent EGFR signaling was implicated in the enablement of tumor cell chemotaxis. A similar attenuation of IGF1R, MET and RON signaling with EMT was observed. In contrast, EMT increased prosurvival autocrine IL11/IL6-JAK2-STAT signaling, autocrine fibronectin-integrin α5β1 activation, autocrine Axl/Tyro3/PDGFR/FGFR RTK signaling and autocrine TGFβR signaling. A relatively uniform loss of polarity and cell–cell junction linkages to actin cytoskeleton and intermediate filaments was measured at a systems level. A more heterogeneous gain of ECM remodeling and associated with invasion and migration was observed. Correlation to stem cell, EMT, invasion and metastasis datasets revealed the greatest similarity with normal and cancerous breast stem cell populations, CD49fhi/EpCAM-/lo and CD44hi/CD24lo, respectively.
Collapse
Affiliation(s)
- Stuart Thomson
- Translational Research, OSI Pharmaceuticals Inc, 1 Bioscience Park Drive, Farmingdale, NY 11735, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lin HL, Zhang H, Medower C, Hollenberg PF, Johnson WW. Inactivation of cytochrome P450 (P450) 3A4 but not P450 3A5 by OSI-930, a thiophene-containing anticancer drug. Drug Metab Dispos 2010; 39:345-50. [PMID: 21068193 DOI: 10.1124/dmd.110.034074] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An investigational anticancer agent that contains a thiophene moiety, 3-[(quinolin-4-ylmethyl)-amino]-N-[4-trifluoromethox)phenyl] thiophene-2-carboxamide (OSI-930), was tested to investigate its ability to modulate the activities of several cytochrome P450 enzymes. Results showed that OSI-930 inactivated purified, recombinant cytochrome P450 (P450) 3A4 in the reconstituted system in a mechanism-based manner. The inactivation was dependent on cytochrome b(5) and required NADPH. Catalase did not protect against the inactivation. No inactivation was observed in studies with human 2B6, 2D6, or 3A5 either in the presence or in the absence of b(5). The inactivation of 3A4 by OSI-930 was time- and concentration-dependent. The inactivation of the 7-benzyloxy-4-(trifluoromethyl)coumarin catalytic activity of 3A4 was characterized by a K(I) of 24 μM and a k(inact) of 0.04 min(-1). This K(I) is significantly greater than the clinical OSI-930 C(max) of 1.7 μM at the maximum tolerated dose, indicating that clinical drug interactions of OSI-930 via this pathway are not likely. Spectral analysis of the inactivated protein indicated that the decrease in the reduced CO spectrum at 450 nm was comparable to the amount of inactivation, thereby suggesting that the inactivation was primarily due to modification of the heme. High-pressure liquid chromatography (HPLC) analysis with detection at 400 nm showed a loss of heme comparable to the activity loss, but a modified heme was not detected. This result suggests either that the heme must have been modified enough so as not to be observed in a HPLC chromatograph or, possibly, that it was destroyed. The partition ratio for the inactivation of P450 3A4 was approximately 23, suggesting that this P450 3A4-mediated pathway occurs with approximately 4% frequency during the metabolism of OSI-930. Modeling studies on the binding of OSI-930 to the active site of the P450 3A4 indicated that OSI-930 would be oriented properly in the active site for oxidation of the thiophene sulfur to give the sulfoxide, which has previously been shown to be a significant metabolite of OSI-930. Because OSI-930 is an inactivator of P450 3A4 but does not exhibit any effect on P450 3A5 activity under the same conditions, it may be an appropriate probe for exploring unique aspects of these two very similar P450s.
Collapse
Affiliation(s)
- Hsia-lien Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-5632, USA
| | | | | | | | | |
Collapse
|
20
|
Tikhmyanova N, Little JL, Golemis EA. CAS proteins in normal and pathological cell growth control. Cell Mol Life Sci 2010; 67:1025-48. [PMID: 19937461 PMCID: PMC2836406 DOI: 10.1007/s00018-009-0213-1] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/03/2009] [Accepted: 11/09/2009] [Indexed: 12/20/2022]
Abstract
Proteins of the CAS (Crk-associated substrate) family (BCAR1/p130Cas, NEDD9/HEF1/Cas-L, EFS/SIN and CASS4/HEPL) are integral players in normal and pathological cell biology. CAS proteins act as scaffolds to regulate protein complexes controlling migration and chemotaxis, apoptosis, cell cycle, and differentiation, and have more recently been linked to a role in progenitor cell function. Reflecting these complex functions, over-expression of CAS proteins has now been strongly linked to poor prognosis and increased metastasis in cancer, as well as resistance to first-line chemotherapeutics in multiple tumor types including breast and lung cancers, glioblastoma, and melanoma. Further, CAS proteins have also been linked to additional pathological conditions including inflammatory disorders, Alzheimer's and Parkinson's disease, as well as developmental defects. This review will explore the roles of the CAS proteins in normal and pathological states in the context of the many mechanistic insights into CAS protein function that have emerged in the past decade.
Collapse
Affiliation(s)
- Nadezhda Tikhmyanova
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111 USA
- Department of Biochemistry, Drexel University Medical School, Philadelphia, PA 19102 USA
| | - Joy L. Little
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111 USA
| | - Erica A. Golemis
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19111 USA
| |
Collapse
|
21
|
Fps/Fes protein-tyrosine kinase regulates mast cell adhesion and migration downstream of Kit and β1 integrin receptors. Cell Signal 2010; 22:427-36. [DOI: 10.1016/j.cellsig.2009.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 10/23/2009] [Indexed: 11/17/2022]
|
22
|
Miao Q, Yan X, Zhao K. Synthesis, Structure and Anticancer Activity Studies of 1-[(5-Bromo-2-thienyl)sulfonyl]-5-fluoro-1,2,3,4-tetrahydropyrimidine-2,4-dione. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.201090039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Armenta JM, Hoeschele I, Lazar IM. Differential protein expression analysis using stable isotope labeling and PQD linear ion trap MS technology. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:1287-1302. [PMID: 19345114 DOI: 10.1016/j.jasms.2009.02.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 02/19/2009] [Accepted: 02/21/2009] [Indexed: 05/27/2023]
Abstract
An isotope tags for relative and absolute quantitation (iTRAQ)-based reversed-phase liquid chromatography (RPLC)-tandem mass spectrometry (MS/MS) method was developed for differential protein expression profiling in complex cellular extracts. The estrogen positive MCF-7 cell line, cultured in the presence of 17beta-estradiol (E2) and tamoxifen (Tam), was used as a model system. MS analysis was performed with a linear trap quadrupole (LTQ) instrument operated by using pulsed Q dissociation (PQD) detection. Optimization experiments were conducted to maximize the iTRAQ labeling efficiency and the number of quantified proteins. MS data filtering criteria were chosen to result in a false positive identification rate of <4%. The reproducibility of protein identifications was approximately 60%-67% between duplicate, and approximately 50% among triplicate LC-MS/MS runs, respectively. The run-to-run reproducibility, in terms of relative standard deviations (RSD) of global mean iTRAQ ratios, was better than 10%. The quantitation accuracy improved with the number of peptides used for protein identification. From a total of 530 identified proteins (P < 0.001) in the E2/Tam treated MCF-7 cells, a list of 255 proteins (quantified by at least two peptides) was generated for differential expression analysis. A method was developed for the selection, normalization, and statistical evaluation of such datasets. An approximate approximately 2-fold change in protein expression levels was necessary for a protein to be selected as a biomarker candidate. According to this data processing strategy, approximately 16 proteins involved in biological processes such as apoptosis, RNA processing/metabolism, DNA replication/transcription/repair, cell proliferation and metastasis, were found to be up- or down-regulated.
Collapse
Affiliation(s)
- Jenny M Armenta
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
24
|
Schreiber TB, Mäusbacher N, Breitkopf SB, Grundner-Culemann K, Daub H. Quantitative phosphoproteomics--an emerging key technology in signal-transduction research. Proteomics 2008; 8:4416-32. [PMID: 18837465 DOI: 10.1002/pmic.200800132] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein phosphorylation is the most important type of reversible post-translational modification involved in the regulation of cellular signal-transduction processes. In addition to controlling normal cellular physiology on the molecular level, perturbations of phosphorylation-based signaling networks and cascades have been implicated in the onset and progression of various human diseases. Recent advances in mass spectrometry-based proteomics helped to overcome many of the previous limitations in protein phosphorylation analysis. Improved isotope labeling and phosphopeptide enrichment strategies in conjunction with more powerful mass spectrometers and advances in data analysis have been integrated in highly efficient phosphoproteomics workflows, which are capable of monitoring up to several thousands of site-specific phosphorylation events within one large-scale analysis. Combined with ongoing efforts to define kinase-substrate relationships in intact cells, these major achievements have considerable potential to assess phosphorylation-based signaling networks on a system-wide scale. Here, we provide an overview of these exciting developments and their potential to transform signal-transduction research into a technology-driven, high-throughput science.
Collapse
Affiliation(s)
- Thiemo B Schreiber
- Department of Molecular Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | | | | |
Collapse
|
25
|
Thomson S, Petti F, Sujka-Kwok I, Epstein D, Haley JD. Kinase switching in mesenchymal-like non-small cell lung cancer lines contributes to EGFR inhibitor resistance through pathway redundancy. Clin Exp Metastasis 2008; 25:843-54. [PMID: 18696232 DOI: 10.1007/s10585-008-9200-4] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 07/22/2008] [Indexed: 12/15/2022]
Abstract
NSCLC cells with a mesenchymal phenotype have shown a marked reduction in sensitivity to EGFR inhibitors, though the molecular rationale has remained obscure. Here we find that in mesenchymal-like tumor cells both tyrosine phosphorylation of EGFR, ErbB2, and ErbB3 signaling networks and expression of EGFR family ligands were decreased. While chronic activation of EGFR can promote an EMT-like transition, once having occurred EGFR family signaling was attenuated. We investigated the mechanisms by which mesenchymal-like cells bypass EGFR signaling and acquire alternative routes of proliferative and survival signaling. Mesenchymal-like NSCLC cells exhibit aberrant PDGFR and FGFR expression and autocrine signaling through these receptors can activate the MEK-ERK and PI3K pathways. Selective pharmacological inhibition of PDGFR or FGFR receptor tyrosine kinases reduced cell proliferation in mesenchymal-like but not epithelial NSCLC cell lines. A metastable, reversible EMT-like transition in the NSCLC line H358 was achieved by exogenous TGFbeta, which served as a model EMT system. The H358/TGFbeta cells showed many of the attributes of established mesenchymal-like NSCLC cells including a loss of cell-cell junctions, a loss of EGF-family ligand expression, a loss of ErbB3 expression, increased EGFR-independent Mek-Erk pathway activation and reduced sensitivity to EGFR inhibition. Notably an EMT-dependent acquisition of PDGFR, FGFR and TGFbeta receptors in H358/TGFbeta cells was also observed. In H358/TGFbeta cells both PDGFR and FGFR showed functional ligand stimulation of their intrinsic tyrosine kinase activities. The findings of kinase switching and acquired PDGFR and FGFR signaling suggest investigation of new inhibitor combinations to target NSCLC metastases.
Collapse
Affiliation(s)
- Stuart Thomson
- Department of Translational Research, OSI Pharmaceuticals Inc., 1 Bioscience Park Drive, Farmingdale, NY 11735, USA.
| | | | | | | | | |
Collapse
|
26
|
Medower C, Wen L, Johnson WW. Cytochrome P450 oxidation of the thiophene-containing anticancer drug 3-[(quinolin-4-ylmethyl)-amino]-thiophene-2-carboxylic acid (4-trifluoromethoxy-phenyl)-amide to an electrophilic intermediate. Chem Res Toxicol 2008; 21:1570-7. [PMID: 18672911 DOI: 10.1021/tx700430n] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Compounds that are enzymatically transformed to reactive intermediates are common in nature. Some drugs and many phytochemicals that contain a thiophene ring are oxidized by cytochrome P450 to biological reactive intermediates (BRI) that can covalently bind to thiol nucleophiles. The investigational anticancer agent 3-[(quinolin-4-ylmethyl)-amino]-thiophene-2-carboxylic acid (4-trifluoromethoxy-phenyl)-amide (OSI-930) contains a thiophene moiety that can be oxidized by P450s to an apparent sulfoxide, which can react via Michael-addition to the 5-position of the thiophene ring, as demonstrated by mass spectral characterization of several thioether conjugates of the presumed thiophene S-oxide. Furthermore, a stable deuterium isotope retention experiment in which solvent deuterium was incorporated into the thiophene verifies the sulfoxide pathway. Various thiol nucleophiles are shown by tandem mass spectra to bind with this BRI, which is activated by P450 3A4 and to a slight degree, P450 2D6. Yet various safe drugs, phytochemicals, and endogenous molecules, all noted for their activation to BRI, are not toxic at a normal dose. Thus, multiple features determine any consequence of a BRI, with these complexities determining why one BRI is benign while another is not. The retention of covalent protein adducts of radio-labeled intermediate rat tissue has a half-life of about 1-1.5 days; hence, modified protein is cleared and replaced relatively quickly.
Collapse
Affiliation(s)
- Christine Medower
- Drug Metabolism and Pharmacokinetics, OSI Pharmaceuticals, Boulder, Colorado 80301, USA
| | | | | |
Collapse
|
27
|
Jensen BM, Beaven MA, Iwaki S, Metcalfe DD, Gilfillan AM. Concurrent inhibition of kit- and FcepsilonRI-mediated signaling: coordinated suppression of mast cell activation. J Pharmacol Exp Ther 2007; 324:128-38. [PMID: 17925481 DOI: 10.1124/jpet.107.125237] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Although primarily required for the growth, differentiation, and survival of mast cells, Kit ligand (stem cell factor) is also required for optimal antigen-mediated mast cell activation. Therefore, concurrent inhibition of Kit- and FcepsilonRI-mediated signaling would be an attractive approach for targeting mast cell-driven allergic reactions. To explore this concept, we examined the effects of hypothemycin, a molecule that we identified as having such properties, in human and mouse mast cells. Hypothemycin blocked Kit activation and Kit-mediated mast cell adhesion in a similar manner to the well characterized Kit inhibitor imatinib mesylate (imatinib). In contrast to imatinib, however, hypothemycin also effectively inhibited FcepsilonRI-mediated degranulation and cytokine production in addition to the potentiation of these responses via Kit. The effect of hypothemycin on Kit-mediated responses could be explained by its inhibition of Kit kinase activity, whereas the inhibitory effects on FcepsilonRI-dependent signaling were at the level of Btk activation. Because hypothemycin also significantly reduced the mouse passive cutaneous anaphylaxis response in vivo, these data provide proof of principle for a coordinated approach for the suppression of mast cell activation and provide a rationale for the development of compounds with a similar therapeutic profile.
Collapse
Affiliation(s)
- Bettina M Jensen
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10, Room 11C206, 10 Center Drive, MSC 1881, Bethesda, MD 20892-1881, USA
| | | | | | | | | |
Collapse
|
28
|
Sankhala KK, Papadopoulos KP. Future options for imatinib mesilate-resistant tumors. Expert Opin Investig Drugs 2007; 16:1549-60. [DOI: 10.1517/13543784.16.10.1549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Bachelet I, Levi-Schaffer F. Mast cells as effector cells: a co-stimulating question. Trends Immunol 2007; 28:360-5. [PMID: 17625970 DOI: 10.1016/j.it.2007.06.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 05/29/2007] [Accepted: 06/21/2007] [Indexed: 12/14/2022]
Abstract
Mast cells are currently recognized as effector cells in many settings beyond just allergic reactions, including innate immunity, autoimmunity, chronic inflammatory disorders and atherosclerosis. Signaling pathways of the mast cell response have been widely explored in the past but these are still linked with single axes, such as the high affinity IgE receptor FcepsilonRI, presumably an exclusive determinant of the magnitude of the response to allergen. By contrast, the T cell receptor is viewed as a rich complex of stimulatory and co-stimulatory molecules, setting an array of thresholds to ensure a highly regulated response. Recent observations show that mast cells express various classes of co-stimulatory molecules that modulate their function. These molecules might therefore contribute to the outcome of mast cell-associated pathologies, and constitute new therapeutic targets in such diseases.
Collapse
Affiliation(s)
- Ido Bachelet
- Department of Pharmacology & Experimental Therapeutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | | |
Collapse
|
30
|
Patnaik MM, Rindos M, Kouides PA, Tefferi A, Pardanani A. Systemic mastocytosis: a concise clinical and laboratory review. Arch Pathol Lab Med 2007; 131:784-91. [PMID: 17488167 DOI: 10.5858/2007-131-784-smacca] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2006] [Indexed: 11/06/2022]
Abstract
CONTEXT Systemic mastocytosis is characterized by abnormal growth and accumulation of neoplastic mast cells in various organs. The clinical presentation is varied and may include skin rash, symptoms related to release of mast cell mediators, and/or organopathy from involvement of bone, liver, spleen, bowel, or bone marrow. OBJECTIVE To concisely review pathogenesis, disease classification, clinical features, diagnosis, and treatment of mast cell disorders. DATA SOURCES Pertinent literature emerging during the last 20 years in the field of mast cell disorders. CONCLUSIONS The cornerstone of diagnosis is careful bone marrow histologic examination with appropriate immunohistochemical studies. Ancillary tests such as mast cell immunophenotyping, cytogenetic/molecular studies, and serum tryptase levels assist in confirming the diagnosis. Patients with cutaneous disease or with low systemic mast cell burden are generally managed symptomatically. In the patients requiring mast cell cytoreductive therapy, treatment decisions are increasingly being guided by results of molecular studies. Most patients carry the kit D816V mutation and are predicted to be resistant to imatinib mesylate (Gleevec) therapy. In contrast, patients carrying the FIP1L1-PDGFRA mutation achieve complete responses with low-dose imatinib therapy. Other therapeutic options include use of interferon-alpha, chemotherapy (2-chlorodeoxyadenosine), or novel small molecule tyrosine kinase inhibitors currently in clinical trials.
Collapse
Affiliation(s)
- Mrinal M Patnaik
- Department of Medicine, University of Minnesota, Minneapolis, USA
| | | | | | | | | |
Collapse
|
31
|
Samayawardhena LA, Kapur R, Craig AWB. Involvement of Fyn kinase in Kit and integrin-mediated Rac activation, cytoskeletal reorganization, and chemotaxis of mast cells. Blood 2007; 109:3679-86. [PMID: 17213284 PMCID: PMC1874564 DOI: 10.1182/blood-2006-11-057315] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 01/02/2007] [Indexed: 12/23/2022] Open
Abstract
Kit receptor and its ligand stem cell factor (SCF) are critical regulators of mast cell production, proliferation, degranulation, and chemotaxis. In this study, we investigated how Fyn kinase regulates chemotaxis of mast cells toward SCF. On beta1-integrin engagement, Fyn-deficient (fyn(-/-)) mast cells displayed a striking defect in cell spreading and lamellipodia formation compared to wild-type mast cells. The hematopoietic-specific Src family kinases (Lyn/Fgr/Hck) were not required for initial SCF-induced cell spreading. Reduced SCF-induced activation of Rac1 and Rac2 GTPases, p38 mitogen-activated protein kinase, and filamentous actin polymerization was observed in fyn(-/-) mast cells compared to wild-type mast cells. Retroviral-mediated expression of Fyn, constitutively active forms of Rac2 or phosphatidylinositol 3-kinase (PI3K) in fyn(-/-) mast cells rescued defects in SCF-induced cell polarization and chemotaxis of Fyn-deficient mast cells. Thus, we conclude that Fyn kinase plays a unique role upstream of PI3K and Rac GTPases to promote the reorganization of the cytoskeleton during mast cell spreading and chemotaxis.
Collapse
|
32
|
Bodzon-Kulakowska A, Bierczynska-Krzysik A, Dylag T, Drabik A, Suder P, Noga M, Jarzebinska J, Silberring J. Methods for samples preparation in proteomic research. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 849:1-31. [PMID: 17113834 DOI: 10.1016/j.jchromb.2006.10.040] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 10/23/2006] [Indexed: 01/04/2023]
Abstract
Sample preparation is one of the most crucial processes in proteomics research. The results of the experiment depend on the condition of the starting material. Therefore, the proper experimental model and careful sample preparation is vital to obtain significant and trustworthy results, particularly in comparative proteomics, where we are usually looking for minor differences between experimental-, and control samples. In this review we discuss problems associated with general strategies of samples preparation, and experimental demands for these processes.
Collapse
Affiliation(s)
- Anna Bodzon-Kulakowska
- Department of Neurobiochemistry, Faculty of Chemistry, Jagiellonian University, Ingardena St. 3, 30-060 Krakow, Poland
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Richards DP, Sojo LE, Keller BO. Quantitative analysis with modern bioanalytical mass spectrometry and stable isotope labeling. J Labelled Comp Radiopharm 2007. [DOI: 10.1002/jlcr.1392] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Quintas-Cardama A, Aribi A, Cortes J, Giles FJ, Kantarjian H, Verstovsek S. Novel approaches in the treatment of systemic mastocytosis. Cancer 2006; 107:1429-39. [PMID: 16948123 DOI: 10.1002/cncr.22187] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the absence of curative options, therapy for aggressive forms of systemic mastocytosis (SM) has relied in the use of cytoreductive agents, mainly interferon-alpha (IFN-alpha) and cladribine. However, responses are transient and only occur in a subset of patients. Gain-of-function mutations at codon 816 of the KIT protooncogene lead to constitutively active Kit receptor molecules, which are central to the pathogenesis of SM. Recent advances in the understanding of the molecular underpinnings of SM have led to the development of small molecules targeting mutant Kit tyrosine kinase isoforms that significantly have widened the range of therapeutic options for patients with SM. Some of these promising agents, such as dasatinib, AMN107, and PKC412, currently are under investigation in clinical trials whereas, others are at different stages of preclinical development. In addition, monoclonal antibodies directed to neoplastic mast cell-restricted surface antigens constitute a viable option for the treatment of SM that warrants further investigation.
Collapse
Affiliation(s)
- Alfonso Quintas-Cardama
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
35
|
Gotlib J. KIT Mutations in Mastocytosis and Their Potential as Therapeutic Targets. Immunol Allergy Clin North Am 2006; 26:575-92. [PMID: 16931294 DOI: 10.1016/j.iac.2006.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Deregulation of the KIT receptor TK by the prevalent activation loop mutation D816V has served as a focal point in therapeutic strategies aimed curbing neoplastic mast cell growth. Perhaps the most important development in this era of targeted therapy, and certainly relevant to KIT-driven diseases like mastocytosis, is the realization that small molecule inhibitors with varied chemical structure (eg, PKC412, dasatinib, AP23464) can circumvent the resistance of TKs to first-generation agents such as imatinib. Genuine opportunity now exists to effectively treat mastocytosis, and the arsenal consists of several orally bioavailable drugs with promising preclinical activity against D816V and other KIT mutants that promote mast cell growth. Because KIT mutations may not act as fully transforming oncogenic events in SM, it is prudent to evaluate combinations of TK inhibitors with drugs with activity in mast cell disease, such as cladribine, interferon-alpha, and corticosteroids. The identification of novel "drug-able" targets within mast cells should aid in the development of complementary therapies that promote enhanced cytotoxicity of mast cells through blockade of nonredundant signaling pathways. In addition, the generation of murine models that recapitulate human mastocytosis should accelerate preclinical testing of novel agents.
Collapse
Affiliation(s)
- Jason Gotlib
- Stanford Cancer Center, Stanford University School of Medicine, 875 Blake Wilbur Drive, Room 2327B, Stanford, CA 94305-5821, USA.
| |
Collapse
|
36
|
Petti F, Thomson S, Haley JD. Peptide, domain, and DNA affinity selection in the identification and quantitation of proteins from complex biological samples. Anal Biochem 2006; 356:1-11. [PMID: 16797468 DOI: 10.1016/j.ab.2006.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 05/24/2006] [Accepted: 05/25/2006] [Indexed: 12/22/2022]
Affiliation(s)
- Filippo Petti
- Translational Research, OSI Oncology, Farmingdale, NY 11735, USA
| | | | | |
Collapse
|
37
|
Richardson A, Kaye SB. Drug resistance in ovarian cancer: The emerging importance of gene transcription and spatio-temporal regulation of resistance. Drug Resist Updat 2005; 8:311-21. [PMID: 16233989 DOI: 10.1016/j.drup.2005.09.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 09/12/2005] [Accepted: 09/19/2005] [Indexed: 12/18/2022]
Abstract
Resistance to carboplatin plus paclitaxel, one of the most active drug combinations in ovarian cancer, is the major barrier to the successful long-term treatment of this disease. Understanding the mechanisms involved is a first step towards rational strategies to overcome drug resistance and is an area of intense research effort. Recent work has identified several gene families which appear to contribute to the evolution of drug resistance and which are involved in regulating DNA damage, apoptosis and survival signalling. These genes may be co-ordinately regulated as part of a gene expression program that confers drug resistance through multiple pathways. The subcellular localisation of the gene products and their kinetic regulation following exposure to chemotherapeutic agents may also play a part in the development of drug resistance. This provides a more complex paradigm for drug resistance in which the steady-state expression of a single gene may not be predictive of response to therapy. Nevertheless, the identification of critical genes, most relevant to the development of clinical drug resistance, is now feasible through microarray analysis of tumour samples, and strategies aimed at the circumvention of resistance can be developed using these data.
Collapse
Affiliation(s)
- Alan Richardson
- The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, UK.
| | | |
Collapse
|