1
|
Lallemand F, Leroi N, Blacher S, Bahri MA, Balteau E, Coucke P, Noël A, Plenevaux A, Martinive P. Tumor Microenvironment Modifications Recorded With IVIM Perfusion Analysis and DCE-MRI After Neoadjuvant Radiotherapy: A Preclinical Study. Front Oncol 2021; 11:784437. [PMID: 34993143 PMCID: PMC8724034 DOI: 10.3389/fonc.2021.784437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Neoadjuvant radiotherapy (NeoRT) improves tumor local control and facilitates tumor resection in many cancers. Some clinical studies demonstrated that both timing of surgery and RT schedule influence tumor dissemination, and subsequently patient overall survival. Previously, we developed a pre-clinical model demonstrating the impact of NeoRT schedule and timing of surgery on metastatic spreading. We report on the impact of NeoRT on tumor microenvironment by MRI. METHODS According to our NeoRT model, MDA-MB 231 cells were implanted in the flank of SCID mice. Tumors were locally irradiated (PXI X-Rad SmART) with 2x5Gy and then surgically removed at different time points after RT. Diffusion-weighted (DW) and Dynamic contrast enhancement (DCE) MRI images were acquired before RT and every 2 days between RT and surgery. IntraVoxel Incoherent Motion (IVIM) analysis was used to obtain information on intravascular diffusion, related to perfusion (F: perfusion factor) and subsequently tumor vessels perfusion. For DCE-MRI, we performed semi-quantitative analyses. RESULTS With this experimental model, a significant and transient increase of the perfusion factor F [50% of the basal value (n=16, p<0.005)] was observed on day 6 after irradiation as well as a significant increase of the WashinSlope with DCE-MRI at day 6 (n=13, p<0.05). Using immunohistochemistry, a significant increase of perfused vessels was highlighted, corresponding to the increase of perfusion in MRI at this same time point. Moreover, Tumor surgical resection during this peak of vascularization results in an increase of metastasis burden (n=10, p<0.05). CONCLUSION Significant differences in perfusion-related parameters (F and WashinSlope) were observed on day 6 in a neoadjuvant radiotherapy model using SCID mice. These modifications are correlated with an increase of perfused vessels in histological analysis and also with an increase of metastasis spreading after the surgical procedure. This experimental observation could potentially result in a way to personalize treatment, by modulating the time of surgery guided on MRI functional data, especially tumor perfusion.
Collapse
Affiliation(s)
- François Lallemand
- Department of Radiotherapy-Oncology, Centre Hospitalier Universitaire (CHU) de Liège, University of Liège (ULg), Liège, Belgium
- Laboratory of Tumor and Development Biology, University of Liège (ULg), Liège, Belgium
- GIGA-Cyclotron Research Centre-in vivo Imaging, University of Liège, Liège, Belgium
| | - Natacha Leroi
- Laboratory of Tumor and Development Biology, University of Liège (ULg), Liège, Belgium
| | - Silvia Blacher
- Laboratory of Tumor and Development Biology, University of Liège (ULg), Liège, Belgium
| | - Mohamed Ali Bahri
- GIGA-Cyclotron Research Centre-in vivo Imaging, University of Liège, Liège, Belgium
| | - Evelyne Balteau
- GIGA-Cyclotron Research Centre-in vivo Imaging, University of Liège, Liège, Belgium
| | - Philippe Coucke
- Department of Radiotherapy-Oncology, Centre Hospitalier Universitaire (CHU) de Liège, University of Liège (ULg), Liège, Belgium
| | - Agnès Noël
- Laboratory of Tumor and Development Biology, University of Liège (ULg), Liège, Belgium
| | - Alain Plenevaux
- GIGA-Cyclotron Research Centre-in vivo Imaging, University of Liège, Liège, Belgium
| | - Philippe Martinive
- Laboratory of Tumor and Development Biology, University of Liège (ULg), Liège, Belgium
- Department of Radiotherapy-Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
2
|
Evaluation of Clinical and Histological Outcomes of Adipose-Derived Mesenchymal Stem Cells in a Rabbit Corneal Alkali Burn Model. Stem Cells Int 2021; 2021:6610023. [PMID: 33763139 PMCID: PMC7964115 DOI: 10.1155/2021/6610023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/30/2021] [Accepted: 02/14/2021] [Indexed: 11/18/2022] Open
Abstract
To assess effects of adipose-derived mesenchymal stem cells (AMSCs) in corneal alkali injuries in an experimental animal model. Twenty white New Zealand rabbits were included in the study. The animal models were randomly divided into 2 groups. Rabbits in the AMSC group (n = 10) received an intrastromal, a subconjunctival injection, and topical instillation of 0.5 ml totally of phosphate-buffered saline (PBS) containing 2 × 106 AMSCs. In the control group (n = 10), rabbits received only 0.5 ml of PBS using the same methods. A masked investigator measured the corneal sensation, anterior chamber Inflammation (ACI), and conjunctival congestion. Additionally, a blind histological and immunohistochemical evaluation was made. In the AMSC group, the central corneal sensation was increased whereas ACI and conjunctival congestion were reduced compared to the control group in the 28 days of follow-up (p < 0.05). A statistically significant difference (p < 0.05) was noted between the two groups as recorded in the above parameters. Histological analysis showed that pathological vascularization was markedly reduced in the AMSC group which was consistent with the absence of factor VIII in the immunohistochemistry sections. There is a trend towards improved clinical outcomes including corneal sensation as well as acceleration in the restoration of normal corneal architecture in corneal alkali burns treated with AMSCs, results that support the need for further research in the field.
Collapse
|
3
|
Reichardt W, von Elverfeldt D. Preclinical Applications of Magnetic Resonance Imaging in Oncology. Recent Results Cancer Res 2020; 216:405-437. [PMID: 32594394 DOI: 10.1007/978-3-030-42618-7_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The evolving possibilities of molecular imaging (MI) are fundamentally changing the way we look at cancer, with imaging paradigms now shifting away from basic morphological measures toward the longitudinal assessment of functional, metabolic, cellular, and molecular information in vivo. Recent developments of imaging methodology and probe molecules utilizing the vast number of novel animal models of human cancers have enhanced our ability to non-invasively characterize neoplastic tissue and follow anticancer treatments. While preclinical molecular imaging offers a whole palette of excellent methodology to choose from, we will focus on magnetic resonance imaging (MRI) techniques, since they provide excellent molecular imaging capabilities and bear high potential for clinical translation. Prerequisites and consequences of using animal models as surrogates of human cancers in preclinical molecular imaging are outlined. We present physical principles, values, and limitations of MRI as molecular imaging modality and comment on its high potential to non-invasively assess information on metabolism, hypoxia, angiogenesis, and cell trafficking in preclinical cancer research.
Collapse
Affiliation(s)
- Wilfried Reichardt
- Medical Physics, Department of Radiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Dominik von Elverfeldt
- Medical Physics, Department of Radiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Hoxworth JM, Eschbacher JM, Gonzales AC, Singleton KW, Leon GD, Smith KA, Stokes AM, Zhou Y, Mazza GL, Porter AB, Mrugala MM, Zimmerman RS, Bendok BR, Patra DP, Krishna C, Boxerman JL, Baxter LC, Swanson KR, Quarles CC, Schmainda KM, Hu LS. Performance of Standardized Relative CBV for Quantifying Regional Histologic Tumor Burden in Recurrent High-Grade Glioma: Comparison against Normalized Relative CBV Using Image-Localized Stereotactic Biopsies. AJNR Am J Neuroradiol 2020; 41:408-415. [PMID: 32165359 DOI: 10.3174/ajnr.a6486] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/23/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Perfusion MR imaging measures of relative CBV can distinguish recurrent tumor from posttreatment radiation effects in high-grade gliomas. Currently, relative CBV measurement requires normalization based on user-defined reference tissues. A recently proposed method of relative CBV standardization eliminates the need for user input. This study compares the predictive performance of relative CBV standardization against relative CBV normalization for quantifying recurrent tumor burden in high-grade gliomas relative to posttreatment radiation effects. MATERIALS AND METHODS We recruited 38 previously treated patients with high-grade gliomas (World Health Organization grades III or IV) undergoing surgical re-resection for new contrast-enhancing lesions concerning for recurrent tumor versus posttreatment radiation effects. We recovered 112 image-localized biopsies and quantified the percentage of histologic tumor content versus posttreatment radiation effects for each sample. We measured spatially matched normalized and standardized relative CBV metrics (mean, median) and fractional tumor burden for each biopsy. We compared relative CBV performance to predict tumor content, including the Pearson correlation (r), against histologic tumor content (0%-100%) and the receiver operating characteristic area under the curve for predicting high-versus-low tumor content using binary histologic cutoffs (≥50%; ≥80% tumor). RESULTS Across relative CBV metrics, fractional tumor burden showed the highest correlations with tumor content (0%-100%) for normalized (r = 0.63, P < .001) and standardized (r = 0.66, P < .001) values. With binary cutoffs (ie, ≥50%; ≥80% tumor), predictive accuracies were similar for both standardized and normalized metrics and across relative CBV metrics. Median relative CBV achieved the highest area under the curve (normalized = 0.87, standardized = 0.86) for predicting ≥50% tumor, while fractional tumor burden achieved the highest area under the curve (normalized = 0.77, standardized = 0.80) for predicting ≥80% tumor. CONCLUSIONS Standardization of relative CBV achieves similar performance compared with normalized relative CBV and offers an important step toward workflow optimization and consensus methodology.
Collapse
Affiliation(s)
- J M Hoxworth
- From the Departments of Radiology (J.M.H., Y.Z., L.S.H.)
| | | | | | - K W Singleton
- Precision Neurotherapeutics Lab (K.W.S., G.D.L., B.R.B., K.R.S.), Mayo Clinic in Arizona, Phoenix, Arizona
| | - G D Leon
- Precision Neurotherapeutics Lab (K.W.S., G.D.L., B.R.B., K.R.S.), Mayo Clinic in Arizona, Phoenix, Arizona
| | - K A Smith
- Keller Center for Imaging Innovation (A.M.S.), Barrow Neurological Institute, Phoenix, Arizona
| | - A M Stokes
- Keller Center for Imaging Innovation (A.M.S.), Barrow Neurological Institute, Phoenix, Arizona
| | - Y Zhou
- From the Departments of Radiology (J.M.H., Y.Z., L.S.H.)
| | - G L Mazza
- Department of Health Sciences Research (G.L.M.), Division of Biomedical Statistics and Informatics, Mayo Clinic Scottsdale, Scottsdale, Arizona
| | | | | | | | - B R Bendok
- Precision Neurotherapeutics Lab (K.W.S., G.D.L., B.R.B., K.R.S.), Mayo Clinic in Arizona, Phoenix, Arizona
| | - D P Patra
- Departments of Neurosurgery (D.P.P.)
| | | | - J L Boxerman
- Department of Diagnostic Imaging (J.L.B.), Rhode Island Hospital, Providence, Rhode Island
| | - L C Baxter
- Neuropsychology (L.C.B.), Mayo Clinic Hospital, Phoenix, Arizona
| | - K R Swanson
- Precision Neurotherapeutics Lab (K.W.S., G.D.L., B.R.B., K.R.S.), Mayo Clinic in Arizona, Phoenix, Arizona
| | | | - K M Schmainda
- Department of Radiology (K.M.S.), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - L S Hu
- From the Departments of Radiology (J.M.H., Y.Z., L.S.H.)
| |
Collapse
|
5
|
Almeida GS, Panek R, Hallsworth A, Webber H, Papaevangelou E, Boult JKR, Jamin Y, Chesler L, Robinson SP. Pre-clinical imaging of transgenic mouse models of neuroblastoma using a dedicated 3-element solenoid coil on a clinical 3T platform. Br J Cancer 2017; 117:791-800. [PMID: 28787429 PMCID: PMC5589996 DOI: 10.1038/bjc.2017.251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The use of clinical MRI scanners to conduct pre-clinical research facilitates comparisons with clinical studies. Here the utility and sensitivity of anatomical and functional MRI data/biomarkers acquired from transgenic mouse models of neuroblastoma using a dedicated radiofrequency (RF) coil on a clinical 3T scanner was evaluated. METHODS Multiparametric MRI of transgenic mice bearing abdominal neuroblastomas was performed at 3T, and data cross-referenced to that acquired from the same mice on a pre-clinical 7T MRI system. T2-weighted imaging, quantitation of the native longitudinal relaxation time (T1) and the transverse relaxation rate (R2*), and dynamic contrast-enhanced (DCE)-MRI, was used to assess tumour volume, phenotype and response to cyclophosphamide or cabozantinib. RESULTS Excellent T2-weighted image contrast enabled clear tumour delineation at 3T. Significant correlations of tumour volume (R=0.98, P<0.0001) and R2* (R=0.87, P<0.002) measured at 3 and 7T were established. Mice with neuroblastomas harbouring the anaplastic lymphoma kinase mutation exhibited a significantly slower R2* (P<0.001), consistent with impaired tumour perfusion. DCE-MRI was performed simultaneously on three transgenic mice, yielding estimates of Ktrans for each tumour (median Ktrans values of 0.202, 0.168 and 0.114 min-1). Cyclophosphamide elicited a significant reduction in both tumour burden (P<0.002) and native T1 (P<0.01), whereas cabozantinib induced significant (P<0.01) tumour growth delay. CONCLUSIONS Simultaneous multiparametric MRI of multiple tumour-bearing animals using this coil arrangement at 3T can provide high efficiency/throughput for both phenotypic characterisation and evaluation of novel therapeutics, and facilitate the introduction of functional MRI biomarkers into aligned imaging-embedded clinical trials.
Collapse
Affiliation(s)
- Gilberto S Almeida
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Rafal Panek
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Albert Hallsworth
- Division of Clinical Studies, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Hannah Webber
- Division of Clinical Studies, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Efthymia Papaevangelou
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Jessica KR Boult
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Yann Jamin
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Simon P Robinson
- Division of Radiotherapy & Imaging, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| |
Collapse
|
6
|
Wu Z, Cheng Z, Yi Z, Xie M, Zeng H, Lu L, Xu X, Shen J. Assessment of Nonalcoholic Fatty Liver Disease in Rats Using Quantitative Dynamic Contrast‐Enhanced MRI. J Magn Reson Imaging 2016; 45:1485-1493. [DOI: 10.1002/jmri.25455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/17/2016] [Indexed: 01/14/2023] Open
Affiliation(s)
- Zhuo Wu
- Department of Radiology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou China
| | - Zi‐Liang Cheng
- Department of Radiology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou China
| | - Zhi‐Long Yi
- Department of Radiology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou China
| | - Ming‐Wei Xie
- Department of Radiology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou China
| | - Hong Zeng
- Department of Pathology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou China
| | - Lie‐Jing Lu
- Department of Radiology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou China
| | - Xiao Xu
- GE HealthcareChina Shanghai China
| | - Jun Shen
- Department of Radiology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou China
| |
Collapse
|
7
|
Response Assessment and Magnetic Resonance Imaging Issues for Clinical Trials Involving High-Grade Gliomas. Top Magn Reson Imaging 2016; 24:127-36. [PMID: 26049816 DOI: 10.1097/rmr.0000000000000054] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
There exist multiple challenges associated with the current response assessment criteria for high-grade gliomas, including the uncertain role of changes in nonenhancing T2 hyperintensity, and the phenomena of pseudoresponse and pseudoprogression in the setting of antiangiogenic and chemoradiation therapies, respectively. Advanced physiological magnetic resonance imaging (MRI), including diffusion and perfusion (dynamic susceptibility contrast MRI and dynamic contrast-enhanced MRI) sensitive techniques for overcoming response assessment challenges, has been proposed, with their own potential advantages and inherent shortcomings. Measurement variability exists for conventional and advanced MRI techniques, necessitating the standardization of image acquisition parameters in order to establish the utility of these imaging methods in multicenter trials for high-grade gliomas. This review chapter highlights the important features of MRI in clinical brain tumor trials, focusing on the current state of response assessment in brain tumors, advanced imaging techniques that may provide additional value for determining response, and imaging issues to be considered for multicenter trials.
Collapse
|
8
|
Jiang Y, Allen D, Kersemans V, Devery AM, Bokobza SM, Smart S, Ryan AJ. Acute vascular response to cediranib treatment in human non-small-cell lung cancer xenografts with different tumour stromal architecture. Lung Cancer 2015; 90:191-8. [PMID: 26323213 PMCID: PMC4641245 DOI: 10.1016/j.lungcan.2015.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/11/2015] [Accepted: 08/15/2015] [Indexed: 01/25/2023]
Abstract
We studied cediranib, a VEGFR tyrosine kinase inhibitor in lung cancer xenografts. Gadolinium-enhanced DCE-MRI was used to study acute vascular responses. Acute vascular response was associated with tumour stromal architecture. Tumour growth inhibition by cediranib was linked to acute vascular response. Acute vascular changes are a potential predictive marker of response to cediranib.
Objectives Tumours can be categorised based on their stromal architecture into tumour vessel and stromal vessel phenotypes, and the phenotypes have been suggested to define tumour response to chronic treatment with a VEGFR2 antibody. However, it is unclear whether the vascular phenotypes of tumours associate with acute vascular response to VEGFR tyrosine kinase inhibitors (TKI), or whether the early changes in vascular function are associated with subsequent changes in tumour size. This study was sought to address these questions by using xenograft models of human non-small cell lung cancer (NSCLC) representing stromal vessel phenotype (Calu-3) and tumour vessel phenotype (Calu-6), respectively. Methods For dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), nude mice bearing established Calu-3 or Calu-6 xenografts were treated with a potent pan-VEGFR TKI, cediranib (6 mg/kg), at 0 h and 22 h. DCE-MRI was performed 2 h before the first dose and 2 h after the second dose of cediranib to examine acute changes in tumour vessel perfusion. Tumours were harvested for hypoxia detection by CA9 immunohistochemistry. For tumour growth study, mice carrying established Calu-3 or Calu-6 tumours were treated with cediranib once daily for 5 days. Results Twenty-four hours after cediranib administration, the perfusion of Calu-3 tumours was markedly reduced, with a significant increase in hypoxia. In contrast, neither perfusion nor hypoxia was significantly affected in Calu-6 tumours. Tumour regressions were induced in Calu-3 xenografts, but not in Calu-6 xenografts, although there was a trend towards tumour growth inhibition after 5 days of cediranib treatment. Conclusion These findings suggest that tumour stromal architecture may associate with acute tumour vascular response to VEGFR TKI, and this acute tumour vascular response may be a promising early predictive marker of response to VEGFR TKI in NSCLC.
Collapse
Affiliation(s)
- Yanyan Jiang
- CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Danny Allen
- CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Veerle Kersemans
- CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Aoife M Devery
- CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Sivan M Bokobza
- CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Sean Smart
- CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Anderson J Ryan
- CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom.
| |
Collapse
|
9
|
Matsumoto S, Saito K, Takakusagi Y, Matsuo M, Munasinghe JP, Morris HD, Lizak MJ, Merkle H, Yasukawa K, Devasahayam N, Suburamanian S, Mitchell JB, Krishna MC. In vivo imaging of tumor physiological, metabolic, and redox changes in response to the anti-angiogenic agent sunitinib: longitudinal assessment to identify transient vascular renormalization. Antioxid Redox Signal 2014; 21:1145-55. [PMID: 24597714 PMCID: PMC4142786 DOI: 10.1089/ars.2013.5725] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS The tumor microenvironment is characterized by a highly reducing redox status, a low pH, and hypoxia. Anti-angiogenic therapies for solid tumors frequently function in two steps: the transient normalization of structurally and functionally aberrant tumor blood vessels with increased blood perfusion, followed by the pruning of tumor blood vessels and the resultant cessation of nutrients and oxygen delivery required for tumor growth. Conventional anatomic or vascular imaging is impractical or insufficient to distinguish between the two steps of tumor response to anti-angiogenic therapies. Here, we investigated whether the noninvasive imaging of the tumor redox state and energy metabolism could be used to characterize anti-angiogenic drug-induced transient vascular normalization. RESULTS Daily treatment of squamous cell carcinoma (SCCVII) tumor-bearing mice with the multi-tyrosine kinase inhibitor sunitinib resulted in a rapid decrease in tumor microvessel density and the suppression of tumor growth. Tumor pO2 imaging by electron paramagnetic resonance imaging showed a transient increase in tumor oxygenation after 2-4 days of sunitinib treatment, implying improved tumor perfusion. During this window of vascular normalization, magnetic resonance imaging of the redox status using an exogenously administered nitroxide probe and hyperpolarized (13)C MRI of the metabolic flux of pyruvate/lactate couple revealed an oxidative shift in tumor redox status. INNOVATION Redox-sensitive metabolic couples can serve as noninvasive surrogate markers to identify the vascular normalization window in tumors with imaging techniques. CONCLUSION A multimodal imaging approach to characterize physiological, metabolic, and redox changes in tumors is useful to distinguish between the different stages of anti-angiogenic treatment.
Collapse
Affiliation(s)
- Shingo Matsumoto
- 1 Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Evaluation of tumor microvascular response to brivanib by dynamic contrast-enhanced 7-T MRI in an orthotopic xenograft model of hepatocellular carcinoma. AJR Am J Roentgenol 2014; 202:W559-66. [PMID: 24848850 DOI: 10.2214/ajr.13.11042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The purpose of this article is to evaluate the antiangiogenic effects of brivanib using dynamic contrast-enhanced MRI (DCE-MRI) in an orthotopic mouse model of human hepatocellular carcinoma (HCC). MATERIALS AND METHODS With human HCC (HepG2 cell line) orthotopic nude mouse xenografts, brivanib was administered orally to the treatment group, and the vehicle was administered to the control group for 14 days. DCE-MRI was performed before the start of the therapy and 7 and 14 days after the start of therapy. Treatment-induced changes in tumor volume and microvessel density (MVD) assessed by CD31 immunohistochemistry were analyzed. Perfusion parameters, including volume transfer constant between blood plasma and extravascular extracellular space (K(trans)), fractional extravascular extracellular space per unit volume of tissue (ve), and rate constant between extravascular extracellular space and blood plasma (Kep), were calculated using the two-compartment model. RESULTS Brivanib shows potent antitumor activity in tumor volume. The mean (± SD) MVD of the tumors was statistically significantly lower in the brivanib-treated group (40.8 ± 17.3 vessels/field) than in the control group (55.2 ± 9.05 vessels/field) (p < 0.05). In the control group, the K(trans) value increased statistically significantly between the baseline and 14 days after treatment (p = 0.048). In the brivanib-treated group, the K(trans) and ve values decreased statistically significantly between baseline and 7 days after treatment (p = 0.024 and p = 0.031, respectively) and between baseline and 14 days after treatment (p = 0.043 and p = 0.018, respectively). The difference between the K(trans) and ve values between baseline and 14 days after treatment showed a statistically significant difference between the two groups (p = 0.004 and p = 0.034, respectively). CONCLUSION DCE-MRI is feasible in the orthotopic mouse model of human HCC, and it can noninvasively monitor brivanib-induced changes in tumor microvasculature.
Collapse
|
11
|
Zhang CC, Yan Z, Giddabasappa A, Lappin PB, Painter CL, Zhang Q, Li G, Goodman J, Simmons B, Pascual B, Lee J, Levkoff T, Nichols T, Xie Z. Comparison of dynamic contrast-enhanced MR, ultrasound and optical imaging modalities to evaluate the antiangiogenic effect of PF-03084014 and sunitinib. Cancer Med 2014; 3:462-71. [PMID: 24573979 PMCID: PMC4101737 DOI: 10.1002/cam4.215] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 02/06/2023] Open
Abstract
Noninvasive imaging has been widely applied for monitoring antiangiogenesis therapy in cancer drug discovery. In this report, we used different imaging modalities including high-frequency ultrasound (HFUS), dynamic contrast enhanced-MR (DCE-MR), and fluorescence molecular tomography (FMT) imaging systems to monitor the changes in the tumor vascular properties after treatment with γ-secretase inhibitor PF-03084014. Sunitinib was tested in parallel for comparison. In the MDA-MB-231Luc model, we demonstrated that antiangiogenesis was one of the contributing mechanisms for the therapeutic effect of PF-03084014. By immunohistochemistry and FITC-lectin perfusion assays, we showed that the vascular defects upon treatment with PF-03084014 were associated with Notch pathway modulation, evidenced by a decrease in the HES1 protein and by the changes in VEGFR2 and HIF1α levels, which indicates down-stream effects. Using a 3D power Doppler scanning method, ultrasound imaging showed that the% vascularity in the MDA-MB-231Luc tumor decreased significantly at 4 and 7 days after the treatment with PF-03084014. A decrease in the tumor vessel function was also observed through contrast-enhanced ultrasound imaging with microbubble injection. These findings were consistent with the PF-03084014-induced functional vessel changes measured by suppressing the K(trans) values using DCE-MRI. In contrast, the FMT imaging with the AngioSence 680EX failed to detect any treatment-associated tumor vascular changes. Sunitinib demonstrated an outcome similar to PF-03084014 in the tested imaging modalities. In summary, ultrasound and DCE-MR imaging successfully provided longitudinal measurement of the phenotypic and functional changes in tumor vasculature after treatment with PF-03084014 and sunitinib.
Collapse
Affiliation(s)
- Cathy C Zhang
- Oncology Research Unit, Pfizer Global Research and Development, La Jolla, California
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Salgia R. Fibroblast growth factor signaling and inhibition in non-small cell lung cancer and their role in squamous cell tumors. Cancer Med 2014; 3:681-92. [PMID: 24711160 PMCID: PMC4101760 DOI: 10.1002/cam4.238] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/06/2014] [Accepted: 02/26/2014] [Indexed: 12/11/2022] Open
Abstract
With the introduction of targeted agents primarily applicable to non-small cell lung cancer (NSCLC) of adenocarcinoma histology, there is a heightened unmet need in the squamous cell carcinoma population. Targeting the angiogenic fibroblast growth factor (FGF)/FGF receptor (FGFR) signaling pathway is among the strategies being explored in squamous NSCLC; these efforts are supported by growth-promoting effects of FGF signaling in preclinical studies (including interactions with other pathways) and observations suggesting that FGF/FGFR-related aberrations may be more common in squamous versus adenocarcinoma and other histologies. A number of different anti-FGF/FGFR approaches have shown promise in preclinical studies. Clinical trials of two multitargeted tyrosine kinase inhibitors are restricting enrollment to patients with squamous NSCLC: a phase I/II trial of nintedanib added to first-line gemcitabine/cisplatin and a phase II trial of ponatinib for previously treated advanced disease, with the latter requiring not only squamous disease but also a confirmed FGFR kinase amplification or mutation. There are several ongoing clinical trials of multitargeted agents in general NSCLC populations, including but not limited to patients with squamous disease. Other FGF/FGFR-targeted agents are in earlier clinical development. While results are awaited from these clinical investigations in squamous NSCLC and other disease settings, additional research is needed to elucidate the role of FGF/FGFR signaling in the biology of NSCLC of different histologies.
Collapse
Affiliation(s)
- Ravi Salgia
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
13
|
Ortuño JE, Ledesma-Carbayo MJ, Simões RV, Candiota AP, Arús C, Santos A. DCE@urLAB: a dynamic contrast-enhanced MRI pharmacokinetic analysis tool for preclinical data. BMC Bioinformatics 2013; 14:316. [PMID: 24180558 PMCID: PMC4228420 DOI: 10.1186/1471-2105-14-316] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/28/2013] [Indexed: 01/08/2023] Open
Abstract
Background DCE@urLAB is a software application for analysis of dynamic contrast-enhanced magnetic resonance imaging data (DCE-MRI). The tool incorporates a friendly graphical user interface (GUI) to interactively select and analyze a region of interest (ROI) within the image set, taking into account the tissue concentration of the contrast agent (CA) and its effect on pixel intensity. Results Pixel-wise model-based quantitative parameters are estimated by fitting DCE-MRI data to several pharmacokinetic models using the Levenberg-Marquardt algorithm (LMA). DCE@urLAB also includes the semi-quantitative parametric and heuristic analysis approaches commonly used in practice. This software application has been programmed in the Interactive Data Language (IDL) and tested both with publicly available simulated data and preclinical studies from tumor-bearing mouse brains. Conclusions A user-friendly solution for applying pharmacokinetic and non-quantitative analysis DCE-MRI in preclinical studies has been implemented and tested. The proposed tool has been specially designed for easy selection of multi-pixel ROIs. A public release of DCE@urLAB, together with the open source code and sample datasets, is available at http://www.die.upm.es/im/archives/DCEurLAB/.
Collapse
Affiliation(s)
- Juan E Ortuño
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
OBJECTIVE Tumor growth and progression require the formation of new blood vessels from preexisting vasculature, a process called angiogenesis. The ability to noninvasively visualize angiogenesis may provide new opportunities to more appropriately select patients for antiangiogenesis treatment and to monitor treatment efficacy. CONCLUSION The superior molecular sensitivity of PET and the lack of radiation from MRI and contrast-enhanced ultrasound put these techniques at the forefront of clinical translation.
Collapse
|
15
|
Song Y, Cho G, Suh JY, Lee CK, Kim YR, Kim YJ, Kim JK. Dynamic contrast-enhanced MRI for monitoring antiangiogenic treatment: determination of accurate and reliable perfusion parameters in a longitudinal study of a mouse xenograft model. Korean J Radiol 2013; 14:589-96. [PMID: 23901316 PMCID: PMC3725353 DOI: 10.3348/kjr.2013.14.4.589] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 03/24/2013] [Indexed: 11/17/2022] Open
Abstract
Objective To determine the reliable perfusion parameters in dynamic contrast-enhanced MRI (DCE-MRI) for the monitoring antiangiogenic treatment in mice. Materials and Methods Mice, with U-118 MG tumor, were treated with either saline (n = 3) or antiangiogenic agent (sunitinib, n = 8). Before (day 0) and after (days 2, 8, 15, 25) treatment, DCE examinations using correlations of perfusion parameters (Kep, Kel, and AH from two compartment model; time to peak, initial slope and % enhancement from time-intensity curve analysis) were evaluated. Results Tumor growth rate was found to be 129% ± 28 in control group, -33% ± 11 in four mice with sunitinib-treatment (tumor regression) and 47% ± 15 in four with sunitinib-treatment (growth retardation). Kep (r = 0.80) and initial slope (r = 0.84) showed strong positive correlation to the initial tumor volume (p < 0.05). In control mice, tumor regression group and growth retardation group animals, Kep (r : 0.75, 0.78, 0.81, 0.69) and initial slope (r : 0.79, 0.65, 0.67, 0.84) showed significant correlation with tumor volume (p < 0.01). In four mice with tumor re-growth, Kep and initial slope increased 20% or greater at earlier (n = 2) than or same periods (n = 2) to when the tumor started to re-grow with 20% or greater growth rate. Conclusion Kep and initial slope may a reliable parameters for monitoring the response of antiangiogenic treatment.
Collapse
Affiliation(s)
- Youngkyu Song
- Division of Magnetic Resonance, Korea Basic Science Institute, Cheongwon 363-883, Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Chen JJ, Fu SY, Chiang CS, Hong JH, Yeh CK. Characterization of tumor vasculature distributions in central and peripheral regions based on Doppler ultrasound. Med Phys 2013; 39:7490-8. [PMID: 23231298 DOI: 10.1118/1.4762683] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Tumor heterogeneity is a major obstacle to therapy, and thus, how to achieve the maximal therapeutic gain in tumor suppression is an important issue. To accomplish this goal, assessing changes in tumor behaviors before treatment is helpful for physicians to adjust treatment schedules. In this study, the authors longitudinally and spatially investigated tumor perfusion and vascular density by power Doppler imaging and immunohistochemical analysis, respectively. Moreover, the authors developed a method to describe quantitatively the spatial distribution of the vasculature within the central and peripheral regions of tumors. METHODS Tumor perfusion was estimated by power Doppler images at an operating frequency of 25 MHz. To avoid the attenuation effect of such high-frequency ultrasound, murine tumors were subcutaneously transplanted into the thighs of mice and then monitored for 11 days. The tumors were removed at various time intervals for immunohistochemical analysis of their vascular density using CD31 staining. The spatial characteristics of the tumor vasculature were quantified by a γ value, which characterizes the rate at which vascular signals increase with the fractional sizes of the peripheral area within the tumor. RESULTS During tumor progression, the volume of tumor perfusion in the power Doppler images was strongly correlated with the vascular density determined by immunohistochemical analysis. In addition, the γ value significantly decreased with increased tumor size in the power Doppler images but not in the immunohistochemical analysis. CONCLUSIONS Although the tumor perfusion and vascular density estimates showed good temporal correlations during tumor progression, they did not show good spatial correlations due to tumor perfusion patterns changing from homogeneous to heterogeneous. In contrast to the perfusion patterns, the vascular density of the tumor remained uniformly distributed. In the present study, no necrosis regions were found in the tumor experiments. Furthermore, the measurement of γ value is a simple method for assessing the vasculatures of spatial distribution within tumors.
Collapse
Affiliation(s)
- Jia-Jiun Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | |
Collapse
|
17
|
Liu JJ, Higgins B, Ju G, Kolinsky K, Luk KC, Packman K, Pizzolato G, Ren Y, Thakkar K, Tovar C, Zhang Z, Wovkulich PM. Discovery of a highly potent, orally active mitosis/angiogenesis inhibitor r1530 for the treatment of solid tumors. ACS Med Chem Lett 2013; 4:259-63. [PMID: 24900658 DOI: 10.1021/ml300351e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/15/2013] [Indexed: 11/30/2022] Open
Abstract
A new series of 7,8-disubstituted pyrazolobenzodiazepines based on the lead compound 1 have been synthesized and evaluated for their effects on mitosis and angiogenesis. Described herein is the design, synthesis, SAR, and antitumor activity of these compounds leading to the identification of R1530, which was selected for clinical evaluation.
Collapse
Affiliation(s)
- Jin-Jun Liu
- Discovery
Chemistry, ‡Discovery Oncology, and §Chemical Synthesis, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - Brian Higgins
- Discovery
Chemistry, ‡Discovery Oncology, and §Chemical Synthesis, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - Grace Ju
- Discovery
Chemistry, ‡Discovery Oncology, and §Chemical Synthesis, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - Kenneth Kolinsky
- Discovery
Chemistry, ‡Discovery Oncology, and §Chemical Synthesis, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - Kin-Chun Luk
- Discovery
Chemistry, ‡Discovery Oncology, and §Chemical Synthesis, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - Kathryn Packman
- Discovery
Chemistry, ‡Discovery Oncology, and §Chemical Synthesis, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - Giacomo Pizzolato
- Discovery
Chemistry, ‡Discovery Oncology, and §Chemical Synthesis, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - Yi Ren
- Discovery
Chemistry, ‡Discovery Oncology, and §Chemical Synthesis, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - Kshitij Thakkar
- Discovery
Chemistry, ‡Discovery Oncology, and §Chemical Synthesis, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - Christian Tovar
- Discovery
Chemistry, ‡Discovery Oncology, and §Chemical Synthesis, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - Zhuming Zhang
- Discovery
Chemistry, ‡Discovery Oncology, and §Chemical Synthesis, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey
07110, United States
| | - Peter M. Wovkulich
- Discovery
Chemistry, ‡Discovery Oncology, and §Chemical Synthesis, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, New Jersey
07110, United States
| |
Collapse
|
18
|
Abstract
Molecular imaging fundamentally changes the way we look at cancer. Imaging paradigms are now shifting away from classical morphological measures towards the assessment of functional, metabolic, cellular, and molecular information in vivo. Interdisciplinary driven developments of imaging methodology and probe molecules utilizing animal models of human cancers have enhanced our ability to non-invasively characterize neoplastic tissue and follow anti-cancer treatments. Preclinical molecular imaging offers a whole palette of excellent methodology to choose from. We will focus on positron emission tomography (PET) and magnetic resonance imaging (MRI) techniques, since they provide excellent and complementary molecular imaging capabilities and bear high potential for clinical translation. Prerequisites and consequences of using animal models as surrogates of human cancers in preclinical molecular imaging are outlined. We present physical principles, values and limitations of PET and MRI as molecular imaging modalities and comment on their high potential to non-invasively assess information on hypoxia, angiogenesis, apoptosis, gene expression, metabolism, and cell trafficking in preclinical cancer research.
Collapse
Affiliation(s)
- Gunter Wolf
- University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
| | | |
Collapse
|
19
|
Abstract
Rapamycin is an allosteric inhibitor of mammalian target of rapamycin, and inhibits tumor growth and angiogenesis. Recent studies suggested a possibility that rapamycin renormalizes aberrant tumor vasculature and improves tumor oxygenation. The longitudinal effects of rapamycin on angiogenesis and tumor oxygenation were evaluated in murine squamous cell carcinoma (SCCVII) by electron paramagnetic resonance imaging (EPRI) and magnetic resonance imaging (MRI) to identify an optimal time after rapamycin treatment for enhanced tumor radioresponse. Rapamycin treatment was initiated on SCCVII solid tumors 8 days after implantation (500–750 mm3) and measurements of tumor pO2 and blood volume were conducted from day 8 to 14 by EPRI/MRI. Microvessel density was evaluated over the same time period by immunohistochemical analysis. Tumor blood volume as measured by MRI significantly decreased 2 days after rapamycin treatment. Tumor pO2 levels modestly but significantly increased 2 days after rapamycin treatment; whereas, it decreased in non-treated control tumors. Furthermore, the fraction of hypoxic area (pixels with pO2<10 mm Hg) in the tumor region decreased 2 days after rapamycin treatments. Immunohistochemical analysis of tumor microvessel density and pericyte coverage revealed that microvessel density decreased 2 days after rapamycin treatment, but pericyte coverage did not change, similar to what was seen with anti-angiogenic agents such as sunitinib which cause vascular renormalization. Collectively, EPRI/MRI co-imaging can provide non-invasive evidence of rapamycin-induced vascular renormalization and resultant transient increase in tumor oxygenation. Improved oxygenation by rapamycin treatment provides a temporal window for anti-cancer therapies to realize enhanced response to radiotherapy.
Collapse
|
20
|
Hussein BH, Azab HA, El-Azab MF, El-Falouji AI. A novel anti-tumor agent, Ln(III) 2-thioacetate benzothiazole induces anti-angiogenic effect and cell death in cancer cell lines. Eur J Med Chem 2012; 51:99-109. [PMID: 22424613 DOI: 10.1016/j.ejmech.2012.02.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 02/11/2012] [Accepted: 02/13/2012] [Indexed: 10/28/2022]
|
21
|
Bohndiek SE, Kettunen MI, Hu DE, Brindle KM. Hyperpolarized (13)C spectroscopy detects early changes in tumor vasculature and metabolism after VEGF neutralization. Cancer Res 2012; 72:854-64. [PMID: 22223844 DOI: 10.1158/0008-5472.can-11-2795] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
No clinically validated biomarkers exist to image tumor responses to antiangiogenic therapy. Here, we report the utility of hyperpolarized (13)C magnetic resonance spectroscopy (MRS) to detect the early effects of anti-VEGF therapy. In two colorectal cancer xenograft models, displaying differential sensitivity to VEGF blockade, we compared hyperpolarized MRS with measurements of tumor perfusion using dynamic contrast agent-enhanced (DCE)-MRI and tumor cellularity using diffusion-weighted MRI of the apparent diffusion coefficient (ADC) of tissue water. In tumors sensitive to anti-VEGF therapy, (13)C flux between hyperpolarized [1-(13)C]pyruvate and [1-(13)C]lactate decreased after anti-VEGF therapy and correlated with reduced perfusion. Production of [1,4-(13)C(2)]malate from hyperpolarized [1,4-(13)C(2)]fumarate increased in parallel with tumor cell necrosis, preceding any change in tumor ADC. In contrast, tumors that were less sensitive to anti-VEGF therapy showed an increase in (13)C flux from hyperpolarized [1-(13)C]pyruvate and an increase in uptake of a gadolinium contrast agent, whereas tumor ADC decreased. Increased label flux could be explained by vascular normalization after VEGF blockade, increasing delivery of hyperpolarized [1-(13)C]pyruvate as observed. Despite the minimal response of these tumors to treatment, with only a minor increase in necrosis observed histologically, production of [1,4-(13)C(2)]malate from hyperpolarized [1,4-(13)C(2)]fumarate in therapy-resistant tumors also increased. Together, our findings show that hyperpolarized (13)C MRS detects early responses to anti-VEGF therapy, including vascular normalization or vascular destruction and cell death.
Collapse
Affiliation(s)
- Sarah E Bohndiek
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
22
|
Hu LS, Eschbacher JM, Dueck AC, Heiserman JE, Liu S, Karis JP, Smith KA, Shapiro WR, Pinnaduwage DS, Coons SW, Nakaji P, Debbins J, Feuerstein BG, Baxter LC. Correlations between perfusion MR imaging cerebral blood volume, microvessel quantification, and clinical outcome using stereotactic analysis in recurrent high-grade glioma. AJNR Am J Neuroradiol 2012; 33:69-76. [PMID: 22095961 PMCID: PMC7966183 DOI: 10.3174/ajnr.a2743] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 05/09/2011] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND PURPOSE Quantifying MVA rather than MVD provides better correlation with survival in HGG. This is attributed to a specific "glomeruloid" vascular pattern, which is better characterized by vessel area than number. Despite its prognostic value, MVA quantification is laborious and clinically impractical. The DSC-MR imaging measure of rCBV offers the advantages of speed and convenience to overcome these limitations; however, clinical use of this technique depends on establishing accurate correlations between rCBV, MVA, and MVD, particularly in the setting of heterogeneous vascular size inherent to human HGG. MATERIALS AND METHODS We obtained preoperative 3T DSC-MR imaging in patients with HGG before stereotactic surgery. We histologically quantified MVA, MVD, and vascular size heterogeneity from CD34-stained 10-μm sections of stereotactic biopsies, and we coregistered biopsy locations with localized rCBV measurements. We statistically correlated rCBV, MVA, and MVD under conditions of high and low vascular-size heterogeneity and among tumor grades. We correlated all parameters with OS by using Cox regression. RESULTS We analyzed 38 biopsies from 24 subjects. rCBV correlated strongly with MVA (r = 0.83, P < .0001) but weakly with MVD (r = 0.32, P = .05), due to microvessel size heterogeneity. Among samples with more homogeneous vessel size, rCBV correlation with MVD improved (r = 0.56, P = .01). OS correlated with both rCBV (P = .02) and MVA (P = .01) but not with MVD (P = .17). CONCLUSIONS rCBV provides a reliable estimation of tumor MVA as a biomarker of glioma outcome. rCBV poorly estimates MVD in the presence of vessel size heterogeneity inherent to human HGG.
Collapse
Affiliation(s)
- L S Hu
- Department of Radiology, Mayo Clinic, Phoenix/Scottsdale, Arizona, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hirashima Y, Yamada Y, Tateishi U, Kato K, Miyake M, Horita Y, Akiyoshi K, Takashima A, Okita N, Takahari D, Nakajima T, Hamaguchi T, Shimada Y, Shirao K. Pharmacokinetic parameters from 3-Tesla DCE-MRI as surrogate biomarkers of antitumor effects of bevacizumab plus FOLFIRI in colorectal cancer with liver metastasis. Int J Cancer 2011; 130:2359-65. [PMID: 21780098 DOI: 10.1002/ijc.26282] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/20/2011] [Indexed: 02/06/2023]
Abstract
Bevacizumab (BV) is an antivascular endothelial growth factor antibody. When administered with other chemotherapeutic drugs, BV-combined regimens prolong survival of colorectal cancer patients. We conducted a phase II trial to confirm the pharmacokinetic parameters from 3-Tesla dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) as surrogate biomarkers of BV + FOLFIRI regimen efficacy in colorectal cancer with liver metastases. DCE-MRI was performed before treatment, on the seventh day after first treatment and every 8 weeks thereafter using a 3-Tesla MRI system. DCE-MRI parameters-area under the contrast concentration versus time curve at 90 and 180 s (AUC90 and AUC180, respectively) after contrast injection, and volume transfer constant of contrast agents (K(trans) and K(ep) ) were calculated from liver metastases. Fifty-eight liver metastases were analyzed. Univariate analysis revealed that a decrease in K(trans) ratios (ΔK(trans) ), K(ep) ratios (ΔK(ep) ), AUC90 ratios (ΔAUC90) and AUC180 ratios (ΔAUC180) correlated with higher response (all p < 0.0001) and longer time to progression (TTP) (ΔK(trans) : p = 0.001; ΔK(ep) : p = 0.004; ΔAUC90: p = 0.006; ΔAUC180: p < 0.0001). Multivariate analysis showed that ΔAUC180 was correlated with higher response (p = 0.009), and ΔK(trans) and ΔAUC180 were correlated with longer TTP (ΔK(trans) : p = 0.001; ΔAUC180: p = 0.024). ΔK(trans) and ΔAUC180 are pharmacodynamic biomarkers of the blood perfusion of BV + FOLFIRI. Our data suggest that ΔK(trans) and ΔK(ep) can predict response to chemotherapy at 1 week. Changes in 3-Tesla DCE-MRI parameters confirmed the potential of these biomarkers of blood perfusion as surrogate predictors of response and TTP.
Collapse
Affiliation(s)
- Yoshinori Hirashima
- Department of Medical Oncology, Oita University, Hasama-machi, Yufu, Oita, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gore JC, Manning HC, Quarles CC, Waddell KW, Yankeelov TE. Magnetic resonance in the era of molecular imaging of cancer. Magn Reson Imaging 2011; 29:587-600. [PMID: 21524870 PMCID: PMC3285504 DOI: 10.1016/j.mri.2011.02.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 02/26/2011] [Indexed: 12/16/2022]
Abstract
Magnetic resonance imaging (MRI) has played an important role in the diagnosis and management of cancer since it was first developed, but other modalities also continue to advance and provide complementary information on the status of tumors. In the future, there will be a major continuing role for noninvasive imaging in order to obtain information on the location and extent of cancer, as well as assessments of tissue characteristics that can monitor and predict treatment response and guide patient management. Developments are currently being undertaken that aim to provide improved imaging methods for the detection and evaluation of tumors, for identifying important characteristics of tumors such as the expression levels of cell surface receptors that may dictate what types of therapy will be effective and for evaluating their response to treatments. Molecular imaging techniques based mainly on radionuclide imaging can depict numerous, specific, cellular and molecular markers of disease and have unique potential to address important clinical and research challenges. In this review, we consider what continuing and evolving roles will be played by MRI in this era of molecular imaging. We discuss some of the challenges for MRI of detecting imaging agents that report on molecular events, but highlight also the ability of MRI to assess other features such as cell density, blood flow and metabolism which are not specific hallmarks of cancer but which reflect molecular changes. We discuss the future role of MRI in cancer and describe the use of selected quantitative imaging techniques for characterizing tumors that can be translated to clinical applications, particularly in the context of evaluating novel treatments.
Collapse
Affiliation(s)
- John C Gore
- Vanderbilt University Institute of Imaging Science AA1105 MCN, Vanderbilt University Nashville, TN 37232-2310, USA.
| | | | | | | | | |
Collapse
|
25
|
Bohndiek SE, Kettunen MI, Hu DE, Witney TH, Kennedy BWC, Gallagher FA, Brindle KM. Detection of tumor response to a vascular disrupting agent by hyperpolarized 13C magnetic resonance spectroscopy. Mol Cancer Ther 2010; 9:3278-88. [PMID: 21159611 PMCID: PMC3003424 DOI: 10.1158/1535-7163.mct-10-0706] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nuclear spin hyperpolarization can dramatically increase the sensitivity of the (13)C magnetic resonance experiment, allowing dynamic measurements of the metabolism of hyperpolarized (13)C-labeled substrates in vivo. Here, we report a preclinical study of the response of lymphoma tumors to the vascular disrupting agent (VDA), combretastatin-A4-phosphate (CA4P), as detected by measuring changes in tumor metabolism of hyperpolarized [1-(13)C]pyruvate and [1,4-(13)C(2)]fumarate. These measurements were compared with dynamic contrast agent-enhanced magnetic resonance imaging (DCE-MRI) measurements of tumor vascular function and diffusion-weighted MRI (DW-MRI) measurements of the tumor cell necrosis that resulted from subsequent loss of tumor perfusion. The rate constant describing flux of hyperpolarized (13)C label between [1-(13)C]pyruvate and lactate was decreased by 34% within 6 hours of CA4P treatment and remained at this lower level at 24 hours. The rate constant describing production of labeled malate from hyperpolarized [1,4-(13)C(2)]fumarate increased 1.6-fold and 2.5-fold at 6 and 24 hours after treatment, respectively, and correlated with the degree of necrosis detected in histologic sections. Although DCE-MRI measurements showed a substantial reduction in perfusion at 6 hours after treatment, which had recovered by 24 hours, DW-MRI showed no change in the apparent diffusion coefficient of tumor water at 6 hours after treatment, although there was a 32% increase at 24 hours (P < 0.02) when regions of extensive necrosis were observed by histology. Measurements of hyperpolarized [1-(13)C]pyruvate and [1,4-(13)C(2)]fumarate metabolism may provide, therefore, a more sustained and sensitive indicator of response to a VDA than DCE-MRI or DW-MRI, respectively.
Collapse
Affiliation(s)
- Sarah E Bohndiek
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Liu JJ, Daniewski I, Ding Q, Higgins B, Ju G, Kolinsky K, Konzelmann F, Lukacs C, Pizzolato G, Rossman P, Swain A, Thakkar K, Wei CC, Miklowski D, Yang H, Yin X, Wovkulich PM. Pyrazolobenzodiazepines: part I. Synthesis and SAR of a potent class of kinase inhibitors. Bioorg Med Chem Lett 2010; 20:5984-7. [PMID: 20832307 DOI: 10.1016/j.bmcl.2010.08.079] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/13/2010] [Accepted: 08/17/2010] [Indexed: 11/16/2022]
Abstract
A novel series of pyrazolobenzodiazepines 3 has been identified as potent inhibitors of cyclin-dependent kinase 2 (CDK2). Their synthesis and structure-activity relationships (SAR) are described. Representative compounds from this class reversibly inhibit CDK2 activity in vitro, and block cell cycle progression in human tumor cell lines. Further exploration has revealed that this class of compounds inhibits several kinases that play critical roles in cancer cell growth and division as well as tumor angiogenesis. Together, these properties suggest a compelling basis for their use as antitumor agents.
Collapse
Affiliation(s)
- Jin-Jun Liu
- Discovery Chemistry, Hoffmann-La Roche Inc., Nutley, NJ 07110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Siemann DW. The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by Tumor-Vascular Disrupting Agents. Cancer Treat Rev 2010; 37:63-74. [PMID: 20570444 DOI: 10.1016/j.ctrv.2010.05.001] [Citation(s) in RCA: 431] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 04/28/2010] [Accepted: 05/02/2010] [Indexed: 02/06/2023]
Abstract
The vasculature of solid tumors is fundamentally different from that of normal vasculature and offers a unique target for anti-cancer therapy. Direct vascular-targeting with Tumor-Vascular Disrupting Agents (Tumor-VDAs) is distinctly different from anti-angiogenic strategies, and offers a complementary approach to standard therapies. Tumor-VDAs therefore have significant potential when combined with chemotherapy, radiotherapy, and angiogenesis-inhibiting agents. Preclinical studies with the different Tumor-VDA classes have demonstrated key tumor-selective anti-vascular and anti-tumor effects.
Collapse
Affiliation(s)
- Dietmar W Siemann
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
28
|
Tentler JJ, Bradshaw-Pierce EL, Serkova NJ, Hasebroock KM, Pitts TM, Diamond JR, Fletcher GC, Bray MR, Eckhardt SG. Assessment of the in vivo antitumor effects of ENMD-2076, a novel multitargeted kinase inhibitor, against primary and cell line-derived human colorectal cancer xenograft models. Clin Cancer Res 2010; 16:2989-2998. [PMID: 20406842 DOI: 10.1158/1078-0432.ccr-10-0325] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE This in vivo study was designed to investigate the efficacy of ENMD-2076, a small-molecule kinase inhibitor with activity against the Aurora kinases A and B, and several other tyrosine kinases linked to cancer, including vascular endothelial growth factor receptor 2, cKit, and fibroblast growth factor receptor 1, against murine xenograft models of human colorectal cancer (CRC). EXPERIMENTAL DESIGN HT-29 CRC cell line xenografts were treated with either vehicle or ENMD-2076 (100 or 200 mg/kg) orally daily for 28 days. Tumor growth inhibition, dynamic contrast-enhanced magnetic resonance imaging, and (18)FDG-positron emission tomography were conducted to assess the antiproliferative, antiangiogenic, and antimetabolic responses, respectively. Effects on proliferation were also analyzed by immunohistochemical methods. Additionally, three patient-derived xenografts from primary and metastatic sites were treated with ENMD-2076 (100 mg/kg) and assessed for tumor growth inhibition. RESULTS In the HT-29 xenograft model, ENMD-2076 induced initial tumor growth inhibition followed by regression. Treatment was associated with significant tumor blanching, indicating a loss of vascularity and substantial reductions in tumor vascular permeability and perfusion as measured by dynamic contrast-enhanced magnetic resonance imaging. Positron emission tomography scanning showed significant decreases in (18)FDG uptake at days 3 and 21 of treatment, which was associated with a marked reduction in proliferation as assessed by Ki-67. All three of the patient-derived xenografts tested were sensitive to treatment with ENMD 2076 as measured by tumor growth inhibition. CONCLUSIONS ENMD-2076 showed robust antitumor activity against cell line and patient-derived xenograft models of CRC that is detectable by functional imaging, supporting clinical investigation of this agent in CRC.
Collapse
Affiliation(s)
- John J Tentler
- Division of Medical Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Erica L Bradshaw-Pierce
- Departments of Anesthesiology and Radiology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Natalie J Serkova
- Departments of Anesthesiology and Radiology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Kendra M Hasebroock
- Departments of Anesthesiology and Radiology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Todd M Pitts
- Division of Medical Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Jennifer R Diamond
- Division of Medical Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | | | | | - S Gail Eckhardt
- Division of Medical Oncology, University of Colorado Anschutz Medical Center, Aurora, Colorado
| |
Collapse
|
29
|
Le HC, Lupu M, Kotedia K, Rosen N, Solit D, Koutcher JA. Proton MRS detects metabolic changes in hormone sensitive and resistant human prostate cancer models CWR22 and CWR22r. Magn Reson Med 2010; 62:1112-9. [PMID: 19780165 DOI: 10.1002/mrm.22137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
17-Allylamino, 17-demethoxygeldanamycin (17-AAG), an effective inhibitor of the heat shock protein hsp90, preferentially inhibiting tumor hsp90 compared to hsp90 from normal cells, has shown promising results against several cancers, including hormone-resistant prostate cancer. Levels of several oncogenic proteins critical to tumor growth and progression, such as androgen receptor and HER2/neu, were reduced 4 h post 17-allylamino, 17-demethoxygeldanamycin treatment. Posttreatment metabolic changes have also been observed in several tumor cell lines. In this study, total choline distributions in hormone sensitive CWR22 and hormone resistant CWR22r prostate cancer xenograft tumors in mice were measured before and at 4 h and 48 h after a single-bolus 17-allylamino, 17-demethoxygeldanamycin treatment at 100 mg/kg, using proton MR spectroscopy. Our results show that tumor total choline levels declined 4 h after the treatment for CWR22 (P = 0.001) and 48 h post treatment for CWR22r (P = 0.003). Metabolic changes, in particular of total choline intensity detected by proton magnetic resonance spectroscopic imaging (MRSI), are consistent with the observed immunohistochemistry changes, tumor growth inhibition for CWR22r (P = 0.01 at 14 days post treatment), and a constant prostate specific antigen level versus increasing prostate specific antigen for control CWR22 (P = 0.01). Metabolic changes in total choline by proton MRSI can be used as an early biomarker of response for advanced-stage prostate cancer in targeted therapy such as 17-allylamino, 17-demethoxygeldanamycin.
Collapse
Affiliation(s)
- H Carl Le
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Sandanaraj BS, Gremlich HU, Kneuer R, Dawson J, Wacha S. Fluorescent Nanoprobes as a Biomarker for Increased Vascular Permeability: Implications in Diagnosis and Treatment of Cancer and Inflammation. Bioconjug Chem 2009; 21:93-101. [DOI: 10.1021/bc900311h] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Britto S. Sandanaraj
- Global Imaging Group and Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Hans-Ulrich Gremlich
- Global Imaging Group and Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Rainer Kneuer
- Global Imaging Group and Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Janet Dawson
- Global Imaging Group and Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Stefan Wacha
- Global Imaging Group and Department of Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
31
|
Williamson MJ, Silva MD, Terkelsen J, Robertson R, Yu L, Xia C, Hatsis P, Bannerman B, Babcock T, Cao Y, Kupperman E. The relationship among tumor architecture, pharmacokinetics, pharmacodynamics, and efficacy of bortezomib in mouse xenograft models. Mol Cancer Ther 2009; 8:3234-43. [DOI: 10.1158/1535-7163.mct-09-0239] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Wang D, Stockard CR, Harkins L, Lott P, Salih C, Yuan K, Buchsbaum D, Hashim A, Zayzafoon M, Hardy RW, Hameed O, Grizzle W, Siegal GP. Immunohistochemistry in the evaluation of neovascularization in tumor xenografts. Biotech Histochem 2009; 83:179-89. [PMID: 18846440 DOI: 10.1080/10520290802451085] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Angiogenesis, or neovascularization, is known to play an important role in the neoplastic progression leading to metastasis. CD31 or Factor VIII-related antigen (F VIII RAg) immunohistochemistry is widely used in experimental studies for quantifying tumor neovascularization in immunocompromised animal models implanted with transformed human cell lines. Quantification, however, can be affected by variations in the methodology used to measure vascularization including antibody selection, antigen retrieval (AR) pretreatment, and evaluation techniques. To examine this further, we investigated the microvessel density (MVD) and the intensity of microvascular staining among five different human tumor xenografts and a mouse syngeneic tumor using anti-CD31 and F VIII RAg immunohistochemical staining. Different AR methods also were evaluated. Maximal retrieval of CD31 was achieved using 0.5 M Tris (pH 10) buffer, while maximum retrieval of F VIII RAg was achieved using 0.05% pepsin treatment of tissue sections. For each optimized retrieval condition, anti-CD31 highlighted small vessels better than F VIII RAg. Furthermore, the MVD of CD31 was significantly greater than that of F VIII RAg decorated vessels (p<0.001). The choice of antibody and AR method has a significant affect on immunohistochemical findings when studying angiogenesis. One also must use caution when comparing studies in the literature that use different techniques and reagents.
Collapse
Affiliation(s)
- D Wang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Pedrosa I, Alsop DC, Rofsky NM. Magnetic resonance imaging as a biomarker in renal cell carcinoma. Cancer 2009; 115:2334-2345. [DOI: 10.1002/cncr.24237] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Ivan Pedrosa
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - David C. Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Neil M. Rofsky
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
35
|
Neubauer AM, Sim H, Winter PM, Caruthers SD, Williams TA, Robertson JD, Sept D, Lanza GM, Wickline SA. Nanoparticle pharmacokinetic profiling in vivo using magnetic resonance imaging. Magn Reson Med 2009; 60:1353-61. [PMID: 19025903 DOI: 10.1002/mrm.21795] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Contrast agents targeted to molecular markers of disease are currently being developed with the goal of identifying disease early and evaluating treatment effectiveness using noninvasive imaging modalities such as MRI. Pharmacokinetic profiling of the binding of targeted contrast agents, while theoretically possible with MRI, has thus far only been demonstrated with more sensitive imaging techniques. Paramagnetic liquid perfluorocarbon nanoparticles were formulated to target alpha(v)beta(3)-integrins associated with early atherosclerosis in cholesterol-fed rabbits to produce a measurable signal increase on magnetic resonance images after binding. In this work, we combine quantitative information of the in vivo binding of this agent over time obtained by means of MRI with blood sampling to derive pharmacokinetic parameters using simultaneous and individual fitting of the data to a three compartment model. A doubling of tissue exposure (or area under the curve) is obtained with targeted as compared to control nanoparticles, and key parameter differences are discovered that may aid in development of models for targeted drug delivery.
Collapse
Affiliation(s)
- Anne M Neubauer
- Consortium for Translational Research in Advanced Imaging and Nanomedicine, Washington University, St Louis, Missouri 63108, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dafni H, Kim SJ, Bankson JA, Sankaranarayanapillai M, Ronen SM. Macromolecular dynamic contrast-enhanced (DCE)-MRI detects reduced vascular permeability in a prostate cancer bone metastasis model following anti-platelet-derived growth factor receptor (PDGFR) therapy, indicating a drop in vascular endothelial growth factor receptor (VEGFR) activation. Magn Reson Med 2009; 60:822-33. [PMID: 18816866 DOI: 10.1002/mrm.21727] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The antivascular function of the platelet-derived growth factor receptor (PDGFR) inhibitor imatinib combined with paclitaxel has been demonstrated by invasive immunohistochemistry. The purpose of this study was to 1) noninvasively monitor the response to anti-PDGFR treatment, and 2) understand the underlying mechanism of this response. Thus, response to treatment was studied in a prostate cancer bone metastasis model using macromolecular (biotin-bovine serum albumin [BSA]-Gd-diethylene triamine pentaacetic acid [GdDTPA]) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Human prostate cancer (PC-3MM2) bone metastases that caused osteolysis and grew in neighboring muscle showed a high blood-volume fraction (fBV) and vascular permeability (PS) at the tumor periphery compared to muscle tissue and intraosseous tumor. Imatinib alone or with paclitaxel significantly reduced PS by 35% (one-tailed paired t-test, P = 0.045) and 40% (P = 0.0003), respectively, whereas paclitaxel alone or no treatment had no effect. Based on changes in PS, we hypothesized that imatinib interferes with the signaling pathway of vascular endothelial growth factor (VEGF). This mechanism was verified by immunohistochemistry. It demonstrated reduced activation of both PDGFR-beta and VEGF receptor 2 (VEGFR2) in imatinib-treated mice. Our study therefore demonstrates that macromolecular DCE-MRI can be used to detect early vascular effects associated with response to therapy targeted to PDGFR, and provides insight into the role played by VEGF in anti-PDGFR therapy.
Collapse
Affiliation(s)
- Hagit Dafni
- Department of Experimental Diagnostic Imaging, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
| | | | | | | | | |
Collapse
|
37
|
Turnbull LW. Dynamic contrast-enhanced MRI in the diagnosis and management of breast cancer. NMR IN BIOMEDICINE 2009; 22:28-39. [PMID: 18654999 DOI: 10.1002/nbm.1273] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Dynamic contrast-enhanced MRI (DCE-MRI) is an evolving tool for determining breast disease, which benefits from the move to imaging at 3 T. It has major capabilities for the diagnosis, detection and monitoring of malignancy. It benefits from being non-invasive and three-dimensional, allowing visualisation of the extent of disease and its angiogenic properties, visualisation of lesion heterogeneity, detection of changes in angiogenic properties before morphological alterations, and the potential to predict the overall response either before the start of therapy or early during treatment. In addition, DCE-MRI is emerging as a powerful tool for screening high-risk patients and for detecting high-grade ductal carcinoma in situ. However, there are also a number of limitations, including the overlap in enhancement patterns between malignant and benign disease, the failure to resolve microscopic disease particularly in the neoadjuvant setting, and the inconsistent predictive value of the enhancement pattern for clinical outcome. Careful consideration should be given to the technical requirements of individual examinations and the need for automation of post-processing techniques to appropriately handle the growing volume of data acquired. Research continues, focusing on the use of higher field strengths with improved spatial and temporal resolution data, improving understanding of the mechanism of contrast enhancement at the cellular level, and developing macromolecular and targeted contrast agents.
Collapse
|
38
|
Ulmer S, Reeh M, Krause J, Herdegen T, Heldt-Feindt J, Jansen O, Rohr A. Dynamic contrast-enhanced susceptibility-weighted perfusion MRI (DSC-MRI) in a glioma model of the rat brain using a conventional receive-only surface coil with a inner diameter of 47mm at a clinical 1.5T scanner. J Neurosci Methods 2008; 172:168-72. [DOI: 10.1016/j.jneumeth.2008.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/19/2008] [Accepted: 04/14/2008] [Indexed: 11/28/2022]
|
39
|
Catalano OA, Sahani DV, Kalva SP, Cushing MS, Hahn PF, Brown JJ, Edelman RR. MR imaging of the gallbladder: a pictorial essay. Radiographics 2008; 28:135-55; quiz 324. [PMID: 18203935 DOI: 10.1148/rg.281065183] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The gallbladder serves as the repository for bile produced in the liver. However, bile within the gallbladder may become supersaturated with cholesterol, leading to crystal precipitation and subsequent gallstone formation. The most common disorders of the gallbladder are related to gallstones and include symptomatic cholelithiasis, acute and chronic cholecystitis, and carcinoma of the gallbladder. Other conditions that can affect the gallbladder include biliary dyskinesia (functional), adenomyomatosis (hyperplastic), and postoperative changes or complications (iatrogenic). Ultrasonography (US) has been the traditional modality for evaluating gallbladder disease, primarily owing to its high sensitivity and specificity for both stone disease and gallbladder inflammation. US performed before and after ingestion of a fatty meal may also be useful for functional evaluation of the gallbladder. However, US is limited by patient body habitus, with degradation of image quality and anatomic detail in obese individuals. With the advent of faster and more efficient imaging techniques, magnetic resonance (MR) imaging has assumed an increasing role as an adjunct modality for gallbladder imaging, primarily in patients who are incompletely assessed with US. MR imaging allows simultaneous anatomic and physiologic assessment of the gallbladder and biliary tract in both initial evaluation of disease and examination of the postoperative patient. This assessment is accomplished chiefly through the use of MR imaging contrast agents excreted preferentially via the biliary system.
Collapse
Affiliation(s)
- Onofrio A Catalano
- Department of Radiology, Division of Gastrointestinal Radiology, Massachusetts General Hospital, WHT 270, 55 Fruit St, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Takahashi M, Kubo S, Kiryu S, Gee J, Hatabu H. MR microscopy of the lung in small rodents. Eur J Radiol 2007; 64:367-74. [PMID: 17904321 DOI: 10.1016/j.ejrad.2007.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 07/31/2007] [Accepted: 08/01/2007] [Indexed: 01/08/2023]
Abstract
Understanding how the mammalian respiratory system works and how it changes in disease states and under the influence of drugs is frequently pursued in model systems such as small rodents. These have many advantages, including being easily obtained in large numbers as purebred strains. Studies in small rodents are valuable for proof of concept studies and for increasing our knowledge about disease mechanisms. Since the recent developments in the generation of genetically designed animal models of disease, one needs the ability to assess morphology and function in in vivo systems. In this article, we first review previous reports regarding thoracic imaging. We then discuss approaches to take in making use of small rodents to increase MR microscopic sensitivity for these studies and to establish MR methods for clinically relevant lung imaging.
Collapse
Affiliation(s)
- Masaya Takahashi
- Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.
| | | | | | | | | |
Collapse
|
41
|
Brockmann MA, Kemmling A, Groden C. Current issues and perspectives in small rodent magnetic resonance imaging using clinical MRI scanners. Methods 2007; 43:79-87. [PMID: 17720566 DOI: 10.1016/j.ymeth.2007.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 07/10/2007] [Indexed: 12/16/2022] Open
Abstract
Small rodents such as mice and rats are frequently used in animal experiments for several reasons. In the past, animal experiments were frequently associated with invasive methods and groups of animals had to be killed to perform longitudinal studies. Today's modern imaging techniques such as magnetic resonance imaging (MRI) allow non-invasive longitudinal monitoring of multiple parameters. Although only a few institutions have access to dedicated small animal MR scanners, most institutions carrying out animal experiments have access to clinical MR scanners. Technological advances and the increasing field strength of clinical scanners make MRI a broadly available and viable technique in preclinical in vivo research. This review provides an overview of current concepts, limitations, and recent studies dealing with small animal imaging using clinical MR scanners.
Collapse
Affiliation(s)
- Marc A Brockmann
- Department of Neuroradiology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 61867 Mannheim, Germany.
| | | | | |
Collapse
|
42
|
Beckmann N, Kneuer R, Gremlich HU, Karmouty-Quintana H, Blé FX, Müller M. In vivo mouse imaging and spectroscopy in drug discovery. NMR IN BIOMEDICINE 2007; 20:154-85. [PMID: 17451175 DOI: 10.1002/nbm.1153] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Imaging modalities such as micro-computed tomography (micro-CT), micro-positron emission tomography (micro-PET), high-resolution MRI, optical imaging, and high-resolution ultrasound have become invaluable tools in preclinical pharmaceutical research. They can be used to non-invasively investigate, in vivo, rodent biology and metabolism, disease models, and pharmacokinetics and pharmacodynamics of drugs. The advantages and limitations of each approach usually determine its application, and therefore a small-rodent imaging laboratory in a pharmaceutical environment should ideally provide access to several techniques. In this paper we aim to illustrate how these techniques may be used to obtain meaningful information for the phenotyping of transgenic mice and for the analysis of compounds in murine models of disease.
Collapse
Affiliation(s)
- Nicolau Beckmann
- Discovery Technologies, Novartis Institutes for BioMedical Research, Lichtstrasse 35, CH-4002 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|