1
|
Inam A, Zhang S, Zhang S, Wu D. AQ4N nanocomposites for hypoxia-associated tumor combination therapy. Biomater Sci 2024. [PMID: 39431892 DOI: 10.1039/d4bm00883a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Hypoxia in solid tumors increases their invasiveness and resistance to therapy, presenting a formidable obstacle in tumor therapy. The hypoxia prodrug banoxantrone (AQ4N) undergoes conversion into its topoisomerase II inhibitor form AQ4 under hypoxic conditions, which inhibits tumor cells while leaving normal cells unharmed. Numerous studies have found that AQ4N significantly enhances the tumor effect while minimizing toxicity to normal tissues when combined with other drugs or therapeutic approaches. Thus, to maximize AQ4N's effectiveness, co-delivery of AQ4N with other therapeutic agents to the tumor site is paramount, leading to the development of multifunctional multicomponent AQ4N nanocomposites thereby emerging as promising candidates for combination therapy in tumor treatment. However, currently there is a lack of systematic analysis and reviews focusing on AQ4N. Herein, this review provides a comprehensive retrospect and analysis of the recent advancements in AQ4N nanocomposites. Specifically, we discuss the synergistic effects observed when AQ4N is combined with chemotherapeutic drugs, radiotherapy, phototherapy, starvation, sonodynamic therapy and immunotherapy in preclinical models. Moreover, the advantages, limitations, and future perspectives of different AQ4N nanocomposites are highlighted, providing researchers from diverse fields with novel insights into tumor treatment.
Collapse
Affiliation(s)
- Amrah Inam
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
| | - Shuo Zhang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
| | - Shuai Zhang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P.R. China.
| |
Collapse
|
2
|
O'Connor JPB, Tessyman V, Little RA, Babur M, Forster D, Latif A, Cheung S, Lipowska-Bhalla G, Higgins GS, Asselin MC, Parker GJM, Williams KJ. Combined Oxygen-Enhanced MRI and Perfusion Imaging Detect Hypoxia Modification from Banoxantrone and Atovaquone and Track Their Differential Mechanisms of Action. CANCER RESEARCH COMMUNICATIONS 2024; 4:2565-2574. [PMID: 39240065 PMCID: PMC11443776 DOI: 10.1158/2767-9764.crc-24-0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024]
Abstract
Oxygen-enhanced MRI (OE-MRI) has shown promise for quantifying and spatially mapping tumor hypoxia, either alone or in combination with perfusion imaging. Previous studies have validated the technique in mouse models and in patients with cancer. Here, we report the first evidence that OE-MRI can track change in tumor oxygenation induced by two drugs designed to modify hypoxia. Mechanism of action of banoxantrone and atovaquone were confirmed using in vitro experiments. Next, in vivo OE-MRI studies were performed in Calu6 and U87 xenograft tumor models, alongside fluorine-18-fluoroazomycin arabinoside PET and immunohistochemistry assays of hypoxia. Neither drug altered tumor size. Banoxantrone reduced OE-MRI hypoxic fraction in Calu6 tumors by 52.5% ± 12.0% (P = 0.008) and in U87 tumors by 29.0% ± 15.8% (P = 0.004) after 3 days treatment. Atovaquone reduced OE-MRI hypoxic fraction in Calu6 tumors by 53.4% ± 15.3% (P = 0.002) after 7 days therapy. PET and immunohistochemistry provided independent validation of the MRI findings. Finally, combined OE-MRI and perfusion imaging showed that hypoxic tissue was converted into necrotic tissue when treated by the hypoxia-activated cytotoxic prodrug banoxantrone, whereas hypoxic tissue became normoxic when treated by atovaquone, an inhibitor of mitochondrial complex III of the electron transport chain. OE-MRI detected and quantified hypoxia reduction induced by two hypoxia-modifying therapies and could distinguish between their differential mechanisms of action. These data support clinical translation of OE-MRI biomarkers in clinical trials of hypoxia-modifying agents to identify patients demonstrating biological response and to optimize treatment timing and scheduling. Significance: For the first time, we show that hypoxic fraction measured by oxygen-enhanced MRI (OE-MRI) detected changes in tumor oxygenation induced by two drugs designed specifically to modify hypoxia. Furthermore, when combined with perfusion imaging, OE-MRI hypoxic volume distinguished the two drug mechanisms of action. This imaging technology has potential to facilitate drug development, enrich clinical trial design, and accelerate clinical translation of novel therapeutics into clinical use.
Collapse
Affiliation(s)
- James P B O'Connor
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Department of Radiology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Victoria Tessyman
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom
| | - Ross A Little
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Muhammad Babur
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom
| | - Duncan Forster
- Cancer Research UK Manchester Centre, University of Manchester, Manchester, United Kingdom
| | - Ayşe Latif
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom
| | - Susan Cheung
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Geoff S Higgins
- CRUK/MRC Oxford Institute for Radiation Oncology and Biology, University of Oxford, Oxford, United Kingdom
| | - Marie-Claude Asselin
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, United Kingdom
| | - Geoff J M Parker
- Bioxydyn Ltd., Manchester, United Kingdom
- Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Kaye J Williams
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Zhang Q, Xuan Q, Wang C, Shi C, Wang X, Ma T, Zhang W, Li H, Wang P, Chen C. Bioengineered "Molecular Glue"-Mediated Tumor-Specific Cascade Nanoreactors with Self-Destruction Ability for Enhanced Precise Starvation/Chemosynergistic Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41271-41286. [PMID: 37622208 DOI: 10.1021/acsami.3c06871] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The ordered and directed functionalization of targeting elements on the surface of nanomaterials for precise tumor therapy remains a challenge. To address the above problem, herein, we adopted a materials-based synthetic biotechnology strategy to fabricate a bioengineered fusion protein of materials-binding peptides and targeting elements, which can serve as a "molecular glue" to achieve a directional and organized assembly of targeting biological macromolecules on the surface of nanocarriers. The hypoxia microenvironment of solid tumors inspired the rapid development of starvation/chemosynergistic therapy; however, the unsatisfied spatiotemporal specific performance hindered its further development in precise tumor therapy. As a proof of concept, a bioengineered fusion protein containing a dendritic mesoporous silicon (DMSN)-binding peptide, and a tumor-targeted and acidity-decomposable ferritin heavy chain 1 (FTH1), was constructed by fusion expression and further assembled on the surface of DMSN companying with the insertion of hypoxia-activated prodrug tirapazamine (TPZ) and glucose oxidase (GOX) to establish a nanoreactor for precise starvation/chemosynergistic tumor therapy. In this context, the as-prepared therapeutic nanoreactors revealed obvious tumor-specific accumulation and an endocytosis effect. Next, the acidic tumor microenvironment triggered the structural collapse of FTH1 and the subsequent release of GOX and TPZ, in which GOX-mediated catalysis cut off the nutrition supply to realize starvation therapy based on the consumption of endogenous glucose and further provided an exacerbated hypoxia environment for TPZ in situ activation to initiate tumor chemotherapy. More significantly, the presence of "molecular glue" elevated the tumor-targeting capacity of nanoreactors and further enhanced the starvation/chemosynergistic therapeutic effect remarkably, suggesting that such a strategy provided a solution for the functionality of nanomaterials and facilitated the design of novel targeting nanomedicines. Overall, this study highlights materials-binding peptides as a new type of "molecular glue" and opens new avenues for designing and exploring active biological materials for biological functions and applications.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Centre, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Qize Xuan
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Centre, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Chongli Shi
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Xiaoli Wang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Centre, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Tonghao Ma
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Centre, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Centre, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, Minnesota 55108, United States
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Centre, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
4
|
Zhang Y, Li J, Pu K. Recent advances in dual- and multi-responsive nanomedicines for precision cancer therapy. Biomaterials 2022; 291:121906. [DOI: 10.1016/j.biomaterials.2022.121906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
|
5
|
Aiyappa-Maudsley R, Elsalem L, Ibrahim AIM, Pors K, Martin SG. In vitro radiosensitization of breast cancer with hypoxia-activated prodrugs. J Cell Mol Med 2022; 26:4577-4590. [PMID: 35841287 PMCID: PMC9357624 DOI: 10.1111/jcmm.17486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/25/2022] [Accepted: 07/01/2022] [Indexed: 12/24/2022] Open
Abstract
KP167 is a novel hypoxia‐activated prodrug (HAP), targeting cancer cells via DNA intercalating and alkylating properties. The single agent and radiosensitizing efficacy of KP167 and its parental comparator, AQ4N, were evaluated in 2D and 3D cultures of luminal and triple negative breast cancer (TNBC) cell lines and compared against DNA damage repair inhibitors. 2D normoxic treatment with the DNA repair inhibitors, Olaparib or KU‐55933 caused, as expected, substantial radiosensitization (sensitiser enhancement ratio, SER0.01 of 1.60–3.42). KP167 induced greater radiosensitization in TNBC (SER0.01 2.53 in MDAMB‐231, 2.28 in MDAMB‐468, 4.55 in MDAMB‐436) and luminal spheroids (SER0.01 1.46 in MCF‐7 and 1.76 in T47D cells) compared with AQ4N. Significant radiosensitization was also obtained using KP167 and AQ4N in 2D normoxia. Although hypoxia induced radioresistance, radiosensitization by KP167 was still greater under 2D hypoxia, yielding SER0.01 of 1.56–2.37 compared with AQ4N SER0.01 of 1.13–1.94. Such data show KP167 as a promising single agent and potent radiosensitiser of both normoxic and hypoxic breast cancer cells, with greater efficacy in TNBCs.
Collapse
Affiliation(s)
- Radhika Aiyappa-Maudsley
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, UK.,Department of Molecular and Clinical Cancer Medicine, University of Liverpool, William Henry Duncan Building, Liverpool, UK
| | - Lina Elsalem
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK.,Jordan University of Science and Technology, Faculty of Medicine, Department of Pharmacology, Irbid, Jordan
| | - Ali I M Ibrahim
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK.,Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Klaus Pors
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Stewart G Martin
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| |
Collapse
|
6
|
Luo S, Liang C, Zhang Q, Zhang P. Iridium photosensitizer constructed liposomes with hypoxia-activated prodrug to destrust hepatocellular carcinoma. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Chen Y, Zhang X, Lu X, Wu H, Zhang D, Zhu B, Huang S. Ultra-sensitive responsive near-infrared fluorescent nitroreductase probe with strong specificity for imaging tumor and detecting the invasiveness of tumor cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120634. [PMID: 34836811 DOI: 10.1016/j.saa.2021.120634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/15/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Hypoxia plays an important role in cancer progression, which is a characteristic feature of the tumor micro-environment and reflects the invasiveness of tumor cells. Nitroreductase (NTR) is overexpressed in hypoxic tumors, which making it an efficient target for detecting the hypoxic state in tumor. In this work, a new type of nitro-based fluorescent probe, named HNT-NTR, has been proposed, HNT-NTR could detect specifically and rapidly the NTR degree, which reflects the level of hypoxia in bidimensional (2D) tumor cells, three-dimensional (3D) tumor spheres and even the real tumors in vivo without biological toxicity. Most importantly, according to the research, HNT-NTR even could distinguish tumor cells from other normal cells in vivo and reflect the invasiveness of tumor cells by the near-infrared fluorescence intensity, which provides a new way of clinical pathologic diagnosis. All in all, HNT-NTR not only is proven to be an ideal probe for detecting solid tumors in vivo, but also has great potential to distinguish if cells are benign or malignant and even guide therapeutic applications in the clinic.
Collapse
Affiliation(s)
- Yi Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xue Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiaoya Lu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| |
Collapse
|
8
|
Zeng Y, Chang P, Ma J, Li K, Zhang C, Guo Y, Li H, Zhu Q, Liu H, Wang W, Chen Y, Chen D, Cao X, Zhan Y. DNA Origami-Anthraquinone Hybrid Nanostructures for In Vivo Quantitative Monitoring of the Progression of Tumor Hypoxia Affected by Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6387-6403. [PMID: 35077131 DOI: 10.1021/acsami.1c22620] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hypoxia is a well-known feature of malignant solid tumors. To explain the misinterpretation of tumor hypoxia variation during chemotherapy, we developed a DNA origami-based theranostic nanoplatform with an intercalated anticancer anthraquinone as both the chemotherapeutic drug and the photoacoustic contrast agent. The size distribution of the DNA origami nanostructure is 44.5 ± 2.3 nm, whereas the encapsulation efficiency of the drug is 90.7 ± 1.0%, and the drug loading content is 92.2 ± 0.1%. The controlled cumulative release rates were measured in vitro, showing an acidic environment induced rapid drug release. The values of free energy of binding between the drugs and the DNA double helix were calculated through molecular simulations. The cell viability assay was used to characterize cytotoxicity, and fluorescence confocal cell imaging illustrates the biodistribution of the probe in vitro. Photoacoustic and fluorescence imaging were used to indicate drug delivery, release, and biodistribution to predict the drug's chemotherapeutic effect in vivo, whereas the photoacoustic signals were compared with those of deoxygenated/oxygenated hemoglobin to represent the tissue hypoxia/normoxia maps during the chemotherapeutic process and indicate alleviated tumor hypoxia. Staining of tissue sections taken from organs and tumors was used to verify the results of photoacoustic imaging. Our results suggest that photoacoustic imaging can visualize this DNA origami-based theranostic nanoplatform and reveal the mechanisms of chemotherapy on tumor hypoxia.
Collapse
Affiliation(s)
- Yun Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Peng Chang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Jingwen Ma
- Radiology Department, Ninth Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, P. R. China
| | - Ke Li
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710021, Shaanxi Province, P. R. China
| | - Chunhong Zhang
- Xi'an Key Laboratory of Advanced Control and Intelligent Process, School of Automation, Xi'an University of Posts and Telecommunications, Xi'an 710121, Shaanxi Province, P. R. China
| | - Yingying Guo
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Hanrui Li
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Qingxia Zhu
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Huifang Liu
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Wenjing Wang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Yuwei Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Dan Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Xu Cao
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| | - Yonghua Zhan
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, P. R. China
| |
Collapse
|
9
|
Li S, Huo F, Yin C. Progress in the past five years of small organic molecule dyes for tumor microenvironment imaging. Chem Commun (Camb) 2022; 58:12642-12652. [DOI: 10.1039/d2cc04975a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The tumor microenvironment (TME) is the survival environment for tumor cell proliferation and metastasis in deep tissues.
Collapse
Affiliation(s)
- Sha Li
- Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
10
|
Kumari R, R. V, Sunil D, N. V. AK, Ningthoujam RS, Pandey BN, D. Kulkarni S, Varadavenkatesan T, Venkatachalam G. Dinitro Derivative of Naphthalimide as a Fluorescent Probe for Tumor Hypoxia Imaging. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2009525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rashmi Kumari
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vasumathy R.
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anil Kumar N. V.
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghumani Singh Ningthoujam
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Badri Narain Pandey
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Suresh D. Kulkarni
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ganesh Venkatachalam
- Electrodics and Electrocatalysis (EEC) Division, CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, Tamil Nadu, India
| |
Collapse
|
11
|
Li Y, Zhao L, Li XF. Targeting Hypoxia: Hypoxia-Activated Prodrugs in Cancer Therapy. Front Oncol 2021; 11:700407. [PMID: 34395270 PMCID: PMC8358929 DOI: 10.3389/fonc.2021.700407] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/09/2021] [Indexed: 12/18/2022] Open
Abstract
Hypoxia is an important characteristic of most solid malignancies, and is closely related to tumor prognosis and therapeutic resistance. Hypoxia is one of the most important factors associated with resistance to conventional radiotherapy and chemotherapy. Therapies targeting tumor hypoxia have attracted considerable attention. Hypoxia-activated prodrugs (HAPs) are bioreductive drugs that are selectively activated under hypoxic conditions and that can accurately target the hypoxic regions of solid tumors. Both single-agent and combined use with other drugs have shown promising antitumor effects. In this review, we discuss the mechanism of action and the current preclinical and clinical progress of several of the most widely used HAPs, summarize their existing problems and shortcomings, and discuss future research prospects.
Collapse
Affiliation(s)
- Yue Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,The First Affiliated Hospital, Jinan University, Guangzhou, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Long Zhao
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiao-Feng Li
- Department of Nuclear Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
12
|
Silina L, Maksut F, Bernard-Pierrot I, Radvanyi F, Créhange G, Mégnin-Chanet F, Verrelle P. Review of Experimental Studies to Improve Radiotherapy Response in Bladder Cancer: Comments and Perspectives. Cancers (Basel) 2020; 13:E87. [PMID: 33396795 PMCID: PMC7795454 DOI: 10.3390/cancers13010087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 01/04/2023] Open
Abstract
Bladder cancer is among the top ten most common cancer types in the world. Around 25% of all cases are muscle-invasive bladder cancer, for which the gold standard treatment in the absence of metastasis is the cystectomy. In recent years, trimodality treatment associating maximal transurethral resection and radiotherapy combined with concurrent chemotherapy is increasingly used as an organ-preserving alternative. However, the use of this treatment is still limited by the lack of biomarkers predicting tumour response and by a lack of targeted radiosensitising drugs that can improve the therapeutic index, especially by limiting side effects such as bladder fibrosis. In order to improve the bladder-preserving treatment, experimental studies addressing these main issues ought to be considered (both in vitro and in vivo studies). Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for systematic reviews, we conducted a literature search in PubMed on experimental studies investigating how to improve bladder cancer radiotherapy with different radiosensitising agents using a comprehensive search string. We made comments on experimental model selection, experimental design and results, formulating the gaps of knowledge still existing: such as the lack of reliable predictive biomarkers of tumour response to chemoradiation according to the molecular tumour subtype and lack of efficient radiosensitising agents specifically targeting bladder tumour cells. We provided guidance to improve forthcoming studies, such as taking into account molecular characteristics of the preclinical models and highlighted the value of using patient-derived xenografts as well as syngeneic models. Finally, this review could be a useful tool to set up new radiation-based combined treatments with an improved therapeutic index that is needed for bladder preservation.
Collapse
Affiliation(s)
- Linda Silina
- French League Against Cancer Team, CNRS UMR144, Curie Institute and PSL Research University, 75005 Paris, France; (I.B.-P.); (F.R.)
- CNRS UMR 9187, INSERM U1196, Curie Institute, PSL Research University and Paris-Saclay University, Rue H. Becquerel, 91405 Orsay, France; (F.M.); (F.M.-C.)
| | - Fatlinda Maksut
- CNRS UMR 9187, INSERM U1196, Curie Institute, PSL Research University and Paris-Saclay University, Rue H. Becquerel, 91405 Orsay, France; (F.M.); (F.M.-C.)
| | - Isabelle Bernard-Pierrot
- French League Against Cancer Team, CNRS UMR144, Curie Institute and PSL Research University, 75005 Paris, France; (I.B.-P.); (F.R.)
| | - François Radvanyi
- French League Against Cancer Team, CNRS UMR144, Curie Institute and PSL Research University, 75005 Paris, France; (I.B.-P.); (F.R.)
| | - Gilles Créhange
- Radiation Oncology Department, Curie Institute, 75005 Paris, France;
| | - Frédérique Mégnin-Chanet
- CNRS UMR 9187, INSERM U1196, Curie Institute, PSL Research University and Paris-Saclay University, Rue H. Becquerel, 91405 Orsay, France; (F.M.); (F.M.-C.)
| | - Pierre Verrelle
- CNRS UMR 9187, INSERM U1196, Curie Institute, PSL Research University and Paris-Saclay University, Rue H. Becquerel, 91405 Orsay, France; (F.M.); (F.M.-C.)
- Radiation Oncology Department, Curie Institute, 75005 Paris, France;
- Clermont Auvergne University, 63000 Clermont-Ferrand, France
| |
Collapse
|
13
|
Boddu RS, Perumal O, K D. Microbial nitroreductases: A versatile tool for biomedical and environmental applications. Biotechnol Appl Biochem 2020; 68:1518-1530. [PMID: 33156534 DOI: 10.1002/bab.2073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
Nitroreductases, enzymes found mostly in bacteria and also in few eukaryotes, use nicotinamide adenine dinucleotide (NADH) or nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor for their activity and metabolize an enormous list of a diverse nitro group-containing compounds. Nitroreductases that are capable of metabolizing nitroaromatic and nitro heterocyclic compounds have drawn great attention in recent years owing to their biotechnological, biomedical, environmental, and human impact. These enzymes attracted medicinal chemists and pharmacologists because of their prodrug selectivity for activation/reduction of nitro compounds that wipe out pathogens/cancer cells, leaving the host/normal cells unharmed. It is applied in diverse fields of study like prodrug activation in treating cancer and leishmaniasis, designing fluorescent probes for hypoxia detection, cell imaging, ablation of specific cell types, biodegradation of nitro-pollutants, and interpretation of mutagenicity of nitro compounds. Keeping in view the immense prospects of these enzymes and a large number of research contributions in this area, the present review encompasses the enzymatic reaction mechanism, their role in antibiotic resistance, hypoxia sensing, cell imaging, cancer therapy, reduction of recalcitrant nitro chemicals, enzyme variants, and their specificity to substrates, reaction products, and their applications.
Collapse
Affiliation(s)
- Ramya Sree Boddu
- Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Onkara Perumal
- Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Divakar K
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur, India
| |
Collapse
|
14
|
Kumari R, Sunil D, Ningthoujam RS. Naphthalimides in fluorescent imaging of tumor hypoxia - An up-to-date review. Bioorg Chem 2019; 88:102979. [PMID: 31100616 DOI: 10.1016/j.bioorg.2019.102979] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/14/2019] [Accepted: 05/07/2019] [Indexed: 01/17/2023]
Abstract
Hypoxia is a distinctive characteristic of advanced solid malignancies that results from a disparity between oxygen supply and its consumption. The degree of hypoxia is believed to have adverse prognostic significance. Therefore detecting cellular hypoxia can potentially offer insights into the grade of tumour as well as its evolution towards a progressive malignant phenotype, which clinically translates to greater metastatic potential and treatment resistance. Fluorescence imaging to visualize hypoxia in biological systems is a minimally-invasive method. Recently there are several reports on interdisciplinary research that aims at developing functional probes that can be efficiently used for non-invasive imaging of hypoxic tumours. Upregulated levels of nitroreductase (NTR) is detected in hypoxic solid malignancies, and this characteristic feature is increasingly utilized in the development of NTR-targeted fluorescent molecules to selectively sense hypoxia in vivo. The present review summarizes various reports published on the design concepts of nitro naphthalimide-based bio-reductive fluorescent sensors that can be applied noninvasively to image hypoxia in cancer.
Collapse
Affiliation(s)
- Rashmi Kumari
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India.
| | | |
Collapse
|
15
|
Perfluorocarbon regulates the intratumoural environment to enhance hypoxia-based agent efficacy. Nat Commun 2019; 10:1580. [PMID: 30952842 PMCID: PMC6450981 DOI: 10.1038/s41467-019-09389-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/06/2019] [Indexed: 12/18/2022] Open
Abstract
Hypoxia-based agents (HBAs), such as anaerobic bacteria and bioreductive prodrugs, require both a permeable and hypoxic intratumoural environment to be fully effective. To solve this problem, herein, we report that perfluorocarbon nanoparticles (PNPs) can be used to create a long-lasting, penetrable and hypoxic tumour microenvironment for ensuring both the delivery and activation of subsequently administered HBAs. In addition to the increased permeability and enhanced hypoxia caused by the PNPs, the PNPs can be retained to further achieve the long-term inhibition of intratumoural O2 reperfusion while enhancing HBA accumulation for over 24 h. Therefore, perfluorocarbon materials may have great potential for reigniting clinical research on hypoxia-based drugs. Hypoxia-based agents need permeable and hypoxic intratumour environment to be effective. Here, the authors show that perfluorocarbon nanoparticles promote increased permeability and sustained hypoxia to improve accumulation of hypoxia-based agents, and inhibit intratumour oxygen reperfusion.
Collapse
|
16
|
Su MX, Zhang LL, Huang ZJ, Shi JJ, Lu JJ. Investigational Hypoxia-Activated Prodrugs: Making Sense of Future Development. Curr Drug Targets 2019; 20:668-678. [DOI: 10.2174/1389450120666181123122406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 01/04/2023]
Abstract
Hypoxia, which occurs in most cancer cases, disrupts the efficacy of anticarcinogens. Fortunately,
hypoxia itself is a potential target for cancer treatment. Hypoxia-activated prodrugs (HAPs)
can be selectively activated by reductase under hypoxia. Some promising HAPs have been already
achieved, and many clinical trials of HAPs in different types of cancer are ongoing. However, none of
them has been approved in clinic to date. From the studies on HAPs began, some achievements are
obtained but more challenges are put forward. In this paper, we reviewed the research progress of
HAPs to discuss the strategies for HAPs development. According to the research status and results of
these studies, administration pattern, reductase activity, and patient selection need to be taken into
consideration to further improve the efficacy of existing HAPs. As the requirement of new drug research
and development, design of optimal preclinical models and clinical trials are quite important in
HAPs development, while different drug delivery systems and anticancer drugs with different mechanisms
can be sources of novel HAPs.
Collapse
Affiliation(s)
- Min-Xia Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Le-Le Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhang-Jian Huang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Jia-Jie Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
17
|
Zhang L, Shan X, Guo L, Zhang J, Ge J, Jiang Q, Ning X. A sensitive and fast responsive fluorescent probe for imaging hypoxic tumors. Analyst 2019; 144:284-289. [DOI: 10.1039/c8an01472h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A BBP possesses a unique fluorescence off–on feature, and can selectively monitor the early tumor formation and treatment response.
Collapse
Affiliation(s)
- Lei Zhang
- National Laboratory of Solid State Microstructures
- College of Engineering and Applied Sciences
- Nanjing University
- 210093 Nanjing
- China
| | - Xue Shan
- National Laboratory of Solid State Microstructures
- College of Engineering and Applied Sciences
- Nanjing University
- 210093 Nanjing
- China
| | - Leilei Guo
- State Key Laboratory of National Medicines
- Centre of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jikang Zhang
- National Laboratory of Solid State Microstructures
- College of Engineering and Applied Sciences
- Nanjing University
- 210093 Nanjing
- China
| | - Junliang Ge
- National Laboratory of Solid State Microstructures
- College of Engineering and Applied Sciences
- Nanjing University
- 210093 Nanjing
- China
| | - Qing Jiang
- The Center of Diagnosis and Treatment for Joint Disease
- Drum Tower Hospital Affiliated to Medical School of Nanjing University
- Nanjing
- China
- Laboratory for Bone and Joint Diseases
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures
- College of Engineering and Applied Sciences
- Nanjing University
- 210093 Nanjing
- China
| |
Collapse
|
18
|
Ding N, Li Z, Tian X, Zhang J, Guo K, Wang P. Azo-based near-infrared fluorescent theranostic probe for tracking hypoxia-activated cancer chemotherapy in vivo. Chem Commun (Camb) 2019; 55:13172-13175. [DOI: 10.1039/c9cc06727b] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel azo-based near-infrared fluorescent therabostic probe activated by hypoxia is applied to real-time visualization of drug delivery in vivo.
Collapse
Affiliation(s)
- Ning Ding
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Xinwei Tian
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Jiahang Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Kaili Guo
- Ministry of Education Key Laboratory of Medicinal Resources and Natural
- Pharmaceutical Chemistry
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China
- College of Life Sciences
- Shaanxi Normal University
| | - Pan Wang
- Ministry of Education Key Laboratory of Medicinal Resources and Natural
- Pharmaceutical Chemistry
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China
- College of Life Sciences
- Shaanxi Normal University
| |
Collapse
|
19
|
Zeng Y, Ma J, Zhan Y, Xu X, Zeng Q, Liang J, Chen X. Hypoxia-activated prodrugs and redox-responsive nanocarriers. Int J Nanomedicine 2018; 13:6551-6574. [PMID: 30425475 PMCID: PMC6202002 DOI: 10.2147/ijn.s173431] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypoxia is one of the marked features of malignant tumors, which is associated with several adaptation changes in the microenvironment of tumor cells. Therefore, targeting tumor hypoxia is a research hotspot for cancer therapy. In this review, we summarize the developing chemotherapeutic drugs for targeting hypoxia, including quinones, nitroaromatic/nitroimidazole, N-oxides, and transition metal complexes. In addition, redox-responsive bonds, such as nitroimidazole groups, azogroups, and disulfide bonds, are frequently used in drug delivery systems for targeting the redox environment of tumors. Both hypoxia-activated prodrugs and redox-responsive drug delivery nanocarriers have significant effects on targeting tumor hypoxia for cancer therapy. Hypoxia-activated prodrugs are commonly used in clinical trials with favorable prospects, while redox-responsive nanocarriers are currently at the experimental stage.
Collapse
Affiliation(s)
- Yun Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| | - Jingwen Ma
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, People's Republic of China
| | - Yonghua Zhan
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| | - Xinyi Xu
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| | - Qi Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| | - Jimin Liang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| | - Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, Shaanxi Province, People's Republic of China, ,
| |
Collapse
|
20
|
Zhang D, Cai Z, Liao N, Lan S, Wu M, Sun H, Wei Z, Li J, Liu X. pH/hypoxia programmable triggered cancer photo-chemotherapy based on a semiconducting polymer dot hybridized mesoporous silica framework. Chem Sci 2018; 9:7390-7399. [PMID: 30542542 PMCID: PMC6237124 DOI: 10.1039/c8sc02408a] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/25/2018] [Indexed: 01/08/2023] Open
Abstract
Although photothermal therapy (PTT) has become a compelling strategy for cancer therapy, few studies concern the physiological consequences of PTT ablation. Herein, we discover that PTT-induced hyperthermia can aggravate tumor hypoxia, which may increase the risk of tumor recurrence and reduce PTT efficacy. We thus integrated the pH/hypoxia-triggered Fe(iii)-banoxantrone (AQ4N) prodrug and semiconducting polymer dots (SPs) for programmable triggered cancer photothermal-chemotherapy. A SP-hybridized mesoporous silica framework, decorated by dopamine and polyethylene glycol, named PPMSF, was synthesized by a simple method, and then served as an efficient photo-absorbing agent (PTA) and drug carrier. Fe(iii)-AQ4N and Mn(ii) were then coordinated with PPMSF (abbreviated Mn-APPMSF) via coordination effects. The nanohybrids exhibited tumor micro-environment pH triggered drug release. Under the irradiation of NIR light, magnetic resonance imaging (MRI) tracked the accumulation of the nanohybrids in tumors which then destroyed tumor cells by local hyperthermia, this can consequently aggravate the tumor hypoxia levels. Intriguingly, the aggravated hypoxia can further enhance the reduction of AQ4N to significantly improve therapeutic efficacy and effectively inhibit tumor growth when compared with traditional PTT. These results indicate the potential of our nanohybrids as a programmable synergistic agent for cancer therapy.
Collapse
Affiliation(s)
- Da Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology , State Key Laboratory of Photocatalysis on Energy and Environment , College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China .
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China .
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China .
- Key Laboratory of Biomedical Information Engineering of Ministry of Education , Institute of Biomedical Analytical Technology and Instrumentation , School of Life Science and Technology , Xi'an Jiaotong University , Xi'an 710049 , P. R. China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China .
| | - Shanyou Lan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China .
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China .
| | - Haiyan Sun
- Department of Anesthesiology , Beijing Anzhen Hospital , Capital Medical University , Beijing 100029 , P. R. China
| | - Zuwu Wei
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China .
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology , State Key Laboratory of Photocatalysis on Energy and Environment , College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China .
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China .
| |
Collapse
|
21
|
Yang X, Li Z, Jiang T, Du L, Li M. A coelenterazine-type bioluminescent probe for nitroreductase imaging. Org Biomol Chem 2018; 16:146-151. [DOI: 10.1039/c7ob02618h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Novel coelenterazine-type bioluminescent probes have been designed and synthesized to detect nitroreductase (NTR) in hypoxic tumors.
Collapse
Affiliation(s)
- Xingye Yang
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (MOE)
- School of Pharmacy
- Shandong University
- Jinan
| | - Zhenzhen Li
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (MOE)
- School of Pharmacy
- Shandong University
- Jinan
| | - Tianyu Jiang
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (MOE)
- School of Pharmacy
- Shandong University
- Jinan
| | - Lupei Du
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (MOE)
- School of Pharmacy
- Shandong University
- Jinan
| | - Minyong Li
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (MOE)
- School of Pharmacy
- Shandong University
- Jinan
| |
Collapse
|
22
|
Bryant JL, Gieling RG, Meredith SL, Allen TJ, Walker L, Telfer BA, Supuran CT, Williams KJ, White A. Novel carbonic anhydrase IX-targeted therapy enhances the anti-tumour effects of cisplatin in small cell lung cancer. Int J Cancer 2017; 142:191-201. [DOI: 10.1002/ijc.31042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Jennifer L Bryant
- Division of Diabetes, Endocrinology & Gastroenterology; University of Manchester; Manchester United Kingdom
- Division of Pharmacy & Optometry, School of Biology, Medicine and Health; University of Manchester; Manchester United Kingdom
| | - Roben G Gieling
- Division of Pharmacy & Optometry, School of Biology, Medicine and Health; University of Manchester; Manchester United Kingdom
| | - Suzanne L Meredith
- Division of Diabetes, Endocrinology & Gastroenterology; University of Manchester; Manchester United Kingdom
| | - Tiffany-Jayne Allen
- Division of Diabetes, Endocrinology & Gastroenterology; University of Manchester; Manchester United Kingdom
| | - Leanne Walker
- Division of Diabetes, Endocrinology & Gastroenterology; University of Manchester; Manchester United Kingdom
| | - Brian A Telfer
- Division of Pharmacy & Optometry, School of Biology, Medicine and Health; University of Manchester; Manchester United Kingdom
| | | | - Kaye J Williams
- Division of Pharmacy & Optometry, School of Biology, Medicine and Health; University of Manchester; Manchester United Kingdom
| | - Anne White
- Division of Diabetes, Endocrinology & Gastroenterology; University of Manchester; Manchester United Kingdom
| |
Collapse
|
23
|
Feng L, Cheng L, Dong Z, Tao D, Barnhart TE, Cai W, Chen M, Liu Z. Theranostic Liposomes with Hypoxia-Activated Prodrug to Effectively Destruct Hypoxic Tumors Post-Photodynamic Therapy. ACS NANO 2017; 11:927-937. [PMID: 28027442 PMCID: PMC5372701 DOI: 10.1021/acsnano.6b07525] [Citation(s) in RCA: 295] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Photodynamic therapy (PDT), a noninvasive cancer therapeutic method triggered by light, would lead to severe tumor hypoxia after treatment. Utilizing a hypoxia-activated prodrug, AQ4N, which only shows toxicity to cancer cells under hypoxic environment, herein, a multipurpose liposome is prepared by encapsulating hydrophilic AQ4N and hydrophobic hexadecylamine conjugated chlorin e6 (hCe6), a photosensitizer, into its aqueous cavity and hydrophobic bilayer, respectively. After chelating a 64Cu isotope with Ce6, the obtained AQ4N-64Cu-hCe6-liposome is demonstrated to be an effective imaging probe for in vivo positron emission tomography, which together with in vivo fluorescence and photoacoustic imaging uncovers efficient passive homing of those liposomes after intravenous injection. After being irradiated with the 660 nm light-emitting diode light, the tumor bearing mice with injection of AQ4N-hCe6-liposome show severe tumor hypoxia, which in turn would trigger activation of AQ4N, and finally contributes to remarkably improved cancer treatment outcomes via sequential PDT and hypoxia-activated chemotherapy. This work highlights a liposome-based theranostic nanomedicine that could utilize tumor hypoxia, a side effect of PDT, to trigger chemotherapy, resulting in greatly improved efficacy compared to conventional cancer PDT.
Collapse
Affiliation(s)
- Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Danlei Tao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Todd E. Barnhart
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Corresponding Authors: . .
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Corresponding Authors: . .
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Corresponding Authors: . .
| |
Collapse
|
24
|
MEHIBEL MANAL, SINGH SIMENDRA, COWEN RACHELL, WILLIAMS KAYEJ, STRATFORD IANJ. Radiation enhances the therapeutic effect of Banoxantrone in hypoxic tumour cells with elevated levels of nitric oxide synthase. Oncol Rep 2016; 35:1925-32. [PMID: 26782976 PMCID: PMC4774668 DOI: 10.3892/or.2016.4555] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/16/2015] [Indexed: 11/06/2022] Open
Abstract
Banoxantrone (AQ4N) is a prototype hypoxia selective cytotoxin that is activated by haem containing reductases such as inducible nitric oxide synthase (iNOS). In the present study, we evaluate whether elevated levels of iNOS in human tumour cells will improve their sensitivity to AQ4N. Further, we examine the potential of radiation to increase cellular toxicity of AQ4N under normoxic (aerobic) and hypoxic conditions. We employed an expression vector containing the cDNA for human iNOS to transfect human fibrosarcoma HT1080 tumour cells. Alternatively, parental cells were exposed to a cytokine cocktail to induce iNOS gene expression and enzymatic activity. The cells were then treated with AQ4N alone and in combination with radiation in the presence or absence of the iNOS inhibitor N-methyl-L‑arginine. In parental cells, AQ4N showed little difference in toxicity under hypoxic verses normoxic conditions. Notably, cells with upregulated iNOS activity showed a significant increase in sensitivity to AQ4N, but only under conditions of reduced oxygenation. When these cells were exposed to the combination of AQ4N and radiation, there was much greater cell killing than that observed with either modality alone. In the clinical development of hypoxia selective cytotoxins it is likely they will be used in combination with radiotherapy. In the present study, we demonstrated that AQ4N can selectively kill hypoxic cells via an iNOS-dependent mechanism. This hypoxia-selective effect can be augmented by combining AQ4N with radiation without increasing cytotoxicity to well‑oxygenated tissues. Collectively, these results suggest that targeting hypoxic tumours with high levels of iNOS with a combination of AQ4N and radiotherapy could be a useful clinical therapeutic strategy.
Collapse
Affiliation(s)
- MANAL MEHIBEL
- Experimental Oncology Group, Manchester Pharmacy School, University of Manchester, Manchester, UK
| | - SIMENDRA SINGH
- Experimental Oncology Group, Manchester Pharmacy School, University of Manchester, Manchester, UK
- School of Engineering and Technology, Sharda University, Greater Noida, India
| | - RACHEL L. COWEN
- Experimental Oncology Group, Manchester Pharmacy School, University of Manchester, Manchester, UK
| | - KAYE J. WILLIAMS
- Hypoxia and Therapeutics group, Manchester Pharmacy School, University of Manchester, Manchester, UK
| | - IAN J. STRATFORD
- Experimental Oncology Group, Manchester Pharmacy School, University of Manchester, Manchester, UK
| |
Collapse
|
25
|
Abstract
The presence of a microenvironment within most tumours containing regions of low oxygen tension or hypoxia has profound biological and therapeutic implications. Tumour hypoxia is known to promote the development of an aggressive phenotype, resistance to both chemotherapy and radiotherapy and is strongly associated with poor clinical outcome. Paradoxically, it is recognised as a high-priority target and one of the therapeutic strategies designed to eradicate hypoxic cells in tumours is a group of compounds known collectively as hypoxia-activated prodrugs (HAPs) or bioreductive drugs. These drugs are inactive prodrugs that require enzymatic activation (typically by 1 or 2 electron oxidoreductases) to generate cytotoxic species with selectivity for hypoxic cells being determined by (1) the ability of oxygen to either reverse or inhibit the activation process and (2) the presence of elevated expression of oxidoreductases in tumours. The concepts underpinning HAP development were established over 40 years ago and have been refined over the years to produce a new generation of HAPs that are under preclinical and clinical development. The purpose of this article is to describe current progress in the development of HAPs focusing on the mechanisms of action, preclinical properties and clinical progress of leading examples.
Collapse
|
26
|
Phillips RM. Targeting the hypoxic fraction of tumours using hypoxia-activated prodrugs. Cancer Chemother Pharmacol 2016; 77:441-57. [PMID: 26811177 PMCID: PMC4767869 DOI: 10.1007/s00280-015-2920-7] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/13/2015] [Indexed: 12/17/2022]
Abstract
The presence of a microenvironment within most tumours containing regions of low oxygen tension or hypoxia has profound biological and therapeutic implications. Tumour hypoxia is known to promote the development of an aggressive phenotype, resistance to both chemotherapy and radiotherapy and is strongly associated with poor clinical outcome. Paradoxically, it is recognised as a high-priority target and one of the therapeutic strategies designed to eradicate hypoxic cells in tumours is a group of compounds known collectively as hypoxia-activated prodrugs (HAPs) or bioreductive drugs. These drugs are inactive prodrugs that require enzymatic activation (typically by 1 or 2 electron oxidoreductases) to generate cytotoxic species with selectivity for hypoxic cells being determined by (1) the ability of oxygen to either reverse or inhibit the activation process and (2) the presence of elevated expression of oxidoreductases in tumours. The concepts underpinning HAP development were established over 40 years ago and have been refined over the years to produce a new generation of HAPs that are under preclinical and clinical development. The purpose of this article is to describe current progress in the development of HAPs focusing on the mechanisms of action, preclinical properties and clinical progress of leading examples.
Collapse
Affiliation(s)
- Roger M Phillips
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| |
Collapse
|
27
|
Karakashev SV, Reginato MJ. Progress toward overcoming hypoxia-induced resistance to solid tumor therapy. Cancer Manag Res 2015; 7:253-64. [PMID: 26316817 PMCID: PMC4542411 DOI: 10.2147/cmar.s58285] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hypoxic tumors are associated with poor clinical outcome for multiple types of human cancer. This may be due, in part, to hypoxic cancer cells being resistant to anticancer therapy, including radiation therapy, chemotherapy, and targeted therapy. Hypoxia inducible factor 1, a major regulator of cellular response to hypoxia, regulates the expression of genes that are involved in multiple aspects of cancer biology, including cell survival, proliferation, metabolism, invasion, and angiogenesis. Here, we review multiple pathways regulated by hypoxia/hypoxia inducible factor 1 in cancer cells and discuss the latest advancements in overcoming hypoxia-mediated tumor resistance.
Collapse
Affiliation(s)
- Sergey V Karakashev
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
28
|
Gieling RG, Fitzmaurice RJ, Telfer BA, Babur M, Williams KJ. Dissemination via the lymphatic or angiogenic route impacts the pathology, microenvironment and hypoxia-related drug response of lung metastases. Clin Exp Metastasis 2015; 32:567-77. [PMID: 26112891 DOI: 10.1007/s10585-015-9728-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/12/2015] [Indexed: 01/17/2023]
Abstract
Complications associated with the development of lung metastases have a detrimental effect on the overall survival rate of many cancer patients. Preclinical models that mimic the clinical aspects of lung metastases are an important tool in developing new therapy options for these patients. The commonly used intravenous models only recapitulate dissemination of cancer cells to the lungs via the haematological route. Here we compared spontaneous and intravenous lung metastases of the highly metastatic KHT mouse fibrosarcoma cells after injecting KHT cells into the subcutaneous layer of the skin or directly into the tail vein. In contrast to the intravenous model, metastases spontaneously arising from the subcutaneous tumours disseminated most consistent with the lymph nodes/lymphatics route and were more hypoxic than the metastases observed following tail-vein administration and haematological spread. To ascertain whether this impacted on drug response, we tested the effectiveness of the hypoxia-sensitive cytotoxin AQ4N (Banoxantrone) in both models. AQ4N was more effective as an anti-metastatic drug in mice with subcutaneous KHT tumours, significantly reducing the metastatic score. Complementing the KHT studies, pathology studies in additional models of spontaneous lung metastases showed haematological (HCT116 intrasplenic implant) or mixed haematological/lymphatic (B16 intradermal implant) spread. These data suggest that preclinical models can demonstrate differing, clinically relevant dissemination patterns, and that careful selection of preclinical models is required when evaluating new strategies for targeting metastatic disease.
Collapse
Affiliation(s)
- Roben G Gieling
- Hypoxia & Therapeutics Group, Manchester Pharmacy School, University of Manchester, Manchester, M13 9PT, UK
| | | | | | | | | |
Collapse
|
29
|
Biomarker in Cisplatin-Based Chemotherapy for Urinary Bladder Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 867:293-316. [PMID: 26530373 DOI: 10.1007/978-94-017-7215-0_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The treatment of metastasized bladder cancer has been evolving during recent years. Cisplatin based chemotherapy combinations are still gold standard in the treatment of advanced and metastasized bladder cancer. But new therapies are approaching. Based to this fact biological markers will become more important for decisions in bladder cancer treatment. A systematic MEDLINE search of the key words "cisplatin", "bladder cancer", "DNA marker", "protein marker", "methylation biomarker", "predictive marker", "prognostic marker" has been made. This review aims to highlight the most relevant clinical and experimental studies investigating markers for metastasized transitional carcinoma of the urothelium treated by cisplatin based regimens.
Collapse
|
30
|
Yuan J, Xu YQ, Zhou NN, Wang R, Qian XH, Xu YF. A highly selective turn-on fluorescent probe based on semi-cyanine for the detection of nitroreductase and hypoxic tumor cell imaging. RSC Adv 2014. [DOI: 10.1039/c4ra10044a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A selective turn-on fluorescent probe based on semi-cyanine for the detection of nitroreductase (NTR) and hypoxia was designed and synthesized.
Collapse
Affiliation(s)
- Jun Yuan
- Shanghai Key Laboratory of Chemical Biology
- State Key Laboratory of Bioreactor Engineering
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237, China
| | - Yu-Qiong Xu
- Shanghai Key Laboratory of Chemical Biology
- State Key Laboratory of Bioreactor Engineering
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237, China
| | - Nan-Nan Zhou
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237, China
| | - Xu-Hong Qian
- Shanghai Key Laboratory of Chemical Biology
- State Key Laboratory of Bioreactor Engineering
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237, China
| | - Yu-Fang Xu
- Shanghai Key Laboratory of Chemical Biology
- State Key Laboratory of Bioreactor Engineering
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237, China
| |
Collapse
|
31
|
Li Z, Li X, Gao X, Zhang Y, Shi W, Ma H. Nitroreductase detection and hypoxic tumor cell imaging by a designed sensitive and selective fluorescent probe, 7-[(5-nitrofuran-2-yl)methoxy]-3H-phenoxazin-3-one. Anal Chem 2013; 85:3926-32. [PMID: 23506563 DOI: 10.1021/ac400750r] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A highly selective and sensitive fluorescence probe, 7-[(5-nitrofuran-2-yl)methoxy]-3H-phenoxazin-3-one (1), is developed for imaging the hypoxic status of tumor cells via the indirect detection of nitroreductase. The detection mechanism is based on the fact that nitroreductase can selectively catalyze the reduction of the nitro group in 1 to a hydroxylamine or amino group in the presence of reduced nicotinamide adenine dinucleotide as an electron donor that is indispensable, followed by the 1,6-rearrangement-elimination and the release of resorufin. As a result, the reaction produces a distinct color and fluorescence change from almost colorless and nonfluorescent to pink and strong red fluorescence. The fluorescence increase of probe 1 at λ(550/585 nm) is directly proportional to the concentration of nitroreductase in the range of 15-300 ng/mL, with a detection limit of 0.27 ng/mL. The ready reduction of the nitro group in 1 under hypoxic conditions leads to the establishment of a sensitive and selective fluorescence method for imaging the hypoxic status of tumor cells, and with this method Hela and A549 cells under normoxic and hypoxic conditions (even for different extents of hypoxia) can be differentiated successfully. This method is simple and may be useful for the imaging of disease-relevant hypoxia.
Collapse
Affiliation(s)
- Zhao Li
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | |
Collapse
|
32
|
Manley E, Waxman DJ. Impact of tumor blood flow modulation on tumor sensitivity to the bioreductive drug banoxantrone. J Pharmacol Exp Ther 2012. [PMID: 23192656 DOI: 10.1124/jpet.112.200089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We investigated the hypoxia-dependent cytotoxicity of AQ4N (banoxantrone) using a panel of 13 cancer cell lines and studied its relationship to the expression of the quinone reductase DT-diaphorase (NQO1), which is widely found in cancer cells. We also investigated pharmacologic treatments that increase tumor hypoxia in vivo and their impact on AQ4N chemosensitivity in a solid tumor xenograft model. AQ4N showed ≥ 8-fold higher cytotoxicity under hypoxia than normoxia in cultures of 9L rat gliosarcoma and H460 human non-small-cell lung carcinoma cells but not for 11 other human cancer cell lines. DT-diaphorase protein levels and AQ4N chemosensitivity were poorly correlated across the cancer cell line panel, and AQ4N chemosensitivity was not affected by DT-diaphorase inhibitors. The vasodilator hydralazine decreased tumor perfusion and increased tumor hypoxia in 9L tumor xenografts, and to a lesser extent in H460 tumor xenografts. However, hydralazine did not increase AQ4N-dependent antitumor activity. Combination of AQ4N with the angiogenesis inhibitor axitinib, which increases 9L tumor hypoxia, transiently increased antitumor activity but with an increase in host toxicity. These findings indicate that the capacity to bioactivate AQ4N is not dependent on DT-diaphorase and is not widespread in cultured cancer cell lines. Moreover, the activation of AQ4N cytotoxicity in vivo requires tumor hypoxia that is more extensive or prolonged than can readily be achieved by vasodilation or by antiangiogenic drug treatment.
Collapse
Affiliation(s)
- Eugene Manley
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | |
Collapse
|
33
|
Affiliation(s)
- Yuming Yang
- Department of Chemistry and State Key Laboratory
of Molecular Engineering of Polymers and Institutes of Biomedical
Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics
and Information Displays (KLOEID) and Institute of Advanced Materials
(IAM), Nanjing University of Posts and Telecommunications, Nanjing
210046, P. R. China
| | - Wei Feng
- Department of Chemistry and State Key Laboratory
of Molecular Engineering of Polymers and Institutes of Biomedical
Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Fuyou Li
- Department of Chemistry and State Key Laboratory
of Molecular Engineering of Polymers and Institutes of Biomedical
Sciences, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
34
|
Sun JD, Liu Q, Wang J, Ahluwalia D, Ferraro D, Wang Y, Duan JX, Ammons WS, Curd JG, Matteucci MD, Hart CP. Selective tumor hypoxia targeting by hypoxia-activated prodrug TH-302 inhibits tumor growth in preclinical models of cancer. Clin Cancer Res 2012; 18:758-70. [PMID: 22184053 DOI: 10.1158/1078-0432.ccr-11-1980] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Tumor hypoxia underlies treatment failure and yields a more aggressive, invasive, and metastatic cancer phenotype. TH-302 is a 2-nitroimidazole triggered hypoxia-activated prodrug of the cytotoxin bromo-isophosphoramide mustard (Br-IPM). The purpose of this study is to characterize the antitumor activity of TH-302 and investigate its selective targeting of the hypoxic cells in human tumor xenograft models. EXPERIMENTAL DESIGN Antitumor efficacy was assessed by tumor growth kinetics or by clonogenic survival of isolated cells after tumor excision. Hypoxic fractions (HF) were determined by immunohistochemistry and morphometrics of pimonidazole staining. Tumor hypoxia levels were manipulated by exposing animals to different oxygen concentration breathing conditions. The localization and kinetics of TH-302 induced DNA damage was determined by γH2AX immunohistochemistry. RESULTS TH-302 antitumor activity was dose-dependent and correlated with total drug exposure. Correlation was found between antitumor activity and tumor HF across 11 xenograft models. Tumor-bearing animals breathing 95% O(2) exhibited attenuated TH-302 efficacy, with whereas those breathing 10% O(2) exhibited enhanced TH-302 efficacy, both compared with air (21% O(2)) breathing. TH-302 treatment resulted in a reduction in the volume of the HF 48 hours after dosing and a corresponding increase in the necrotic fraction. TH-302 induced DNA damage as measured by γH2AX was initially only present in the hypoxic regions and then radiated to the entire tumor in a time-dependent manner, consistent with TH-302 having a "bystander effect." CONCLUSIONS The results show that TH-302 has broad antitumor activity and selectively targets hypoxic tumor tissues.
Collapse
Affiliation(s)
- Jessica D Sun
- Threshold Pharmaceuticals, South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bailey KM, Wojtkowiak JW, Hashim AI, Gillies RJ. Targeting the metabolic microenvironment of tumors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 65:63-107. [PMID: 22959024 DOI: 10.1016/b978-0-12-397927-8.00004-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The observation of aerobic glycolysis by tumor cells in 1924 by Otto Warburg, and subsequent innovation of imaging glucose uptake by tumors in patients with PET-CT, has incited a renewed interest in the altered metabolism of tumors. As tumors grow in situ, a fraction of it is further away from their blood supply, leading to decreased oxygen concentrations (hypoxia), which induces the hypoxia response pathways of HIF1α, mTOR, and UPR. In normal tissues, these responses mitigate hypoxic stress and induce neoangiogenesis. In tumors, these pathways are dysregulated and lead to decreased perfusion and exacerbation of hypoxia as a result of immature and chaotic blood vessels. Hypoxia selects for a glycolytic phenotype and resultant acidification of the tumor microenvironment, facilitated by upregulation of proton transporters. Acidification selects for enhanced metastatic potential and reduced drug efficacy through ion trapping. In this review, we provide a comprehensive summary of preclinical and clinical drugs under development for targeting aerobic glycolysis, acidosis, hypoxia and hypoxia response pathways. Hypoxia and acidosis can be manipulated, providing further therapeutic benefit for cancers that feature these common phenotypes.
Collapse
Affiliation(s)
- Kate M Bailey
- Department of Imaging and Metabolism, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | | | | |
Collapse
|
36
|
Senra JM, Telfer BA, Cherry KE, McCrudden CM, Hirst DG, O'Connor MJ, Wedge SR, Stratford IJ. Inhibition of PARP-1 by olaparib (AZD2281) increases the radiosensitivity of a lung tumor xenograft. Mol Cancer Ther 2011; 10:1949-58. [PMID: 21825006 DOI: 10.1158/1535-7163.mct-11-0278] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PARP-1 is a critical enzyme in the repair of DNA strand breaks. Inhibition of PARP-1 increases the effectiveness of radiation in killing tumor cells. However, although the mechanism(s) are well understood for these radiosensitizing effects in vitro, the underlying mechanism(s) in vivo are less clear. Nicotinamide, a drug structurally related to the first generation PARP-1 inhibitor, 3-aminobenzamide, reduces tumor hypoxia by preventing transient cessations in tumor blood flow, thus improving tumor oxygenation and sensitivity to radiotherapy. Here, we investigate whether olaparib, a potent PARP-1 inhibitor, enhances radiotherapy, not only by inhibiting DNA repair but also by changing tumor vascular hemodynamics in non-small cell lung carcinoma (NSCLC). In irradiated Calu-6 and A549 cells, olaparib enhanced the cytotoxic effects of radiation (sensitizer enhancement ratio at 10% survival = 1.5 and 1.3) and DNA double-strand breaks persisted for at least 24 hours after treatment. Combination treatment of Calu-6 xenografts with olaparib and fractionated radiotherapy caused significant tumor regression (P = 0.007) relative to radiotherapy alone. To determine whether this radiosensitization was solely due to effects on DNA repair, we used a dorsal window chamber model to establish the drug/radiation effects on vessel dynamics. Olaparib alone, when given as single or multiple daily doses, or in combination with fractionated radiotherapy, increased the perfusion of tumor blood vessels. Furthermore, an ex vivo assay in phenylephrine preconstricted arteries confirmed olaparib to have higher vasodilatory properties than nicotinamide. This study suggests that olaparib warrants consideration for further development in combination with radiotherapy in clinical oncology settings such as NSCLC.
Collapse
Affiliation(s)
- Joana M Senra
- Department of Pharmacy and Pharmaceutical Sciences, Manchester Cancer Research Centre, University of Manchester, Manchester, M13 9PT, UK
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Cui L, Zhong Y, Zhu W, Xu Y, Du Q, Wang X, Qian X, Xiao Y. A New Prodrug-Derived Ratiometric Fluorescent Probe for Hypoxia: High Selectivity of Nitroreductase and Imaging in Tumor Cell. Org Lett 2011; 13:928-31. [DOI: 10.1021/ol102975t] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lei Cui
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China, and Dalian University of Technology (DLUT), Zhongshan Road 158, Dalian, China
| | - Ye Zhong
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China, and Dalian University of Technology (DLUT), Zhongshan Road 158, Dalian, China
| | - Weiping Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China, and Dalian University of Technology (DLUT), Zhongshan Road 158, Dalian, China
| | - Yufang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China, and Dalian University of Technology (DLUT), Zhongshan Road 158, Dalian, China
| | - Qingshan Du
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China, and Dalian University of Technology (DLUT), Zhongshan Road 158, Dalian, China
| | - Xin Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China, and Dalian University of Technology (DLUT), Zhongshan Road 158, Dalian, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China, and Dalian University of Technology (DLUT), Zhongshan Road 158, Dalian, China
| | - Yi Xiao
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China, and Dalian University of Technology (DLUT), Zhongshan Road 158, Dalian, China
| |
Collapse
|