1
|
La Monica G, Bono A, Alamia F, Lauria A, Martorana A. Bioisosteric heterocyclic analogues of natural bioactive flavonoids by scaffold-hopping approaches: State-of-the-art and perspectives in medicinal chemistry. Bioorg Med Chem 2024; 109:117791. [PMID: 38870715 DOI: 10.1016/j.bmc.2024.117791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/13/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
The flavonoid family is a set of well-known bioactive natural molecules, with a wide range of potential therapeutic applications. Despite the promising results obtained in preliminary in vitro/vivo studies, their pharmacokinetic and pharmacodynamic profiles are severely compromised by chemical instability. To address this issue, the scaffold-hopping approach is a promising strategy for the structural optimization of natural leads to discover more potent analogues. In this scenario, this Perspective provides a critical analysis on how the replacement of the chromon-4-one flavonoid core with other bioisosteric nitrogen/sulphur heterocycles might affect the chemical, pharmaceutical and biological properties of the resulting new chemical entities. The investigated derivatives were classified on the basis of their biological activity and potential therapeutic indications. For each session, the target(s), the specific mechanism of action, if available, and the key pharmacophoric moieties were highlighted, as revealed by X-ray crystal structures and in silico structure-based studies. Biological activity data, in vitro/vivo studies, were examined: a particular focus was given on the improvements observed with the new heterocyclic analogues compared to the natural flavonoids. This overview of the scaffold-hopping advantages in flavonoid compounds is of great interest to the medicinal chemistry community to better exploit the vast potential of these natural molecules and to identify new bioactive molecules.
Collapse
Affiliation(s)
- Gabriele La Monica
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| | - Alessia Bono
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| | - Federica Alamia
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| | - Antonino Lauria
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| | - Annamaria Martorana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy.
| |
Collapse
|
2
|
Sancheti SP, Mondal DJ, Patil NT. Fluorination of α-Imino Gold Carbenes to Access C 3-Fluorinated Aza-Heterocycles. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Shashank P. Sancheti
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Dibya Jyoti Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Nitin T. Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| |
Collapse
|
3
|
Anticancer Activity–Structure Relationship of Quinolinone-Core Compounds: An Overall Review. Pharm Chem J 2023. [DOI: 10.1007/s11094-023-02794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
4
|
Chen YF, Lawal B, Huang LJ, Kuo SC, Sumitra MR, Mokgautsi N, Lin HY, Huang HS. In Vitro and In Silico Biological Studies of 4-Phenyl-2-quinolone (4-PQ) Derivatives as Anticancer Agents. Molecules 2023; 28:555. [PMID: 36677621 PMCID: PMC9861105 DOI: 10.3390/molecules28020555] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Our previous study found that 2-phenyl-4-quinolone (2-PQ) derivatives are antimitotic agents, and we adopted the drug design concept of scaffold hopping to replace the 2-aromatic ring of 2-PQs with a 4-aromatic ring, representing 4-phenyl-2-quinolones (4-PQs). The 4-PQ compounds, whose structural backbones also mimic analogs of podophyllotoxin (PPT), maybe a new class of anticancer drugs with simplified PPT structures. In addition, 4-PQs are a new generation of anticancer lead compounds as apoptosis stimulators. On the other hand, previous studies showed that 4-arylcoumarin derivatives with 5-, 6-, and 7-methoxy substitutions displayed remarkable anticancer activities. Therefore, we further synthesized a series of 5-, 6-, and 7-methoxy-substituted 4-PQ derivatives (19-32) by Knorr quinoline cyclization, and examined their anticancer effectiveness. Among these 4-PQs, compound 22 demonstrated excellent antiproliferative activities against the COLO205 cell line (50% inhibitory concentration (IC50) = 0.32 μM) and H460 cell line (IC50 = 0.89 μM). Furthermore, we utilized molecular docking studies to explain the possible anticancer mechanisms of these 4-PQs by the docking mode in the colchicine-binding pocket of the tubulin receptor. Consequently, we selected the candidate compounds 19, 20, 21, 22, 25, 27, and 28 to predict their absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles. Pharmacokinetics (PKs) indicated that these 4-PQs displayed good drug-likeness and bioavailability, and had no cardiotoxic side effects or carcinogenicity, but we detected risks of drug-drug interactions and AMES toxicity (mutagenic). However, structural modifications of these 4-PQs could improve their PK properties and reduce their side effects, and their promising anticancer activities attracted our attention for further studies.
Collapse
Affiliation(s)
- Yi-Fong Chen
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medicine, China Medical University and Academia Sinica, Taichung 40402, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Bashir Lawal
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Li-Jiau Huang
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medicine, China Medical University and Academia Sinica, Taichung 40402, Taiwan
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Sheng-Chu Kuo
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medicine, China Medical University and Academia Sinica, Taichung 40402, Taiwan
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 40402, Taiwan
| | - Maryam Rachmawati Sumitra
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Ntlotlang Mokgautsi
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Hung-Yun Lin
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| | - Hsu-Shan Huang
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
5
|
Ryczkowska M, Maciejewska N, Olszewski M, Witkowska M, Makowiec S. Tetrahydroquinolinone derivatives exert antiproliferative effect on lung cancer cells through apoptosis induction. Sci Rep 2022; 12:19076. [PMID: 36352170 PMCID: PMC9646836 DOI: 10.1038/s41598-022-23640-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
The anticancer properties of quinolones is a topic of interest among researchers in the scientific world. Because these compounds do not cause side effects, unlike the commonly used cytostatics, they are considered a promising source of new anticancer drugs. In this work, we designed a brief synthetic pathway and obtained a series of novel 8-phenyltetrahydroquinolinone derivatives functionalized with benzyl-type moieties at position 3. The compounds were synthesized via classical reactions such as nucleophilic substitution, solvent lysis, and condensation. Biological evaluation revealed that 3-(1-naphthylmethyl)-4-phenyl-5,6,7,8-tetrahydro-1H-quinolin-2-one (4a) exhibited potent cytotoxicity toward colon (HTC-116) and lung (A549) cancer cell lines. Analysis of the mechanism of action of compounds showed that compound 4a induced cell cycle arrest at the G2/M phase, leading to apoptotic cell death via intrinsic and extrinsic pathways. Taken together, the findings of the study suggest that tetrahydroquinolinone derivatives bearing a carbonyl group at position 2 could be potential lead compounds to develop anticancer agents for the treatment of lung cancers.
Collapse
Affiliation(s)
- Małgorzata Ryczkowska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Natalia Maciejewska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Mateusz Olszewski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Milena Witkowska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Sławomir Makowiec
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland.
| |
Collapse
|
6
|
Bhadra K. A Mini Review on Molecules Inducing Caspase-Independent Cell Death: A New Route to Cancer Therapy. Molecules 2022; 27:molecules27196401. [PMID: 36234938 PMCID: PMC9572491 DOI: 10.3390/molecules27196401] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Most anticancer treatments trigger tumor cell death through apoptosis, where initiation of proteolytic action of caspase protein is a basic need. But under certain circumstances, apoptosis is prevented by the apoptosis inhibitor proteins, survivin and Hsp70. Several drugs focusing on classical programmed death of the cell have been reported to have low anti-tumorogenic potency due to mutations in proteins involved in the caspase-dependent programmed cell death with intrinsic and extrinsic pathways. This review concentrates on the role of anti-cancer drug molecules targeting alternative pathways of cancer cell death for treatment, by providing a molecular basis for the new strategies of novel anti-cancer treatment. Under these conditions, active agents targeting alternative cell death pathways can be considered as potent chemotherapeutic drugs. Many natural compounds and other small molecules, such as inorganic and synthetic compounds, including several repurposing drugs, are reported to cause caspase-independent cell death in the system. However, few molecules indicated both caspase-dependent as well caspase-free cell death in specific cancer lines. Cancer cells have alternative methods of caspase-independent programmed cell death which are equally promising for being targeted by small molecules. These small molecules may be useful leads for rational therapeutic drug design, and can be of potential interest for future cancer-preventive strategies.
Collapse
Affiliation(s)
- Kakali Bhadra
- Department of Zoology, University of Kalyani, Nadia, Kalyani 741235, India
| |
Collapse
|
7
|
Sun W, Sun F, Meng J, Cao X, Zhao S, Wang C, Li L, Jiang P. Design, semi-synthesis and bioactivity evaluation of novel podophyllotoxin derivatives as potent anti-tumor agents. Bioorg Chem 2022; 126:105906. [DOI: 10.1016/j.bioorg.2022.105906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/02/2022]
|
8
|
Lin J, Zhang L, Wang Z, Guan Q, Bao K, Wu L. G 2/M cell cycle arrest and apoptosis induced by COH-203 in human promyelocytic leukemia HL-60 cells. Oncol Lett 2021; 22:815. [PMID: 34671429 PMCID: PMC8503807 DOI: 10.3892/ol.2021.13076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 10/03/2019] [Indexed: 11/05/2022] Open
Abstract
The combretastatin A-4/oltipraz hybrid (COH), 5-(3-amino-4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)-3H-1,2-dithiole-3-one (COH-203) is one of the COH compounds synthesized by our previous study, which has been reported to affect a number of cancer cell lines, such as SGC-7901, KB, HT-1080, HepG2, SMMC-7721 and BEL-7402. The sensitivity of human acute leukemia cell lines to COH-203, and the mechanism underlying its anti-proliferative effects remain unknown, which was investigated in the present study. In the present study, it was demonstrated that COH-203 had notable time- and dose-dependent antiproliferative effects on the human acute promyelocytic leukemia HL-60 cell line. Furthermore, COH-203 treatment resulted in cell cycle arrest at G2/M phase in a dose-dependent manner, and subsequently induced apoptosis. Western blot analysis revealed that upregulation of cyclin B was associated with G2/M arrest. In addition, treatment with COH-203 resulted in downregulated expression of Bcl-2. This result revealed that COH-203-induced apoptosis in HL-60 cells may occur via the mitochondrial pathway in a caspase-dependent manner.
Collapse
Affiliation(s)
- Jihong Lin
- Department of Geratology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China.,Department of Circulatory, General Hospital of Fushun Mining Bureau, Fushun, Liaoning 113008, P.R. China
| | - Lei Zhang
- Department of Geratology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhiwei Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Qi Guan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Kai Bao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Lan Wu
- Department of Geratology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
9
|
Řehulka J, Vychodilová K, Krejčí P, Gurská S, Hradil P, Hajdúch M, Džubák P, Hlaváč J. Fluorinated derivatives of 2-phenyl-3-hydroxy-4(1H)-quinolinone as tubulin polymerization inhibitors. Eur J Med Chem 2020; 192:112176. [PMID: 32120327 DOI: 10.1016/j.ejmech.2020.112176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022]
Abstract
We have synthesized a series of 2-phenyl-3-hydroxy-4(1H)-quinolinone derivatives substituted with one or more fluorine atoms on the quinolone backbone as well as on phenyl ring. The derivatives bearing more fluorine atoms were subjected to modification by nucleophilic substitutions by thiophenol, morpholine, and piperazine derivative. We have tested the prepared compounds in cytotoxic activity assay against cancer cell lines. Four derivatives exhibited micromolar values of IC50 against some of the cancer cell lines, and we have subjected them to cell cycle analysis on CCRF-CEM. Moreover, most active 7-fluoro-3-hydroxy-2-phenyl-6-(phenylthio)quinolin-4(1H)-one inhibits mitosis progression. Cell cycle analysis, in vitro tubulin polymerization assay, and tubulin imaging in cells indicated that the anticancer activity of thiophenol derivative is associated with its ability to inhibit microtubule formation.
Collapse
Affiliation(s)
- Jiří Řehulka
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00, Olomouc, Czech Republic
| | - Kristýna Vychodilová
- Department of Organic Chemistry, Faculty of Science, Palacký University, Tř. 17. Listopadu 12, 771 46, Olomouc, Czech Republic
| | - Petr Krejčí
- Department of Organic Chemistry, Faculty of Science, Palacký University, Tř. 17. Listopadu 12, 771 46, Olomouc, Czech Republic
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00, Olomouc, Czech Republic
| | - Pavel Hradil
- Department of Organic Chemistry, Faculty of Science, Palacký University, Tř. 17. Listopadu 12, 771 46, Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00, Olomouc, Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00, Olomouc, Czech Republic.
| | - Jan Hlaváč
- Department of Organic Chemistry, Faculty of Science, Palacký University, Tř. 17. Listopadu 12, 771 46, Olomouc, Czech Republic.
| |
Collapse
|
10
|
Design, synthesis and biological evaluation of benzoylacrylic acid shikonin ester derivatives as irreversible dual inhibitors of tubulin and EGFR. Bioorg Med Chem 2019; 27:115153. [PMID: 31648877 DOI: 10.1016/j.bmc.2019.115153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022]
Abstract
In this study, a series of shikonin derivatives combined with benzoylacrylic had been designed and synthesized, which showed an inhibitory effect on both tubulin and the epidermal growth factor receptor (EGFR). In vitro EGFR and cell growth inhibition assay demonstrated that compound PMMB-317 exhibited the most potent anti-EGFR (IC50 = 22.7 nM) and anti-proliferation activity (IC50 = 4.37 μM) against A549 cell line, which was comparable to that of Afatinib (EGFR, IC50 = 15.4 nM; A549, IC50 = 6.32 μM). Our results on mechanism research suggested that, PMMB-317 could induce the apoptosis of A549 cells in a dose- and time-dependent manner, along with decrease in mitochondrial membrane potential (MMP), production of ROS and alterations in apoptosis-related protein levels. Also, PMMB-317 could arrest cell cycle at G2/M phase to induce cell apoptosis, and inhibit the EGFR activity through blocking the signal transduction downstream of the mitogen-activated protein MAPK pathway and the anti-apoptotic kinase AKT pathway; typically, such results were comparable to those of afatinib. In addition, PMMB-317 could suppress A549 cell migration through the Wnt/β-catenin signaling pathway in a dose-dependent manner. Additionally, molecular docking simulation revealed that, PMMB-317 could simultaneously combine with EGFR protein (5HG8) and tubulin (1SA0) through various forces. Moreover, 3D-QSAR study was also carried out, which could optimize our compound through the structure-activity relationship analysis. Furthermore, the in vitro and in vivo results had collectively confirmed that PMMB-317 might serve as a promising lead compound to further develop the potential therapeutic anticancer agents.
Collapse
|
11
|
Silva VLM, Silva AMS. Palladium-Catalysed Synthesis and Transformation of Quinolones. Molecules 2019; 24:E228. [PMID: 30634524 PMCID: PMC6359680 DOI: 10.3390/molecules24020228] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 12/31/2018] [Accepted: 01/04/2019] [Indexed: 11/16/2022] Open
Abstract
Palladium-catalysed reactions have had a large impact on synthetic organic chemistry and have found many applications in target-oriented synthesis. Their widespread use in organic synthesis is due to the mild conditions associated with the reactions together with their tolerance of a wide range of functional groups. Moreover, these types of reactions allow the rapid construction of complex molecules through multiple bond-forming reactions in a single step, the so-called tandem processes. Pd-catalysed reactions have been applied to the synthesis of a large number of natural products and bioactive compounds, some of them of complex molecular structures. This review article aims to present an overview of the most important Pd-catalysed reactions employed in the synthesis and transformations of quinolin-2(1H)-ones and quinolin-4(1H)-ones. These compounds are widely recognized by their diverse bioactivity, being privileged structures in medicinal chemistry and useful structural moieties for the development of new drug candidates. Furthermore, they hold significant interest due to their host⁻guest chemistry; applications in chemical, biochemical and environmental analyses and use in the development of new synthetic methods. In some cases, the quinolone formation step cannot be ascribed to a claimed Pd-catalysed reaction but this reaction is crucial to get the appropriate substrate for cyclization into the quinolone. Herein we present and discuss different economical, efficient and selective synthetic strategies to access quinolone-type compounds.
Collapse
Affiliation(s)
- Vera L M Silva
- Department of Chemistry QOPNA and LAQV-REQUIMTE, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Artur M S Silva
- Department of Chemistry QOPNA and LAQV-REQUIMTE, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
12
|
Lin HY, Han HW, Sun WX, Yang YS, Tang CY, Lu GH, Qi JL, Wang XM, Yang YH. Design and characterization of α -lipoic acyl shikonin ester twin drugs as tubulin and PDK1 dual inhibitors. Eur J Med Chem 2018; 144:137-150. [DOI: 10.1016/j.ejmech.2017.12.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 01/05/2023]
|
13
|
CWF-145, a novel synthetic quinolone derivative exerts potent antimitotic activity against human prostate cancer: Rapamycin enhances antimitotic drug-induced apoptosis through the inhibition of Akt/mTOR pathway. Chem Biol Interact 2016; 260:1-12. [DOI: 10.1016/j.cbi.2016.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 09/27/2016] [Accepted: 10/17/2016] [Indexed: 01/27/2023]
|
14
|
Shen CH, Lin TH, Hsieh YL, Shen CY, Kuo SC, Wu HC, Chien WS, Hsieh DJY, Wen SY, Ting WJ, Yao CH, Huang CY. Mitotic arrest induced in human DU145 prostate cancer cells in response to KHC-4 treatment. ENVIRONMENTAL TOXICOLOGY 2016; 31:1879-1887. [PMID: 26305502 DOI: 10.1002/tox.22189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 07/20/2015] [Accepted: 07/26/2015] [Indexed: 06/04/2023]
Abstract
In this study, the antitumor activity of KHC-4 was analyzed using human prostate cancer (CaP) cells and the underlining anticancer mechanisms of KHC-4 were identified. KHC-4 inhibited cell proliferation and induced cytotoxicity in the castration-resistant CaP DU145 cell line. The most effective concentration of KHC-4 was 0.1 μM. Cell cycle analysis demonstrated that KHC-4 treatment caused G2/M arrest and a subsequent increase in the sub-G1 population. Furthermore, KHC-4 is up-regulated p21, p27, and p53 in a time- and concentration-dependent manner. The exposure of cells to KHC-4 induced Cdk1/cyclin B1 complex activity, which led to cell cycle arrest. Moreover, KHC-4 inhibited the activities of MMP-2 and MMP-9 to inhibit tumor cell metastasis. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1879-1887, 2016.
Collapse
Affiliation(s)
- Cheng-Huang Shen
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 600, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Tien-Huang Lin
- Division of Urology, Buddhist Tzu-Chi General Hospital Taichung Branch, Taichung, Taiwan
| | - You-Liang Hsieh
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Chia-Yao Shen
- Department of Nursing, MeiHo University, Pingtung, Taiwan
| | - Sheng-Chu Kuo
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan
| | - Hsi-Chin Wu
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Shin Chien
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Su-Ying Wen
- Department of Dermatology, Taipei City Hospital, Renai Branch, Taiwan, Taipei
| | - Wei-Jen Ting
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chun-Hsu Yao
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Biomedical Informatics, Asia University, Taichung, Taiwan
- Biomaterials Translational Research Center, China medical university hospital, Taichung, Taiwan
| | - Chih-Yang Huang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
15
|
Mochalov SS, Fedotov AN, Trofimova EV, Zefirov NS. Transformations of N-(2-acylaryl)benzamides and their analogs under the Camps cyclization conditions. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2016. [DOI: 10.1134/s107042801607006x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Yang L, Yuan Y, Fu C, Xu X, Zhou J, Wang S, Kong L, Li Z, Guo Q, Wei L. LZ-106, a novel analog of enoxacin, inducing apoptosis via activation of ROS-dependent DNA damage response in NSCLCs. Free Radic Biol Med 2016; 95:155-68. [PMID: 27012423 DOI: 10.1016/j.freeradbiomed.2016.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/29/2016] [Accepted: 03/17/2016] [Indexed: 01/09/2023]
Abstract
Lung cancer, especially non-small-cell lung cancer (NSCLC), plays the leading role in cancer which is closely related to a myriad of fatal results. Unfortunately, current molecular mechanisms and clinical treatment of NSCLC still remain to be explored despite the fact that intensive investigations have been carried out in the last two decades. Recently, growing attention to finding exploitable sources of anticancer agents is refocused on quinolone compounds, an antibiotic with a long period of clinic application, for their remarkable cell-killing activity against not only bacteria, but eukaryotes as well. In this study, we found LZ-106, an analog of enoxacin, exhibiting potent inhibitory effects on NSCLC in both cultured cells and xenograft mouse model. We identified apoptosis-inducing action of LZ-106 in NSCLC cells through the mitochondrial and endoplasmic reticulum (ER)-stress apoptotic pathways via Annexin-V/PI double-staining assay, membrane potential detection, calcium level detection and the expression analysis of the key apoptotic proteins. Through comet assay, reactive oxygen species (ROS) detection, the expression analysis of DNA damage response (DDR) marker γ-H2AX and other DDR-related proteins, we also demonstrated that LZ-106 notably induced ROS overproduction and DDR. Interestingly, additional evidence in our findings revealed that DDR and apoptosis could be alleviated in the presence of ROS scavenger N-acetyl-cysteine (NAC), indicating ROS-dependent DDR involvement in LZ-106-induced apoptosis. Thus our data not only offered a new therapeutic candidate for NSCLC, but also put new insights into the pharmacological research of quinolones.
Collapse
Affiliation(s)
- Lin Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yinan Yuan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Chengyu Fu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Xuefen Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jieying Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Shuhao Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Zhiyu Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| | - Libin Wei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
17
|
Vedarethinam V, Dhanaraj K, Ilavenil S, Arasu MV, Choi KC, Al-Dhabi NA, Srisesharam S, Lee KD, Kim DH, Dhanapal T, Sivanesan R, Choi HS, Kim YO. Antitumor Effect of the Mannich Base(1,3-bis-((3-Hydroxynaphthalen-2-yl)phenylmethyl)urea) on Hepatocellular Carcinoma. Molecules 2016; 21:E632. [PMID: 27187346 PMCID: PMC6273734 DOI: 10.3390/molecules21050632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 01/26/2023] Open
Abstract
The present study was designed to evaluate the antitumor effects of the synthetic Mannich base 1,3-bis-((3-hydroxynaphthalen-2-yl)phenylmethyl)urea (1,3-BPMU) against HEP-G2 hepatoma cells and diethylnitrosamine (DEN)-induced hepatocarcinoma (HCC) in albino rats. In vitro analysis results revealed that 1,3-BPMU showed significant cytotoxicity and cell growth inhibition in HEP-G2 hepatoma cells in a concentration-dependent manner. Furthermore, flow cytometry results indicated that 1,3-BPMU enhanced early and late apoptosis. The maximum apoptosis was exhibited at a concentration of 100 μg/mL of 1,3-BPMU. In in vivo analysis, DEN treatment increased the content of nucleic acids, LPO and the activities of AST, ALT, ALP, LDH, γGT and 5'NT with decreased antioxidant activity as compared to control rats. However, 1,3-BPMU treatment to DEN-induced rats decreased the content of nucleic acids, LPO and the activities of AST, ALT, ALP, LDH, γGT and 5'NT and increased the activities of SOD, CAT, GPx, GST and GR (p < 0.05). Furthermore, 1,3-BPMU enhanced the apoptosis via upregulation of caspase-3 and caspase-9 and the downregulation of Bcl-2 and Bcl-XL mRNA expression as compared to DEN-induced rats. Histological and ultrastructural investigation showed that 1,3-BPMU treatment renovated the internal architecture of the liver in DEN-induced rats. In this study, the molecular and pre-clinical results obtained by treatment of DEN-induced rats with 1,3-BPMU suggested that 1,3-BPMU might be considered as an antitumor compound in the future.
Collapse
Affiliation(s)
| | - Karthik Dhanaraj
- Department of Biotechnology, PRIST University, Thanjavur, Tamilnadu 613-403, India.
| | - Soundharrajan Ilavenil
- Grassland and Forage Division, National Institute of Animal Science, Chungnam 330-808, Korea.
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, Chungnam 330-808, Korea.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Srigopalram Srisesharam
- Grassland and Forage Division, National Institute of Animal Science, Chungnam 330-808, Korea.
| | - Kyung Dong Lee
- Department of Oriental Medicine Materials, Dongshin University, Naju 520-714, Korea.
| | - Da Hye Kim
- United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8550, Japan.
| | | | - Ravikumar Sivanesan
- Department of Biotechnology, PRIST University, Thanjavur, Tamilnadu 613-403, India.
| | - Han Sung Choi
- Department of Emergency Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Young Ock Kim
- Development of Ginseng and Medical Plants Research Institute, Rural Administration, Eumseong 369-873, Korea.
| |
Collapse
|
18
|
Zhang P, Wang Y, Xu P, Song S, Zhu X, Shi Z, Gao S, Feng X. Chondromodulin-1 functions as a tumor suppressor in gastric adenocarcinoma. Int J Oncol 2015; 47:941-50. [PMID: 26165347 DOI: 10.3892/ijo.2015.3081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/25/2015] [Indexed: 11/05/2022] Open
Abstract
Chondromodulin-1 (ChM1) is a cartilage-specific glycoprotein that stimulates the growth of chondrocytes and inhibits the tube formation of endothelial cells. Endogenously, ChM1 is expressed in the cartilage and is an anti-angiogenic factor. ChM1 has been reported to suppress the proliferation of multiple human tumor cells in an anchorage-independent manner. However, the role of ChM1 in carcinogenesis of gastric cancer remains unknown. By quantitative RT-PCR and western blotting we examined the expression of ChM1 in gastric cancer tissue and normal gastric tissue. In vitro we investigated the functional and mechanistic roles of ChM1 in the inhibition of gastric cancer cell aggressiveness. We observed that ChM1 expression was remarkably downregulated in gastric cancer cell lines compared with the immortal normal gastric epithelial cell line GES-1. Importantly, ChM1 was frequently downregulated in gastric cancer tissue compared with normal gastric tissue. Low ChM1 mRNA expression was associated with higher clinical stages, higher lymph node metastasis, and poorer prognosis of patients. Functional assays in vitro showed that ectopic expression of ChM1 was able to inhibit gastric tumor cell proliferation by arresting the cell cycle. Overall, our findings indicate that ChM1 is a potential tumor suppressor in gastric cancer, suggesting that it may be useful as a biomarker for the treatment and prognosis of gastric cancer.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Ying Wang
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Po Xu
- Department of Urology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Shiyuan Song
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Xiaojuan Zhu
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Zhenguo Shi
- Department of Urology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Shegan Gao
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Xiaoshan Feng
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
19
|
Inhibition of the insulin-like growth factor 1 receptor by CHM-1 blocks proliferation of glioblastoma multiforme cells. Chem Biol Interact 2015; 231:119-26. [DOI: 10.1016/j.cbi.2015.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/16/2014] [Accepted: 01/09/2015] [Indexed: 12/24/2022]
|
20
|
Annamalai P, Thayman M, Rajan S, Raman LS, Ramasubbu S, Perumal P. Ethyl acetate extract from marine sponge Hyattella cribriformis exhibit potent anticancer activity by promoting tubulin polymerization as evidenced mitotic arrest and induction of apoptosis. Pharmacogn Mag 2015; 11:345-55. [PMID: 25829774 PMCID: PMC4378133 DOI: 10.4103/0973-1296.153088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/18/2014] [Accepted: 03/12/2015] [Indexed: 11/04/2022] Open
Abstract
Background: Marine sponges are important sources of bioactive compounds. Objective: This study investigated the anticancer properties of Hyattella cribriformis ethyl acetate (EA) fraction in various cancer and normal cell lines. Materials and Methods: anticancer assay was carried out in 15 cell lines to evaluate the anticancer potential of the EA fraction. Impact on cell cycle distribution was determined using flow cytometry. The fraction was investigated for interfering microtubules assembly in both in vitro and cellular assay. Further studies were conducted to determine the fraction induced cell death (apoptosis) using calcein/propidium iodide dual staining, activated caspase-3 and phosphorylation of Bcl-2 protein at Ser70. DNA fragmentation assay was performed to confirm the apoptosis. Results: EA fraction exhibited potent inhibition of cancer cell growth and resulted in 50% growth inhibition (GI50) of 0.27 μg/mL in A673 cell line. Sarcoma (MG-63, Saos-2) and ovarian (SK-OV-3 and OVCAR-3) cancer cell lines also showed superior anticancer activity GI50 of 1.0 μg/mL. Colon and breast cancer cell lines exhibited moderate GI compare other cancer cell lines and normal human lung fibroblast showed GI50 of 15.6 μg/mL. EA fraction showed potent G2/M phase arrest in A673 cell line and induced apoptosis at 48 h exposure. EA fraction promoted microtubule polymerization in tubulin polymerization assay and increased level of polymerized tubulin in the HeLa cells. Fraction induced the activation of caspase-3 and phosphorylation of Bcl-2 anti-apoptotic protein. Fraction induced DNA fragmentation in HeLa cells as evidence of apoptosis. Conclusion: Marine sponge H. cribriformis EA fraction exhibited potent anticancer activity through tubulin polymerization and induction of apoptosis.
Collapse
Affiliation(s)
| | - Malini Thayman
- Department of Cell and Molecular Biology, Central Research Facility, Sri Ramachandra University, Porur, Chennai, India
| | - Sowmiya Rajan
- Department of Biotechnology, Periyar University, Karuppur, Salem, India
| | - Lakshmi Sundaram Raman
- Department of Cell and Molecular Biology, Central Research Facility, Sri Ramachandra University, Porur, Chennai, India
| | - Sankar Ramasubbu
- Department of Discovery Biology, AURA Biotechnologies Private Limited, Uthandi, Chennai, Tamil Nadu, India
| | | |
Collapse
|
21
|
Liu CY, Cheng YY, Chang LC, Huang LJ, Chou LC, Huang CH, Tsai MT, Liao CC, Hsu MH, Lin HY, Wu TS, Wen YF, Zhao Y, Kuo SC, Lee KH. Design and synthesis of new 2-arylnaphthyridin-4-ones as potent antitumor agents targeting tumorigenic cell lines. Eur J Med Chem 2015; 90:775-87. [PMID: 25528332 PMCID: PMC4403237 DOI: 10.1016/j.ejmech.2014.11.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/26/2014] [Accepted: 11/30/2014] [Indexed: 11/24/2022]
Abstract
To develop new anticancer drug candidates from 2-arylnaphthyridin-4-one (AN), we have designed and synthesized a series of 3'-hydroxy and 6-hydroxy derivatives of AN. The results of cytotoxicity screening indicated that the replacement of the 3'-methoxy moiety on the C-ring phenyl group of AN (6a-e) with 3'-hydroxy (7a-e) made no significant effect on the inhibitory activity against HL-60, Hep3B and NCI-H460 cancer cell lines. On the other hand, replacing the 6-methoxy group on the A-ring of AN (6g-i) with a 6-hydroxy group (7g-i) resulted in reduced inhibitory activity against the above three cancer cell lines. Among the above-mentioned target compounds, 2-(3-hydroxyphenyl)-5-methyl-1,8-naphthyridin-4(1H)-one (7a) demonstrated the greatest potency and the best selectivity toward tumorigenic cancer cell lines. In a 7a preliminary mechanism of action study in Hep3B hepatoma cells, 7a showed the effects on microtubules followed by cell cycle arrest and sequentially led to apoptosis. In addition, a phosphate prodrug (11) of 7a exhibited significant antitumor activity when tested in a Hep3B xenograft nude mice model. Since compound 11 has demonstrated good development potential, it is recommended for further preclinical studies.
Collapse
Affiliation(s)
- Chin-Yu Liu
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Yung-Yi Cheng
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Ling-Chu Chang
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Li-Jiau Huang
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Li-Chen Chou
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan; Graduate School of Biotechnology, Hung Kuang University, No. 1018, Sec. 6 Taiwan Boulevard, Shalu District, Taichung 43302, Taiwan
| | - Chi-Hung Huang
- Graduate School of Biotechnology, Hung Kuang University, No. 1018, Sec. 6 Taiwan Boulevard, Shalu District, Taichung 43302, Taiwan
| | - Meng-Tung Tsai
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Chih-Chang Liao
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Mei-Hua Hsu
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Hui-Yi Lin
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Tian-Shung Wu
- Department of Chemistry, National Cheng Kung University, No. 1 Dasyue Road, Tainan 70101, Taiwan
| | - Yen-Fang Wen
- Industrial Technology Research Institute, No. 195, Sec. 4 Chung Hsing Rd., Chutung, Hsinchu 31040, Taiwan
| | - Yu Zhao
- Kunming Institute of Botany, Chinese Academy of Sciences, No. 132 Lanhei Road, Heilongtan, Kunming, Yunnan 650201, China; Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sheng-Chu Kuo
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan; Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; Chinese Medicine Research and Development Center, China Medical University and Hospital, 2 Yuh-Der Road, Taichung 40447, Taiwan.
| |
Collapse
|
22
|
Lin HY, Li ZK, Han HW, Qiu HY, Gu HW, Yang YH, Wang XM. Synthesis of novel aryl dithian valeryl podophyllotoxin ester derivatives as potential antitubulin agents. RSC Adv 2015. [DOI: 10.1039/c5ra04902d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
L4 can cause A549 cell cycle arrest in the G2/M phase potently by disrupting tubulin polymerization.
Collapse
Affiliation(s)
- Hong-Yan Lin
- State Key Laboratory of Pharmaceutical Biotechnology
- NJU-NJFU Joint Institute of Plant Molecular Biology
- Nanjing University
- Nanjing
- China
| | - Zi-Kang Li
- State Key Laboratory of Pharmaceutical Biotechnology
- NJU-NJFU Joint Institute of Plant Molecular Biology
- Nanjing University
- Nanjing
- China
| | - Hong-Wei Han
- State Key Laboratory of Pharmaceutical Biotechnology
- NJU-NJFU Joint Institute of Plant Molecular Biology
- Nanjing University
- Nanjing
- China
| | - Han-Yue Qiu
- State Key Laboratory of Pharmaceutical Biotechnology
- NJU-NJFU Joint Institute of Plant Molecular Biology
- Nanjing University
- Nanjing
- China
| | - Hong-Wei Gu
- State Key Laboratory of Pharmaceutical Biotechnology
- NJU-NJFU Joint Institute of Plant Molecular Biology
- Nanjing University
- Nanjing
- China
| | - Yong-Hua Yang
- State Key Laboratory of Pharmaceutical Biotechnology
- NJU-NJFU Joint Institute of Plant Molecular Biology
- Nanjing University
- Nanjing
- China
| | - Xiao-Ming Wang
- State Key Laboratory of Pharmaceutical Biotechnology
- NJU-NJFU Joint Institute of Plant Molecular Biology
- Nanjing University
- Nanjing
- China
| |
Collapse
|
23
|
Seixas RSGR, Almeida AIS, Pereira SIG, Cavaleiro JAS, Silva AMS. Diastereoselective syntheses of (Z)- and (E)-3-styrylquinolin-4(1H)-ones. MONATSHEFTE FUR CHEMIE 2014. [DOI: 10.1007/s00706-014-1263-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Anilides and quinolones with nitrogen-bearing substituents from benzothiophene and thienothiophene series: Synthesis, photochemical synthesis, cytostatic evaluation, 3D-derived QSAR analysis and DNA-binding properties. Eur J Med Chem 2014; 71:267-81. [DOI: 10.1016/j.ejmech.2013.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 11/04/2013] [Accepted: 11/07/2013] [Indexed: 12/24/2022]
|
25
|
Lin HY, Han HW, Bai LF, Qiu HY, Yin DZ, Qi JL, Wang XM, Gu HW, Yang YH. Design, synthesis and biological evaluation of shikonin thio-glycoside derivatives: new anti-tubulin agents. RSC Adv 2014. [DOI: 10.1039/c4ra08810g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Among the acetyl-β-d-thio-glycoside modified shikonin derivatives, IIb showed the best cancer cell proliferative inhibition effect via inhibiting tubulin polymerization.
Collapse
Affiliation(s)
- Hong-Yan Lin
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, P. R. China
| | - Hong-Wei Han
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, P. R. China
| | - Li-Fei Bai
- School of Life Sciences and Chemistry
- Jiangsu Second Normal University
- Nanjing 210093, P. R. China
| | - Han-Yue Qiu
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, P. R. China
| | - De-Zheng Yin
- Kuang Yaming Honors School
- Nanjing University
- Nanjing 210093, P. R. China
| | - Jin-Liang Qi
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, P. R. China
| | - Xiao-Ming Wang
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, P. R. China
| | - Hong-Wei Gu
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, P. R. China
| | - Yong-Hua Yang
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, P. R. China
| |
Collapse
|
26
|
Fan CH, Liu WL, Cao H, Wen C, Chen L, Jiang G. O6-methylguanine DNA methyltransferase as a promising target for the treatment of temozolomide-resistant gliomas. Cell Death Dis 2013; 4:e876. [PMID: 24157870 PMCID: PMC4648381 DOI: 10.1038/cddis.2013.388] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/21/2013] [Accepted: 08/21/2013] [Indexed: 01/05/2023]
Abstract
Temozolomide (TMZ) is an alkylating agent currently used as first-line therapy for gliomas treatment due to its DNA-damaging effect. However, drug resistance occurs, preventing multi-cycle use of this chemotherapeutic agent. One of the major mechanisms of cancer drug resistance is enhanced activity of a DNA repair enzyme, O(6)-methylguanine-DNA-methyltransferase (MGMT), which counteracts chemotherapy-induced DNA alkylation and is a key component of chemoresistance. MGMT repairs TMZ-induced DNA lesions, O(6)-meG, by transferring the alkyl group from guanine to a cysteine residue. This review provides an overview of recent advances in the field, with particular emphasis on the inhibitors of MGMT and underlying mechanisms. Literature search was performed through PubMed and all relevant articles were reviewed, with particular attention to MGMT, its role in TMZ-resistant gliomas, effects of MGMT inhibitors and the underlying mechanisms. Several strategies are currently being pursued to improve the therapeutic efficacy of TMZ via inhibition of MGMT to reduce chemoresistance and improve overall survival. MGMT may be a promising target for the treatment of TMZ-resistant gliomas.
Collapse
Affiliation(s)
- C-H Fan
- Xuzhou Children's Hospital, Xuzhou 221006, China
| | | | | | | | | | | |
Collapse
|
27
|
Cheng YY, Liu CY, Tsai MT, Lin HY, Yang JS, Wu TS, Kuo SC, Huang LJ, Lee KH. Design, synthesis, and mechanism of action of 2-(3-hydroxy-5-methoxyphenyl)-6-pyrrolidinylquinolin-4-one as a potent anticancer lead. Bioorg Med Chem Lett 2013; 23:5223-7. [PMID: 23916255 PMCID: PMC3773863 DOI: 10.1016/j.bmcl.2013.06.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/24/2013] [Accepted: 06/27/2013] [Indexed: 11/20/2022]
Abstract
New 6- (or 6,7-) substituted 2-(hydroxyl substituted phenyl)quinolin-4-one derivatives were synthesized and screened for antiproliferative effects against cancer cell lines. Structure-activity relationship correlations were established and the most promising compound 2-(3-hydroxy-5-methoxyphenyl)-6-pyrrolidin-1-ylquinolin-4-one (6h) exhibited strong inhibitory activity against various human cancer cell lines, particularly non-small cell lung cancer NCI-H522. Additional studies suggested a mechanism of action resembling that of the antimitotic drug vincristine. The presence of a C-ring OH group in 6h will allow this compound to be converted readily to a water soluble and physicochemically stable hydrophilic prodrug. Compound 6h is proposed as a new anticancer lead compound.
Collapse
Affiliation(s)
- Yung-Yi Cheng
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan, 40402, R.O.C
| | - Chin-Yu Liu
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan, 40402, R.O.C
| | - Meng-Tung Tsai
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan, 40402, R.O.C
| | - Hui-Yi Lin
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan, 40402, R.O.C
| | - Jai-Sing Yang
- Department of Pharmacology, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan, 40402, R.O.C
| | - Tian-Shung Wu
- Department of Chemistry, National Cheng Kung University, No. 1, Dasyue Road, Tainan, Taiwan
| | - Sheng-Chu Kuo
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan, 40402, R.O.C
- Chinese Medicine Research and Development Center, China Medical University and Hospital, 2 Yuh-Der Road, Taichung, Taiwan, 40447, R.O.C
| | - Li-Jiau Huang
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, No.91 Hsueh-Shih Road, Taichung, Taiwan, 40402, R.O.C
| | - Kuo-Hsiung Lee
- Chinese Medicine Research and Development Center, China Medical University and Hospital, 2 Yuh-Der Road, Taichung, Taiwan, 40447, R.O.C
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
28
|
Sun JP, Shi ZY, Liu SM, Kang YH, Hu GQ, Huangfu CS, Deng JB, Liu B. Trimethoxy-benzaldehyde levofloxacin hydrazone inducing the growth arrest and apoptosis of human hepatocarcinoma cells. Cancer Cell Int 2013; 13:67. [PMID: 23819802 PMCID: PMC3716872 DOI: 10.1186/1475-2867-13-67] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/25/2013] [Indexed: 11/29/2022] Open
Abstract
Background In order to search for new structural modification strategies on fluoroquinolones, we have designed and synthesized a series of fluoroquinolone derivatives by linking various hydrazine compounds to the C-3 carboxyl group of levofloxacin and assessed their anticancer activities. Several novel levofloxacin derivatives displayed potent cytotoxicity against the tested cancer cell lines in vitro. In the present study, we investigated the effect of 1-Cyclopropyl-6-fluoro-4-oxo-7- piperazin-1, 4-dihydro- quinoline- 3-carboxylic acid benzo [1,3] dioxol-5- ylmethylene- hydrazide (QNT11) on the apoptosis of human hepatocarcinoma cells in vitro. Methods The inhibition effects of QNT11 on cell proliferation were examined by MTT assay. Cell apoptosis was determined by TUNEL and DNA agarose gel electrophoresis method. The topoisomerase ΙΙ activity was measured by agarose gel electrophoresis using Plasmid pBR322 DNA as the substrate. Cell cycle progression was analyzed using flow cytometry in conjunction with ethanol fixation and propidium iodide staining. Mitochondrial membrane potential (△ψm) was measured by high content screening image system. The caspase-9, caspase-8, caspase-3, Bcl-2, Bax, CDK1, Cyclin B1and cytochrome c protein expressions were detected by Western blot analysis. Results QNT11 showed selective cytotoxicity against Hep3B, SMMC-7721, MCF-7 and HCT-8 cell lines with IC50 values of 2.21 μM, 2.38 μM, 3.17 μM and 2.79 μM, respectively. In contrast, QNT11 had weak cytotoxicity against mouse bone marrow mesenchymal stem cells (BMSCs) with IC50 value of 7.46 μM. Treatment of Hep3B cells with different concentrations of QNT11 increased the percentage of the apoptosis cells significantly, and agarose gel electrophoresis revealed the ladder DNA bands typical of apoptotic cells, with a decrease in the mitochondrial membrane potential. Compared to the control group, QNT11 could influence the DNA topoisomerase IIactivity and inhibit the religation of DNA strands, thus keeping the DNA in fragments. There was a significant increase of cytochrome c in the cytosol after 24 h of treatment with QNT11 and a decrease in the mitochondrial compartment. Observed changes in cell cycle distribution by QNT11 treated might be caused by insufficient preparation for G2/M transition. In addition, QNT11 increased the protein expression of Bax, caspase-9, caspase-8, caspase-3, as well as the cleaved activated forms of caspase-9, caspase-8 and caspase-3 significantly, whereas the expression of Bcl-2 decreased. Conclusions Our results showed that QNT11 as a fluoroquinolone derivative exerted potent and selectively anticancer activity through the mechanism of eukaryotic topoisomerase II poisoning. The growth inhibition was in large part mediated via apoptosis-associated mitochondrial dysfunction and regulation of Bcl-2 signaling pathways.
Collapse
Affiliation(s)
- Jin-Ping Sun
- College of Nursing, Institute of Neurobiology, Henan University, Kaifeng, China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
β-Cyclodextrin inclusion complex to improve physicochemical properties of pipemidic acid: characterization and bioactivity evaluation. Int J Mol Sci 2013; 14:13022-41. [PMID: 23799358 PMCID: PMC3742172 DOI: 10.3390/ijms140713022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/08/2013] [Accepted: 06/13/2013] [Indexed: 11/22/2022] Open
Abstract
The aptitude of cyclodextrins (CDs) to form host-guest complexes has prompted an increase in the development of new drug formulations. In this study, the inclusion complexes of pipemidic acid (HPPA), a therapeutic agent for urinary tract infections, with native β-CD were prepared in solid state by kneading method and confirmed by FT-IR and 1H NMR. The inclusion complex formation was also characterized in aqueous solution at different pH via UV-Vis titration and phase solubility studies obtaining the stability constant. The 1:1 stoichiometry was established by a Job plot and the inclusion mechanism was clarified using docking experiments. Finally, the antibacterial activity of HPPA and its inclusion complex was tested on P. aeruginosa, E. coli and S. aureus to determine the respective EC50s and EC90s. The results showed that the antibacterial activity of HPPA:β-CD against E. coli and S. aureus is higher than that of HPPA. Furthermore, HPPA and HPPA:β-CD, tested on human hepatoblastoma HepG2 and MCF-7 cell lines by MTT assay, exhibited, for the first time, antitumor activities, and the complex revealed a higher activity than that of HPPA. The use of β-CD allows an increase in the aqueous solubility of the drug, its bioavailability and then its bioactivity.
Collapse
|
30
|
Hwang JM, Ting WJ, Wu HC, Chen YJ, Tsai FJ, Chen PY, Liu CY, Chou LC, Kuo SC, Huang CY. KHC-4 anti-cancer effects on human PC3 prostate cancer cell line. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 40:1063-71. [PMID: 22928835 DOI: 10.1142/s0192415x12500784] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A bicyclic chemical structure, such as that found in flavonoids, was discovered to have anti-cancer activity. Further synthetic structural modification created a series of 2-phenyl-4-quinolone analogs, especially KHC-4, with the same bicyclic chemical structure. This new structure was reported to have stronger anti-cancer activity. In KHC-4 treatments for 72 h on human prostate cancer PC3 cells, cytotoxic effects (IC(50) =0.1 μM) increased dose dependently, causing Cdk1/cyclin B1 complex activity mannered cell cycle and proliferation. KHC-4 treatments suppressed Bcl-2 and Bcl-xL protein levels and upregulated Bax. At the same concentration, pro-caspase 9 protein was cleaved to an activated form, leading to cell apoptosis. Furthermore, the MMP-2 protein levels also decreased through KHC-4 treatment in PC3. In conclusion, KHC-4 presents great prostate cancer therapeutic effects for cell proliferation inhibition, induction of apoptosis and protection against tumor migration.
Collapse
Affiliation(s)
- Jin-Ming Hwang
- School of Applied Chemistry, Chung Shan Medical University, Taichung, Taiwan , Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Williamson EA, Damiani L, Leitao A, Hu C, Hathaway H, Oprea T, Sklar L, Shaheen M, Bauman J, Wang W, Nickoloff JA, Lee SH, Hromas R. Targeting the transposase domain of the DNA repair component Metnase to enhance chemotherapy. Cancer Res 2012; 72:6200-8. [PMID: 23090115 DOI: 10.1158/0008-5472.can-12-0313] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Previous studies have shown that the DNA repair component Metnase (SETMAR) mediates resistance to DNA damaging cancer chemotherapy. Metnase has a nuclease domain that shares homology with the Transposase family. We therefore virtually screened the tertiary Metnase structure against the 550,000 compound ChemDiv library to identify small molecules that might dock in the active site of the transposase nuclease domain of Metnase. We identified eight compounds as possible Metnase inhibitors. Interestingly, among these candidate inhibitors were quinolone antibiotics and HIV integrase inhibitors, which share common structural features. Previous reports have described possible activity of quinolones as antineoplastic agents. Therefore, we chose the quinolone ciprofloxacin for further study, based on its wide clinical availability and low toxicity. We found that ciprofloxacin inhibits the ability of Metnase to cleave DNA and inhibits Metnase-dependent DNA repair. Ciprofloxacin on its own did not induce DNA damage, but it did reduce repair of chemotherapy-induced DNA damage. Ciprofloxacin increased the sensitivity of cancer cell lines and a xenograft tumor model to clinically relevant chemotherapy. These studies provide a mechanism for the previously postulated antineoplastic activity of quinolones, and suggest that ciprofloxacin might be a simple yet effective adjunct to cancer chemotherapy.
Collapse
Affiliation(s)
- Elizabeth A Williamson
- Department of Medicine, University of Florida and Shands Health Care System, Gainesville, Florida, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
CHENG YUNGYI, YANG JAISING, TSAI SHIHCHANG, LIAW CHIHCHUANG, CHUNG JINGGUNG, HUANG LIJIAU, LEE KUOHSIUNG, LU CHICHENG, CHIEN HSICHENG, TSUZUKI MINORU, KUO SHENGCHU. The newly synthesized 2-(3-hydroxy-5-methoxyphenyl)-6,7-methylenedioxyquinolin-4-one triggers cell apoptosis through induction of oxidative stress and upregulation of the p38 MAPK signaling pathway in HL-60 human leukemia cells. Oncol Rep 2012; 28:1482-90. [PMID: 22825350 DOI: 10.3892/or.2012.1923] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/20/2012] [Indexed: 11/05/2022] Open
|
33
|
Hour MJ, Tsai SC, Wu HC, Lin MW, Chung JG, Wu JB, Chiang JH, Tsuzuki M, Yang JS. Antitumor effects of the novel quinazolinone MJ-33: inhibition of metastasis through the MAPK, AKT, NF-κB and AP-1 signaling pathways in DU145 human prostate cancer cells. Int J Oncol 2012; 41:1513-9. [PMID: 22825655 DOI: 10.3892/ijo.2012.1560] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/20/2012] [Indexed: 11/06/2022] Open
Abstract
Quinazolinone compounds have been shown to have antitumor activity in many human cancer cell lines. In the present study, we investigated the anti-metastatic activity of MJ-33 (2-(3-ethoxyphenyl)-6-pyrrolidinylquinazolinone), a novel quinazolinone derivate, and the signaling pathway of MJ-33 in human prostate cells. MJ-33 exhibited a growth inhibitory effect on DU145, LNCaP and PC-3 cells by MTT assay. DU145 cells showed greater sensitivity to the growth inhibition of MJ-33 than that of LNCaP and PC-3 cells. MJ-33 also had an inhibitory effect on the invasion, migration and adhesion of DU145 cells using Boyden chamber transwell assays, wound-healing and adhesion assay. In addition, MJ-33 inhibited cell metastasis through the reduction of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and urokinase-type plasminogen activator (u-PA) enzyme activities and protein levels by gelatin zymography assay and western blot analysis, respectively. MJ-33 reduced the protein levels of p-JNK, p-p38, p-ERK, p-AKT and nuclear NF-κB (p65), c-fos and c-Jun protein levels by western blotting. Using electrophoretic mobility-shift assay (EMSA), we demonstrated that MJ-33 blocked the activation of transcription factor AP-1 (activator protein-1) and NF-κB, which led to the inhibition of MMP-2 and MMP-9 expression. Collectively, our data showed that MJ-33 decreased protein levels of MAPKs (mitogen-activated protein kinases), AKT, AP-1 and NF-κB, resulting in the inhibition of matrix metalloproteinases. Downregulation of MMP-2 and MMP-9 reduces the invasion, migration and adhesion activities of DU145 cells. MJ-33 may be a promising agent against prostate cancer metastasis.
Collapse
Affiliation(s)
- Mann-Jen Hour
- School of Pharmacy, China Medical University, Taichung 404, Taiwan, R.O.C
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Aleksić M, Bertoša B, Nhili R, Uzelac L, Jarak I, Depauw S, David-Cordonnier MH, Kralj M, Tomić S, Karminski-Zamola G. Novel Substituted Benzothiophene and Thienothiophene Carboxanilides and Quinolones: Synthesis, Photochemical Synthesis, DNA-Binding Properties, Antitumor Evaluation and 3D-Derived QSAR Analysis. J Med Chem 2012; 55:5044-60. [DOI: 10.1021/jm300505h] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Maja Aleksić
- Department of Organic Chemistry,
Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, P.O. Box 177, HR-10000
Zagreb, Croatia
| | | | - Raja Nhili
- INSERM U837-JPARC (Jean-Pierre
Aubert Research Center), Team “Molecular and Cellular Targeting
for Cancer Treatment”, Université Lille Nord de France, IFR-114, Institut pour la Recherche
sur le Cancer de Lille, Place de Verdun, F-59045 Lille Cedex, France
| | | | - Ivana Jarak
- Department of Organic Chemistry,
Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, P.O. Box 177, HR-10000
Zagreb, Croatia
| | - Sabine Depauw
- INSERM U837-JPARC (Jean-Pierre
Aubert Research Center), Team “Molecular and Cellular Targeting
for Cancer Treatment”, Université Lille Nord de France, IFR-114, Institut pour la Recherche
sur le Cancer de Lille, Place de Verdun, F-59045 Lille Cedex, France
| | - Marie-Hélène David-Cordonnier
- INSERM U837-JPARC (Jean-Pierre
Aubert Research Center), Team “Molecular and Cellular Targeting
for Cancer Treatment”, Université Lille Nord de France, IFR-114, Institut pour la Recherche
sur le Cancer de Lille, Place de Verdun, F-59045 Lille Cedex, France
| | | | | | - Grace Karminski-Zamola
- Department of Organic Chemistry,
Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, P.O. Box 177, HR-10000
Zagreb, Croatia
| |
Collapse
|
35
|
Piperonal ciprofloxacin hydrazone induces growth arrest and apoptosis of human hepatocarcinoma SMMC-7721 cells. Acta Pharmacol Sin 2012; 33:271-8. [PMID: 22301863 DOI: 10.1038/aps.2011.158] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIM To investigate the cytotoxic effects of piperonal ciprofloxacin hydrazone (QNT4), a novel antibacterial fluoroquinolone derivative, against human hepatocarcinoma SMMC-7721 cells. METHODS Human hepatocarcinoma cells (SMMC-7721), human breast adenocarcinoma cells (MCF-7) and human colon adenocarcinoma cells (HCT-8) were tested. The effects of QNT4 on cell proliferation were examined using MTT assay. Cell apoptosis was determined using Hoechst 33258 fluorescence staining, TUNEL assay and agarose gel electrophoresis. The topoisomerase II activity was measured using agarose gel electrophoresis with the DNA plasmid pBR322 as the substrate. Mitochondrial membrane potential (Δψm) was measured using a high content screening imaging system. Protein expression of caspase-9, caspase-8, caspase-3, p53, Bcl-2, Bax, and cytochrome c was detected with Western blot analysis. RESULTS Treatment with QNT4 (0.625-10 μmol/L) potently inhibited the proliferation of the cancer cells in time- and dose-dependent manners (the IC(50) value at 24 h in SMMC-7721 cells, MCF-7 cells and HCT-8 cells was 2.956±0.024, 3.710±0.027, and 3.694±0.030 μmol/L, respectively). Treatment of SMMC-7721 cells with QNT4 (0.2146, 2.964, and 4.600 μmol/L) for 24 h dose-dependently increased the percentage of apoptotic cells, elicited characteristic DNA "ladder" bands, and decreased the mitochondrial membrane potential. QNT4 dose-dependently increased topoisomerase II-mediated DNA breaks while inhibiting DNA relegation, thus keeping the DNA in fragments. Treatment of SMMC-7721 cells with QNT4 significantly increased cytochrome c in the cytosol, and decreased cytochrome c in the mitochondrial compartment. QNT4 (3-7.39 μmol/L) significantly increased the protein expression of p53, Bax, caspase-9, caspase-3, and the cleaved activated forms of caspase-9 and caspase-3 in SMMC-7721 cells. In contrast, the expression of Bcl-2 was decreased, while caspase-8 had no significant change. CONCLUSION QNT4 induced the apoptosis of SMMC-7721 cells via inhibiting topoisomerase II activity and modulating mitochondrial-dependent pathways.
Collapse
|
36
|
Wen CC, Chen HM, Chen SS, Huang LT, Chang WT, Wei WC, Chou LC, Arulselvan P, Wu JB, Kuo SC, Yang NS. Specific microtubule-depolymerizing agents augment efficacy of dendritic cell-based cancer vaccines. J Biomed Sci 2011; 18:44. [PMID: 21689407 PMCID: PMC3141632 DOI: 10.1186/1423-0127-18-44] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/20/2011] [Indexed: 12/13/2022] Open
Abstract
Background Damage-associated molecular patterns (DAMPs) are associated with immunogenic cell death and have the ability to enhance maturation and antigen presentation of dendritic cells (DCs). Specific microtubule-depolymerizing agents (MDAs) such as colchicine have been shown to confer anti-cancer activity and also trigger activation of DCs. Methods In this study, we evaluated the ability of three MDAs (colchicine and two 2-phenyl-4-quinolone analogues) to induce immunogenic cell death in test tumor cells, activate DCs, and augment T-cell proliferation activity. These MDAs were further evaluated for use as an adjuvant in a tumor cell lysate-pulsed DC vaccine. Results The three test phytochemicals considerably increased the expression of DAMPs including HSP70, HSP90 and HMGB1, but had no effect on expression of calreticulin (CRT). DC vaccines pulsed with MDA-treated tumor cell lysates had a significant effect on tumor growth, showed cytotoxic T-lymphocyte activity against tumors, and increased the survival rate of test mice. In vivo antibody depletion experiments suggested that CD8+ and NK cells, but not CD4+ cells, were the main effector cells responsible for the observed anti-tumor activity. In addition, culture of DCs with GM-CSF and IL-4 during the pulsing and stimulation period significantly increased the production of IL-12 and decreased production of IL-10. MDAs also induced phenotypic maturation of DCs and augmented CD4+ and CD8+ T-cell proliferation when co-cultured with DCs. Conclusions Specific MDAs including the clinical drug, colchicine, can induce immunogenic cell death in tumor cells, and DCs pulsed with MDA-treated tumor cell lysates (TCLs) can generate potent anti-tumor immunity in mice. This approach may warrant future clinical evaluation as a cancer vaccine.
Collapse
Affiliation(s)
- Chih-Chun Wen
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yahiro K, Morinaga N, Moss J, Noda M. Subtilase cytotoxin induces apoptosis in HeLa cells by mitochondrial permeabilization via activation of Bax/Bak, independent of C/EBF-homologue protein (CHOP), Ire1alpha or JNK signaling. Microb Pathog 2010; 49:153-63. [PMID: 20561923 PMCID: PMC3417112 DOI: 10.1016/j.micpath.2010.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/07/2010] [Accepted: 05/17/2010] [Indexed: 11/30/2022]
Abstract
Subtilase cytotoxin (SubAB) is an AB(5) cytotoxin produced by some strains of Shiga-toxigenic Escherichia coli. The A subunit is a subtilase-like serine protease and cleaves an endoplasmic reticulum (ER) chaperone, BiP, leading to transient inhibition of protein synthesis and cell cycle arrest at G(1) phase, and inducing caspase-dependent apoptosis via mitochondrial membrane damage in Vero cells. Here we investigated the mechanism of mitochondrial permeabilization in HeLa cells. SubAB-induced cytochrome c release into cytosol did not depend on mitochondrial permeability transition pore (PTP), since cyclosporine A did not suppress cytochrome c release. SubAB did not change the expression of anti-apoptotic Bcl-2 or Bcl-XL and pro-apoptotic Bax or Bak, but triggered Bax and Bak conformational changes and association of Bax with Bak. Silencing using siRNA of both bax and bak genes, but not bax, bak, or bim alone, resulted in reduction of cytochrome c release, caspase-3 activation, DNA ladder formation and cytotoxicity, indicating that Bax and Bak were involved in apoptosis. SubAB activated ER transmembrane transducers, Ire1alpha, and cJun N-terminal kinase (JNK), and induced C/EBF-homologue protein (CHOP). To investigate whether these signals were involved in cytochrome c release by Bax activation, we silenced ire1alpha, jnk or chop; however, silencing did not decrease SubAB-induced cytochrome c release, suggesting that these signals were not necessary for SubAB-induced mitochondrial permeabilization by Bax activation.
Collapse
Affiliation(s)
- Kinnosuke Yahiro
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan.
| | | | | | | |
Collapse
|
38
|
Romek A, Opatz T. Microwave-Assisted Synthesis of Polysubstituted 4-Quinolones from Deprotonated α-Aminonitriles. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000858] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
p38 MAPK and NF-κB pathways are involved in naphtho[1,2-b] furan-4,5-dione induced anti-proliferation and apoptosis of human hepatoma cells. Cancer Lett 2010; 295:92-9. [DOI: 10.1016/j.canlet.2010.02.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 02/17/2010] [Accepted: 02/19/2010] [Indexed: 01/22/2023]
|
40
|
Yang JS, Hour MJ, Huang WW, Lin KL, Kuo SC, Chung JG. MJ-29 Inhibits Tubulin Polymerization, Induces Mitotic Arrest, and Triggers Apoptosis via Cyclin-Dependent Kinase 1-Mediated Bcl-2 Phosphorylation in Human Leukemia U937 Cells. J Pharmacol Exp Ther 2010; 334:477-88. [DOI: 10.1124/jpet.109.165415] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
41
|
Chou LC, Chen CT, Lee JC, Way TD, Huang CH, Huang SM, Teng CM, Yamori T, Wu TS, Sun CM, Chien DS, Qian K, Morris-Natschke SL, Lee KH, Huang LJ, Kuo SC. Synthesis and preclinical evaluations of 2-(2-fluorophenyl)-6,7-methylenedioxyquinolin-4-one monosodium phosphate (CHM-1-P-Na) as a potent antitumor agent. J Med Chem 2010; 53:1616-26. [PMID: 20102207 DOI: 10.1021/jm901292j] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CHM-1 [2-(2-fluorophenyl)-6,7-methylenedioxyquinolin-4-one] (1) has a unique antitumor mechanism of action. However, because 1 has relatively low hydrophilicity, it was evaluated only via ip administration, which is not clinically acceptable. In this study, we synthesized the monosodium phosphate salt (CHM-1-P-Na, 4) of 1 as a hydrophilic prodrug. Compound 4 was rapidly converted into 1 following iv and po administration and also possessed excellent antitumor activity in a SKOV-3 xenograft nude mice model. Compound 4 also had clear-cut pharmacological effects on enzymes related with tumor cells. Neither 4 nor 1 significantly affected normal biological function in a safety pharmacology profiling study. Compound 1 caused apoptotic effects in breast carcinoma cells via accumulation of cyclin B1, and importantly, the endogenous levels of the mitotic spindle checkpoint proteins BubR1 directly correlated with cellular response to microtubule disruption. With excellent antitumor activity profiles, 4 is highly promising for development as an anticancer clinical trials candidate.
Collapse
Affiliation(s)
- Li-Chen Chou
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tsai AC, Pan SL, Sun HL, Wang CY, Peng CY, Wang SW, Chang YL, Kuo SC, Lee KH, Teng CM. CHM-1, a new vascular targeting agent, induces apoptosis of human umbilical vein endothelial cells via p53-mediated death receptor 5 up-regulation. J Biol Chem 2010; 285:5497-506. [PMID: 20007968 PMCID: PMC2820778 DOI: 10.1074/jbc.m109.036277] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 11/22/2009] [Indexed: 12/17/2022] Open
Abstract
CHM-1 (2'-fluoro-6,7-methylenedioxy-2-phenyl-4-quinolone) has been identified as a potent antitumor agent in human hepatocellular carcinoma; however, its role in tumor angiogenesis is unclear. This study investigated the effects of CHM-1 and the mechanisms by which it exerts its antiangiogenic and vascular disrupting properties. Using a xenograft model antitumor assay, we found that CHM-1 significantly inhibits tumor growth and microvessel formation. Flow cytometry, immunofluorescence microscopy, and cell death enzyme-linked immunosorbent assay kit revealed that CHM-1 inhibits growth of human umbilical vein endothelial cells (HUVEC) by induction of apoptotic cell death in a concentration-dependent manner. CHM-1 also suppresses HUVEC migration and capillary-like tube formation. We were able to correlate CHM-1-induced apoptosis in HUVEC with the cleavage of procaspase-3, -7, and -8, as well as with the cleavage of poly(ADP-ribose) polymerase by Western blotting assay. Such sensitization was achieved through up-regulation of death receptor 5 (DR5) but not DR4 or Fas. CHM-1 was also capable of increasing the expression level of p53, and most importantly, the induction of DR5 by CHM-1 was abolished by p53 small interfering RNA. Taken together, the results of this study indicate that CHM-1 exhibits vascular targeting activity associated with the induction of DR5-mediated endothelial cell apoptosis through p53 up-regulation, which suggests its potential as an antivascular and antitumor therapeutic agent.
Collapse
Affiliation(s)
- An-Chi Tsai
- From the Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Shiow-Lin Pan
- From the Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- the Graduate Institute of Pharmacology, Taipei Medical University, Taipei 10051, Taiwan
| | - Hui-Lung Sun
- From the Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chih-Ya Wang
- From the Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Chieh-Yu Peng
- From the Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Shih-Wei Wang
- From the Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Ya-Ling Chang
- From the Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Sheng-Chu Kuo
- the Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung 40402, Taiwan, and
| | - Kuo-Hsiung Lee
- the Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Che-Ming Teng
- From the Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| |
Collapse
|
43
|
Shi M, Wang HN, Xie ST, Luo Y, Sun CY, Chen XL, Zhang YZ. Antimicrobial peptaibols, novel suppressors of tumor cells, targeted calcium-mediated apoptosis and autophagy in human hepatocellular carcinoma cells. Mol Cancer 2010; 9:26. [PMID: 20122248 PMCID: PMC2825246 DOI: 10.1186/1476-4598-9-26] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 02/02/2010] [Indexed: 02/02/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common cancers in the world which is highly chemoresistant to currently available chemotherapeutic agents. Thus, novel therapeutic targets are needed to be sought for the successful treatment of HCC. Peptaibols, a family of peptides synthesized non-ribosomally by the Trichoderma species and other fungi, exhibit antibiotic activities against bacteria and fungi. Few studies recently showed that peptaibols exerted cytotoxicity toward human lung epithelial and breast carcinoma cells. However, the mechanism involved in peptaibol-induced cell death remains poorly understood. Results Here, we showed that Trichokonin VI (TK VI), a peptaibol from Trichoderma pseudokoningii SMF2, induced growth inhibition of HCC cells in a dose-dependent manner. It did not obviously impair the viability of normal liver cells at lower concentration. Moreover, the suppression of cell viability resulted from the programmed cell death (PCD) with characteristics of apoptosis and autophagy. An influx of Ca2+ triggered the activation of μ-calpain and proceeded to the translocation of Bax to mitochondria and subsequent promotion of apoptosis. On the other hand, typically morphological characteristics consistent with autophagy were also observed by punctate distribution of MDC staining and the induction of LC3-II, including extensive autophagic vacuolization and enclosure of cell organelles by these autophagosomes. More significantly, specific depletion of Bak expression by small RNA interfering (siRNA) could partly attenuate TK VI-induced autophagy. However, siRNA against Bax led to increased autophagy. Conclusion Taken together, these findings showed for the first time that peptaibols were novel regulators involved in both apoptosis and autophagy, suggesting that the class of peptaibols might serve as potential suppressors of tumor cells.
Collapse
Affiliation(s)
- Mei Shi
- State Key Lab of Microbial Technology, Shandong University, Jinan, PR China
| | | | | | | | | | | | | |
Collapse
|
44
|
The synthesized 2-(2-fluorophenyl)-6,7-methylenedioxyquinolin-4-one (CHM-1) promoted G2/M arrest through inhibition of CDK1 and induced apoptosis through the mitochondrial-dependent pathway in CT-26 murine colorectal adenocarcinoma cells. J Gastroenterol 2009; 44:1055-63. [PMID: 19688288 DOI: 10.1007/s00535-009-0111-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 06/21/2009] [Indexed: 02/04/2023]
Abstract
BACKGROUND In this study, we investigated the effects of 2-(2-fluorophenyl)-6,7-methylenedioxyquinolin-4-one (CHM-1) on cell viability, cell cycle arrest and apoptosis in CT-26 murine colorectal adenocarcinoma cells. METHODS For determining cell viability, the MTT assay was used. CHM-1 promoted G2/M arrest by PI staining and flow cytometric analysis. Apoptotic cells were evaluated by DAPI staining. We used CDK1 kinase assay, Western blot analysis and caspase activity assays for examining the CDK1 activity and proteins correlated with apoptosis and cell cycle arrest. The in vivo anti-tumor effects of CHM-1-P were evaluated in BALB/c mice inoculated with CT-26 cells orthotopic model. RESULTS CHM-1 induced CT-26 cell viability inhibition and morphologic changes in a dose-dependent and time-dependent manner and the approximate IC50 was 742.36 nM. CHM-1 induced significant G2/M arrest and apoptosis in CT-26 cells. CHM-1 inhibited the CDK1 activity and decreased CDK1, Cyclin A, Cyclin B protein levels. CHM-1 induced apoptosis in CT-26 cells and promoted increasing of cytosolic cytochrome c, AIF, Bax, BAD, cleavage of pro-caspase-9, and -3. The significant reduction of caspase-9 and -3 activity and increasing the viable CT-26 cells after pretreated with caspase-9 and -3 inhibitor indicated that CHM-1-induced apoptosis was mainly mediated a mitochondria-dependent pathway. CHM-1-P improved mice survival rate, and enlargement of the spleen and liver metastasis were significantly reduced in groups treated with either 10 mg/kg and 30 mg/kg of CHM-1-P and 5-FU in comparison to these of CT-26/BALB/c mice. CONCLUSIONS Taken together, CHM-1 acted against colorectal adenocarcinoma cells in vitro via G2/M arrest and apoptosis, and CHM-1-P inhibited tumor growth in vivo.
Collapse
|
45
|
Hsu SC, Yang JS, Kuo CL, Lo C, Lin JP, Hsia TC, Lin JJ, Lai KC, Kuo HM, Huang LJ, Kuo SC, Wood WG, Chung JG. Novel quinolone CHM-1 induces apoptosis and inhibits metastasis in a human osterogenic sarcoma cell line. J Orthop Res 2009; 27:1637-44. [PMID: 19557855 DOI: 10.1002/jor.20937] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Novel 2-phenyl-4-quinolone compounds have potent cytotoxic effects on different human cancer cell lines. In this study, we examined anticancer activity and mechanisms of 20-fluoro-6,7-methylenedioxy-2-phenyl-4-quinolone (CHM-1) in human osterogenic sarcoma U-2 OS cells. CHM-1-induced apoptosis was determined by flow cytometric analysis, DAPI staining, Comet assay, and caspase inhibitors. CHM-1-inhibited cell migration and invasion was assessed by a wound healing assay, gelatin zymography, and a Transwell assay. The mechanisms of CHM-1 effects on apoptosis and metastasis signaling pathways were studied using Western blotting and gene expression. CHM-1 induced G2/M arrest and apoptosis at an IC(50) (3 microM) in U-2 OS cells and caspase-3, -8, and -9 were activated. Caspase inhibitors increased cell viability after exposure to CHM-1. CHM-1-induced apoptosis was associated with enhanced ROS generation, DNA damage, decreased DeltaPsi(m) levels, and promotion of mitochondrial cytochrome c release. CHM-1 stimulated mRNA expression of caspase-3, -8, and -9, AIF, and Endo G. In addition, CHM-1 inhibited cell metastasis at a low concentration (<3 microM). CHM-1 inhibited the cell metastasis through the inhibition of MMP-2, -7, and -9. CHM-1 also decreased the levels of MAPK signaling pathways before leading to the inhibition of MMPs. In summary, CHM-1 is a potent inducer of apoptosis, which plays a role in the anticancer activity of CHM-1.
Collapse
Affiliation(s)
- Shu-Chun Hsu
- School of Nutrition, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ester K, Hranjec M, Piantanida I, Ćaleta I, Jarak I, Pavelić K, Kralj M, Karminski-Zamola G. Novel Derivatives of Pyridylbenzo[b]thiophene-2-carboxamides and Benzo[b]thieno[2,3-c]naphthyridin-2-ones: Minor Structural Variations Provoke Major Differences of Antitumor Action Mechanisms. J Med Chem 2009; 52:2482-92. [DOI: 10.1021/jm801573v] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Katja Ester
- Division of Molecular Medicine, “Ruđer Bošković” Institute, Bijenička Cesta 54, P.O. Box 180, HR-10000 Zagreb, Croatia, Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, P.O. Box 177, HR-10000 Zagreb, Croatia, and Division of Organic Chemistry and Biochemistry, “Ruđer Bošković” Institute, P.O. Box 180, HR-10002 Zagreb, Croatia
| | - Marijana Hranjec
- Division of Molecular Medicine, “Ruđer Bošković” Institute, Bijenička Cesta 54, P.O. Box 180, HR-10000 Zagreb, Croatia, Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, P.O. Box 177, HR-10000 Zagreb, Croatia, and Division of Organic Chemistry and Biochemistry, “Ruđer Bošković” Institute, P.O. Box 180, HR-10002 Zagreb, Croatia
| | - Ivo Piantanida
- Division of Molecular Medicine, “Ruđer Bošković” Institute, Bijenička Cesta 54, P.O. Box 180, HR-10000 Zagreb, Croatia, Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, P.O. Box 177, HR-10000 Zagreb, Croatia, and Division of Organic Chemistry and Biochemistry, “Ruđer Bošković” Institute, P.O. Box 180, HR-10002 Zagreb, Croatia
| | - Irena Ćaleta
- Division of Molecular Medicine, “Ruđer Bošković” Institute, Bijenička Cesta 54, P.O. Box 180, HR-10000 Zagreb, Croatia, Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, P.O. Box 177, HR-10000 Zagreb, Croatia, and Division of Organic Chemistry and Biochemistry, “Ruđer Bošković” Institute, P.O. Box 180, HR-10002 Zagreb, Croatia
| | - Ivana Jarak
- Division of Molecular Medicine, “Ruđer Bošković” Institute, Bijenička Cesta 54, P.O. Box 180, HR-10000 Zagreb, Croatia, Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, P.O. Box 177, HR-10000 Zagreb, Croatia, and Division of Organic Chemistry and Biochemistry, “Ruđer Bošković” Institute, P.O. Box 180, HR-10002 Zagreb, Croatia
| | - Krešimir Pavelić
- Division of Molecular Medicine, “Ruđer Bošković” Institute, Bijenička Cesta 54, P.O. Box 180, HR-10000 Zagreb, Croatia, Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, P.O. Box 177, HR-10000 Zagreb, Croatia, and Division of Organic Chemistry and Biochemistry, “Ruđer Bošković” Institute, P.O. Box 180, HR-10002 Zagreb, Croatia
| | - Marijeta Kralj
- Division of Molecular Medicine, “Ruđer Bošković” Institute, Bijenička Cesta 54, P.O. Box 180, HR-10000 Zagreb, Croatia, Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, P.O. Box 177, HR-10000 Zagreb, Croatia, and Division of Organic Chemistry and Biochemistry, “Ruđer Bošković” Institute, P.O. Box 180, HR-10002 Zagreb, Croatia
| | - Grace Karminski-Zamola
- Division of Molecular Medicine, “Ruđer Bošković” Institute, Bijenička Cesta 54, P.O. Box 180, HR-10000 Zagreb, Croatia, Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, P.O. Box 177, HR-10000 Zagreb, Croatia, and Division of Organic Chemistry and Biochemistry, “Ruđer Bošković” Institute, P.O. Box 180, HR-10002 Zagreb, Croatia
| |
Collapse
|
47
|
Tadd AC, Matsuno A, Fielding MR, Willis MC. Cascade Palladium-Catalyzed Alkenyl Aminocarbonylation/ Intramolecular Aryl Amidation: An Annulative Synthesis of 2-Quinolones. Org Lett 2009; 11:583-6. [DOI: 10.1021/ol802624e] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew C. Tadd
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K., and AstraZeneca Process Research and Development, Silk Road Business Park, Macclesfield SK10 2NA, U.K
| | - Ai Matsuno
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K., and AstraZeneca Process Research and Development, Silk Road Business Park, Macclesfield SK10 2NA, U.K
| | - Mark R. Fielding
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K., and AstraZeneca Process Research and Development, Silk Road Business Park, Macclesfield SK10 2NA, U.K
| | - Michael C. Willis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K., and AstraZeneca Process Research and Development, Silk Road Business Park, Macclesfield SK10 2NA, U.K
| |
Collapse
|