1
|
Mahboubi H, Yu H, Malca M, McCusty D, Stochaj U. Pifithrin-µ Induces Stress Granule Formation, Regulates Cell Survival, and Rewires Cellular Signaling. Cells 2024; 13:885. [PMID: 38891018 PMCID: PMC11172192 DOI: 10.3390/cells13110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
(1) Background: Stress granules (SGs) are cytoplasmic protein-RNA condensates that assemble in response to various insults. SG production is driven by signaling pathways that are relevant to human disease. Compounds that modulate SG characteristics are therefore of clinical interest. Pifithrin-µ is a candidate anti-tumor agent that inhibits members of the hsp70 chaperone family. While hsp70s are required for granulostasis, the impact of pifithrin-µ on SG formation is unknown. (2) Methods: Using HeLa cells as model system, cell-based assays evaluated the effects of pifithrin-µ on cell viability. Quantitative Western blotting assessed cell signaling events and SG proteins. Confocal microscopy combined with quantitative image analyses examined multiple SG parameters. (3) Results: Pifithrin-µ induced bona fide SGs in the absence of exogenous stress. These SGs were dynamic; their properties were determined by the duration of pifithrin-µ treatment. The phosphorylation of eIF2α was mandatory to generate SGs upon pifithrin-µ exposure. Moreover, the formation of pifithrin-µ SGs was accompanied by profound changes in cell signaling. Pifithrin-µ reduced the activation of 5'-AMP-activated protein kinase, whereas the pro-survival protein kinase Akt was activated. Long-term pifithrin-µ treatment caused a marked loss of cell viability. (4) Conclusions: Our study identified stress-related changes in cellular homeostasis that are elicited by pifithrin-µ. These insights are important knowledge for the appropriate therapeutic use of pifithrin-µ and related compounds.
Collapse
Affiliation(s)
- Hicham Mahboubi
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada (H.Y.); (M.M.)
| | - Henry Yu
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada (H.Y.); (M.M.)
| | - Michael Malca
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada (H.Y.); (M.M.)
| | - David McCusty
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada (H.Y.); (M.M.)
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada (H.Y.); (M.M.)
- Quantitative Life Sciences Program, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
2
|
The Achilles' heel of cancer: targeting tumors via lysosome-induced immunogenic cell death. Cell Death Dis 2022; 13:509. [PMID: 35637197 PMCID: PMC9151667 DOI: 10.1038/s41419-022-04912-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 03/10/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
Abstract
Interest in the lysosome's potential role in anticancer therapies has recently been appreciated in the field of immuno-oncology. Targeting lysosomes triggers apoptotic pathways, inhibits cytoprotective autophagy, and activates a unique form of apoptosis known as immunogenic cell death (ICD). This mechanism stimulates a local and systemic immune response against dead-cell antigens. Stressors that can lead to ICD include an abundance of ROS which induce lysosome membrane permeability (LMP). Dying cells express markers that activate immune cells. Dendritic cells engulf the dying cell and then present the cell's neoantigens to T cells. The discovery of ICD-inducing agents is important due to their potential to trigger autoimmunity. In this review, we discuss the various mechanisms of activating lysosome-induced cell death in cancer cells specifically and the strategies that current laboratories are using to selectively promote LMP in tumors.
Collapse
|
3
|
Yang J, Liu Z, Perrett S, Zhang H, Pan Z. PES derivative PESA is a potent tool to globally profile cellular targets of PES. Bioorg Med Chem Lett 2022; 60:128553. [PMID: 35051576 DOI: 10.1016/j.bmcl.2022.128553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
PES (2-phenylethynesulfonamide, pifithrin-μ, PFTμ) is an electrophilic compound that exhibits anticancer properties, protects against chemotherapy-induced peripheral neuropathy in chemotherapy, and shows immunomodulatory, anti-inflammatory and anti-viral activities. PES generally shows higher cytotoxicity towards tumor cells than non-tumor cells. The mechanism of action of PES is unclear but may involve the covalent modification of proteins as PES has been found to be a covalent inhibitor of Hsp70. We developed a new PES derivative PESA with a terminal alkynyl group to perform click-reaction-assisted activity-based protein profiling (click-reaction ABPP) and used this to screen for cellular targets of PES. We found PES and its derivatives PES-Cl and PESA have comparable ability to undergo a Michael addition reaction with GSH and Hsp70, and showed similar cytotoxicity. By fluorescence imaging and proteomics studies we identified over 300 PESA-attached proteins in DOHH2 cells. Some proteins involved in cancer-related redox processes, such as peroxiredoxin 1 (PRDX1), showed higher frequency and abundance in mass spectrometry detection. Our results suggest that cytotoxicity of PES and its derivatives may be related to attack of protein thiols and cellular GSH resulting in breakdown of cellular redox homeostasis. This study provides a powerful new tool compound within the PES class of bioactive compounds and gives insight into the working mechanisms of PES and its derivatives.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Zhenyan Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District Beijing 100101, China
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District Beijing 100101, China; University of the Chinese Academy of Sciences, 19 Yuquan Road Shijingshan District, Beijing 100049, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District Beijing 100101, China; University of the Chinese Academy of Sciences, 19 Yuquan Road Shijingshan District, Beijing 100049, China.
| | - Zhengying Pan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China.
| |
Collapse
|
4
|
Kabakov AE, Gabai VL. HSP70s in Breast Cancer: Promoters of Tumorigenesis and Potential Targets/Tools for Therapy. Cells 2021; 10:cells10123446. [PMID: 34943954 PMCID: PMC8700403 DOI: 10.3390/cells10123446] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
The high frequency of breast cancer worldwide and the high mortality among women with this malignancy are a serious challenge for modern medicine. A deeper understanding of the mechanisms of carcinogenesis and emergence of metastatic, therapy-resistant breast cancers would help development of novel approaches to better treatment of this disease. The review is dedicated to the role of members of the heat shock protein 70 subfamily (HSP70s or HSPA), mainly inducible HSP70, glucose-regulated protein 78 (GRP78 or HSPA5) and GRP75 (HSPA9 or mortalin), in the development and pathogenesis of breast cancer. Various HSP70-mediated cellular mechanisms and pathways which contribute to the oncogenic transformation of mammary gland epithelium are reviewed, as well as their role in the development of human breast carcinomas with invasive, metastatic traits along with the resistance to host immunity and conventional therapeutics. Additionally, intracellular and cell surface HSP70s are considered as potential targets for therapy or sensitization of breast cancer. We also discuss a clinical implication of Hsp70s and approaches to targeting breast cancer with gene vectors or nanoparticles downregulating HSP70s, natural or synthetic (small molecule) inhibitors of HSP70s, HSP70-binding antibodies, HSP70-derived peptides, and HSP70-based vaccines.
Collapse
Affiliation(s)
- Alexander E. Kabakov
- Department of Radiation Biochemistry, A. Tsyb Medical Radiological Research Center—Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva 4, 249036 Obninsk, Russia;
| | - Vladimir L. Gabai
- CureLab Oncology Inc., Dedham, MA 02026, USA
- Correspondence: ; Tel.: +1-617-319-7314
| |
Collapse
|
5
|
Yang J, Gong W, Wu S, Zhang H, Perrett S. PES inhibits human-inducible Hsp70 by covalent targeting of cysteine residues in the substrate-binding domain. J Biol Chem 2021; 296:100210. [PMID: 33835030 PMCID: PMC7948744 DOI: 10.1074/jbc.ra120.015440] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Hsp70 proteins are a family of ancient and conserved chaperones. They play important roles in vital cellular processes, such as protein quality control and the stress response. Hsp70 proteins are a potential drug target for treatment of disease, particularly cancer. PES (2-phenylethynesulfonamide or pifithrin-μ) has been reported to be an inhibitor of Hsp70. However, the mechanism of PES inhibition is still unclear. In this study we found that PES can undergo a Michael addition reaction with Cys-574 and Cys-603 in the SBDα of human HspA1A (hHsp70), resulting in covalent attachment of a PES molecule to each Cys residue. We previously showed that glutathionylation of Cys-574 and Cys-603 affects the structure and function of hHsp70. In this study, PES modification showed similar structural and functional effects on hHsp70 to glutathionylation. Further, we found that susceptibility to PES modification is influenced by changes in the conformational dynamics of the SBDα, such as are induced by interaction with adjacent domains, allosteric changes, and mutations. This study provides new avenues for development of covalent inhibitors of hHsp70.
Collapse
Affiliation(s)
- Jie Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Weibin Gong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Si Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China.
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Zhai X, El Hiani Y. Getting Lost in the Cell-Lysosomal Entrapment of Chemotherapeutics. Cancers (Basel) 2020; 12:E3669. [PMID: 33297435 PMCID: PMC7762281 DOI: 10.3390/cancers12123669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
Despite extensive research, resistance to chemotherapy still poses a major obstacle in clinical oncology. An exciting strategy to circumvent chemoresistance involves the identification and subsequent disruption of cellular processes that are aberrantly altered in oncogenic states. Upon chemotherapeutic challenges, lysosomes are deemed to be essential mediators that enable cellular adaptation to stress conditions. Therefore, lysosomes potentially hold the key to disarming the fundamental mechanisms of chemoresistance. This review explores modes of action of classical chemotherapeutic agents, adaptive response of the lysosomes to cell stress, and presents physiological and pharmacological insights pertaining to drug compartmentalization, sequestration, and extracellular clearance through the lens of lysosomes.
Collapse
Affiliation(s)
| | - Yassine El Hiani
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| |
Collapse
|
7
|
Barnoud T, Leung JC, Leu JIJ, Basu S, Poli ANR, Parris JLD, Indeglia A, Martynyuk T, Good M, Gnanapradeepan K, Sanseviero E, Moeller R, Tang HY, Cassel J, Kossenkov AV, Liu Q, Speicher DW, Gabrilovich DI, Salvino JM, George DL, Murphy ME. A Novel Inhibitor of HSP70 Induces Mitochondrial Toxicity and Immune Cell Recruitment in Tumors. Cancer Res 2020; 80:5270-5281. [PMID: 33023943 DOI: 10.1158/0008-5472.can-20-0397] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/24/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022]
Abstract
The protein chaperone HSP70 is overexpressed in many cancers including colorectal cancer, where overexpression is associated with poor survival. We report here the creation of a uniquely acting HSP70 inhibitor (HSP70i) that targets multiple compartments in the cancer cell, including mitochondria. This inhibitor was mitochondria toxic and cytotoxic to colorectal cancer cells, but not to normal colon epithelial cells. Inhibition of HSP70 was efficacious as a single agent in primary and metastatic models of colorectal cancer and enabled identification of novel mitochondrial client proteins for HSP70. In a syngeneic colorectal cancer model, the inhibitor increased immune cell recruitment into tumors. Cells treated with the inhibitor secreted danger-associated molecular patterns (DAMP), including ATP and HMGB1, and functioned effectively as a tumor vaccine. Interestingly, the unique properties of this HSP70i in the disruption of mitochondrial function and the inhibition of proteostasis both contributed to DAMP release. This HSP70i constitutes a promising therapeutic opportunity in colorectal cancer and may exhibit antitumor activity against other tumor types. SIGNIFICANCE: These findings describe a novel HSP70i that disrupts mitochondrial proteostasis, demonstrating single-agent efficacy that induces immunogenic cell death in treated tumors.
Collapse
Affiliation(s)
- Thibaut Barnoud
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Jessica C Leung
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Julia I-Ju Leu
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Subhasree Basu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Adi Narayana Reddy Poli
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Joshua L D Parris
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.,Department of Graduate Group in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexandra Indeglia
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.,Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tetyana Martynyuk
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Madeline Good
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Keerthana Gnanapradeepan
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.,Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emilio Sanseviero
- Program in Immunology, Metastasis and Microenvironment, The Wistar Institute, Philadelphia, Pennsylvania
| | - Rebecca Moeller
- Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Hsin-Yao Tang
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Joel Cassel
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Andrew V Kossenkov
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania
| | - Qin Liu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - David W Speicher
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Dmitry I Gabrilovich
- Department of Graduate Group in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph M Salvino
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.
| | - Donna L George
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
8
|
Mechanism and significance of apoptosis of the immortalized human oral mucosal epithelial cells established by Lentivirus-mediated hTERT. Mol Biol Rep 2020; 47:5469-5475. [PMID: 32632779 DOI: 10.1007/s11033-020-05637-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/27/2020] [Indexed: 10/23/2022]
Abstract
During the transition from human oral mucosal epithelial cells (HOMEC) to oral squamous cell carcinoma cells (Cal27), the cells must have undergone a precancerous state. To explore the malignant rule of HOMEC, plv-HOMEC was used as a model cell for the precancerous state to investigate plv-HOMEC's apoptosis by comparing human oral mucosal epithelial cells established by Lentivirus-mediated hTERT (plv-HOMEC) with HOMEC and human Cal27. The lentiviral particles overexpressing hTERT were packaged and transfected into primary HOMEC to obtain plv-HOMEC. Expression levels of NF-κB were detected in the cytoplasm and nucleus of Cal27, plv-HOMEC and HOMEC. The level of intracellular reactive oxygen species was measured to verify the endoplasmic reticulum pathway, cytochrome C expression was detected to verify the mitochondrial pathway, and FasL gene expression was detected to verify the death receptor apoptosis pathway. The total expression of NF-κB in plv-HOMEC increased, mainly due to the greater nuclear import of NF-κB, but it was still much lower than Cal27. The endoplasmic reticulum apoptosis pathway of plv-HOMEC was not significantly affected, and there were no significant differences between them and the HOMEC cells; the mitochondrial apoptosis pathway of plv-HOMEC was inhibited, and the expression of Cyt C was very close to that of Cal27, indicating that the characteristics of plv-HOMEC are so familiar with cancer cells; the death receptor apoptosis pathway of plv-HOMEC was also inhibited, and in this apoptotic pathway, plv-HOMEC were more similar to cancer cells than to HOMEC cells. The present data suggest that NF-κB nucleation may increase in the early stage of healthy cells' carcinogenesis, followed by inhibition of the mitochondrial pathway and the death receptor apoptotic pathway.
Collapse
|
9
|
Song HB. Possible involvement of HSP70 in pancreatic cancer cell proliferation after heat exposure and impact on RFA postoperative patient prognosis. Biochem Biophys Rep 2019; 20:100700. [PMID: 31867446 PMCID: PMC6895569 DOI: 10.1016/j.bbrep.2019.100700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 11/26/2022] Open
Abstract
Purpose As an alleviative treatment measured in patients with unresectable advanced pancreatic cancer, radiofrequency ablation (RFA) needed more clinical data to prove its advantages and to explore limitations in its utilization. This study was determined to observe the efficacy of RFA, and to explore its impact on perioperative periphery carcinoma as well as the normal pancreatic tissues. Methods Clinical data of 32 patients with pancreatic cancer accepted RFA surgery were collected. Followed up patients' pain degree and the changes in serum tumor markers CA19-9 and CA 242 before and after surgery. Ex vivo, gave human pancreatic cancer cell line PANC-1 heat treatment to simulate the heat exposure condition periphery carcinoma was experienced during RFA surgery, and to observe the proliferation rate and HSP70 expression change compared with control group. Results Of the 32 patients, 1 died of upper gastrointestinal hemorrhage, and 29 survived for more than 5 months, 2 of which for more than 16 months. The average CA19-9 and CA 242 levels of the patients were significantly decreased in 3 months after surgery (t = 9.873, 5.978, P < 0.001). During in vitro experiments, the proliferation rate of PANC-1 cells after heating was significantly increased, accompanied with the increased HSP70 expression. The addition of HSP70 inhibitor can inhibit the rise of proliferation after heat therapy. Conclusion Utilizing RFA treat patients with unresectable advanced pancreatic cancer, could effectively relieve the pain, decline jaundice, and deduce tumor marker levels significantly. However, it failed to extend the long-term survival rate of the patients significantly. This study found that a higher proliferative rate accompanied with a higher HSP70 expression level were observed on in vitro cultured pancreatic carcinoma cells after heat treatment, which could be altered by HSP70 inhibitor. And these findings indicated that the heat exposure might impact periphery carcinoma during RFA surgery and HSP70 might play an important role in patients' prognosis.
Collapse
Affiliation(s)
- Hui-Bin Song
- The Third Affiliated Hospital of Qiqihar Medical College, 27 Taishun Street, Tiefeng District, Qiqihar, Heilongjiang province, China
| |
Collapse
|
10
|
Moradi-Marjaneh R, Paseban M, Moradi Marjaneh M. Hsp70 inhibitors: Implications for the treatment of colorectal cancer. IUBMB Life 2019; 71:1834-1845. [PMID: 31441584 DOI: 10.1002/iub.2157] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/12/2019] [Indexed: 12/22/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies in the world. Despite intensive advances in diagnosis and treatment of CRC, it is yet one of the leading cause of cancer related morbidity and mortality. Therefore, there is an urgent medical need for alternative therapeutic approaches to treat CRC. The 70 kDa heat shock proteins (Hsp70s) are a family of evolutionary conserved heat shock proteins, which play an important role in cell homeostasis and survival. They overexpress in various types of malignancy including CRC and are typically accompanied with poor prognosis. Hence, inhibition of Hsp70 may be considered as a striking chemotherapeutic avenue. This review summarizes the current knowledge on the progress made so far to discover compounds, which target the Hsp70 family, with particular emphasis on their efficacy in treatment of CRC. We also briefly explain the induction of Hsp70 as a strategy to prevent CRC.
Collapse
Affiliation(s)
| | - Maryam Paseban
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Moradi Marjaneh
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
11
|
Pifithrin-μ induces necroptosis through oxidative mitochondrial damage but accompanies epithelial-mesenchymal transition-like phenomenon in malignant mesothelioma cells under lactic acidosis. Arch Pharm Res 2019; 42:890-901. [PMID: 31428976 DOI: 10.1007/s12272-019-01181-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/12/2019] [Indexed: 01/01/2023]
Abstract
Heat shock protein 70 (HSP70), a chaperone protein associated with tumorigenesis and chemoresistance, has attracted significant attention as a potential therapeutic target for the development of anticancer drugs. Here, the effects of pifithrin-μ, an effective dual inhibitor of HSP70 and p53, on anticancer activities and epithelial-mesenchymal transition (EMT) were investigated in malignant mesothelioma (MM) cells. MSTO-211HAcT cells, pre-incubated in a medium containing lactic acid, showed more potent resistance to cisplatin and gemcitabine, compared with their acid-sensitive parental MSTO-211H cells. Pifithrin-μ treatment induced both apoptosis and necroptosis, which were accompanied by an EMT-like phenomenon, as evidenced by an elongated cell morphology, decreased levels of epithelial cell markers including E-cadherin, claudin-1, and β-catenin, increased levels of mesenchymal markers including Snail, Slug, and vimentin, and increased cell migratory property. Moreover, pifithrin-μ increased intracellular ROS levels, which is associated with mitochondrial dysfunction and decreased cellular ATP content. A series of changes caused by pifithrin-μ treatment were effectively restored by lowering the ROS level through pretreatment with N-acetylcysteine. Collectively, our results suggest that pifithrin-μ may promote the metastatic behavior of surviving cells by triggering the EMT, despite its effective cell-killing action against MM cells, possibly linked to oxidative mitochondrial dysfunction and ATP depletion.
Collapse
|
12
|
Typical and Atypical Inducers of Lysosomal Cell Death: A Promising Anticancer Strategy. Int J Mol Sci 2018; 19:ijms19082256. [PMID: 30071644 PMCID: PMC6121368 DOI: 10.3390/ijms19082256] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 12/22/2022] Open
Abstract
Lysosomes are conservative organelles with an indispensable role in cellular degradation and the recycling of macromolecules. However, in light of recent findings, it has emerged that the role of lysosomes in cancer cells extends far beyond cellular catabolism and includes a variety of cellular pathways, such as proliferation, metastatic potential, and drug resistance. It has been well described that malignant transformation leads to alterations in lysosomal structure and function, which, paradoxically, renders cancer cells more sensitive to lysosomal destabilization. Furthermore, lysosomes are implicated in the regulation and execution of cell death in response to diverse stimuli and it has been shown that lysosome-dependent cell death can be utilized to overcome apoptosis and drug resistance. Thus, the purpose of this review is to characterize the role of lysosome in cancer therapy and to describe how these organelles impact treatment resistance. We summarized the characteristics of typical inducers of lysosomal cell death, which exert its function primarily via alterations in the lysosomal compartment. The review also presents other anticancer agents with the predominant mechanism of action different from lysosomal destabilization, the activity of which is influenced by lysosomal signaling, including classical chemotherapeutics, kinase inhibitors, monoclonal antibodies, as well as photodynamic therapy.
Collapse
|
13
|
Caponegro MD, Torres LF, Rastegar C, Rath N, Anderson ME, Robinson JK, Tsirka SE. Pifithrin-μ modulates microglial activation and promotes histological recovery following spinal cord injury. CNS Neurosci Ther 2018; 25:200-214. [PMID: 29962076 DOI: 10.1111/cns.13000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Treatments immediately after spinal cord injury (SCI) are anticipated to decrease neuronal death, disruption of neuronal connections, demyelination, and inflammation, and to improve repair and functional recovery. Currently, little can be done to modify the acute phase, which extends to the first 48 hours post-injury. Efforts to intervene have focused on the subsequent phases - secondary (days to weeks) and chronic (months to years) - to both promote healing, prevent further damage, and support patients suffering from SCI. METHODS We used a contusion model of SCI in female mice, and delivered a small molecule reagent during the early phase of injury. Histological and behavioral outcomes were assessed and compared. RESULTS We find that the reagent Pifithrin-μ (PFT-μ) acts early and directly on microglia in vitro, attenuating their activation. When administered during the acute phase of SCI, PFT-μ resulted in reduced lesion size during the initial inflammatory phase, and reduced the numbers of pro-inflammatory microglia and macrophages. Treatment with PFT-μ during the early stage of injury maintained a stable anti-inflammatory environment. CONCLUSIONS Our results indicate that a small molecule reagent PFT-μ has sustained immunomodulatory effects following a single dose after injury.
Collapse
Affiliation(s)
- Michael D Caponegro
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Luisa F Torres
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Cyrus Rastegar
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA.,Biological Psychology, Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Nisha Rath
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA.,Biological Psychology, Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Maria E Anderson
- Biological Psychology, Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - John K Robinson
- Biological Psychology, Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Stella E Tsirka
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
14
|
Inhibition of stress-inducible HSP70 impairs mitochondrial proteostasis and function. Oncotarget 2018; 8:45656-45669. [PMID: 28484090 PMCID: PMC5542216 DOI: 10.18632/oncotarget.17321] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/03/2017] [Indexed: 12/20/2022] Open
Abstract
Protein quality control is an important component of survival for all cells. The use of proteasome inhibitors for cancer therapy derives from the fact that tumor cells generally exhibit greater levels of proteotoxic stress than do normal cells, and thus cancer cells tend to be more sensitive to proteasome inhibition. However, this approach has been limited in some cases by toxicity to normal cells. Recently, the concept of inhibiting proteostasis in organelles for cancer therapy has been advanced, in part because it is predicted to have reduced toxicity for normal cells. Here we demonstrate that a fraction of the major stress-induced chaperone HSP70 (also called HSPA1A or HSP72, but hereafter HSP70) is abundantly present in mitochondria of tumor cells, but is expressed at quite low or undetectable levels in mitochondria of most normal tissues and non-tumor cell lines. We show that treatment of tumor cells with HSP70 inhibitors causes a marked change in mitochondrial protein quality control, loss of mitochondrial membrane potential, reduced oxygen consumption rate, and loss of ATP production. We identify several nuclear-encoded mitochondrial proteins, including polyadenylate binding protein-1 (PABPC1), which exhibit decreased abundance in mitochondria following treatment with HSP70 inhibitors. We also show that targeting HSP70 function leads to reduced levels of several mitochondrial-encoded RNA species that encode components of the electron transport chain. Our data indicate that small molecule inhibitors of HSP70 represent a new class of organelle proteostasis inhibitors that impair mitochondrial function in cancer cells, and therefore constitute novel therapeutics.
Collapse
|
15
|
Tian Y, Xu H, Farooq AA, Nie B, Chen X, Su S, Yuan R, Qiao G, Li C, Li X, Liu X, Lin X. Maslinic acid induces autophagy by down-regulating HSPA8 in pancreatic cancer cells. Phytother Res 2018. [PMID: 29516568 DOI: 10.1002/ptr.6064] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Maslinic acid (MA), a natural pentacyclictriterpene, displays cytotoxic activity on various types of cancer cells. However, its underlying mechanism is unclear. In this study, we assessed the effect of MA on autophagy of human pancreatic cancer cells, and the potential autophagic pathway was presented. MA inhibited the proliferation and induced autophagy of Panc-28 cells by altering the expressions of autophagy related proteins. SDS-PAGE analysis revealed that one protein band was significantly down-regulated in cells treated with MA, and the band was identified as heat shock protein HSPA8 as analyzed using Western blot and MS, MS/MS approaches. HSPA8 knockdown could significantly inhibit cell viability and enhance the cytotoxic effects of MA, whereas HSPA8 overexpression was able to enhance cell viability, diminishing the effects of MA. Western blot analysis indicated that the effect of MA on the expression of autophagy related genes was increased significantly in cells treated with HSPA8 inhibitor VER-155008, whereas HSPA8 inducer geranylgeranylacetone antagonized the effects of MA. Our study provides evidence that MA is able to induce of autophagy via down-regulation of HSPA8 in Panc-28 cells.
Collapse
Affiliation(s)
- Ye Tian
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Huanli Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.,Zibo Biomedicinal Institute, Zibo, 255000, Shandong, China
| | - Ammad Ahmad Farooq
- Laboratory for Translational Oncology and Personalized Medicine, RLMC, 35 Km Ferozepur Road, Lahore, Pakistan
| | - Baozeng Nie
- Rizhao Tranditional Chinese Medical Hospital, Rizhao, 276800, Shandong, China
| | - Xiaoliang Chen
- Basic Medical School, Datong Univeristy, Datong, 037009, Shanxi, China
| | - Shuonan Su
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ru Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Gan Qiao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Cong Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiao Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiaohui Liu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiukun Lin
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
16
|
Monma H, Iida Y, Moritani T, Okimoto T, Tanino R, Tajima Y, Harada M. Chloroquine augments TRAIL-induced apoptosis and induces G2/M phase arrest in human pancreatic cancer cells. PLoS One 2018. [PMID: 29513749 PMCID: PMC5841811 DOI: 10.1371/journal.pone.0193990] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autophagy contributes to the treatment-resistance of many types of cancers, and chloroquine (CQ) inhibits autophagy. The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) kills cancer cells but is minimally cytotoxic to normal cells. However, because the therapeutic efficacy of TRAIL is limited, it is necessary to augment TRAIL-induced anti-tumor effects. In this study, we explored the anti-tumor effects of a combination of CQ and TRAIL on two human pancreatic cancer cell lines: TRAIL-sensitive MiaPaCa-2 cells and Panc-1 cells that are less sensitive to TRAIL. Although both CQ and TRAIL reduced cancer cell viability in a dose-dependent manner, the combination acted synergistically. CQ increased the expression level of type-II LC3B without decreasing the expression of p62, an autophagic substrate, thus indicating inhibition of autophagy. CQ did not increase the levels of death receptors on cancer cells but reduced the expression of anti-apoptotic proteins. A combination of CQ and TRAIL significantly increased cancer cell apoptosis. CQ induced cell-cycle arrest in the G2/M phase. Also, CQ increased the p21 level but reduced that of cyclin B1. A combination of CQ and TRAIL reduced the colony-forming abilities of cancer cells to extents greater than either material alone. In xenograft models, combination CQ and TRAIL therapy significantly suppressed the growth of subcutaneously established MiaPaCa-2 and Panc-1 cells, compared with the untreated or monotherapy groups. Together, the results indicate that CQ in combination with TRAIL may be useful to treat human pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyuki Monma
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, Shimane, Japan
- Department of Surgery, Hygo Prefectural Kakogawa Medical Center, Hyogo, Japan
| | - Yuichi Iida
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Tamami Moritani
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Tamio Okimoto
- Division of Medical Oncology & Respiratory Medicine, Department of Internal Medicine, Shimane University Faculty of Medicine, Shimane, Japan
| | - Ryosuke Tanino
- Division of Medical Oncology & Respiratory Medicine, Department of Internal Medicine, Shimane University Faculty of Medicine, Shimane, Japan
| | - Yoshitsugu Tajima
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, Shimane, Japan
| | - Mamoru Harada
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
- * E-mail:
| |
Collapse
|
17
|
Micewicz ED, Kim K, Iwamoto KS, Ratikan JA, Cheng G, Boxx GM, Damoiseaux RD, Whitelegge JP, Ruchala P, Nguyen C, Purbey P, Loo J, Deng G, Jung ME, Sayre JW, Norris AJ, Schaue D, McBride WH. 4-(Nitrophenylsulfonyl)piperazines mitigate radiation damage to multiple tissues. PLoS One 2017; 12:e0181577. [PMID: 28732024 PMCID: PMC5521796 DOI: 10.1371/journal.pone.0181577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/03/2017] [Indexed: 01/08/2023] Open
Abstract
Our ability to use ionizing radiation as an energy source, as a therapeutic agent, and, unfortunately, as a weapon, has evolved tremendously over the past 120 years, yet our tool box to handle the consequences of accidental and unwanted radiation exposure remains very limited. We have identified a novel group of small molecule compounds with a 4-nitrophenylsulfonamide (NPS) backbone in common that dramatically decrease mortality from the hematopoietic acute radiation syndrome (hARS). The group emerged from an in vitro high throughput screen (HTS) for inhibitors of radiation-induced apoptosis. The lead compound also mitigates against death after local abdominal irradiation and after local thoracic irradiation (LTI) in models of subacute radiation pneumonitis and late radiation fibrosis. Mitigation of hARS is through activation of radiation-induced CD11b+Ly6G+Ly6C+ immature myeloid cells. This is consistent with the notion that myeloerythroid-restricted progenitors protect against WBI-induced lethality and extends the possible involvement of the myeloid lineage in radiation effects. The lead compound was active if given to mice before or after WBI and had some anti-tumor action, suggesting that these compounds may find broader applications to cancer radiation therapy.
Collapse
Affiliation(s)
- Ewa D. Micewicz
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Kwanghee Kim
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Keisuke S. Iwamoto
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Josephine A. Ratikan
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Genhong Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Gayle M. Boxx
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Robert D. Damoiseaux
- Molecular Screening Shared Resource, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Julian P. Whitelegge
- Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Piotr Ruchala
- Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Christine Nguyen
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Prabhat Purbey
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Joseph Loo
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Gang Deng
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Michael E. Jung
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California, United States of America
| | - James W. Sayre
- School of Public Health, Biostatistics and Radiology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Andrew J. Norris
- BCN Biosciences, LLC, Pasadena, California, United States of America
| | - Dörthe Schaue
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| | - William H. McBride
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
18
|
Maj MA, Ma J, Krukowski KN, Kavelaars A, Heijnen CJ. Inhibition of Mitochondrial p53 Accumulation by PFT-μ Prevents Cisplatin-Induced Peripheral Neuropathy. Front Mol Neurosci 2017; 10:108. [PMID: 28458631 PMCID: PMC5394177 DOI: 10.3389/fnmol.2017.00108] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/30/2017] [Indexed: 02/03/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN), a debilitating major side effect of cancer treatment, is characterized by pain and sensory loss in hand and feet. Platinum-based chemotherapeutics like cisplatin frequently induce CIPN. The molecular mechanism underlying these neurotoxic symptoms is incompletely understood and there are no preventive or curative interventions. We hypothesized that cisplatin acts as a cellular stressor that triggers p53 accumulation at mitochondria, leading to mitochondrial dysfunction and CIPN. To test this hypothesis, we examined the effect of the small molecule pifithrin-μ (PFT-μ), an inhibitor of p53 mitochondrial association on CIPN and the associated mitochondrial dysfunction. We show here for the first time that in vivo cisplatin rapidly increases mitochondrial accumulation of p53 in dorsal root ganglia (DRG), spinal cord, and peripheral nerve without evidence for apoptosis. Cisplatin-treatment also reduced mitochondrial membrane potential and lead to abnormal mitochondrial morphology and impaired mitochondrial function in DRG neurons. Pre-treatment with PFT-μ prevented the early cisplatin-induced increase in mitochondrial p53 and the reduction in mitochondrial membrane potential. Inhibition of the early mitochondrial p53 accumulation by PFT-μ also prevented the abnormalities in mitochondrial morphology and mitochondrial bioenergetics (reduced oxygen consumption rate, maximum respiratory capacity, and adenosine triphosphate synthesis) that develop in DRG and peripheral nerve after cisplatin-treatment. Functionally, inhibition of mitochondrial p53 accumulation prevented the hallmarks of CIPN including mechanical allodynia, peripheral sensory loss (numbness) as quantified by an adhesive-removal task, and loss of intra-epidermal nerve fibers. In conclusion, PFT-μ is a potential neuroprotective agent that prevents cisplatin-induced mitochondrial dysfunction in DRG and peripheral nerves thereby protecting against CIPN through blockade of the early cisplatin-induced increase in mitochondrial p53. Notably, there is accumulating evidence that PFT-μ has anti-tumor activities and could therefore be an attractive candidate to prevent CIPN while promoting tumor cell death.
Collapse
|
19
|
Li X, You M, Liu YJ, Ma L, Jin PP, Zhou R, Zhang ZX, Hua B, Ji XJ, Cheng XY, Yin F, Chen Y, Yin W. Reversal of the Apoptotic Resistance of Non-Small-Cell Lung Carcinoma towards TRAIL by Natural Product Toosendanin. Sci Rep 2017; 7:42748. [PMID: 28209994 PMCID: PMC5314365 DOI: 10.1038/srep42748] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/13/2017] [Indexed: 11/18/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively triggers cancer cell death via its association with death receptors on the cell membrane, but exerts negligible side effects on normal cells. However, some non-small-cell lung carcinoma (NSCLC) patients exhibited resistance to TRAIL treatment in clinical trials, and the mechanism varies. In this study, we described for the first time that toosendanin (TSN), a triterpenoid derivative used in Chinese medicine for pain management, could significantly sensitize human primary NSCLC cells or NSCLC cell lines to TRAIL-mediated apoptosis both in vitro and in vivo, while showing low toxicity against human primary cells or tissues. The underlying apoptotic mechanisms involved upregulation of death receptor 5 (DR5) and CCAAT/enhancer binding protein homologous protein, which is related to the endoplasmic reticulum stress response, and is further associated with reactive oxygen species generation and Ca2+ accumulation. Surprisingly, TSN also induced autophagy in NSCLC cells, which recruited membrane DR5, and subsequently antagonized the apoptosis-sensitizing effect of TSN. Taken together, TSN can be used to sensitize tumors and the combination of TRAIL and TSN may represent a useful strategy for NSCLC therapy; moreover, autophagy serves as an important drug resistance mechanism for TSN.
Collapse
Affiliation(s)
- Xin Li
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences, Nanjing University, Nanjing, 210093, China.,Jiangsu Key Lab of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming You
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Yong-Jian Liu
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences, Nanjing University, Nanjing, 210093, China
| | - Lin Ma
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences, Nanjing University, Nanjing, 210093, China
| | - Pei-Pei Jin
- Department of Anesthesiology and Intensive Care Unit, Changhai Hospital, Affiliated Hospital of the Second Military Medical University, Shanghai, China
| | - Ri Zhou
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences, Nanjing University, Nanjing, 210093, China
| | - Zhao-Xin Zhang
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences, Nanjing University, Nanjing, 210093, China
| | - Baojin Hua
- Guang'anmen hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Jun Ji
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences, Nanjing University, Nanjing, 210093, China
| | - Xiao-Ying Cheng
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences, Nanjing University, Nanjing, 210093, China
| | - Fangzhou Yin
- College of Pharmacy, Nanjing University of Chinese medicine, China
| | - Yan Chen
- Guang'anmen hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Jiangsu Cancer Hospital &Institute Affiliated to Nanjing Medical University, China
| | - Wu Yin
- The State Key Lab of Pharmaceutical Biotechnology, College of life Sciences, Nanjing University, Nanjing, 210093, China.,Jiangsu Key Lab of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
20
|
Zhou Y, Ma J, Zhang J, He L, Gong J, Long C. Pifithrin-μ is efficacious against non-small cell lung cancer via inhibition of heat shock protein 70. Oncol Rep 2016; 37:313-322. [PMID: 28004121 DOI: 10.3892/or.2016.5286] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/16/2016] [Indexed: 11/05/2022] Open
Abstract
Heat-shock protein (Hsp) 70, known as a pro-survival protein, is aberrantly expressed in several malignancies. The small molecule 2-phenylethyenesulfonamide (PES), also referred to as pifithrin-μ, is known as an HSP70 inhibitor, which exhibits antitumor activities in a variety of cancer cell lines. However, little is known about its effect on non-small cell lung cancer (NSCLC) cell lines. This study aimed to investigate the effect of PES on human NSCLC cell lines A549 and H460, and explore the possible underlying mechanism of action. Cell viability assay by using CCK-8 kits was performed to demonstrate that PES dose- and time-dependently inhibited proliferation of A549 and H460 cells. Wound healing assay and Transwell migration assay results indicated that PES inhibited cell migration of A549 and H460 cells. Flow cytometry results demonstrated that PES resulted in G0/G1 phase cell cycle arrest, and induced apoptosis via a caspase-dependent manner in A549 and H460 cells. Western blotting results suggested that phosphorylation of AKT and ERK was inhibited by PES treatment. In addition, death receptor 4 (DR4) and DR5 were increased by PES treatment. Overexpression of Hsp70 in A549 cells attenuated the growth inhibitory efficiency of PES. Knockdown of Hsp70 in A549 cells enhanced sensitivity of PES to cell growth inhibition, suggesting that the inhibitory effect of PES on cell proliferation is specifically through Hsp70-dependent mechanism. PES and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) exerts a potent synergistic effect on cell proliferation inhibition and induction of apoptosis in A549 and H460 cells. In a mouse xenograft model of lung cancer by A549 cells, PES treatment displayed significant inhibitory effects on tumor growth. All these findings suggest that PES shows antitumor activity against human NSCLC in vitro and in vivo, and therefore may be a promising agent for use to the treatment of NSCLC.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Respiratory Medicine, The Second Clinical Medical College, Yangtz University, Jingzhou, Hubei 434020, P.R. China
| | - Jingping Ma
- Department of Respiratory Medicine, The Second Clinical Medical College, Yangtz University, Jingzhou, Hubei 434020, P.R. China
| | - Jiahong Zhang
- Department of Respiratory Medicine, The Second Clinical Medical College, Yangtz University, Jingzhou, Hubei 434020, P.R. China
| | - Li He
- Department of Respiratory Medicine, The Second Clinical Medical College, Yangtz University, Jingzhou, Hubei 434020, P.R. China
| | - Jianhua Gong
- Department of Respiratory Medicine, The Second Clinical Medical College, Yangtz University, Jingzhou, Hubei 434020, P.R. China
| | - Cong Long
- Department of Laboratory Medicine, Jingzhou First People's Hospital, Jingzhou, Hubei 434100, P.R. China
| |
Collapse
|
21
|
Chiu GS, Maj MA, Rizvi S, Dantzer R, Vichaya EG, Laumet G, Kavelaars A, Heijnen CJ. Pifithrin-μ Prevents Cisplatin-Induced Chemobrain by Preserving Neuronal Mitochondrial Function. Cancer Res 2016; 77:742-752. [PMID: 27879267 DOI: 10.1158/0008-5472.can-16-1817] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/06/2016] [Accepted: 11/04/2016] [Indexed: 01/21/2023]
Abstract
Cognitive impairment, termed chemobrain, is a common neurotoxicity associated with chemotherapy treatment, affecting an estimated 78% of patients. Prompted by the hypothesis that neuronal mitochondrial dysfunction underlies chemotherapy-induced cognitive impairment (CICI), we explored the efficacy of administering the small-molecule pifithrin (PFT)-μ, an inhibitor of mitochondrial p53 accumulation, in preventing CICI. Male C57BL/6J mice injected with cisplatin ± PFT-μ for two 5-day cycles were assessed for cognitive function using novel object/place recognition and alternation in a Y-maze. Cisplatin impaired performance in the novel object/place recognition and Y-maze tests. PFT-μ treatment prevented CICI and associated cisplatin-induced changes in coherency of myelin basic protein fibers in the cingular cortex and loss of doublecortin+ cells in the subventricular zone and hippocampal dentate gyrus. Mechanistically, cisplatin decreased spare respirator capacity of brain synaptosomes and caused abnormal mitochondrial morphology, which was counteracted by PFT-μ administration. Notably, increased mitochondrial p53 did not lead to cerebral caspase-3 activation or cytochrome-c release. Furthermore, PFT-μ administration did not impair the anticancer efficacy of cisplatin and radiotherapy in tumor-bearing mice. Our results supported the hypothesis that neuronal mitochondrial dysfunction induced by mitochondrial p53 accumulation is an underlying cause of CICI and that PFT-μ may offer a tractable therapeutic strategy to limit this common side-effect of many types of chemotherapy. Cancer Res; 77(3); 742-52. ©2016 AACR.
Collapse
Affiliation(s)
- Gabriel S Chiu
- Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Magdalena A Maj
- Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sahar Rizvi
- Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert Dantzer
- Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elisabeth G Vichaya
- Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Geoffroy Laumet
- Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Annemieke Kavelaars
- Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cobi J Heijnen
- Laboratory of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
22
|
Shrestha L, Patel HJ, Chiosis G. Chemical Tools to Investigate Mechanisms Associated with HSP90 and HSP70 in Disease. Cell Chem Biol 2016; 23:158-172. [PMID: 26933742 DOI: 10.1016/j.chembiol.2015.12.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 01/22/2023]
Abstract
The chaperome is a large and diverse protein machinery composed of chaperone proteins and a variety of helpers, such as the co-chaperones, folding enzymes, and scaffolding and adapter proteins. Heat shock protein 90s and 70s (HSP90s and HSP70s), the most abundant chaperome members in human cells, are also the most complex. As we have learned to appreciate, their functions are context dependent and manifested through a variety of conformations that each recruit a subset of co-chaperone, scaffolding, and folding proteins and which are further diversified by the posttranslational modifications each carry, making their study through classic genetic and biochemical techniques quite a challenge. Chemical biology tools and techniques have been developed over the years to help decipher the complexities of the HSPs and this review provides an overview of such efforts with focus on HSP90 and HSP70.
Collapse
Affiliation(s)
- Liza Shrestha
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Hardik J Patel
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Gabriela Chiosis
- Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA.
| |
Collapse
|
23
|
Mitochondrial p53 Contributes to Reovirus-Induced Neuronal Apoptosis and Central Nervous System Injury in a Mouse Model of Viral Encephalitis. J Virol 2016; 90:7684-91. [PMID: 27307572 DOI: 10.1128/jvi.00583-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/08/2016] [Indexed: 01/29/2023] Open
Abstract
UNLABELLED The tumor suppressor p53 plays a critical part in determining cell fate both as a regulator of the transcription of several proapoptotic genes and through its binding interactions with Bcl-2 family proteins at mitochondria. We now demonstrate that p53 protein levels are increased in infected brains during reovirus encephalitis. This increase occurs in the cytoplasm of reovirus-infected neurons and is associated with the activation of caspase 3. Increased levels of p53 in reovirus-infected brains are not associated with increased expression levels of p53 mRNA, suggesting that p53 regulation occurs at the protein level. Increased levels of p53 are also not associated with the increased expression levels of p53-regulated, proapoptotic genes. In contrast, upregulated p53 accumulates in mitochondria. Previous reports demonstrated that the binding of p53 to Bak at mitochondria causes Bak activation and results in apoptosis. We now show that Bak is activated and that activated Bak is bound to p53 during reovirus encephalitis. In addition, survival is enhanced in reovirus-infected Bak(-/-) mice compared to controls, demonstrating a role for Bak in reovirus pathogenesis. Inhibition of the mitochondrial translocation of p53 with pifithrin μ prevents the formation of p53/Bak complexes following reovirus infection of ex vivo brain slice cultures and results in decreased apoptosis and tissue injury. These results suggest that the mitochondrial localization of p53 regulates reovirus-induced pathogenesis in the central nervous system (CNS) through its interactions with Bak. IMPORTANCE There are virtually no specific treatments of proven efficacy for virus-induced neuroinvasive diseases. A better understanding of the pathogenesis of virus-induced CNS injury is crucial for the rational development of novel therapies. Our studies demonstrate that p53 is activated in the brain following reovirus infection and may provide a therapeutic target for virus-induced CNS disease.
Collapse
|
24
|
Zhe Y, Li Y, Liu D, Su DM, Liu JG, Li HY. Extracellular HSP70-peptide complexes promote the proliferation of hepatocellular carcinoma cells via TLR2/4/JNK1/2MAPK pathway. Tumour Biol 2016; 37:13951-13959. [DOI: 10.1007/s13277-016-5189-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/13/2016] [Indexed: 01/28/2023] Open
|
25
|
Krukowski K, Nijboer CH, Huo X, Kavelaars A, Heijnen CJ. Prevention of chemotherapy-induced peripheral neuropathy by the small-molecule inhibitor pifithrin-μ. Pain 2016; 156:2184-2192. [PMID: 26473292 DOI: 10.1097/j.pain.0000000000000290] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of cancer treatment. It is the most frequent cause of dose reduction or treatment discontinuation in patients treated for cancer with commonly used drugs including taxanes and platinum-based compounds. No FDA-approved treatments for CIPN are available. In rodents, CIPN is represented by peripheral mechanical allodynia in association with retraction of intraepidermal nerve fibers. The mechanism of chemotherapy-induced neurotoxicity is unclear, but it has been established that mitochondrial dysfunction is an important component of the dysregulation in peripheral sensory neurons. We have shown earlier that inhibition of mitochondrial p53 accumulation with the small compound pifithrin-μ (PFT-μ) prevents cerebral neuronal death in a rodent model of hypoxic-ischemic brain damage. We now explore whether PFT-μ is capable of preventing neuronal mitochondrial damage and CIPN in mice. We demonstrate for the first time that PFT-μ prevents both paclitaxel- and cisplatin-induced mechanical allodynia. Electron microscopic analysis of peripheral sensory nerves revealed that PFT-μ secured mitochondrial integrity in paclitaxel-treated mice. In addition, PFT-μ administration protects against chemotherapy-induced loss of intraepidermal nerve fibers in the paw. To determine whether neuroprotective treatment with PFT-μ would interfere with the antitumor effects of chemotherapy, ovarian tumor cells were cultured in vitro with PFT-μ and paclitaxel. Pifithrin-μ does not inhibit tumor cell death but even enhances paclitaxel-induced tumor cell death. These data are the first to identify PFT-μ as a potential therapeutic strategy for prevention of CIPN to combat one of the most devastating side effects of chemotherapy.
Collapse
Affiliation(s)
- Karen Krukowski
- Laboratory of Neuroimmunology, Department Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | |
Collapse
|
26
|
Ishaq M, Ojha R, Sharma K, Sharma G, Singh SK, Majumdar S. Functional inhibition of Hsp70 by Pifithrin-μ switches Gambogic acid induced caspase dependent cell death to caspase independent cell death in human bladder cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2560-2573. [PMID: 27395830 DOI: 10.1016/j.bbamcr.2016.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/27/2016] [Accepted: 07/03/2016] [Indexed: 12/31/2022]
Abstract
Heat shock protein-70kDa (Hsp70) is a member of molecular chaperone family, involved in the proper folding of various proteins. Hsp70 is important for tumor cell survival and is also reported to be involved in enhancing the drug resistance of various cancer types. Hsp70 controls apoptosis both upstream and downstream of the mitochondria by regulating the mitochondrial membrane permeabilization (MMP) and apoptosome formation respectively. In the present study, we have elucidated the role of Hsp70 in Gambogic acid (GA) induced apoptosis in bladder cancer cells. We observed that functional inhibition of Hsp70 by Pifithrin-μ switches GA induced caspase dependent (apoptotic) cell death to caspase independent cell death. However, this cell death was not essentially necrotic in nature, as shown by the observations like intact plasma membranes, cytochrome-c release and no significant effect on nuclear condensation/fragmentation. Inhibition of Hsp70 by Pifithrin-μ shows differential effect on MMP. GA induced MMP and cytochrome-c release was inhibited by Pifithrin-μ at 12h but enhanced at 24h. Pifithrin-μ also reverted back GA inhibited autophagy which resulted in the degradation of accumulated ubiquitinated proteins. Our results demonstrate that Hsp70 plays an important role in GA induced apoptosis by regulating caspase activation. Therefore, inhibition of Hsp70 may hamper with the caspase dependent apoptotic pathways induced by most anti-cancer drugs and reduce their efficacy. However, the combination therapy with Pifithrin-μ may be particularly useful in targeting apoptotic resistant cancer cells as Pifithrin-μ may initiate alternative cell death program in these resistant cells.
Collapse
Affiliation(s)
- Mohammad Ishaq
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160 036, India
| | - Rani Ojha
- Department of Urology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160 012, India
| | - Kapil Sharma
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160 036, India
| | - Gaurav Sharma
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160 036, India
| | - Shrawan K Singh
- Department of Urology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160 012, India
| | - Sekhar Majumdar
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160 036, India.
| |
Collapse
|
27
|
Lee Y, Byun HS, Seok JH, Park KA, Won M, Seo W, Lee SR, Kang K, Sohn KC, Lee IY, Kim HG, Son CG, Shen HM, Hur GM. Terminalia Chebula provides protection against dual modes of necroptotic and apoptotic cell death upon death receptor ligation. Sci Rep 2016; 6:25094. [PMID: 27117478 PMCID: PMC4846877 DOI: 10.1038/srep25094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/11/2016] [Indexed: 11/16/2022] Open
Abstract
Death receptor (DR) ligation elicits two different modes of cell death (necroptosis and apoptosis) depending on the cellular context. By screening a plant extract library from cells undergoing necroptosis or apoptosis, we identified a water extract of Terminalia chebula (WETC) as a novel and potent dual inhibitor of DR-mediated cell death. Investigation of the underlying mechanisms of its anti-necroptotic and anti-apoptotic action revealed that WETC or its constituents (e.g., gallic acid) protected against tumor necrosis factor-induced necroptosis via the suppression of TNF-induced ROS without affecting the upstream signaling events. Surprisingly, WETC also provided protection against DR-mediated apoptosis by inhibition of the caspase cascade. Furthermore, it activated the autophagy pathway via suppression of mTOR. Of the WETC constituents, punicalagin and geraniin appeared to possess the most potent anti-apoptotic and autophagy activation effect. Importantly, blockage of autophagy with pharmacological inhibitors or genetic silencing of Atg5 selectively abolished the anti-apoptotic function of WETC. These results suggest that WETC protects against dual modes of cell death upon DR ligation. Therefore, WETC might serve as a potential treatment for diseases characterized by aberrantly sensitized apoptotic or non-apoptotic signaling cascades.
Collapse
Affiliation(s)
- Yoonjung Lee
- Department of Pharmacology, Research Institute for Medical Science, College of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Hee Sun Byun
- Department of Pharmacology, Research Institute for Medical Science, College of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Jeong Ho Seok
- Department of Pharmacology, Research Institute for Medical Science, College of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Kyeong Ah Park
- Department of Pharmacology, Research Institute for Medical Science, College of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Minho Won
- Department of Pharmacology, Research Institute for Medical Science, College of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Wonhyoung Seo
- Department of Pharmacology, Research Institute for Medical Science, College of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - So-Ra Lee
- Department of Pharmacology, Research Institute for Medical Science, College of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Kidong Kang
- Department of Pharmacology, Research Institute for Medical Science, College of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Kyung-Cheol Sohn
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| | - Ill Young Lee
- Eco-Friendly New Materials Reserch Center, Korea Research Institute of Chemical Technology, 141 Daejeon 34114, Republic of Korea
| | - Hyeong-Geug Kim
- Liver &Immunology Research Center, Oriental Hospital of Daejeon University, Daejeon 302-122, Republic of Korea
| | - Chang Gue Son
- Liver &Immunology Research Center, Oriental Hospital of Daejeon University, Daejeon 302-122, Republic of Korea
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gang Min Hur
- Department of Pharmacology, Research Institute for Medical Science, College of Medicine, Chungnam National University, Daejeon 301-131, Republic of Korea
| |
Collapse
|
28
|
Yang M, Liu L, Xie M, Sun X, Yu Y, Kang R, Yang L, Zhu S, Cao L, Tang D. Poly-ADP-ribosylation of HMGB1 regulates TNFSF10/TRAIL resistance through autophagy. Autophagy 2016; 11:214-24. [PMID: 25607248 DOI: 10.4161/15548627.2014.994400] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Both apoptosis ("self-killing") and autophagy ("self-eating") are evolutionarily conserved processes, and their crosstalk influences anticancer drug sensitivity and cell death. However, the underlying mechanism remains unclear. Here, we demonstrated that HMGB1 (high mobility group box 1), normally a nuclear protein, is a crucial regulator of TNFSF10/TRAIL (tumor necrosis factor [ligand] superfamily, member 10)-induced cancer cell death. Activation of PARP1 (poly [ADP-ribose] polymerase 1) was required for TNFSF10-induced ADP-ribosylation of HMGB1 in cancer cells. Moreover, pharmacological inhibition of PARP1 activity or knockdown of PARP1 gene expression significantly inhibited TNFSF10-induced HMGB1 cytoplasmic translocation and subsequent HMGB1-BECN1 complex formation. Furthermore, suppression of the PARP1-HMGB1 pathway diminished autophagy, increased apoptosis, and enhanced the anticancer activity of TNFSF10 in vitro and in a subcutaneous tumor model. These results indicate that PARP1 acts as a prominent upstream regulator of HMGB1-mediated autophagy and maintains a homeostatic balance between apoptosis and autophagy, which provides new insight into the mechanism of TNFSF10 resistance.
Collapse
Key Words
- ATG, autophagy-related
- DISC, death-inducing signaling complex
- HMGB1
- HMGB1, high mobility group box 1
- MAP1LC3A/LC3, microtubule-associated protein 1 light chain 3 α
- PARP-1
- PARP1, poly (ADP-ribose) polymerase 1
- PARylation, poly-ADP-ribosylation
- RIPK1/RIP, receptor (TNFRSF)-interacting serine-threonine kinase 1
- TNF, tumor necrosis factor
- TNFSF10/TRAIL, tumor necrosis factor (ligand) superfamily, member 10
- TRAIL
- TUNEL, TdT-mediated dUTP-X nick end labeling
- apoptosis
- autophagy
- shRNA, short hairpin RNA
Collapse
Affiliation(s)
- Minghua Yang
- a Department of Pediatrics; Xiangya Hospital ; Central South University ; Changsha , Hunan China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang M, Harashima N, Moritani T, Huang W, Harada M. The Roles of ROS and Caspases in TRAIL-Induced Apoptosis and Necroptosis in Human Pancreatic Cancer Cells. PLoS One 2015; 10:e0127386. [PMID: 26000607 PMCID: PMC4441514 DOI: 10.1371/journal.pone.0127386] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/15/2015] [Indexed: 01/22/2023] Open
Abstract
Death signaling provided by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) can induce death in cancer cells with little cytotoxicity to normal cells; this cell death has been thought to involve caspase-dependent apoptosis. Reactive oxygen species (ROS) are also mediators that induce cell death, but their roles in TRAIL-induced apoptosis have not been elucidated fully. In the current study, we investigated ROS and caspases in human pancreatic cancer cells undergoing two different types of TRAIL-induced cell death, apoptosis and necroptosis. TRAIL treatment increased ROS in two TRAIL-sensitive pancreatic cancer cell lines, MiaPaCa-2 and BxPC-3, but ROS were involved in TRAIL-induced apoptosis only in MiaPaCa-2 cells. Unexpectedly, inhibition of ROS by either N-acetyl-L-cysteine (NAC), a peroxide inhibitor, or Tempol, a superoxide inhibitor, increased the annexin V-/propidium iodide (PI)+ early necrotic population in TRAIL-treated cells. Additionally, both necrostatin-1, an inhibitor of receptor-interacting protein kinase 1 (RIP1), and siRNA-mediated knockdown of RIP3 decreased the annexin V-/PI+ early necrotic population after TRAIL treatment. Furthermore, an increase in early apoptosis was induced in TRAIL-treated cancer cells under inhibition of either caspase-2 or -9. Caspase-2 worked upstream of caspase-9, and no crosstalk was observed between ROS and caspase-2/-9 in TRAIL-treated cells. Together, these results indicate that ROS contribute to TRAIL-induced apoptosis in MiaPaCa-2 cells, and that ROS play an inhibitory role in TRAIL-induced necroptosis of MiaPaCa-2 and BxPC-3 cells, with caspase-2 and -9 playing regulatory roles in this process.
Collapse
Affiliation(s)
- Min Zhang
- Department of Biochemistry and Molecular Biology, Ningxia Medical University, Shengli Street, Yinchuan, China
- Department of Immunology, Shimane University Faculty of Medicine, Izumi, Shimane, Japan
| | - Nanae Harashima
- Department of Immunology, Shimane University Faculty of Medicine, Izumi, Shimane, Japan
| | - Tamami Moritani
- Department of Immunology, Shimane University Faculty of Medicine, Izumi, Shimane, Japan
| | - Weidong Huang
- Department of Biochemistry and Molecular Biology, Ningxia Medical University, Shengli Street, Yinchuan, China
| | - Mamoru Harada
- Department of Immunology, Shimane University Faculty of Medicine, Izumi, Shimane, Japan
- * E-mail:
| |
Collapse
|
30
|
Akimoto M, Iizuka M, Kanematsu R, Yoshida M, Takenaga K. Anticancer Effect of Ginger Extract against Pancreatic Cancer Cells Mainly through Reactive Oxygen Species-Mediated Autotic Cell Death. PLoS One 2015. [PMID: 25961833 DOI: 10.1371/journal.pone.0126605,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The extract of ginger (Zingiber officinale Roscoe) and its major pungent components, [6]-shogaol and [6]-gingerol, have been shown to have an anti-proliferative effect on several tumor cell lines. However, the anticancer activity of the ginger extract in pancreatic cancer is poorly understood. Here, we demonstrate that the ethanol-extracted materials of ginger suppressed cell cycle progression and consequently induced the death of human pancreatic cancer cell lines, including Panc-1 cells. The underlying mechanism entailed autosis, a recently characterized form of cell death, but not apoptosis or necroptosis. The extract markedly increased the LC3-II/LC3-I ratio, decreased SQSTM1/p62 protein, and enhanced vacuolization of the cytoplasm in Panc-1 cells. It activated AMPK, a positive regulator of autophagy, and inhibited mTOR, a negative autophagic regulator. The autophagy inhibitors 3-methyladenine and chloroquine partially prevented cell death. Morphologically, however, focal membrane rupture, nuclear shrinkage, focal swelling of the perinuclear space and electron dense mitochondria, which are unique morphological features of autosis, were observed. The extract enhanced reactive oxygen species (ROS) generation, and the antioxidant N-acetylcystein attenuated cell death. Our study revealed that daily intraperitoneal administration of the extract significantly prolonged survival (P = 0.0069) in a peritoneal dissemination model and suppressed tumor growth in an orthotopic model of pancreatic cancer (P < 0.01) without serious adverse effects. Although [6]-shogaol but not [6]-gingerol showed similar effects, chromatographic analyses suggested the presence of other constituent(s) as active substances. Together, these results show that ginger extract has potent anticancer activity against pancreatic cancer cells by inducing ROS-mediated autosis and warrants further investigation in order to develop an efficacious candidate drug.
Collapse
Affiliation(s)
- Miho Akimoto
- Laboratory of Tumor Biology, Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Mari Iizuka
- Laboratory of Molecular Science, Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Rie Kanematsu
- Laboratory of Tumor Biology, Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Masato Yoshida
- Laboratory of Molecular Science, Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Keizo Takenaga
- Laboratory of Tumor Biology, Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| |
Collapse
|
31
|
Akimoto M, Iizuka M, Kanematsu R, Yoshida M, Takenaga K. Anticancer Effect of Ginger Extract against Pancreatic Cancer Cells Mainly through Reactive Oxygen Species-Mediated Autotic Cell Death. PLoS One 2015; 10:e0126605. [PMID: 25961833 PMCID: PMC4427290 DOI: 10.1371/journal.pone.0126605] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/05/2015] [Indexed: 12/13/2022] Open
Abstract
The extract of ginger (Zingiber officinale Roscoe) and its major pungent components, [6]-shogaol and [6]-gingerol, have been shown to have an anti-proliferative effect on several tumor cell lines. However, the anticancer activity of the ginger extract in pancreatic cancer is poorly understood. Here, we demonstrate that the ethanol-extracted materials of ginger suppressed cell cycle progression and consequently induced the death of human pancreatic cancer cell lines, including Panc-1 cells. The underlying mechanism entailed autosis, a recently characterized form of cell death, but not apoptosis or necroptosis. The extract markedly increased the LC3-II/LC3-I ratio, decreased SQSTM1/p62 protein, and enhanced vacuolization of the cytoplasm in Panc-1 cells. It activated AMPK, a positive regulator of autophagy, and inhibited mTOR, a negative autophagic regulator. The autophagy inhibitors 3-methyladenine and chloroquine partially prevented cell death. Morphologically, however, focal membrane rupture, nuclear shrinkage, focal swelling of the perinuclear space and electron dense mitochondria, which are unique morphological features of autosis, were observed. The extract enhanced reactive oxygen species (ROS) generation, and the antioxidant N-acetylcystein attenuated cell death. Our study revealed that daily intraperitoneal administration of the extract significantly prolonged survival (P = 0.0069) in a peritoneal dissemination model and suppressed tumor growth in an orthotopic model of pancreatic cancer (P < 0.01) without serious adverse effects. Although [6]-shogaol but not [6]-gingerol showed similar effects, chromatographic analyses suggested the presence of other constituent(s) as active substances. Together, these results show that ginger extract has potent anticancer activity against pancreatic cancer cells by inducing ROS-mediated autosis and warrants further investigation in order to develop an efficacious candidate drug.
Collapse
Affiliation(s)
- Miho Akimoto
- Laboratory of Tumor Biology, Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Mari Iizuka
- Laboratory of Molecular Science, Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Rie Kanematsu
- Laboratory of Tumor Biology, Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Masato Yoshida
- Laboratory of Molecular Science, Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Keizo Takenaga
- Laboratory of Tumor Biology, Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| |
Collapse
|
32
|
Schilling D, Kühnel A, Konrad S, Tetzlaff F, Bayer C, Yaglom J, Multhoff G. Sensitizing tumor cells to radiation by targeting the heat shock response. Cancer Lett 2015; 360:294-301. [DOI: 10.1016/j.canlet.2015.02.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/12/2015] [Accepted: 02/14/2015] [Indexed: 10/23/2022]
|
33
|
Blocking Hsp70 enhances the efficiency of amphotericin B treatment against resistant Aspergillus terreus strains. Antimicrob Agents Chemother 2015; 59:3778-88. [PMID: 25870060 DOI: 10.1128/aac.05164-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/04/2015] [Indexed: 12/24/2022] Open
Abstract
The polyene antifungal amphotericin B (AmB) is widely used to treat life-threatening fungal infections. Even though AmB resistance is exceptionally rare in fungi, most Aspergillus terreus isolates exhibit an intrinsic resistance against the drug in vivo and in vitro. Heat shock proteins perform a fundamental protective role against a multitude of stress responses, thereby maintaining protein homeostasis in the organism. In this study, we elucidated the role of heat shock protein 70 (Hsp70) family members and compared resistant and susceptible A. terreus clinical isolates. The upregulation of cytoplasmic Hsp70 members at the transcriptional as well as translational levels was significantly higher with AmB treatment than without AmB treatment, particularly in resistant A. terreus isolates, thereby indicating a role of Hsp70 proteins in the AmB response. We found that Hsp70 inhibitors considerably increased the susceptibility of resistant A. terreus isolates to AmB but exerted little impact on susceptible isolates. Also, in in vivo experiments, using the Galleria mellonella infection model, cotreatment of resistant A. terreus strains with AmB and the Hsp70 inhibitor pifithrin-μ resulted in significantly improved survival compared with that achieved with AmB alone. Our results point to an important mechanism of regulation of AmB resistance by Hsp70 family members in A. terreus and suggest novel drug targets for the treatment of infections caused by resistant fungal isolates.
Collapse
|
34
|
Trivedi R, Mishra DP. Trailing TRAIL Resistance: Novel Targets for TRAIL Sensitization in Cancer Cells. Front Oncol 2015; 5:69. [PMID: 25883904 PMCID: PMC4382980 DOI: 10.3389/fonc.2015.00069] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/09/2015] [Indexed: 12/15/2022] Open
Abstract
Resistance to chemotherapeutic drugs is the major hindrance in the successful cancer therapy. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor (TNF) family of ligands, which initiates apoptosis in cancer cells through interaction with the death receptors DR4 and DR5. TRAIL is perceived as an attractive chemotherapeutic agent as it specifically targets cancer cells while sparing the normal cells. However, TRAIL therapy has a major limitation as a large number of the cancer develop resistance toward TRAIL and escape from the destruction by the immune system. Therefore, elucidation of the molecular targets and signaling pathways responsible for TRAIL resistance is imperative for devising effective therapeutic strategies for TRAIL resistant cancers. Although, various molecular targets leading to TRAIL resistance are well-studied, recent studies have implicated that the contribution of some key cellular processes toward TRAIL resistance need to be fully elucidated. These processes primarily include aberrant protein synthesis, protein misfolding, ubiquitin regulated death receptor expression, metabolic pathways, epigenetic deregulation, and metastasis. Novel synthetic/natural compounds that could inhibit these defective cellular processes may restore the TRAIL sensitivity and combination therapies with such compounds may resensitize TRAIL resistant cancer cells toward TRAIL-induced apoptosis. In this review, we have summarized the key cellular processes associated with TRAIL resistance and their status as therapeutic targets for novel TRAIL-sensitizing agents.
Collapse
Affiliation(s)
- Rachana Trivedi
- Cell Death Research Laboratory, Division of Endocrinology, CSIR-Central Drug Research Institute , Lucknow , India
| | - Durga Prasad Mishra
- Cell Death Research Laboratory, Division of Endocrinology, CSIR-Central Drug Research Institute , Lucknow , India
| |
Collapse
|
35
|
2-Phenylethynesulfonamide (PES) uncovers a necrotic process regulated by oxidative stress and p53. Biochem Pharmacol 2014; 91:301-11. [DOI: 10.1016/j.bcp.2014.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 12/18/2022]
|
36
|
Prasad S, Kim JH, Gupta SC, Aggarwal BB. Targeting death receptors for TRAIL by agents designed by Mother Nature. Trends Pharmacol Sci 2014; 35:520-36. [PMID: 25128958 DOI: 10.1016/j.tips.2014.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/01/2014] [Accepted: 07/11/2014] [Indexed: 12/17/2022]
Abstract
Selective killing of cancer cells is one of the major goals of cancer therapy. Although chemotherapeutic agents are being used for cancer treatment, they lack selectivity toward tumor cells. Among the six different death receptors (DRs) identified to date, DR4 and DR5 are selectively expressed on cancer cells. Therefore, unlike chemotherapeutic agents, these receptors can potentially mediate selective killing of tumor cells. In this review we outline various nutraceuticals derived from 'Mother Nature' that can upregulate DRs and thus potentiate apoptosis. These nutraceuticals increase tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of cancer cells through different mechanisms. First, nutraceuticals have been found to induce DRs through the upregulation of various signaling molecules. Second, nutraceuticals can downregulate tumor cell-survival pathways. Third, nutraceuticals alone have been found to activate cell-death pathways. Although both TRAIL and agonistic antibodies against DR4 and DR5 are in clinical trials, combination with nutraceuticals is likely to boost their anticancer potential.
Collapse
Affiliation(s)
- Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Ji Hye Kim
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
37
|
Mattiolo P, Barbero-Farran A, Amigó J, Ripamonti M, Ribas J, Boix J. Cell death induced by 2-phenylethynesulfonamide uncovers a pro-survival function of BAX. Cancer Lett 2014; 354:115-21. [PMID: 25111896 DOI: 10.1016/j.canlet.2014.07.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/22/2014] [Accepted: 07/30/2014] [Indexed: 02/08/2023]
Abstract
PES (2-phenylethynesulfonamide) was initially identified as an inhibitor of p53 translocation to mitochondria and named Pifithrin-µ. Further studies showed that PES selectively killed tumour cells and was thus a promising anticancer agent. PES-induced cell death was characterised by a non-apoptotic, autophagosome-rich phenotype. We observed this phenotype via electron microscopy in wild type (wt) and double Bax-/- Bak-/- (DKO) mouse embryonic fibroblasts (MEFs) treated with PES. We excluded the involvement of effector caspases, BAX and BAK, in causing PES-triggered cell death. Therefore, apoptosis was ruled out as the lethal mode of action of PES. Surprisingly, MEFs containing BAX were significantly protected from PES treatments. BAX overexpression in Bax-/- MEFs confirmed this pro-survival effect. Moreover, this protective effect required the ability of BAX to localise to mitochondrial membranes. Conversely, mitochondrial fusion induced by treatment with Mdivi-1 conferred increased resistance to MEFs subjected to PES treatment. The involvement of BAX in the regulation of mitochondrial dynamics has been reported. We propose the promotion of mitochondrial fusion by BAX to be the pro-survival function attributed to BAX.
Collapse
Affiliation(s)
- Paolo Mattiolo
- Pharmacology Unit, Departament de Medicina Experimental, Universitat de Lleida, IRBLleida, Av. Rovira Roure 80, E-25198 Lleida, Catalunya, Spain
| | - Ares Barbero-Farran
- Pharmacology Unit, Departament de Medicina Experimental, Universitat de Lleida, IRBLleida, Av. Rovira Roure 80, E-25198 Lleida, Catalunya, Spain
| | - Josep Amigó
- Pharmacology Unit, Departament de Medicina Experimental, Universitat de Lleida, IRBLleida, Av. Rovira Roure 80, E-25198 Lleida, Catalunya, Spain
| | - Marta Ripamonti
- Pharmacology Unit, Departament de Medicina Experimental, Universitat de Lleida, IRBLleida, Av. Rovira Roure 80, E-25198 Lleida, Catalunya, Spain
| | - Judit Ribas
- Pharmacology Unit, Departament de Medicina Experimental, Universitat de Lleida, IRBLleida, Av. Rovira Roure 80, E-25198 Lleida, Catalunya, Spain
| | - Jacint Boix
- Pharmacology Unit, Departament de Medicina Experimental, Universitat de Lleida, IRBLleida, Av. Rovira Roure 80, E-25198 Lleida, Catalunya, Spain.
| |
Collapse
|
38
|
Giovannetti E, Wang Q, Avan A, Funel N, Lagerweij T, Lee JH, Caretti V, van der Velde A, Boggi U, Wang Y, Vasile E, Peters GJ, Wurdinger T, Giaccone G. Role of CYB5A in pancreatic cancer prognosis and autophagy modulation. J Natl Cancer Inst 2013; 106:djt346. [PMID: 24301457 DOI: 10.1093/jnci/djt346] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Loss of 18q22.3 is a prognostic marker in pancreatic ductal adenocarcinoma (PDAC). This study investigated genes encoded by this cytoband. METHODS We studied mRNA/protein expression in radically resected (n = 130) and metastatic patients (n = 50). The role of CYB5A was tested in 11 PDAC cell lines and five primary cultures through retrovirus-mediated upregulation and small interfering RNA using wound-healing, invasion, annexin-V, electron microscopy, and autophagic assays, as well as autophagy genes and kinases arrays. CYB5A+ orthotopic models (n = 6 mice/group) were monitored by Firefly and Gaussia-luciferase bioluminescence, magnetic resonance imaging, and high-frequency ultrasound. Data were analyzed by t test, Fisher exact-test, log-rank test and Cox proportional hazards models. All statistical tests were two-sided. RESULTS Both resected and metastatic patients with low mRNA or protein expression of CYB5A had statistically significantly shorter survival (eg, median = 16.7 months, 95% confidence interval [CI] = 13.5 to 19.9; vs median = 24.8 months, 95% CI = 12.8 to 36.9; P = .02, two-sided log-rank test; n = 82 radically resected PDACs), and multivariable analyses confirmed prognostic relevance. Moreover, we characterized a novel function to CYB5A, autophagy induction, concomitant with reduced proliferation and migration/invasion of PDAC cells. Network analysis of proautophagic pathways suggested CYB5A interaction with TRAF6, which was confirmed by TRAF6 downregulation after CYB5A reconstitution (-69% in SU.86.86-CYB5A+; P = .005, two-sided t test). CYB5A silencing had opposite effects, restoring TRAF6 expression and wound healing. In vivo studies showed that CYB5A induced autophagy while inhibiting tumor growth/metastasis and increasing survival (median = 57 days, 95% CI = 52 to 61; vs median = 44 days, 95% CI = 21 to 57; P = .03, two-sided log-rank test). CONCLUSIONS These results define CYB5A as a novel prognostic factor for PDAC that exerts its tumor-suppressor function through autophagy induction and TRAF6 modulation.
Collapse
Affiliation(s)
- Elisa Giovannetti
- Affiliations of authors: Department of Medical Oncology (EG, AA, GJP) and Department of Neurosurgery (TL, VC, TW), VU University Medical Center, and Centre for Integrative Bioinformatics (AvdV), VU University, Amsterdam, the Netherlands; Department of Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, University of Pisa, Pisa, Italy (NF, UB, EV); Department of Neurology, Stanford University, Stanford, CA (VC); Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, MA (TW); Medical Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD (QW, J-HL, YW, GG)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sekihara K, Harashima N, Tongu M, Tamaki Y, Uchida N, Inomata T, Harada M. Pifithrin-μ, an inhibitor of heat-shock protein 70, can increase the antitumor effects of hyperthermia against human prostate cancer cells. PLoS One 2013; 8:e78772. [PMID: 24244355 PMCID: PMC3828328 DOI: 10.1371/journal.pone.0078772] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/16/2013] [Indexed: 12/12/2022] Open
Abstract
Hyperthermia (HT) improves the efficacy of anti-cancer radiotherapy and chemotherapy. However, HT also inevitably evokes stress responses and increases the expression of heat-shock proteins (HSPs) in cancer cells. Among the HSPs, HSP70 is known as a pro-survival protein. In this study, we investigated the sensitizing effect of pifithrin (PFT)-μ, a small molecule inhibitor of HSP70, when three human prostate cancer cell lines (LNCaP, PC-3, and DU-145) were treated with HT (43°C for 2 h). All cell lines constitutively expressed HSP70, and HT further increased its expression in LNCaP and DU-145. Knockdown of HSP70 with RNA interference decreased the viability and colony-forming ability of cancer cells. PFT-μ decreased the viabilities of all cell lines at one-tenth the dose of Quercetin, a well-known HSP inhibitor. The combination therapy with suboptimal doses of PFT-μ and HT decreased the viability of cancer cells most effectively when PFT-μ was added immediately before HT, and this combination effect was abolished by pre-knockdown of HSP70, suggesting that the effect was mediated via HSP70 inhibition. The combination therapy induced cell death, partially caspase-dependent, and decreased proliferating cancer cells, with decreased expression of c-Myc and cyclin D1 and increased expression of p21WAF1/Cip, indicating arrest of cell growth. Additionally, the combination therapy significantly decreased the colony-forming ability of cancer cells compared to therapy with either alone. Furthermore, in a xenograft mouse model, the combination therapy significantly inhibited PC-3 tumor growth. These findings suggest that PFT-μ can effectively enhance HT-induced antitumor effects via HSP70 inhibition by inducing cell death and arrest of cell growth, and that PFT-μ is a promising agent for use in combination with HT to treat prostate cancer.
Collapse
Affiliation(s)
- Kazumasa Sekihara
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
- Department of Radiation Oncology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Nanae Harashima
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Miki Tongu
- Department of Experimental Animals, Center for Integrated Research in Science, Shimane University, Izumo, Shimane, Japan
| | - Yukihisa Tamaki
- Department of Radiation Oncology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Nobue Uchida
- Department of Radiation Oncology, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Taisuke Inomata
- Department of Radiation Oncology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Mamoru Harada
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
- * E-mail:
| |
Collapse
|
40
|
Nelson MP, Shacka JJ. Autophagy Modulation in Disease Therapy: Where Do We Stand? CURRENT PATHOBIOLOGY REPORTS 2013; 1:239-245. [PMID: 24470989 DOI: 10.1007/s40139-013-0032-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Since it was first described more than 50 years ago autophagy has been examined in many contexts, from cell survival to pathogen sequestration and removal. In more recent years our understanding of autophagy has developed sufficiently to allow effective targeted therapeutics to be developed against various diseases. The field of autophagy research is expanding rapidly, demonstrated by increases in both numbers of investigators in the field and the breadth of topics being addressed. Some diseases, such as the many cancers, have come to the fore in autophagy therapeutics research as a better understanding of their underlying mechanisms has surfaced. Numerous treatments are being developed and explored, from creative applications of the classic autophagy modulators chloroquine and rapamycin, to repurposing drugs approved for other treatments, such as astemizole, which is currently in use as an antimalarial and chronic rhinitis treatment. The landscape of autophagy modulation in disease therapy is rapidly changing and this review hopes to provide a cross-section of the current state of the field.
Collapse
Affiliation(s)
- Michael P Nelson
- Department of Pathology, Neuropathology Division, University of Alabama at Birmingham, Sparks Clinics Room SC 930B, 1720 7 Ave S., Birmingham, AL 35294, USA
| | - John J Shacka
- Department of Pathology, Neuropathology Division, University of Alabama at Birmingham, Birmingham VA Medical Center, Sparks Clinics Room SC 930B, 1720 7 Ave S., Birmingham, AL 35294, USA
| |
Collapse
|