1
|
Putnová I, Putnová BM, Hurník P, Štembírek J, Buchtová M, Kolísková P. Primary cilia-associated signalling in squamous cell carcinoma of head and neck region. Front Oncol 2024; 14:1413255. [PMID: 39234399 PMCID: PMC11372790 DOI: 10.3389/fonc.2024.1413255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Squamous cell carcinoma (SCC) of the head and neck originates from the mucosal lining of the upper aerodigestive tract, including the lip, tongue, nasopharynx, oropharynx, larynx and hypopharynx. In this review, we summarise what is currently known about the potential function of primary cilia in the pathogenesis of this disease. As primary cilia represent a key cellular structure for signal transduction and are related to cell proliferation, an understanding of their role in carcinogenesis is necessary for the design of new treatment approaches. Here, we introduce cilia-related signalling in head and neck squamous cell carcinoma (HNSCC) and its possible association with HNSCC tumorigenesis. From this point of view, PDGF, EGF, Wnt and Hh signalling are discussed as all these pathways were found to be dysregulated in HNSCC. Moreover, we review the clinical potential of small molecules affecting primary cilia signalling to target squamous cell carcinoma of the head and neck area.
Collapse
Affiliation(s)
- Iveta Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Anatomy, Histology and Embryology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Barbora Moldovan Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Pathological Morphology and Parasitology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Pavel Hurník
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Jan Štembírek
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czechia
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Petra Kolísková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
2
|
Cierpikowski P, Leszczyszyn A, Bar J. The Role of Hedgehog Signaling Pathway in Head and Neck Squamous Cell Carcinoma. Cells 2023; 12:2083. [PMID: 37626893 PMCID: PMC10453169 DOI: 10.3390/cells12162083] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth leading malignancy worldwide, with a poor prognosis and limited treatment options. Molecularly targeted therapies for HNSCC are still lacking. However, recent reports provide novel insights about many molecular alterations in HNSCC that may be useful in future therapies. Therefore, it is necessary to identify new biomarkers that may provide a better prediction of the disease and promising targets for personalized therapy. The poor response of HNSCC to therapy is attributed to a small population of tumor cells called cancer stem cells (CSCs). Growing evidence indicates that the Hedgehog (HH) signaling pathway plays a crucial role in the development and maintenance of head and neck tissues. The HH pathway is normally involved in embryogenesis, stem cell renewal, and tissue regeneration. However, abnormal activation of the HH pathway is also associated with carcinogenesis and CSC regulation. Overactivation of the HH pathway was observed in several tumors, including basal cell carcinoma, that are successfully treated with HH inhibitors. However, clinical studies about HH pathways in HNSCC are still rare. In this review, we summarize the current knowledge and recent advances regarding the HH pathway in HNSCC and discuss its possible implications for prognosis and future therapy.
Collapse
Affiliation(s)
- Piotr Cierpikowski
- Department of Maxillofacial Surgery, The Ludwik Rydygier Specialist Hospital, Osiedle Zlotej Jesieni 1, 31-826 Krakow, Poland
| | - Anna Leszczyszyn
- Dental Surgery Outpatient Clinic, 4th Military Clinical Hospital, Weigla 5, 53-114 Wroclaw, Poland;
| | - Julia Bar
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland
| |
Collapse
|
3
|
Zhou X, Speer RM, Volk L, Hudson LG, Liu KJ. Arsenic co-carcinogenesis: Inhibition of DNA repair and interaction with zinc finger proteins. Semin Cancer Biol 2021; 76:86-98. [PMID: 33984503 PMCID: PMC8578584 DOI: 10.1016/j.semcancer.2021.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022]
Abstract
Arsenic is widely present in the environment and is associated with various population health risks including cancers. Arsenic exposure at environmentally relevant levels enhances the mutagenic effect of other carcinogens such as ultraviolet radiation. Investigation on the molecular mechanisms could inform the prevention and intervention strategies of arsenic carcinogenesis and co-carcinogenesis. Arsenic inhibition of DNA repair has been demonstrated to be an important mechanism, and certain DNA repair proteins have been identified to be extremely sensitive to arsenic exposure. This review will summarize the recent advances in understanding the mechanisms of arsenic carcinogenesis and co-carcinogenesis, including DNA damage induction and ROS generation, particularly how arsenic inhibits DNA repair through an integrated molecular mechanism which includes its interactions with sensitive zinc finger DNA repair proteins.
Collapse
Affiliation(s)
- Xixi Zhou
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Rachel M Speer
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Lindsay Volk
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
4
|
Wahiduzzaman M, Ota A, Hosokawa Y. Novel Mechanistic Insights into the Anti-cancer Mode of Arsenic Trioxide. Curr Cancer Drug Targets 2021; 20:115-129. [PMID: 31736446 DOI: 10.2174/1568009619666191021122006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/23/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022]
Abstract
Arsenic, a naturally-occurring toxic element, and a traditionally-used drug, has received a great deal of attention worldwide due to its curative anti-cancer properties in patients with acute promyelocytic leukemia. Among the arsenicals, arsenic trioxide has been most widely used as an anti-cancer drug. Recent advances in cancer therapeutics have led to a paradigm shift away from traditional cytotoxic drugs towards the targeting of proteins closely associated with driving the cancer phenotype. Due to the diverse anti-cancer effects of ATO on different types of malignancies, numerous studies have made efforts to uncover the mechanisms of ATO-induced tumor suppression. From in vitro cellular models to studies in clinical settings, ATO has been extensively studied. The outcomes of these studies have opened doors to establishing improved molecular-targeted therapies for cancer treatment. The efficacy of ATO has been augmented by combination with other drugs. In this review, we discuss recent arsenic-based cancer therapies and summarize the novel underlying molecular mechanisms of the anti-cancer effects of ATO.
Collapse
Affiliation(s)
- Md Wahiduzzaman
- Department of Biochemistry, School of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Akinobu Ota
- Department of Biochemistry, School of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, School of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
5
|
The effect of aflibercept and arsenic trioxide on the proliferation, migration and apoptosis of oral squamous cell carcinoma in vitro. Mol Biol Rep 2021; 48:3223-3235. [PMID: 33929648 DOI: 10.1007/s11033-021-06341-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Aflibercept and arsenic trioxide drugs apply a cytotoxic effect on some human cancer cell lines. However, no more study has followed the effects of both drugs, especially arsenic trioxide, on oral squamous cell carcinoma (OCC). We used three OCC lines as a model to show the effect of these drugs on the genetically complex disease and investigate its targeted therapy. In this study, three human OCC cell lines were used from different patients. We treated cell lines with both medications to detect the effect and relevant molecular basis. First, methyl thiazolyl tetrazolium (MTT) assay was performed to detect the cytotoxicity effect and cell growth. Second, flow cytometry, gene and protein expression were performed to evaluate the anti-angiogenic effect on OCC lines. Next apoptosis was analyzed by flow cytometry. Finally, clonogenesis capacity and cell migration were assessed by colony formation assay and wound healing, respectively. Aflibercept had no cytotoxic effect on the three OCC cell lines but decreased cell growth rate. Arsenic trioxide had a significant cytotoxic effect on three cell lines. Our results demonstrated that both drugs significantly decreased endoglin, VEGFA, and VEGFB expression. In addition, Migration and colony formation assays confirmed that these drugs have significant anti-proliferative and anti-migration effect on oral carcinoma cells. These results revealed that both medications might be a potential drug for the management of oral cancer patients.
Collapse
|
6
|
Chen Q, Qiu Y, Chen L, Lin J, Yan LJ, Bao XD, Lin LS, Pan LZ, Shi B, Zheng XY, Chen F, He BC, Wang J, Liu FQ. Association between serum arsenic and oral cancer risk: A case-control study in southeast China. Community Dent Oral Epidemiol 2021; 50:83-90. [PMID: 33748987 DOI: 10.1111/cdoe.12633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Evidence on serum arsenic and oral cancer risk was limited. We aimed to evaluate the association between serum arsenic and the risk of oral cancer in a southeast China population. METHODS Serum arsenic was determined for 325 oral cancer patients and 648 controls using inductively coupled plasma-mass spectrometry (ICP-MS). Logistic regression and restricted cubic spline were analysed the association between serum arsenic level and oral cancer risk, and crude and adjusted odds ratios (aOR) with 95% confidence interval (95% CI) were calculated. Factors adjusted for included age, gender, BMI, smoking, drinking, education, residence, marital status and dietary factors. Stratification analysis was further performed according to drinking, smoking and dietary characteristics. RESULTS Serum arsenic level was lower in the case group (P50 = 19.2μg/L, IQR = 11.6 ~ 26.4μg/L) than in the control group (P50 = 30.2 μg/L, IQR = 25.0 ~ 36.4 μg/L). An inverse but nonlinear association was observed between arsenic level and oral cancer risk by restricted cubic spline. These with moderate serum arsenic levels had a lower risk of oral cancer than those with low levels (OR = 0.11; 95%CI: 0.07-0.18), after adjusting for demographic and dietary intake factors. We also kept serum arsenic as a continuous variable in a regression model, where a similar inverse association between arsenic and oral cancer was observed, with OR = 0.86 (95%CI: 0.84-0.88). Stratification analysis revealed no significant multiplicative interactions between serum arsenic and smoking, drinking or dietary intake. CONCLUSION Serum arsenic is inversely related to oral cancer risk. Relative to those with low levels of arsenic, people with moderate serum arsenic levels had a lower risk of oral cancer. If confirmed, serum arsenic level may be a useful predictive marker for oral cancer risk.
Collapse
Affiliation(s)
- Qing Chen
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yu Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lin Chen
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jing Lin
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Ling-Jun Yan
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Xiao-Dan Bao
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Li-Song Lin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Li-Zhen Pan
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Bin Shi
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiao-Yan Zheng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Fa Chen
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Bao-Chang He
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jing Wang
- Laboratory Center, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Feng-Qiong Liu
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Moloudi K, Neshasteriz A, Hosseini A, Eyvazzadeh N, Shomali M, Eynali S, Mirzaei E, Azarnezhad A. Synergistic Effects of Arsenic Trioxide and Radiation: Triggering the Intrinsic Pathway of Apoptosis. IRANIAN BIOMEDICAL JOURNAL 2017; 21:330-7. [PMID: 28459147 PMCID: PMC5548965 DOI: 10.18869/acadpub.ibj.21.5.330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 10/18/2016] [Accepted: 01/01/2017] [Indexed: 12/26/2022]
Abstract
Background Arsenic trioxide (ATO) has been reported as an effective anti-cancer and a US Food and Drug Administration (FDA) approved drug for treatment of some cancers. The aim of this study was to determine the underlying apoptosis molecular and cellular mechanisms of ATO in the presence or absence of ionizing radiation (IR) in vitro in the glioblastoma multiforme (GBM) cell line, U87MG. Methods Cells were treated by different concentrations of ATO either in presence or absence of IR. Viability and apoptosis pathway of both treated and control groups were evaluated using MTT assay and the expression analysis of Bax, Bcl-2, and caspase-3 genes, respectively. All treatments were performed on 100-μm diameter spheroids. Results Results showed a significant reduction in the survival of the cells in all treated groups. As expected, cell survival was much less in combination treatment than treatment with only ATO. Moreover, combination therapy made Bax and caspase-3 up-regulated and Bcl-2 down-regulated. Conclusion ATO and radiation had a synergistic apoptotic effect on GBM cells by up-regulation of caspase-3 and alteration of the Bax-Bcl-2 balance; therefore, ATO may act as a potential anti-cancer agent against GBM cells through triggering the mitochondrial pathway of apoptosis.
Collapse
Affiliation(s)
- Kave Moloudi
- Radiation Sciences Department, Faculty of allied Medicine school, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Neshasteriz
- Radiation Sciences Department, Faculty of allied Medicine school, Iran University of Medical Sciences, Tehran, Iran
| | - Arshad Hosseini
- Department of Medical Biotechnology, Faculty of allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nazila Eyvazzadeh
- Radiation Research Center, Faculty of Paramedicine, AJA University of Medical sciences, Tehran, Iran
| | - Mehdi Shomali
- Radiology Department, Faculty of allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Eynali
- Medical physics and Biomedical Engineering Department, school of Medicine, Tran University of Medical Sciences, Tehran, Iran
| | - Elahe Mirzaei
- Microbiology Department, Faculty of Science, Islamic Azad University, Tehran, Iran
| | - Asaad Azarnezhad
- Cellular & Molecular Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Wang XY, Wang JZ, Gao L, Zhang FY, Wang Q, Liu KJ, Xiang B. Inhibition of nicotinamide phosphoribosyltransferase and depletion of nicotinamide adenine dinucleotide contribute to arsenic trioxide suppression of oral squamous cell carcinoma. Toxicol Appl Pharmacol 2017; 331:54-61. [PMID: 28501332 DOI: 10.1016/j.taap.2017.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 11/26/2022]
Abstract
Emerging evidence suggests that increased nicotinamide phosphoribosyltransferase (NAMPT) expression is associated with the development and prognosis of many cancers, but it remains unknown regarding its role in oral squamous cell carcinoma (OSCC). In the present study, the results from tissue microarray showed that NAMPT was overexpressed in OSCC patients and its expression level was directly correlated with differential grades of cancer. Interestingly, treatment of OSCC cells with chemotherapy agent arsenic trioxide (ATO) decreased the levels of NAMPT protein and increased cellular death in an ATO dose- and time-dependent manner. Most importantly, combination of low concentration ATO with FK866 (a NAMPT inhibitor) exerted enhanced inhibitive effect on NAMPT protein and mRNA expressions, leading to synergistic cytotoxicity on cancer cells through increasing cell apoptosis and depleting intracellular nicotinamide adenine dinucleotide levels. These findings demonstrate the crucial role of NAMPT in the prognosis of OSCC and reveal inhibition of NAMPT as a novel mechanism of ATO in suppressing cancer cell growth. Our results suggest that ATO can significantly enhance therapeutic efficacy of NAMPT inhibitor, and combined treatment may be a novel and effective therapeutic strategy for OSCC patients.
Collapse
Affiliation(s)
- Xin Yue Wang
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, PR China
| | - Jin Zhi Wang
- Department of Oral and Maxillofacial Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, PR China
| | - Lu Gao
- Department of Oral Anatomy, School of Stomatology, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Fu Yin Zhang
- Department of Oral and Maxillofacial Surgery, Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, PR China
| | - Qi Wang
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, PR China
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Bin Xiang
- Laboratory of Oral and Maxillofacial Disease, Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
9
|
Huang A, Yue D, Liao D, Cheng L, Ma J, Wei Y, Tong A, Cheng P. SurvivinT34A increases the therapeutic efficacy of arsenic trioxide in mouse hepatocellular carcinoma models. Oncol Rep 2016; 36:3283-3290. [PMID: 27748945 DOI: 10.3892/or.2016.5161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/14/2016] [Indexed: 02/05/2023] Open
Abstract
Arsenic trioxide (ATO) has demonstrated clinical efficacy in acute promyelocytic leukemia (APL) and in vitro activity in various solid tumors. As2O3 as single agent exhibits poor efficacy for treatment of hepatocellular carcinoma (HCC) in phase II trial, suggesting that new modalities of treatment with enhanced therapeutic effect and alleviated toxicity are needed for application of As2O3 on patients with HCC. Survivin is the strongest inhibitor of apoptosis protein over-expressed in tumors, which has been proposed as an attractive target for new anticancer interventions. Disruption of survivin by the plasmid encoding the phosphorylation-defective mouse survivin threonine 34→alanine mutant (Msurvivin T34A plasmid) has proved a promising strategy for suppressing a variety of murine cancer. In the present study, we attempted to test Msurvivin T34A and arsenic trioxide (ATO) on a cell line and mice bearing subcutaneous tumors, with regard to their effects and mechanisms. We observed that the co-treatment with surivinT34A and ATO significantly enhanced the antitumor activity by induction of apoptosis in Hepa1-6 tumor cells in vitro, compared with control groups. The synergistic apoptosis-inducing effect of combination of these two drugs resulted in elevation of reactive oxygen species (ROS) level which could be antagonized by the antioxidant N-acetyl-l-cysteine. The combination treatment induced ROS-dependent collapse of the mitochondrial membrane potential. Moreover, the tumor growth in vivo was also remarkably inhibited by combination of surivinT34A and ATO when compared with control groups. Our findings demonstrate that the combination of surivinT34A and ATO exerted synergistic antitumor effects, providing a new perspective for clinical treatment of HCC.
Collapse
Affiliation(s)
- Anliang Huang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dan Yue
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Danying Liao
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Liuliu Cheng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jinhu Ma
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Aiping Tong
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ping Cheng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
10
|
Kharroubi W, Ahmed SH, Nury T, Andreoletti P, Haouas Z, Zarrouk A, Sakly R, Hammami M, Lizard G. Evidence of hormesis on human neuronal SK-N-BE cells treated with sodium arsenate: impact at the mitochondrial level. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8441-8452. [PMID: 26782323 DOI: 10.1007/s11356-016-6043-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
Exposure of human neuronal SK-N-BE cells to sodium arsenate (AsV 0.1-400 μM; 48 h) induced a biphasic toxic effect evoking hormesis. Indeed, at low concentrations, AsV stimulates cell proliferation visualized by phase contrast microscopy, whereas at high concentrations, an induction of cell death associated with a loss of cell adhesion was observed. These side effects were confirmed with crystal violet test, cell cycle analysis, evaluation of the percentage of Ki67 positive cells, and staining with propidium iodide. The impact of AsV on mitochondrial functions, which was determined by the MTT assay, the measurement of mitochondrial transmembrane potential with DiOC6(3), and the rate of mitochondrial ATP, also support an hormesis process. In addition, in the presence of high concentrations of AsV, a significant decrease of the protein expression of OXPHOS complexes of the respiratory chain was observed by western blot supporting that AsV-induced cell death is associated with mitochondrial alterations. Therefore, there are some evidences of hormesis on AsV-treated SK-N-BE cells, and at high concentrations, the mitochondria are a target of toxicity induced by AsV.
Collapse
Affiliation(s)
- Wafa Kharroubi
- University Bourgogne Franche Comté, Université de Bourgogne Laboratoire Bio-PeroxIL, 'Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique' EA7270 / INSERM, Faculté des Sciences Gabriel, Dijon, France.
- Laboratoire de biochimie « Nutrition -aliments fonctionnels et santé vasculaire « LR- NAFS LR12ES05, Faculté de Médecine, Monastir, Tunisie.
| | - Samia Haj Ahmed
- University Bourgogne Franche Comté, Université de Bourgogne Laboratoire Bio-PeroxIL, 'Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique' EA7270 / INSERM, Faculté des Sciences Gabriel, Dijon, France
- Laboratoire de biochimie « Nutrition -aliments fonctionnels et santé vasculaire « LR- NAFS LR12ES05, Faculté de Médecine, Monastir, Tunisie
| | - Thomas Nury
- University Bourgogne Franche Comté, Université de Bourgogne Laboratoire Bio-PeroxIL, 'Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique' EA7270 / INSERM, Faculté des Sciences Gabriel, Dijon, France
| | - Pierre Andreoletti
- University Bourgogne Franche Comté, Université de Bourgogne Laboratoire Bio-PeroxIL, 'Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique' EA7270 / INSERM, Faculté des Sciences Gabriel, Dijon, France
| | - Zohra Haouas
- Unité de recherche de génétique « Histologie et de Cytogénétique 02/UR/ 08-03 »Faculté de Médecine de Monastir, Monastir, Tunisie
| | - Amira Zarrouk
- University Bourgogne Franche Comté, Université de Bourgogne Laboratoire Bio-PeroxIL, 'Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique' EA7270 / INSERM, Faculté des Sciences Gabriel, Dijon, France
- Laboratoire de biochimie « Nutrition -aliments fonctionnels et santé vasculaire « LR- NAFS LR12ES05, Faculté de Médecine, Monastir, Tunisie
| | - Rachid Sakly
- Laboratoire de biochimie « Nutrition -aliments fonctionnels et santé vasculaire « LR- NAFS LR12ES05, Faculté de Médecine, Monastir, Tunisie
| | - Mohamed Hammami
- Laboratoire de biochimie « Nutrition -aliments fonctionnels et santé vasculaire « LR- NAFS LR12ES05, Faculté de Médecine, Monastir, Tunisie
| | - Gérard Lizard
- University Bourgogne Franche Comté, Université de Bourgogne Laboratoire Bio-PeroxIL, 'Biochimie du Peroxysome, Inflammation et Métabolisme Lipidique' EA7270 / INSERM, Faculté des Sciences Gabriel, Dijon, France
| |
Collapse
|
11
|
Lü L, Liu X, Wang C, Hu F, Wang J, Huang H. Dissociation of E-cadherin/β-catenin complex by MG132 and bortezomib enhances CDDP induced cell death in oral cancer SCC-25 cells. Toxicol In Vitro 2015; 29:1965-76. [DOI: 10.1016/j.tiv.2015.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/04/2015] [Accepted: 07/08/2015] [Indexed: 11/30/2022]
|
12
|
Cotylenin A and arsenic trioxide cooperatively suppress cell proliferation and cell invasion activity in human breast cancer cells. Int J Oncol 2014; 46:841-8. [PMID: 25405645 DOI: 10.3892/ijo.2014.2760] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/04/2014] [Indexed: 11/05/2022] Open
Abstract
Arsenic trioxide (ATO) is an approved treatment for acute promyelocytic leukemia (APL). It has also shown potential for treatment of multiple myeloma and various solid tumors including breast cancer. The requirement of high, toxic concentrations for the induction of apoptosis in non-APL and solid tumor cells is a major limitation for its use in other hematological malignancies and solid tumors. We have examined whether inducers of differentiation of leukemia cells can control the growth of solid tumor cells. In the present study, we found that cotylenin A, a plant growth regulator and a potent inducer of differentiation in myeloid leukemia cells, significantly potentiated both ATO-induced inhibition of cell growth in a liquid culture, and ATO-induced inhibition of anchorage-independent growth in a semi-solid culture in human breast cancer MCF-7 and MDA-MB-231 cells. ISIR-005 (a synthetic cotylenin A-derivative) was also able to enhance ATO-induced growth inhibition. The combined treatment with cotylenin A and ATO induced cleaved caspase-7 in MCF-7 cells at the concentrations which ATO alone scarcely induced and cotylenin A alone only weakly induced. Expression of survivin in MCF-7 cells was markedly decreased with the presence of both cotylenin A and ATO, although the expression of survivin was only slightly decreased by cotylenin A or ATO alone. The pretreatment with N-acetylcysteine significantly reduced the combination treatment-induced cell growth inhibition. These data suggest that induction of cleaved caspase-7, inhibition of survivin and oxidative responses are important events in the corporative inhibition in the growth of MCF-7 cells induced by both cotylenin A and ATO. Furthermore, we found that the combined treatment with cotylenin A and ATO also could be effective in suppressing the invasive capacity of MDA-MB-231 cells determined with the impedance-based xCELLigence Real-Time Cell Analysis technology. These results suggest that cotylenin A is an attractive enhancer for the ATO-induced anticancer activities in human breast cancer.
Collapse
|
13
|
Interaction study of arsenic (III and V) ions with metallothionein gene (MT2A) fragment. Int J Biol Macromol 2014; 72:599-605. [PMID: 25218889 DOI: 10.1016/j.ijbiomac.2014.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 12/20/2022]
Abstract
Arsenic compounds belong to the most controversial agents concerning human health. Arsenic (As) is considered as a top environmental element influencing human health due to its adverse effects including cancer, diabetes, cardiovascular disease, and reproductive or developmental problems. Despite the proven mutagenic, teratogenic and carcinogenic effects, the arsenic compounds are used for centuries to treat infectious diseases. In our work, we focused on studying of interactions of As(III) and/or As(V) with DNA. Interactions between arsenic ions and DNA were monitored by UV/vis spectrophotometry by measuring absorption and fluorescence spectra, atomic absorption spectrometry, electrochemical measurements (square wave voltammetry) and agarose gel electrophoresis. Using these methods, we observed a stable structure of DNA with As(III) within the concentration range 0.4-6.25 μg mL(-1). Higher As(III) concentration caused degradation of DNA. However, similar effects were not observed for As(V).
Collapse
|
14
|
Xu WX, Liu Y, Liu SZ, Zhang Y, Qiao GF, Yan J. Arsenic trioxide exerts a double effect on osteoblast growth in vitro. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:412-9. [PMID: 25128771 DOI: 10.1016/j.etap.2014.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 05/25/2023]
Abstract
Arsenic trioxide (ATO) is a promising antitumor agent used to treat acute promyelocytic leukemia (APL) and, recently solid tumor. The present study was designed to evaluate the effect of ATO proliferation of osteoblast that plays very important roles in maintaining the structure integrity and function of bone. Cell survives, apoptosis, collagen, and molecular targets were identified by multiple detecting techniques, including MTT assay, electron microscopy, collagen detecting kit, TUNEL kit, and western blot in hFOB1.19 human osteoblasts cell line. The results showed that low dose of ATO (0.25, 0.5, and 1μM) remarkably enhanced the viability of cultured osteoblasts in a concentration- and time-dependent manner. Intriguingly, a dual effect of high dose of ATO (5, 10, and 20μM) was also observed showing significant reduction in viability of culture osteoblasts at concentration- and time-dependent fashion. Moreover, low dose of ATO promoted secretion and synthesis of collagen, whereas high dose of ATO induced typical morphological characteristics of apoptosis in osteoblasts. Mechanically, western blot results demonstrated that low dose of ATO dramatically up-regulated TGF-β1 protein and activated p-AKT proliferative signaling. And, high dose of ATO increased Bax/Bcl-2 ratio in a time-dependent fashion and activated caspase-3 apoptotic signaling. These results demonstrate at the first time that ATO exerts a double effect on osteoblast function depending upon the concentration and provide a clue to rationally use ATO for clinicians to pay more attention to protect bone from the adverse effects of therapeutic dose of ATO during tumor therapy.
Collapse
Affiliation(s)
- Wen-Xiao Xu
- Department of Orthopedics, The Second Affiliated Hospital, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Sheng-Zhi Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Yu Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Guo-Fen Qiao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Jinglong Yan
- Department of Orthopedics, The Second Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
15
|
Boyko-Fabian M, Niehr F, Distel L, Budach V, Tinhofer I. Increased growth-inhibitory and cytotoxic activity of arsenic trioxide in head and neck carcinoma cells with functional p53 deficiency and resistance to EGFR blockade. PLoS One 2014; 9:e98867. [PMID: 24927258 PMCID: PMC4057125 DOI: 10.1371/journal.pone.0098867] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 05/08/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Mutations in the p53 gene are frequently observed in squamous cell carcinoma of the head and neck region (SCCHN) and have been associated with drug resistance. The potential of arsenic trioxide (ATO) for treatment of p53-deficient tumor cells and those with acquired resistance to cisplatin and cetuximab was determined. MATERIAL AND METHODS In a panel of 10 SCCHN cell lines expressing either wildtype p53, mutated p53 or which lacked p53 by deletion the interference of p53 deficiency with the growth-inhibitory and radiosensitizing potential of ATO was determined. The causal relationship between p53 deficiency and ATO sensitivity was evaluated by reconstitution of wildtype p53 in p53-deficient SCCHN cells. Interference of ATO treatment with cell cycle, DNA repair and apoptosis and its efficacy in cells with acquired resistance to cisplatin and cetuximab was evaluated. RESULTS Functional rather than structural defects in the p53 gene predisposed tumor cells to increased sensitivity to ATO. Reconstitution of wt p53 in p53-deficient SCCHN cells rendered them less sensitive to ATO treatment. Combination of ATO with irradiation inhibited clonogenic growth in an additive manner. The inhibitory effect of ATO in p53-deficient tumor cells was mainly associated with DNA damage, G2/M arrest, upregulation of TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) receptors and apoptosis. Increased activity of ATO was observed in cetuximab-resistant SCCHN cells whereas cisplatin resistance was associated with cross-resistance to ATO. CONCLUSIONS Addition of ATO to treatment regimens for p53-deficient SCCHN and tumor recurrence after cetuximab-containing regimens might represent an attractive strategy in SCCHN.
Collapse
Affiliation(s)
- Mariya Boyko-Fabian
- Translational Radiooncology Laboratory, Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany
| | - Franziska Niehr
- Translational Radiooncology Laboratory, Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany
| | - Luitpold Distel
- Department of Radiation Oncology, University Erlangen-Nuremberg, Erlangen, Germany
| | - Volker Budach
- Translational Radiooncology Laboratory, Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany
| | - Ingeborg Tinhofer
- Translational Radiooncology Laboratory, Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany
- * E-mail:
| |
Collapse
|
16
|
Wang Y, Masuyama H, Nobumoto E, Zhang G, Hiramatsu Y. The inhibition of constitutive androstane receptor-mediated pathway enhances the effects of anticancer agents in ovarian cancer cells. Biochem Pharmacol 2014; 90:356-66. [PMID: 24928535 DOI: 10.1016/j.bcp.2014.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND Ovarian cancer is commonly treated with anticancer agents; however, many tumors become resistant. Resistance is regulated, in part, by P-glycoprotein, which is encoded by the gene multiple drug resistance 1 (MDR1) and functions as a transmembrane efflux pump for the elimination of anticancer agents. Constitutive androstane receptor (CAR) is a nuclear receptor that regulates drug metabolism through control of MDR1 and other genes. PURPOSE We examined whether the inhibition of CAR-mediated pathway could influence the cytotoxicity of three anticancer drugs, cisplatin, paclitaxel, and arsenic trioxide, in ovarian cancer cells. RESULTS We observed that the cell proliferation of several ovarian cell lines expressing CAR significantly increased when CITCO was combined with anticancer agents compared with any anticancer agent alone. The up-regulation of MDR1 and UGT1A1 by anticancer agents was further enhanced in the presence of CITCO. We confirmed that combining CITCO with anticancer agents induced significantly lower levels of apoptosis than those achieved with any single anticancer drug. CAR down-regulation by RNA interference caused a significant increase in cell growth inhibition and enhancement of apoptosis in the presence of anticancer agents. Combination of CITCO with any anticancer agents significantly enhanced CAR-mediated transcription compared with any anticancer agents alone and CAR down-regulation completely inhibited the transcription in the presence of CITCO and/or anticancer agents. CONCLUSION Inhibition of CAR pathway could be a novel therapeutic approach for the augmentation of sensitivity to anticancer agents, or to overcome resistance, in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yan Wang
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentist and Pharmaceutical Science, Japan; Department of Obstetrics and Gynecology, 1st Affiliated Hospital, Harbin Medical University, China
| | - Hisashi Masuyama
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentist and Pharmaceutical Science, Japan.
| | - Etsuko Nobumoto
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentist and Pharmaceutical Science, Japan
| | - Guangmei Zhang
- Department of Obstetrics and Gynecology, 1st Affiliated Hospital, Harbin Medical University, China
| | - Yuji Hiramatsu
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentist and Pharmaceutical Science, Japan
| |
Collapse
|
17
|
Autophagy interplays with apoptosis and cell cycle regulation in the growth inhibiting effect of Trisenox in HEP-2, a laryngeal squamous cancer. Pathol Oncol Res 2014; 21:103-11. [PMID: 24838151 DOI: 10.1007/s12253-014-9794-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 05/06/2014] [Indexed: 02/02/2023]
Abstract
Laryngeal squamous cell carcinoma (LSCC) is the most common among several types of head and neck cancers. Current treatments have a poor effect on early and advanced cases, and further investigations for novel agents against LSCCs are desirable. In this study, we elucidate the cytotoxic enhancing effect of arsenic trioxide (As2O3) combined with L-buthionine sulfoximine (BSO) in LSCC. The effect of BSO with As2O3 or Cisplatin (CDDP) on cell viability was examined using 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The reactive oxygen species (ROS) levels, cell cycle, and apoptosis were measured by flow cytometry using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA), propidium iodide (PI) and annexin V/PI. The acidic vacuolar organelles were visualized by fluorescence microscope and quantified using flow cytometry. Neither CDDP nor As2O3 when used alone reduced the cell viability. BSO was found to enhance only As2O3 sensitivity, leading to G2/M arrest and autophagy with no correlation of ROS induction. This result suggests that modulation of glutathione enhances autophagy, which interplays with apoptosis. In this study, we obtained initial preclinical evidence for the potential efficacy of these drugs in a combined therapy protocol.
Collapse
|
18
|
Kumar B, Yadav A, Hideg K, Kuppusamy P, Teknos TN, Kumar P. A novel curcumin analog (H-4073) enhances the therapeutic efficacy of cisplatin treatment in head and neck cancer. PLoS One 2014; 9:e93208. [PMID: 24675768 PMCID: PMC3968069 DOI: 10.1371/journal.pone.0093208] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/28/2014] [Indexed: 12/27/2022] Open
Abstract
Chemotherapy constitutes the standard modality of treatment for localized head and neck squamous cell carcinomas (HNSCC). However, many patients fail to respond and relapse after this treatments due to the acquisition of chemo-resistance. Therefore, there is an urgent need to develop novel drugs that could reverse the resistant phenotype. Curcumin, the constituent of the spice turmeric has been shown to have anti-inflammatory, anti-oxidant and anti-proliferative properties in several tumor types. However, use of curcumin has been limited due to its poor bio-absorption. Recently, a novel class of curcumin analogs, based on diarylidenylpiperidones (DAP), has been developed by incorporating a piperidone link to the beta-diketone structure and fluoro substitutions on the phenyl groups. In this study, we evaluated the effectiveness of H-4073, a parafluorinated variant of DAP, using both in vitro and in vivo head and neck cancer models. Our results demonstrate that H-4073 is a potent anti-tumor agent and it significantly inhibited cell proliferation in all the HNSCC cell lines tested in a dose-dependent manner. In addition, pretreatment of cisplatin-resistant HNSCC cell lines with H-4073 significantly reversed the chemo-resistance as observed by cell viability assay (MTT), apoptosis assay (Annexin V binding) and cleaved caspase-3 (Western blot). H-4073 mediated its anti-tumor effects by inhibiting JAK/STAT3, FAK, Akt and VEGF signaling pathways that play important roles in cell proliferation, migration, survival and angiogenesis. In the SCID mouse xenograft model, H-4073 significantly enhanced the anti-tumor and anti-angiogenesis effects of cisplatin, with no added systemic toxicity. Interestingly, H-4073 inhibited tumor angiogenesis by blocking VEGF production by tumor cells as well as directly inhibiting endothelial cell function. Taken together, our results suggest that H-4073 is a potent anti-tumor agent and it can be used to overcome chemotherapy resistance in HNSCC.
Collapse
Affiliation(s)
- Bhavna Kumar
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio, United States of America
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Arti Yadav
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Kalman Hideg
- Institute of Organic and Medicinal Chemistry, University of Pécs, Pécs, Hungary
| | - Periannan Kuppusamy
- Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Theodoros N. Teknos
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio, United States of America
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (TT) (TT); (P. Kumar) (PK)
| | - Pawan Kumar
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, Ohio, United States of America
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (TT) (TT); (P. Kumar) (PK)
| |
Collapse
|
19
|
Nakaoka T, Ota A, Ono T, Karnan S, Konishi H, Furuhashi A, Ohmura Y, Yamada Y, Hosokawa Y, Kazaoka Y. Combined arsenic trioxide-cisplatin treatment enhances apoptosis in oral squamous cell carcinoma cells. Cell Oncol (Dordr) 2014; 37:119-29. [PMID: 24599717 DOI: 10.1007/s13402-014-0167-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) accounts for the majority of oral cancers. Despite recent advances in OSCC diagnostics and therapeutics, the overall survival rate still remains low. Here, we assessed the efficacy of a combinatorial arsenic trioxide (ATO) and cisplatin (CDDP) treatment in human OSCC cells. METHODS The combinatorial effect of ATO/CDDP on the growth and apoptosis of OSCC cell lines HSC-2, HSC-3, and HSC-4 was evaluated using MTT and annexin V assays, respectively. Chou-Talalay analyses were preformed to evaluate the combinatorial effects of ATO/CDDP on the dose-reduction index (DRI). To clarify the mechanism underlying the ATO/CDDP anticancer effect, we also examined the involvement of reactive oxygen species (ROS) in ATO/CDDP-induced apoptosis. RESULTS Combination index (CI) analyses revealed that a synergistic interaction of ATO and CDDP elicits a wide range of effects in HSC-2 cells, with CI values ranging from 0.78 to 0.90, where CI < 1 defines synergism. The CI values in HSC-3 and HSC-4 cells ranged from 0.34 to 0.45 and from 0.60 to 0.92, respectively. In addition, ATO/CDDP yielded favorable DRI values ranging from 1.6-fold to 7.71-fold dose reduction. Compared to mono-therapy, ATO/CDDP combinatorial therapy significantly augmented the loss of mitochondrial potential, caspase-3/7 activity and subsequent apoptosis. These changes were all abrogated by the antioxidant N-acetylcysteine. CONCLUSIONS This study provides the first evidence for a synergistic ATO/CDDP anticancer (apoptotic) activity in OSCC cells with a favorable DRI, thereby highlighting its potential as a combinational therapeutic regime in OSCC.
Collapse
Affiliation(s)
- Toshiki Nakaoka
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Xia Y, Fang H, Zhang J, Du Y. Endoplasmic reticulum stress-mediated apoptosis in imatinib-resistant leukemic K562-r cells triggered by AMN107 combined with arsenic trioxide. Exp Biol Med (Maywood) 2013; 238:932-42. [PMID: 23883479 DOI: 10.1177/1535370213492689] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The first tyrosine kinase inhibitor (TKI) imatinib mesylate (imatinib) targets the kinase domain of BCR-ABL and induces apoptosis in newly diagnosed chronic myeloid leukaemia (CML). However, resistant and relapse are common problems in imatinib-treated patients. Although second-generation TKI such as AMN107 appears to improve the treatment of CML, TKI resistance and relapse are also frequently occurred in the patients. To test whether arsenic trioxide (ATO) could potentiate the efficacy of AMN107 in imatinib-resistant cells, we conducted a series of assays in TKI-resistant K562-r cells treated with AMN107 and ATO. Based on a time-course cDNA microarray analysis, we found many genes typically involved in the endoplasmic reticulum (ER) stress signalling were significantly up-regulated, implicating the occurrence of ER stress-mediated apoptosis in K562-r cells treated with the combination of ATO and AMN107. Such implication was also supported by the data showing the activation of members in the JNK pathway, which are known to be characteristic markers bridging ER-stress and apoptosis. Partial knock-down of the JNK activities alleviated the effects of apoptosis (p < 0.05) triggered by combining AMN107 with ATO. In conclusion, this study for the first time demonstrates a synergistic effect of AMN107 with ATO, allowing insights into the possible mechanisms underlying imatinib-induced resistance in CML. Our data also suggest that combination of AMN107 with ATO may represent a new strategy for the treatment of imatinib-resistant CML patients.
Collapse
Affiliation(s)
- Yuan Xia
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | |
Collapse
|
21
|
Khammanivong A, Wang C, Sorenson BS, Ross KF, Herzberg MC. S100A8/A9 (calprotectin) negatively regulates G2/M cell cycle progression and growth of squamous cell carcinoma. PLoS One 2013; 8:e69395. [PMID: 23874958 PMCID: PMC3706396 DOI: 10.1371/journal.pone.0069395] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 06/14/2013] [Indexed: 12/16/2022] Open
Abstract
Malignant transformation results in abnormal cell cycle regulation and uncontrolled growth in head and neck squamous cell carcinoma (HNSCC) and other cancers. S100A8/A9 (calprotectin) is a calcium-binding heterodimeric protein complex implicated in cell cycle regulation, but the specific mechanism and role in cell cycle control and carcinoma growth are not well understood. In HNSCC, S100A8/A9 is downregulated at both mRNA and protein levels. We now report that downregulation of S100A8/A9 correlates strongly with a loss of cell cycle control and increased growth of carcinoma cells. To show its role in carcinogenesis in an in vitro model, S100A8/A9 was stably expressed in an S100A8/A9-negative human carcinoma cell line (KB cells, HeLa-like). S100A8/A9 expression increases PP2A phosphatase activity and p-Chk1 (Ser345) phosphorylation, which appears to signal inhibitory phosphorylation of mitotic p-Cdc25C (Ser216) and p-Cdc2 (Thr14/Tyr15) to inactivate the G2/M Cdc2/cyclin B1 complex. Cyclin B1 expression then downregulates and the cell cycle arrests at the G2/M checkpoint, reducing cell division. As expected, S100A8/A9-expressing cells show both decreased anchorage-dependent and -independent growth and mitotic progression. Using shRNA, silencing of S100A8/A9 expression in the TR146 human HNSCC cell line increases growth and survival and reduces Cdc2 inhibitory phosphorylation at Thr14/Tyr15. The level of S100A8/A9 endogenous expression correlates strongly with the reduced p-Cdc2 (Thr14/Tyr14) level in HNSCC cell lines, SCC-58, OSCC-3 and UMSCC-17B. S100A8/A9-mediated control of the G2/M cell cycle checkpoint is, therefore, a likely suppressive mechanism in human squamous cell carcinomas and may suggest new therapeutic approaches.
Collapse
Affiliation(s)
- Ali Khammanivong
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Chengxing Wang
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Brent S. Sorenson
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Karen F. Ross
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
- Mucosal and Vaccine Research Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
- Mucosal and Vaccine Research Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
22
|
Main-Group Medicinal Chemistry Including Li and Bi*. COMPREHENSIVE INORGANIC CHEMISTRY II 2013. [PMCID: PMC7152213 DOI: 10.1016/b978-0-08-097774-4.00338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Main-group element compounds were among the first developed in the modern era as pharmaceutical preparations for the treatment of a wide variety of human ailments; it is now recognized that many of these elements exist in traditional medicine of many societies, for example, arsenic. The use of main-group element compounds in contemporary medicine continues for the treatment of, for example, depression (Li), stomach ulcers (Bi), cancer (As and Ga), and leishmaniasis (Sb). Not surprisingly, new compounds of these elements, and other main-group elements, continue to be investigated for their potential use in new therapies. In this chapter, the use of main-group elements as therapeutic agents is outlined and also, where understood, comments on biological targets and mechanisms of action. Further, key advances in new potential applications of main-group element compounds in medicine are evaluated.
Collapse
|
23
|
Zhang L, Wang K, Zhao F, Hu W, Chen J, Lanza GM, Shen B, Zhang B. Near infrared imaging of EGFR of oral squamous cell carcinoma in mice administered arsenic trioxide. PLoS One 2012; 7:e46255. [PMID: 23029451 PMCID: PMC3460885 DOI: 10.1371/journal.pone.0046255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 08/31/2012] [Indexed: 02/03/2023] Open
Abstract
Background The effectiveness of near-infrared imaging (NIR) interrogation of epidermal growth factor receptor (EGFR) expression as a sensitive biomarker of oral squamous cell carcinoma (OSCC) response to arsenic trioxide therapy was studied in mice. Material and Methods A431 OSCC in vitro were exposed to 0 µM, 0.5 µM, 2.5 µM, or 5 µM of As2O3 for 0 h, 24 h, 48 h and 72 h. Confocal microscopy and flow cytometry confirmed EGFR expression and demonstrated a sensitivity dose-related signal decline with As2O3 treatment. Next, mice with pharynx-implanted A431 cells received As2O3 i.p. every 48 h at 0.0, 0.5, 2.5, or 5 mg/kg/day (n = 6/group) from day 0 to 10. An intravenous NIR probe, EGF-Cy5.5, was injected at baseline and on days 4, 8, and 12 for dynamic NIR imaging. Tumor volume and body weights were measured three times weekly. Results In vitro, A431 EGFR expression was well appreciated in the controls and decreased (p<0.05) with increasing As2O3 dose and treatment duration. In vivo EGFR NIR tumor signal intensity decreased (p<0.05) in As2O3 treated groups versus controls from days 4 to 12, consistent with increasing dosage. Tumor volume diminished in a dose-related manner while body weight was unaffected. Immunohistochemical staining of excised tumors confirmed that EGFR expression was reduced by As2O3 treatment in a dose responsive pattern. Conclusion This study demonstrates for the first time that OSCC can be interrogated in vivo by NIR molecular imaging of the EGFR and that this biomarker is effective for the longitudinal assessment of OSCC response to As2O3 treatment.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Arsenic Trioxide
- Arsenicals/pharmacology
- Arsenicals/therapeutic use
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Body Weight/drug effects
- Carbocyanines
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Dose-Response Relationship, Drug
- Epidermal Growth Factor/administration & dosage
- Epidermal Growth Factor/chemistry
- ErbB Receptors/analysis
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Gene Expression/drug effects
- Injections, Intraperitoneal
- Injections, Intravenous
- Magnetic Resonance Imaging
- Mice
- Mice, Nude
- Mouth Neoplasms/diagnosis
- Mouth Neoplasms/drug therapy
- Mouth Neoplasms/genetics
- Mouth Neoplasms/metabolism
- Neoplasms, Experimental
- Oxides/pharmacology
- Oxides/therapeutic use
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/chemistry
- Spectroscopy, Near-Infrared
- Tumor Burden/drug effects
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Lingbo Zhang
- Stomatology Department, Institute of Hard Tissue Development and Regeneration, 2nd Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Kezheng Wang
- Radiology Department and Molecular Imaging Center, 4th Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Falin Zhao
- School of Health Management, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Weiping Hu
- Stomatology Department, Institute of Hard Tissue Development and Regeneration, 2nd Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Junjie Chen
- Division of Cardiology and C-TRAIN, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gregory M. Lanza
- Division of Cardiology and C-TRAIN, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Baozhong Shen
- Radiology Department and Molecular Imaging Center, 4th Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
- * E-mail: (BS); (BZ)
| | - Bin Zhang
- Stomatology Department, Institute of Hard Tissue Development and Regeneration, 2nd Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
- * E-mail: (BS); (BZ)
| |
Collapse
|
24
|
Watanabe T, Hirano S. Metabolism of arsenic and its toxicological relevance. Arch Toxicol 2012; 87:969-79. [PMID: 22811022 DOI: 10.1007/s00204-012-0904-5] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
Abstract
Arsenic is a worldwide environmental pollutant and a human carcinogen. It is well recognized that the toxicity of arsenicals largely depends on the oxidoreduction states (trivalent or pentavalent) and methylation levels (monomethyl, dimethyl, and trimethyl) that are present during the process of metabolism in mammals. However, presently, the specifics of the metabolic pathway of inorganic arsenicals have yet to be confirmed. In mammals, there are two possible mechanisms that have been proposed for the metabolic pathway of inorganic arsenicals, oxidative methylation, and glutathione conjugation. Oxidative methylation, which was originally proposed in fungi, is based on findings that arsenite (iAs(III)) is sequentially converted to monomethylarsonic acid (MMA(V)) and dimethylarsinic acid (DMA(V)) in both humans and in laboratory animals such as mice and rats. However, recent in vitro observations have demonstrated that arsenic is only methylated in the presence of glutathione (GSH) or other thiol compounds, which strongly suggests that arsenic is methylated in trivalent forms. The glutathione conjugation mechanism is supported by findings that have shown that most intracellular arsenicals are trivalent and excreted from cells as GSH conjugates. Since non-conjugated trivalent arsenicals are highly reactive with thiol compounds and are easily converted to less toxic corresponding pentavalent arsenicals, the arsenic-glutathione conjugate stability may be the most important factor for determining the toxicity of arsenicals. In addition, "being a non-anionic form" also appears to be a determinant of the toxicity of oxo-arsenicals or thioarsenicals. The present review discusses both the metabolism of arsenic and the toxicity of arsenic metabolites.
Collapse
Affiliation(s)
- Takayuki Watanabe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-0856, Japan
| | | |
Collapse
|
25
|
Kumar B, Yadav A, Lang JC, Cipolla MJ, Schmitt AC, Arradaza N, Teknos TN, Kumar P. YM155 reverses cisplatin resistance in head and neck cancer by decreasing cytoplasmic survivin levels. Mol Cancer Ther 2012; 11:1988-98. [PMID: 22723337 DOI: 10.1158/1535-7163.mct-12-0167] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cisplatin is one of the commonly used chemotherapeutic drugs for the treatment of head and neck squamous cell carcinoma (HNSCC). However, acquisition of cisplatin resistance is common in patients with HNSCC, and it often leads to local and distant failure. In this study, we showed that survivin expression is significantly upregulated in HNSCC primary tumors and cell lines. In addition, survivin levels were significantly higher in human papilloma virus-negative patients that normally respond poorly to cisplatin treatment. Survivin expression was further increased in cisplatin-resistant cells (CAL27-CisR) as compared with its parent cells (CAL27). Therefore, we hypothesized that targeting of survivin in HNSCC could reverse the resistant phenotype in tumor cells, thereby enhancing the therapeutic efficacy of cisplatin. We used both in vitro and in vivo models to test the efficacy of YM155, a small molecule survivin inhibitor, either as a single agent or in combination with cisplatin. YM155 significantly decreased survivin levels and cell proliferation in a dose-dependent manner. In addition, YM155 pretreatment significantly reversed cisplatin resistance in cancer cells. Interestingly, YM155 treatment altered the dynamic localization of survivin in cells by inducing a rapid reduction in cytoplasmic survivin, which plays a critical role in its antiapoptotic function. In a severe combined immunodeficient mouse xenograft model, YM155 significantly enhanced the antitumor and antiangiogenic effects of cisplatin, with no added systemic toxicity. Taken together, our results suggest a potentially novel strategy to use YM155 to overcome the resistance in tumor cells, thereby enhancing the effectiveness of the chemotherapy in HNSCC.
Collapse
Affiliation(s)
- Bhavna Kumar
- Department of Otolaryngology–Head and Neck Surgery, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hu YC, Cheng HL, Hsieh BS, Huang LW, Huang TC, Chang KL. Arsenic trioxide affects bone remodeling by effects on osteoblast differentiation and function. Bone 2012; 50:1406-15. [PMID: 22465848 DOI: 10.1016/j.bone.2012.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/07/2012] [Accepted: 03/10/2012] [Indexed: 11/25/2022]
Abstract
Arsenic trioxide (ATO) is widely used in tumor treatment, but excessive arsenic exposure can have adverse health effects. This study was to examine the association between ATO treatment and bone remodeling. The effects of ATO on osteoblast function were investigated in primary cell cultures and in an in vivo study in rats. Sprague-Dawley rats (n=30) were randomly assigned to 3 groups which were injected intraperitoneally with saline or 5 or 10 mg/kg of ATO for 4 weeks. In cell culture, ATO decreased osteoblast mineralization by decreasing alkaline phosphatase (ALP) expression and this effect was prevented by co-addition of inorganic phosphate (Pi). Moreover, levels of mRNAs for the transcription factors runt-related transcription factor 2 (Runx2) and osterix, the osteoblast osteogenic gene osteocalcin, and the adherence molecule vascular cell adhesion molecule-1 (VCAM-1) were decreased by ATO. Levels of mRNAs for the cytokine IL-6 were also decreased, whereas GM-CSF mRNA levels were increased. Similar effects of ATO on osteoblasts were seen in in vivo experiments in the rat. Moreover, decreases of bone turnover markers of osteocalcin, Procollagen type I N-terminal propeptide (PINP), and C-terminal cross-linked telopeptide (CTX) as well as bone mineral density (BMD) and trabecular bone volume of femur were observed in ATO-treated rats. These results suggest that ATO interferes with bone remodeling mostly through changes in osteoblast differentiation and function.
Collapse
Affiliation(s)
- Yu-Chen Hu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | | | | | | | | | | |
Collapse
|
27
|
Su Y, Wang X, Xu W, Xue L, He C, Yang D, An R. Arsenic Trioxide Increases the Sensitivity of 786–0 Renal Carcinoma Cells to Radiotherapy. Cancer Invest 2012; 30:114-8. [DOI: 10.3109/07357907.2011.640652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Stewart FA, Akleyev AV, Hauer-Jensen M, Hendry JH, Kleiman NJ, Macvittie TJ, Aleman BM, Edgar AB, Mabuchi K, Muirhead CR, Shore RE, Wallace WH. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs--threshold doses for tissue reactions in a radiation protection context. Ann ICRP 2012; 41:1-322. [PMID: 22925378 DOI: 10.1016/j.icrp.2012.02.001] [Citation(s) in RCA: 810] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This report provides a review of early and late effects of radiation in normal tissues and organs with respect to radiation protection. It was instigated following a recommendation in Publication 103 (ICRP, 2007), and it provides updated estimates of 'practical' threshold doses for tissue injury defined at the level of 1% incidence. Estimates are given for morbidity and mortality endpoints in all organ systems following acute, fractionated, or chronic exposure. The organ systems comprise the haematopoietic, immune, reproductive, circulatory, respiratory, musculoskeletal, endocrine, and nervous systems; the digestive and urinary tracts; the skin; and the eye. Particular attention is paid to circulatory disease and cataracts because of recent evidence of higher incidences of injury than expected after lower doses; hence, threshold doses appear to be lower than previously considered. This is largely because of the increasing incidences with increasing times after exposure. In the context of protection, it is the threshold doses for very long follow-up times that are the most relevant for workers and the public; for example, the atomic bomb survivors with 40-50years of follow-up. Radiotherapy data generally apply for shorter follow-up times because of competing causes of death in cancer patients, and hence the risks of radiation-induced circulatory disease at those earlier times are lower. A variety of biological response modifiers have been used to help reduce late reactions in many tissues. These include antioxidants, radical scavengers, inhibitors of apoptosis, anti-inflammatory drugs, angiotensin-converting enzyme inhibitors, growth factors, and cytokines. In many cases, these give dose modification factors of 1.1-1.2, and in a few cases 1.5-2, indicating the potential for increasing threshold doses in known exposure cases. In contrast, there are agents that enhance radiation responses, notably other cytotoxic agents such as antimetabolites, alkylating agents, anti-angiogenic drugs, and antibiotics, as well as genetic and comorbidity factors. Most tissues show a sparing effect of dose fractionation, so that total doses for a given endpoint are higher if the dose is fractionated rather than when given as a single dose. However, for reactions manifesting very late after low total doses, particularly for cataracts and circulatory disease, it appears that the rate of dose delivery does not modify the low incidence. This implies that the injury in these cases and at these low dose levels is caused by single-hit irreparable-type events. For these two tissues, a threshold dose of 0.5Gy is proposed herein for practical purposes, irrespective of the rate of dose delivery, and future studies may elucidate this judgement further.
Collapse
|
29
|
Zhang X, Su Y, Zhang M, Sun Z. Opposite effects of arsenic trioxide on the Nrf2 pathway in oral squamous cell carcinoma in vitro and in vivo. Cancer Lett 2011; 318:93-8. [PMID: 22155346 DOI: 10.1016/j.canlet.2011.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/02/2011] [Accepted: 12/03/2011] [Indexed: 01/02/2023]
Abstract
Nuclear factor erythroid derived 2 like 2 (Nrf2) is a critical transcriptional factor in mediating cellular defense mechanisms against oxidative stress or electrophiles. Arsenic has been reported to induce malignant transformation of human cells through Nrf2-dependent signaling pathway. However, arsenic is also a promising cancer therapeutic drug for solid tumors, including oral squamous cell carcinoma (OSCC). It is still unclear how Nrf2 may mediate cellular response of OSCC cells when treated with arsenic. In order to fully understand the impact of arsenic on Nrf2 signaling in human OSCC, we examined expression of Nrf2 and Nrf2-regulated genes in arsenic trioxide (ATO)-treated OSCC cells in vitro and in ATO-treated OSCC xenografts. ATO had anti-cancer effects on both cultured OSCC cells and OSCC xenografts by inhibiting cell growth, suppressing angiogenesis and inducing apoptosis. ATO activated a silent Nrf2 pathway in cultured OSCC cells as shown by induction of Nrf2 and Nrf2-regulated genes, NAD(P)H:quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), in a dose-dependent manner. On the contrary, Nrf2 pathway became active in OSCC xenograft tumors, and ATO treatment down-regulated expression of Nrf2 and Nrf2-regulated genes. Our study clearly demonstrated opposite effects of ATO on Nrf2 pathway in OSCC cells in vitro and in vivo.
Collapse
Affiliation(s)
- Xinyan Zhang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, No. 4 Tiantanxili, Dongcheng District, Beijing, China.
| | | | | | | |
Collapse
|
30
|
Raja WK, Satti J, Liu G, Castracane J. Dose Response of MTLn3 Cells to Serial Dilutions of Arsenic Trioxide and Ionizing Radiation. Dose Response 2011; 11:29-40. [PMID: 23550222 DOI: 10.2203/dose-response.11-025.raja] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
MTLn3 cells derived from mouse mammary epithelium are known to be highly malignant and are resistant to both radio- and chemo-therapy. We exposed MTLn3 cells to various doses of inorganic Arsenic trioxide (As2O3) in combination with ionizing radiation. Cells were treated with a series of As2O3 concentrations ranging from 20 μM to 1.22 nM for 8 hour, 24 hour and 48 hour periods. Post-treated cell proliferation was quantified by measuring mitochondrial activity and DNA analysis. Cells exposed to radiation and As2O3 at concentration greater than 1.25 μM showed apoptosis and radiations alone treated cells were statistically not different from the control. Hormesis was observed for As2O3 concentrations in the range of 0.078 μM to 0.625 μM while the combined chemo and radiation treatments of the cells did not affect the hormetic effect. We have demonstrated that As2O3 (in the presence and absence of ionizing radiation) in specific low concentrations induced apoptosis in the otherwise chemoresistant cancer cells. This low concentration-mediated cell death is immediately followed by a surge in cell survival. Low dosing dosimetry is highly desirable in metronomic therapy however, it has a narrow window since necrosis, hormesis, apoptosis and other dose-dependent biological processes take place in this region. Further quantifiable dosimetry is highly desired for routine clinical practice.
Collapse
Affiliation(s)
- Waseem Khan Raja
- Biomedical Engineering, Tufts University and College of Nanoscale Science and Engineering, University at Albany
| | | | | | | |
Collapse
|
31
|
Chien CW, Yao JH, Chang SY, Lee PC, Lee TC. Enhanced suppression of tumor growth by concomitant treatment of human lung cancer cells with suberoylanilide hydroxamic acid and arsenic trioxide. Toxicol Appl Pharmacol 2011; 257:59-66. [PMID: 21889949 DOI: 10.1016/j.taap.2011.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/13/2011] [Accepted: 08/16/2011] [Indexed: 01/29/2023]
Abstract
The efficacy of arsenic trioxide (ATO) against acute promyelocytic leukemia (APL) and relapsed APL has been well documented. ATO may cause DNA damage by generating reactive oxygen intermediates. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, modulates gene and protein expression via histone-dependent or -independent pathways that may result in chromatin decondensation, cell cycle arrest, differentiation, and apoptosis. We investigated whether ATO and SAHA act synergistically to enhance the death of cancer cells. Our current findings showed that combined treatment with ATO and SAHA resulted in enhanced suppression of non-small-cell lung carcinoma in vitro in H1299 cells and in vivo in a xenograft mouse model. Flow cytometric analysis of annexin V+ cells showed that apoptotic cell death was significantly enhanced after combined treatment with ATO and SAHA. At the doses used, ATO did not interfere with cell cycle progression, but SAHA induced p21 expression and led to G1 arrest. A Comet assay demonstrated that ATO, but not SAHA, induced DNA strand breaks in H1299 cells; however, co-treatment with SAHA significantly increased ATO-induced DNA damage. Moreover, SAHA enhanced acetylation of histone H3 and sensitized genomic DNA to DNase I digestion. Our results suggest that SAHA may cause chromatin relaxation and increase cellular susceptibility to ATO-induced DNA damage. Combined administration of SAHA and ATO may be an effective approach to the treatment of lung cancer.
Collapse
Affiliation(s)
- Chia-Wen Chien
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | |
Collapse
|
32
|
Yadav A, Kumar B, Teknos TN, Kumar P. Sorafenib enhances the antitumor effects of chemoradiation treatment by downregulating ERCC-1 and XRCC-1 DNA repair proteins. Mol Cancer Ther 2011; 10:1241-51. [PMID: 21551262 DOI: 10.1158/1535-7163.mct-11-0004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Head and neck squamous cell carcinoma remains a challenging clinical problem because of the persisting high rate of local and distant failure due to the acquisition of chemo- and radioresistance. In this study, we examined if treatment with sorafenib, a potent inhibitor of Raf kinase and VEGF receptor, could reverse the resistant phenotype in tumor and tumor-associated endothelial cells, thereby enhancing the therapeutic efficacy of currently used chemoradiation treatment. We used both in vitro and in vivo models to test the efficacy of sorafenib either as a single agent or in combination with chemoradiation. Sorafenib, as a single agent, showed antitumor and angiogenesis properties, but the effects were more pronounced when used in combination with chemoradiation treatment. Sorafenib significantly enhanced the antiproliferative effects of chemoradiation treatment by downregulating DNA repair proteins (ERCC-1 and XRCC-1) in a dose-dependent manner. In addition, combination treatment significantly inhibited tumor cell colony formation, tumor cell migration, and tumor cell invasion. Combination treatment was also very effective in inhibiting VEGF-mediated angiogenesis in vitro. In a severe combined immunodeficient mouse xenograft model, combination treatment was very well tolerated and significantly inhibited tumor growth and tumor angiogenesis. Interestingly, following combination treatment, low-dose sorafenib treatment alone was highly effective as a maintenance regimen. Taken together, our results suggest a potentially novel strategy to use sorafenib to overcome chemo- and radioresistance in tumor and tumor-associated endothelial to enhance the effectiveness of the chemoradiation therapy.
Collapse
Affiliation(s)
- Arti Yadav
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
33
|
Chiu HW, Lin W, Ho SY, Wang YJ. Synergistic effects of arsenic trioxide and radiation in osteosarcoma cells through the induction of both autophagy and apoptosis. Radiat Res 2011; 175:547-60. [PMID: 21388295 DOI: 10.1667/rr2380.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumor, occurring mainly in children and adolescents, and survival largely depends on their response to chemotherapy. However, the risk of relapse and adverse outcomes is still high. We investigated the synergistic anti-cancer effects of ionizing radiation combined with arsenic trioxide (ATO) and the mechanisms underlying apoptosis or autophagy induced by combined radiation and ATO treatment in human osteosarcoma cells. We found that exposure to radiation increased the population of HOS cells in the G(2)/M phase within 12 h in a time-dependent manner. Radiation combined with ATO induced a significantly prolonged G(2)/M arrest, consequently enhancing cell death. Furthermore, combined treatment resulted in enhanced ROS generation compared to treatment with ATO or radiation alone. The enhanced cytotoxic effect of combined treatment occurred from the increased induction of autophagy and apoptosis through inhibition of the PI3K/Akt signaling pathway in HOS cells. The combined treatment of HOS cells pretreated with Z-VAD, 3-MA or PEG-catalase resulted in a significant reduction of cytotoxicity. In addition, G(2)/M arrest and ROS generation could be involved in the underlying mechanisms. The data suggest that a combination of radiation and ATO could be a new potential therapeutic strategy for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Hui-Wen Chiu
- Department of Environmental and Occupational Health, National Cheng Kung University, Medical College, Tainan, Taiwan
| | | | | | | |
Collapse
|
34
|
Panda V, Khambat P, Patil S. Mitocans as Novel Agents for Anticancer Therapy: An Overview. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/ijcm.2011.24086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Jutooru I, Chadalapaka G, Sreevalsan S, Lei P, Barhoumi R, Burghardt R, Safe S. Arsenic trioxide downregulates specificity protein (Sp) transcription factors and inhibits bladder cancer cell and tumor growth. Exp Cell Res 2010; 316:2174-88. [PMID: 20435036 PMCID: PMC2900380 DOI: 10.1016/j.yexcr.2010.04.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 04/05/2010] [Accepted: 04/26/2010] [Indexed: 11/18/2022]
Abstract
Arsenic trioxide exhibits antiproliferative, antiangiogenic and proapoptotic activity in cancer cells, and many genes associated with these responses are regulated by specificity protein (Sp) transcription factors. Treatment of cancer cells derived from urologic (bladder and prostate) and gastrointestinal (pancreas and colon) tumors with arsenic trioxide demonstrated that these cells exhibited differential responsiveness to the antiproliferative effects of this agent and this paralleled their differential repression of Sp1, Sp3 and Sp4 proteins in the same cell lines. Using arsenic trioxide-responsive KU7 and non-responsive 253JB-V bladder cancer cells as models, we show that in KU7 cells, < or =5 microM arsenic trioxide decreased Sp1, Sp3 and Sp4 and several Sp-dependent genes and responses including cyclin D1, epidermal growth factor receptor, bcl-2, survivin and vascular endothelial growth factor, whereas at concentrations up to 15 microM, minimal effects were observed in 253JB-V cells. Arsenic trioxide also inhibited tumor growth in athymic mice bearing KU7 cells as xenografts, and expression of Sp1, Sp3 and Sp4 was significantly decreased. Inhibitors of oxidative stress such as glutathione or dithiothreitol protected KU7 cells from arsenic trioxide-induced antiproliferative activity and Sp repression, whereas glutathione depletion sensitized 253JB-V cells to arsenic trioxide. Mechanistic studies suggested that arsenic trioxide-dependent downregulation of Sp and Sp-dependent genes was due to decreased mitochondrial membrane potential and induction of reactive oxygen species, and the role of peroxides in mediating these responses was confirmed using hydrogen peroxide.
Collapse
Affiliation(s)
- Indira Jutooru
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466 USA
| | - Gayathri Chadalapaka
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466 USA
| | - Sandeep Sreevalsan
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466 USA
| | - Ping Lei
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, TX 77030-3303 USA
| | - Rola Barhoumi
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458 USA
| | - Robert Burghardt
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458 USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843-4466 USA
- Institute of Biosciences and Technology, Texas A&M Health Sciences Center, Houston, TX 77030-3303 USA
| |
Collapse
|
36
|
Bai S, Nasser MW, Wang B, Hsu SH, Datta J, Kutay H, Yadav A, Nuovo G, Kumar P, Ghoshal K. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem 2009; 284:32015-27. [PMID: 19726678 PMCID: PMC2797273 DOI: 10.1074/jbc.m109.016774] [Citation(s) in RCA: 409] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 08/26/2009] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs are negative regulators of protein coding genes. The liver-specific microRNA-122 (miR-122) is frequently suppressed in primary hepatocellular carcinomas (HCCs). In situ hybridization demonstrated that miR-122 is abundantly expressed in hepatocytes but barely detectable in primary human HCCs. Ectopic expression of miR-122 in nonexpressing HepG2, Hep3B, and SK-Hep-1 cells reversed their tumorigenic properties such as growth, replication potential, clonogenic survival, anchorage-independent growth, migration, invasion, and tumor formation in nude mice. Further, miR-122-expressing HCC cells retained an epithelial phenotype that correlated with reduced Vimentin expression. ADAM10 (a distintegrin and metalloprotease family 10), serum response factor (SRF), and insulin-like growth factor 1 receptor (Igf1R) that promote tumorigenesis were validated as targets of miR-122 and were repressed by the microRNA. Conversely, depletion of the endogenous miR-122 in Huh-7 cells facilitated their tumorigenic properties with concomitant up-regulation of these targets. Expression of SRF or Igf1R partially reversed tumor suppressor function of miR-122. Further, miR-122 impeded angiogenic properties of endothelial cells in vitro. Notably, ADAM10, SRF, and Igf1R were up-regulated in primary human HCCs compared with the matching liver tissue. Co-labeling studies demonstrated exclusive localization of miR-122 in the benign livers, whereas SRF predominantly expressed in HCC. More importantly, growth and clonogenic survival of miR-122-expressing HCC cells were significantly reduced upon treatment with sorafenib, a multi-kinase inhibitor clinically effective against HCC. Collectively, these results suggest that the loss of multifunctional miR-122 contributes to the malignant phenotype of HCC cells, and miR-122 mimetic alone or in combination with anticancer drugs can be a promising therapeutic regimen against liver cancer.
Collapse
Affiliation(s)
- Shoumei Bai
- From the Departments of Molecular and Cellular Biochemistry
| | - Mohd W. Nasser
- From the Departments of Molecular and Cellular Biochemistry
| | - Bo Wang
- From the Departments of Molecular and Cellular Biochemistry
| | - Shu-Hao Hsu
- From the Departments of Molecular and Cellular Biochemistry
| | - Jharna Datta
- From the Departments of Molecular and Cellular Biochemistry
| | - Huban Kutay
- From the Departments of Molecular and Cellular Biochemistry
| | - Arti Yadav
- Otolaryngology-Head and Neck Surgery, and
| | | | | | - Kalpana Ghoshal
- From the Departments of Molecular and Cellular Biochemistry
- the Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
37
|
Doyle D. Notoriety to respectability: a short history of arsenic prior to its present day use in haematology. Br J Haematol 2009; 145:309-17. [DOI: 10.1111/j.1365-2141.2009.07623.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|