1
|
Wang Y, Tang X, Zhu Y, Yang XX, Liu B. Role of interleukins in acute myeloid leukemia. Leuk Lymphoma 2023; 64:1400-1413. [PMID: 37259867 DOI: 10.1080/10428194.2023.2218508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with strong heterogeneity. Immune disorders are a feature of various malignancies, including AML. Interleukins (ILs) and other cytokines participate in a series of biological processes of immune disorders in the microenvironment, and serve as a bridge for communication between various cellular components in the immune system. The role of ILs in AML is complex and pleiotropic. It can not only play an anti-AML role by enhancing anti-leukemia immunity and directly inducing AML cell apoptosis, but also promote the growth, proliferation and drug resistance of AML. These properties of ILs can be used to explore their potential efficacy in disease monitoring, prognosis assessment, and development of new treatment strategies for AML. This review aims to clarify some of the complex roles of ILs in AML and their clinical applications.
Collapse
Affiliation(s)
- Yin Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yu Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao-Xiao Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Bei Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Hematology, The First Affiliated Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
El Costa H, Gouilly J, Abravanel F, Bahraoui E, Peron JM, Kamar N, Jabrane-Ferrat N, Izopet J. Effector memory CD8 T cell response elicits Hepatitis E Virus genotype 3 pathogenesis in the elderly. PLoS Pathog 2021; 17:e1009367. [PMID: 33617602 PMCID: PMC7932504 DOI: 10.1371/journal.ppat.1009367] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/04/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Genotype 3 Hepatitis E virus (HEV-3) is an emerging threat for aging population. More than one third of older infected patients develops clinical symptoms with severe liver damage, while others remain asymptomatic. The origin of this discrepancy is still elusive although HEV-3 pathogenesis appears to be immune-mediated. Therefore, we investigated the role of CD8 T cells in the outcome of the infection in immunocompetent elderly subjects. We enrolled twenty two HEV-3-infected patients displaying similar viral determinants and fifteen healthy donors. Among the infected group, sixteen patients experienced clinical symptoms related to liver disease while six remained asymptomatic. Here we report that symptomatic infection is characterized by an expansion of highly activated effector memory CD8 T (EM) cells, regardless of antigen specificity. This robust activation is associated with key features of early T cell exhaustion including a loss in polyfunctional type-1 cytokine production and partial commitment to type-2 cells. In addition, we show that bystander activation of EM cells seems to be dependent on the inflammatory cytokines IL-15 and IL-18, and is supported by an upregulation of the activating receptor NKG2D and an exuberant expression of T-Bet and T-Bet-regulated genes including granzyme B and CXCR3. We also show that the inflammatory chemokines CXCL9-10 are increased in symptomatic patients thereby fostering the recruitment of highly cytotoxic EM cells into the liver in a CXCR3-dependent manner. Finally, we find that the EM-biased immune response returns to homeostasis following viral clearance and disease resolution, further linking the EM cells response to viral burden. Conversely, asymptomatic patients are endowed with low-to-moderate EM cell response. In summary, our findings define immune correlates that contribute to HEV-3 pathogenesis and emphasize the central role of EM cells in governing the outcome of the infection. The outcome of Genotype 3 Hepatitis E virus (HEV-3) infection differs among the elderly. Some patients develop severe forms of Hepatitis E while others remain asymptomatic. Nonetheless, parameters which can lead to severe versus silent infection are largely unknown. Therefore, we investigated immunological features of CD8 T cells in infected patients (aged ≥55) with similar viral determinants but distinct clinical outcomes. We show that drastic phenotypic changes were specifically observed within the effector memory (EM) compartment. Compared to asymptomatic patients, symptomatic ones display a strong activation of both HEV-3-specific and -nonspecific EM CD8 T cells associated with qualitative and quantitative alterations in cytokine production. In addition, EM cells are endowed with high cytotoxic capacity and have the ability to rapidly migrate to the liver. Finally, we report that the inflammatory response to HEV-3 infection shape EM cell activation and function in symptomatic elderly patients. In summary, our results present the first report demonstrating that the nature and the magnitude of EM CD8 T cell response play an important role in the outcome of HEV-3 infection in the elderly.
Collapse
Affiliation(s)
- Hicham El Costa
- Infinity—Université Toulouse, CNRS, Inserm, Toulouse, France
- Laboratoire de Virologie, Centre National de référence HEV, Institut Fédératif de Biologie, CHU Toulouse, Toulouse, France
- * E-mail:
| | - Jordi Gouilly
- Infinity—Université Toulouse, CNRS, Inserm, Toulouse, France
| | - Florence Abravanel
- Infinity—Université Toulouse, CNRS, Inserm, Toulouse, France
- Laboratoire de Virologie, Centre National de référence HEV, Institut Fédératif de Biologie, CHU Toulouse, Toulouse, France
| | | | - Jean-Marie Peron
- Département de Gastroentérologie, CHU Toulouse, Toulouse, France
| | - Nassim Kamar
- Infinity—Université Toulouse, CNRS, Inserm, Toulouse, France
| | | | - Jacques Izopet
- Infinity—Université Toulouse, CNRS, Inserm, Toulouse, France
- Laboratoire de Virologie, Centre National de référence HEV, Institut Fédératif de Biologie, CHU Toulouse, Toulouse, France
| |
Collapse
|
3
|
Liu S, Miersch S, Li P, Bai B, Liu C, Qin W, Su J, Huang H, Pan J, Sidhu SS, Wu D. A Synthetic Human Antibody Antagonizes IL-18Rβ Signaling Through an Allosteric Mechanism. J Mol Biol 2020; 432:1169-1182. [PMID: 31954129 DOI: 10.1016/j.jmb.2020.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/01/2023]
Abstract
The interleukin-18 subfamily belongs to the interleukin-1 family and plays an important role in modulating innate and adaptive immune responses. Dysregulation of IL-18 has been implicated in or correlated with numerous diseases, including inflammatory diseases, autoimmune disorders, and cancer. Thus, blockade of IL-18 signaling may offer therapeutic benefits in many pathological settings. Here, we report the development of synthetic human antibodies that target human IL-18Rβ and block IL-18-mediated IFN-γ secretion by inhibiting NF-κB and MAPK dependent pathways. The crystal structure of a potent antagonist antibody in complex with IL-18Rβ revealed inhibition through an unexpected allosteric mechanism. Our findings offer a novel means for therapeutic intervention in the IL-18 pathway and may provide a new strategy for targeting cytokine receptors.
Collapse
Affiliation(s)
- Shusu Liu
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Shane Miersch
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Ping Li
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, China
| | - Bingxin Bai
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Chunchun Liu
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Wenming Qin
- National Facility for Protein Science (Shanghai), Shanghai Advanced Research Institute (Zhangjiang Lab), Chinese Academy of Sciences, Shanghai, China
| | - Jie Su
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Haiming Huang
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Shanghai Asian United Antibody Medical Co., Shanghai, China
| | - James Pan
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Sachdev S Sidhu
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China; Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.
| | - Donghui Wu
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
4
|
Chen X, Xiong D, Feng R, Yang S, Lin T. Antitumor activity of interleukin-18 on A549 human lung cancer cell line. J Cancer Res Ther 2019; 15:1635-1641. [DOI: 10.4103/jcrt.jcrt_226_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Bachmann M, Pfeilschifter J, Mühl H. A Prominent Role of Interleukin-18 in Acetaminophen-Induced Liver Injury Advocates Its Blockage for Therapy of Hepatic Necroinflammation. Front Immunol 2018; 9:161. [PMID: 29472923 PMCID: PMC5809456 DOI: 10.3389/fimmu.2018.00161] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 01/18/2018] [Indexed: 12/19/2022] Open
Abstract
Acetaminophen [paracetamol, N-acetyl-p-aminophenol (APAP)]-induced acute liver injury (ALI) not only remains a persistent clinical challenge but likewise stands out as well-characterized paradigmatic model of drug-induced liver damage. APAP intoxication associates with robust hepatic necroinflammation the role of which remains elusive with pathogenic but also pro-regenerative/-resolving functions being ascribed to leukocyte activation. Here, we shine a light on and put forward a unique role of the interleukin (IL)-1 family member IL-18 in experimental APAP-induced ALI. Indeed, amelioration of disease as previously observed in IL-18-deficient mice was further substantiated herein by application of the IL-18 opponent IL-18-binding protein (IL-18BPd:Fc) to wild-type mice. Data altogether emphasize crucial pathological action of this cytokine in APAP toxicity. Adding recombinant IL-22 to IL-18BPd:Fc further enhanced protection from liver injury. In contrast to IL-18, the role of prototypic pro-inflammatory IL-1 and tumor necrosis factor-α is controversially discussed with lack of effects or even protective action being repeatedly reported. A prominent detrimental function for IL-18 in APAP-induced ALI as proposed herein should relate to its pivotal role for hepatic expression of interferon-γ and Fas ligand, both of which aggravate APAP toxicity. As IL-18 serum levels increase in patients after APAP overdosing, targeting IL-18 may evolve as novel therapeutic option in those hard-to-treat patients where standard therapy with N-acetylcysteine is unsuccessful. Being a paradigmatic experimental model of ALI, current knowledge on ill-fated properties of IL-18 in APAP intoxication likewise emphasizes the potential of this cytokine to serve as therapeutic target in other entities of inflammatory liver diseases.
Collapse
Affiliation(s)
- Malte Bachmann
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Heiko Mühl
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Shimoura N, Nagai H, Fujiwara S, Jimbo H, Yoshimoto T, Nishigori C. Interleukin (IL)-18, cooperatively with IL-23, induces prominent inflammation and enhances psoriasis-like epidermal hyperplasia. Arch Dermatol Res 2017; 309:315-321. [DOI: 10.1007/s00403-017-1735-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/16/2017] [Accepted: 03/08/2017] [Indexed: 01/05/2023]
|
7
|
Berner A, Bachmann M, Bender C, Pfeilschifter J, Christen U, Mühl H. Though Active on RINm5F Insulinoma Cells and Cultured Pancreatic Islets, Recombinant IL-22 Fails to Modulate Cytotoxicity and Disease in a Protocol of Streptozotocin-Induced Experimental Diabetes. Front Pharmacol 2016; 6:317. [PMID: 26793108 PMCID: PMC4709444 DOI: 10.3389/fphar.2015.00317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 12/22/2015] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-22 is a cytokine displaying tissue protective and pro-regenerative functions in various preclinical disease models. Anti-bacterial, pro-proliferative, and anti-apoptotic properties mediated by activation of the transcription factor signal transducer and activator of transcription (STAT)-3 are key to biological functions of this IL-10 family member. Herein, we introduce RINm5F insulinoma cells as rat β-cell line that, under the influence of IL-22, displays activation of STAT3 with induction of its downstream gene targets Socs3, Bcl3, and Reg3b. In addition, IL-22 also activates STAT1 in this cell type. To refine those observations, IL-22 biological activity was evaluated using ex vivo cultivated murine pancreatic islets. In accord with data on RINm5F cells, islet exposure to IL-22 activated STAT3 and upregulation of STAT3-inducible Socs3, Bcl3, and Steap4 was evident under those conditions. As these observations supported the hypothesis that IL-22 may exert protective functions in toxic β-cell injury, application of IL-22 was investigated in murine multiple-low-dose streptozotocin (STZ)-induced diabetes. For that purpose, recombinant IL-22 was administered thrice either immediately before and at disease onset (at d4, d6, d8) or closely thereafter (at d8, d10, d12). These two IL-22-treatment periods coincide with two early peaks of β-cell injury detectable in this model. Notably, none of the two IL-22-treatment strategies affected diabetes incidence or blood glucose levels in STZ-treated mice. Moreover, pathological changes in islet morphology analyzed 28 days after disease induction were not ameliorated by IL-22 administration. Taken together, despite being active on rat RINm5F insulinoma cells and murine pancreatic islets, recombinant IL-22 fails to protect pancreatic β-cells in the tested protocols from toxic effects of STZ and thus is unable to ameliorate disease in the widely used model of STZ-induced diabetes.
Collapse
Affiliation(s)
- Anika Berner
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt Frankfurt am Main, Germany
| | - Malte Bachmann
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt Frankfurt am Main, Germany
| | - Christine Bender
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt Frankfurt am Main, Germany
| | - Urs Christen
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt Frankfurt am Main, Germany
| | - Heiko Mühl
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University Frankfurt Frankfurt am Main, Germany
| |
Collapse
|
8
|
Glycyrrhizic acid-mediated subdual of myeloid-derived suppressor cells induces antileishmanial immune responses in a susceptible host. Infect Immun 2015; 83:4476-86. [PMID: 26351281 DOI: 10.1128/iai.00729-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/28/2015] [Indexed: 11/20/2022] Open
Abstract
CD11b(+) Gr1(+) myeloid-derived suppressor cells (MDSCs), a heterogeneous population of precursor cells, modulate protective immunity against visceral leishmaniasis by suppressing T cell functions. We observed that CD11b(+) Gr1(+) MDSCs, which initially expanded in soluble leishmanial antigen (SLA)-immunized mice and later diminished, suppressed proliferation of T cells isolated from SLA-immunized mice, but to a lesser extent than the case in naive mice. This lesser suppression of MDSCs accompanied the expression of F4/80 and the production of Cox-2, arginase I, nitric oxide, and PGE2. However, with SLA immunization, there was no difference in the expression of interleukin-2 (IL-2) or gamma interferon (IFN-γ) by T cells, in contrast to the case in nonimmunized mice, in which there is an influence. Glycyrrhizic acid (a triterpenoid compound)-mediated inhibition of Cox-2 in myeloid-derived suppressor cells influenced the capacity of T cells to proliferate and the expression of IL-2 and IFN-γ in Leishmania donovani-infected BALB/c mice. Further characterization confirmed that administration of glycyrrhizic acid to L. donovani-infected BALB/c mice results in an impairment of the generation of MDSCs and a reciprocal organ-specific proliferation of IFN-γ- and IL-10-expressing CD4(+) and CD8(+) T cells. Comprehensive knowledge on the Cox-2-mediated regulation of myeloid-derived suppressor cells might be involved in unlocking a new avenue for therapeutic interventions during visceral leishmaniasis.
Collapse
|
9
|
Ebel ME, Awe O, Kaplan MH, Kansas GS. Diverse inflammatory cytokines induce selectin ligand expression on murine CD4 T cells via p38α MAPK. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:5781-8. [PMID: 25941329 PMCID: PMC4698157 DOI: 10.4049/jimmunol.1500485] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/02/2015] [Indexed: 01/03/2023]
Abstract
Selectins are glycan-binding adhesion molecules that mediate the initial steps of leukocyte recognition of endothelium. Cytokines control numerous aspects of CD4 Th cell differentiation, but how cytokines control the induction of ligands for E- and P-selectin on Th cell subsets remains poorly understood. Among 20 cytokines that affect Th cell differentiation, we identified six that induce expression of selectin ligands on murine CD4 T cells above the low levels associated with TCR engagement: IL-12, IL-18, IL-27, IL-9, IL-25, and TGF-β1. Collectively, these six cytokines could potentially account for selectin ligand expression on all of the currently defined nonsessile Th cell lineages, including Th1, Th2, Th9, and Th17 cells, as well as regulatory T cells. Induction of selectin ligand expression by each of these six cytokines was almost completely inhibited by pharmacologic inhibition of p38 MAPK, but not other MAPKs, or by conditional genetic deletion of p38α MAPK. Analysis of the expression of key glycosyltransferase genes revealed that p38α signaling was selectively required for induction of Fut7 and Gcnt1 but not for the induction of St3gal4 or St3gal6. Constitutively active MKK6, an immediate upstream activator of p38 MAPK, induced selectin ligand expression equivalent to that of cytokines, and this induction was completely dependent on the expression of p38α. Our results identify the repertoire of cytokines responsible for selectin ligand induction on CD4 T cells and provide a mechanistic link between Th cell development and T cell migration.
Collapse
Affiliation(s)
- Mark E Ebel
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Olufolakemi Awe
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Mark H Kaplan
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Geoffrey S Kansas
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611;
| |
Collapse
|
10
|
Lightfoot YL, Yang T, Sahay B, Zadeh M, Cheng SX, Wang GP, Owen JL, Mohamadzadeh M. Colonic immune suppression, barrier dysfunction, and dysbiosis by gastrointestinal bacillus anthracis Infection. PLoS One 2014; 9:e100532. [PMID: 24945934 PMCID: PMC4063899 DOI: 10.1371/journal.pone.0100532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 05/24/2014] [Indexed: 11/18/2022] Open
Abstract
Gastrointestinal (GI) anthrax results from the ingestion of Bacillus anthracis. Herein, we investigated the pathogenesis of GI anthrax in animals orally infected with toxigenic non-encapsulated B. anthracis Sterne strain (pXO1+ pXO2−) spores that resulted in rapid animal death. B. anthracis Sterne induced significant breakdown of intestinal barrier function and led to gut dysbiosis, resulting in systemic dissemination of not only B. anthracis, but also of commensals. Disease progression significantly correlated with the deterioration of innate and T cell functions. Our studies provide critical immunologic and physiologic insights into the pathogenesis of GI anthrax infection, whereupon cleavage of mitogen-activated protein kinases (MAPKs) in immune cells may play a central role in promoting dysfunctional immune responses against this deadly pathogen.
Collapse
Affiliation(s)
- Yaíma L. Lightfoot
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida, United States of America
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Tao Yang
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida, United States of America
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Bikash Sahay
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida, United States of America
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Mojgan Zadeh
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida, United States of America
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Sam X. Cheng
- Division of Gastroenterology, Department of Pediatrics, University of Florida, Gainesville, Florida, United States of America
| | - Gary P. Wang
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Jennifer L. Owen
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Mansour Mohamadzadeh
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida, United States of America
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
11
|
Sahay B, Owen JL, Zadeh M, Yang T, Lightfoot YL, Abed F, Mohamadzadeh M. Impaired colonic B-cell responses by gastrointestinal Bacillus anthracis infection. J Infect Dis 2014; 210:1499-507. [PMID: 24829464 DOI: 10.1093/infdis/jiu280] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Ingestion of Bacillus anthracis spores causes gastrointestinal (GI) anthrax. Humoral immune responses, particularly immunoglobulin A (IgA)-secreting B-1 cells, play a critical role in the clearance of GI pathogens. Here, we investigated whether B. anthracis impacts the function of colonic B-1 cells to establish active infection. GI anthrax led to significant inhibition of immunoglobulins (eg, IgA) and increased expression of program death 1 on B-1 cells. Furthermore, infection also diminished type 2 innate lymphoid cells (ILC2) and their ability to enhance differentiation and immunoglobulin production by secreting interleukin 5 (IL-5). Such B-1-cell and ILC2 dysfunction is potentially due to cleavage of p38 and Erk1/2 mitogen-activated protein kinases in these cells. Conversely, mice that survived infection generated neutralizing antibodies via the formation of robust germinal center B cells in Peyer's patches and had restored B-1-cell and ILC2 function. These data may provide additional insight for designing efficacious vaccines and therapeutics against this deadly pathogen.
Collapse
Affiliation(s)
- Bikash Sahay
- Department of Infectious Diseases and Pathology Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine
| | - Jennifer L Owen
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville
| | - Mojgan Zadeh
- Department of Infectious Diseases and Pathology Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine
| | - Tao Yang
- Department of Infectious Diseases and Pathology Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine
| | - Yaíma L Lightfoot
- Department of Infectious Diseases and Pathology Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine
| | - Firas Abed
- Department of Infectious Diseases and Pathology Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine
| | - Mansour Mohamadzadeh
- Department of Infectious Diseases and Pathology Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine
| |
Collapse
|
12
|
Balah A, Mühl H, Pfeilschifter J, Akool ES. Molecular mechanisms of PDGF-AA expression induced by the dsRNA-mimetic poly (I:C) and IL-18. Biochem Biophys Res Commun 2013; 435:691-5. [PMID: 23702484 DOI: 10.1016/j.bbrc.2013.05.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 05/10/2013] [Indexed: 01/13/2023]
Abstract
Several animal studies suggest a role of platelet-derived growth factors (PDGFs) particularly A and B in atherosclerosis. Previously, it has been shown that viral infections have the ability to initiate and accelerate atherosclerosis in animal models. Recently, it has been reported that IL-18 has a pro-atherogenic character. Moreover, viral infections have been shown to be associated with induction of IL-18 bioactivity. By using human predendritic KG1 cells, we sought to assess PDGF-AA production under the influence of IL-18 and the byproduct of viral replication, dsRNA-mimetic poly (I:C). Here we demonstrate that poly (I:C) and IL-18 have the ability to induce PDGF-AA expression. In addition, costimulation of KG-1 cells with both IL-18 plus poly (I:C) shows an additive effect on PDGF-AA production. Furthermore, we demonstrate that neither p38 nor SAPK/JNK is required for PDGF-AA production by both PIC and IL-18. However, the expression of PDGF-AA has been found to be associated with increased activation of NF-κB and enhancement of DNA-binding capacity of NF-κB as shown by electrophoretic mobility shift assay (EMSA) and supershift analysis. Collectively, this study demonstrates that the byproduct of viral replication, dsRNA [poly (I:C)], and IL-18 have the ability to induce PDGF-AA in NF-κB-dependent manner. Furthermore, dsRNA act in an additive way with IL-18 to induce PDGF-AA which plays a major role in atherosclerosis. These data might help to understand the pro-atherogenic character of IL-18 and molecular mechanisms of viral infection-induced atherosclerosis.
Collapse
Affiliation(s)
- Amany Balah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | | | | | | |
Collapse
|
13
|
Bachmann M, Scheiermann P, Härdle L, Pfeilschifter J, Mühl H. IL-36γ/IL-1F9, an innate T-bet target in myeloid cells. J Biol Chem 2012; 287:41684-96. [PMID: 23095752 DOI: 10.1074/jbc.m112.385443] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
By concerted action in dendritic (DC) and T cells, T-box expressed in T cells (T-bet, Tbx21) is pivotal for initiation and perpetuation of Th1 immunity. Identification of novel T-bet-regulated genes is crucial for further understanding the biology of this transcription factor. By combining siRNA technology with genome-wide mRNA expression analysis, we sought to identify new T-bet-regulated genes in predendritic KG1 cells activated by IL-18. One gene robustly dependent on T-bet was IL-36γ, a recently described novel IL-1 family member. Promoter analysis revealed a T-bet binding site that, along with a κB site, enables efficient IL-36γ induction. Using knock-out animals, IL-36γ reliance on T-bet was extended to murine DC. IL-36γ expression by human myeloid cells was confirmed using monocyte-derived DC and M1 macrophages. The latter model was employed to substantiate dependence of IL-36γ on endogenous T-bet in human primary cells. Ectopic expression of T-bet likewise mediated IL-36γ production in HaCaT keratinocytes that otherwise lack this transcription factor. Additional experiments furthermore revealed that mature IL-36γ has the capability to establish an inflammatory gene expression profile in human primary keratinocytes that displays enhanced mRNA levels for TNFα, CCL20, S100A7, inducible NOS, and IL-36γ itself. Data presented herein shed further light on involvement of T-bet in innate immunity and suggest that IL-36γ, besides IFNγ, may contribute to functions of this transcription factor in immunopathology.
Collapse
Affiliation(s)
- Malte Bachmann
- Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
14
|
Mo C, Dai Y, Kang N, Cui L, He W. Ectopic expression of human MutS homologue 2 on renal carcinoma cells is induced by oxidative stress with interleukin-18 promotion via p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) signaling pathways. J Biol Chem 2012; 287:19242-54. [PMID: 22493490 DOI: 10.1074/jbc.m112.349936] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human MutS homologue 2 (hMSH2), a crucial element of the highly conserved DNA mismatch repair system, maintains genetic stability in the nucleus of normal cells. Our previous studies indicate that hMSH2 is ectopically expressed on the surface of epithelial tumor cells and recognized by both T cell receptor γδ (TCRγδ) and natural killer group 2 member D (NKG2D) on Vδ2 T cells. Ectopically expressed hMSH2 could trigger a γδ T cell-mediated cytolysis. In this study, we showed that oxidative stress induced ectopic expression of hMSH2 on human renal carcinoma cells. Under oxidative stress, both p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) pathways have been confirmed to mediate the ectopic expression of hMSH2 through the apoptosis-signaling kinase 1 (ASK1) upstream and activating transcription factor 3 (ATF3) downstream of both pathways. Moreover, renal carcinoma cell-derived interleukin (IL)-18 in oxidative stress was a prominent stimulator for ectopically induced expression of hMSH2, which was promoted by interferon (IFN)-γ as well. Finally, oxidative stress or pretreatment with IL-18 and IFN-γ enhanced γδ T cell-mediated cytolysis of renal carcinoma cells. Our results not only establish a mechanism of ectopic hMSH2 expression in tumor cells but also find a biological linkage between ectopic expression of hMSH2 and activation of γδ T cells in stressful conditions. Because γδ T cells play an important role in the early stage of innate anti-tumor response, γδ T cell activation triggered by ectopically expressed hMSH2 may be an important event in immunosurveillance for carcinogenesis.
Collapse
Affiliation(s)
- Chen Mo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Peking Union Medical College, Beijing 100005, China
| | | | | | | | | |
Collapse
|
15
|
Obar JJ, Jellison ER, Sheridan BS, Blair DA, Pham QM, Zickovich JM, Lefrançois L. Pathogen-induced inflammatory environment controls effector and memory CD8+ T cell differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:4967-78. [PMID: 21987662 PMCID: PMC3208080 DOI: 10.4049/jimmunol.1102335] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In response to infection, CD8(+) T cells integrate multiple signals and undergo an exponential increase in cell numbers. Simultaneously, a dynamic differentiation process occurs, resulting in the formation of short-lived effector cells (SLECs; CD127(low)KLRG1(high)) and memory precursor effector cells (CD127(high)KLRG1(low)) from an early effector cell that is CD127(low)KLRG1(low) in phenotype. CD8(+) T cell differentiation during vesicular stomatitis virus infection differed significantly than during Listeria monocytogenes infection with a substantial reduction in early effector cell differentiation into SLECs. SLEC generation was dependent on Ebi3 expression. Furthermore, SLEC differentiation during vesicular stomatitis virus infection was enhanced by administration of CpG-DNA, through an IL-12-dependent mechanism. Moreover, CpG-DNA treatment enhanced effector CD8(+) T cell functionality and memory subset distribution, but in an IL-12-independent manner. Population dynamics were dramatically different during secondary CD8(+) T cell responses, with a much greater accumulation of SLECs and the appearance of a significant number of CD127(high)KLRG1(high) memory cells, both of which were intrinsic to the memory CD8(+) T cell. These subsets persisted for several months but were less effective in recall than memory precursor effector cells. Thus, our data shed light on how varying the context of T cell priming alters downstream effector and memory CD8(+) T cell differentiation.
Collapse
Affiliation(s)
- Joshua J. Obar
- Department of Immunology, Center for Integrated Immunology and Vaccine Research,University of Connecticut Health Center, 263 Farmington Avenue, Farmington CT 06030
- Department of Immunology & Infectious Diseases, Montana State University, 960 Technology Boulevard, Bozeman MT 59718
| | - Evan R. Jellison
- Department of Immunology, Center for Integrated Immunology and Vaccine Research,University of Connecticut Health Center, 263 Farmington Avenue, Farmington CT 06030
| | - Brian S. Sheridan
- Department of Immunology, Center for Integrated Immunology and Vaccine Research,University of Connecticut Health Center, 263 Farmington Avenue, Farmington CT 06030
| | - David A. Blair
- Department of Immunology, Center for Integrated Immunology and Vaccine Research,University of Connecticut Health Center, 263 Farmington Avenue, Farmington CT 06030
| | - Quynh-Mai Pham
- Department of Immunology, Center for Integrated Immunology and Vaccine Research,University of Connecticut Health Center, 263 Farmington Avenue, Farmington CT 06030
| | - Julianne M. Zickovich
- Department of Immunology & Infectious Diseases, Montana State University, 960 Technology Boulevard, Bozeman MT 59718
| | - Leo Lefrançois
- Department of Immunology, Center for Integrated Immunology and Vaccine Research,University of Connecticut Health Center, 263 Farmington Avenue, Farmington CT 06030
| |
Collapse
|
16
|
Interleukin-18 suppresses angiogenesis and lymphangiogenesis in implanted Lewis lung cancer. Chin J Cancer Res 2010. [DOI: 10.1007/s11670-010-0303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
17
|
TNFα and TGF-β1 influence IL-18-induced IFNγ production through regulation of IL-18 receptor and T-bet expression. Cytokine 2010; 49:177-84. [DOI: 10.1016/j.cyto.2009.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/22/2009] [Accepted: 09/27/2009] [Indexed: 11/17/2022]
|
18
|
Attakpa E, Hichami A, Simonin AM, Sansón EG, Dramane KL, Khan NA. Docosahexaenoic acid modulates the expression of T-bet and GATA-3 transcription factors, independently of PPARα, through suppression of MAP kinase activation. Biochimie 2009; 91:1359-65. [PMID: 19799960 DOI: 10.1016/j.biochi.2009.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 09/24/2009] [Indexed: 02/02/2023]
Affiliation(s)
- Eugène Attakpa
- Laboratoire de Pharmacologie et d'Hormonologie, Département de Physiologie Animale, Faculté des Sciences et Techniques/Université d'Abomey-Calavi et Institut des Sciences Biomédicales Appliquées (ISBA), Cotonou, Benin
| | | | | | | | | | | |
Collapse
|
19
|
Balah A, Akool ES, Bachmann M, Pfeilschifter J, Mühl H. The dsRNA-mimetic poly (I:C) and IL-18 synergize for IFNgamma and TNFalpha expression. Biochem Biophys Res Commun 2009; 389:628-33. [PMID: 19761760 DOI: 10.1016/j.bbrc.2009.09.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 09/10/2009] [Indexed: 11/28/2022]
Abstract
Interleukin (IL)-18 bioactivity and dsRNA sensing by receptors of innate immunity are key components of anti-viral host defense. Despite extensive data on signal transduction activated by both pathways knowledge on cross-communication is incomplete. By using human PBMC and predendritic KG1 cells, as prototypic IL-18-responsive cellular models, we sought to assess cytokine production under the influence of IL-18 and the dsRNA-mimetic poly (I:C). Here, we report on potent synergy between both mediators concerning pro-inflammatory IFNgamma and TNFalpha production. KG1 data revealed that synergistic induction likely relied on TLR3 and was associated with prolonged/increased activation of NF-kappaB, as detected by IkappaB analysis and luciferase reporter assays, respectively. Moreover, extended activation of JNK was mediated by IL-18/poly (I:C). Although vital for innate immunity, overwhelming induction of inflammatory cytokines during viral infections poses the threat of serious collateral tissue damage. The stunning synergism inherent to IL-18/dsRNA-induced TNFalpha/IFNgamma detected herein may contribute to this pathological phenomenon.
Collapse
Affiliation(s)
- Amany Balah
- Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe-University, Theodor-Stern-Kai 7, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
20
|
Raices RM, Kannan Y, Sarkar A, Bellamkonda-Athmaram V, Wewers MD. A synergistic role for IL-1beta and TNFalpha in monocyte-derived IFNgamma inducing activity. Cytokine 2008; 44:234-41. [PMID: 18805021 DOI: 10.1016/j.cyto.2008.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 08/01/2008] [Accepted: 08/05/2008] [Indexed: 01/09/2023]
Abstract
Although much is known about classic IFNgamma inducers, little is known about the IFNgamma inducing capability of inflammasome-activated monocytes. In this study, supernatants from LPS/ATP-stimulated human monocytes were analyzed for their ability to induce IFNgamma production by KG-1 cells. Unexpectedly, monocyte-derived IFN inducing activity was detected, but it was completely inhibited by IL-1beta, not IL-18 blockade. Moreover, size-fractionation of the monocyte conditioned media dramatically reduced the IFNgamma inducing activity of IL-1beta, suggesting that IL-1beta requires a cofactor to induce IFNgamma production in KG-1 cells. Because TNFalpha is known to synergize with IL-1beta for various gene products, it was studied as the putative IL-1beta synergizing factor. Although recombinant TNFalpha (rTNFalpha) alone had no IFNgamma inducing activity, neutralization of TNFalpha in the monocyte conditioned media inhibited the IFNgamma inducing activity. Furthermore, rTNFalpha restored the IFNgamma inducing activity of the size-fractionated IL-1beta. Finally, rTNFalpha synergized with rIL-1beta, as well as with rIL-1alpha and rIL-18, for KG-1 IFNgamma release. These studies demonstrate a synergistic role between TNFalpha and IL-1 family members in the induction of IFNgamma production and give caution to interpretations of KG-1 functional assays designed to detect functional IL-18.
Collapse
Affiliation(s)
- Raquel M Raices
- The Ohio State University, Davis Heart and Lung Research Institute, Pulmonary, Allergy, Clinical Care and Sleep Medicine Division, 473 West 12th Avenue, Room 435, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
21
|
Seo M, Park M, Yook Y, Kwon YS, Suh YJ, Kim MJ, Cho D, Park JH. IL-18 gene expression pattern in exogenously treated AML cells. BMB Rep 2008; 41:461-5. [PMID: 18593530 DOI: 10.5483/bmbrep.2008.41.6.461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IL-18 production may enhance immune system defense against KG-1 cells ; NB4 cells, which are associated with good prognosis, do not produce IL-18. In this study, we treated KG-1 cells with IL-18 and used microarray technology to assess subsequent effects on gene expression. In UniGene-array of 7488 human genes, expression of 57 genes, including stress related genes, increased at least 2-fold, whereas expression of 48 genes decreased at least 2-fold. Following exogenous exposure of KG-1 cells to IL-18, expression of CRYGC, NF(kappa)BIA and NACA gene were monitored. The latter is a transcriptional coactivator potentiating c-Jun-mediated transcription. NF(kappa)BIA is an inhibitor of NF(kappa)B, and affects growth regulation, apoptosis and hypoxic stress. Studies, such as this one, are beginning to clarify the differences between cells associated with good and bad cancer prognoses, which may ultimately assist in medical treatment for acute myeloid leukemia.
Collapse
Affiliation(s)
- Minji Seo
- Department of Biological Science, Sookmyung Woman's University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Poleganov MA, Pfeilschifter J, Mühl H. Expanding extracellular zinc beyond levels reflecting the albumin-bound plasma zinc pool potentiates the capability of IL-1beta, IL-18, and IL-12 to Act as IFN-gamma-inducing factors on PBMC. J Interferon Cytokine Res 2008; 27:997-1001. [PMID: 18184040 DOI: 10.1089/jir.2007.0037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The mixed cell population of freshly isolated peripheral blood mononuclear cells (PBMCs) is a widely used cell culture model for studying human cytokine networks, in particular production of immunoregulatory interferon-gamma (IFN-gamma). Here, we demonstrate that nontoxic concentrations of zinc (15 muM), employed as zinc chloride (ZnCl(2)), that are about 2-fold of the readily accessible pool of albumin-bound zinc in the plasma, strongly enhance the potential of interleukin-1beta (IL-1beta) to act as an IFN-gamma-inducing factor on PBMCs. In contrast, zinc supplementation approximately resembling the albumin-bound plasma pool (7.5 muM) did not significantly affect cytokine-induced IFN-gamma secretion. ZnCl(2) also amplified IFN-gamma production under the influence of IL-12 or IL-18, whereas IL-1beta-induced IL-8 expression was not enhanced by the addition of ZnCl(2), indicating that the effect observed on cytokine-induced IFN-gamma is not of a general and unspecific nature. The current observation not only agrees with the immunoregulatory aspects of zinc as seen in vivo but also indicates that modulating the extracellular pool of accessible zinc may dramatically affect cytokine biology, as observed in experimental cell research.
Collapse
Affiliation(s)
- Marco A Poleganov
- pharmazentrum frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, 60590 Frankfurt am Main, Germany
| | | | | |
Collapse
|