1
|
Prodi E, Neri D, De Luca R. Tumor-Homing Antibody-Cytokine Fusions for Cancer Therapy. Onco Targets Ther 2024; 17:697-715. [PMID: 39224695 PMCID: PMC11368152 DOI: 10.2147/ott.s480787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Recombinant cytokine products have emerged as a promising avenue in cancer therapy due to their capacity to modulate and enhance the immune response against tumors. However, their clinical application is significantly hindered by systemic toxicities already at low doses, thus preventing escalation to therapeutically active regimens. One promising approach to overcoming these limitations is using antibody-cytokine fusion proteins (also called immunocytokines). These biopharmaceuticals leverage the targeting specificity of antibodies to deliver cytokines directly to the tumor microenvironment, thereby reducing systemic exposure and enhancing the therapeutic index. This review comprehensively examines the development and potential of antibody-cytokine fusion proteins in cancer therapy. It explores the molecular characteristics that influence the performance of these fusion proteins, and it highlights key findings from preclinical and clinical studies, illustrating the potential of immunocytokines to improve treatment outcomes in cancer patients. Recent advancements in the field, such as novel engineering strategies and combination strategies to enhance the efficacy and safety of immunocytokines, are also discussed. These innovations offer new opportunities to optimize this class of biotherapeutics, making them a more viable and effective option for cancer treatment. As the field continues to evolve, understanding the critical factors that influence the performance of immunocytokines will be essential for successfully translating these therapies into clinical practice.
Collapse
Affiliation(s)
- Eleonora Prodi
- Philochem AG, Otelfingen, 8112, Switzerland
- University of Trento, Italy, CiBIO (Department of Cellular, Computational and Integrative Biology), Povo, 38123, Trento
| | - Dario Neri
- Philogen Spa, Siena, 53100, Italy
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | | |
Collapse
|
2
|
Boersma B, Poinot H, Pommier A. Stimulating the Antitumor Immune Response Using Immunocytokines: A Preclinical and Clinical Overview. Pharmaceutics 2024; 16:974. [PMID: 39204319 PMCID: PMC11357675 DOI: 10.3390/pharmaceutics16080974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Cytokines are immune modulators which can enhance the immune response and have been proven to be an effective class of immunotherapy. Nevertheless, the clinical use of cytokines in cancer treatment has faced several challenges associated with poor pharmacokinetic properties and the occurrence of adverse effects. Immunocytokines (ICKs) have emerged as a promising approach to overcome the pharmacological limitations observed with cytokines. ICKs are fusion proteins designed to deliver cytokines in the tumor microenvironment by taking advantage of the stability and specificity of immunoglobulin-based scaffolds. Several technological approaches have been developed. This review focuses on ICKs designed with the most impactful cytokines in the cancer field: IL-2, TNFα, IL-10, IL-12, IL-15, IL-21, IFNγ, GM-CSF, and IFNα. An overview of the pharmacological effects of the naked cytokines and ICKs tested for cancer therapy is detailed. A particular emphasis is given on the immunomodulatory effects of ICKs associated with their technological design. In conclusion, this review highlights active ways of development of ICKs. Their already promising results observed in clinical trials are likely to be improved with the advances in targeting technologies such as cytokine/linker engineering and the design of multispecific antibodies with tumor targeting and immunostimulatory functional properties.
Collapse
Affiliation(s)
- Bart Boersma
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland;
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Hélène Poinot
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
- Translational Research Centre in Oncohaematology, University of Geneva, 1211 Geneva, Switzerland
| | - Aurélien Pommier
- UMR1240 Imagerie Moléculaire et Stratégies Théranostiques INSERM, Université Clermont Auvergne, BP 184, F-63005 Clermont-Ferrand, France
| |
Collapse
|
3
|
Ren Z, Zhang X, Fu YX. Facts and Hopes on Chimeric Cytokine Agents for Cancer Immunotherapy. Clin Cancer Res 2024; 30:2025-2038. [PMID: 38190116 DOI: 10.1158/1078-0432.ccr-23-1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/17/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Cytokines are key mediators of immune responses that can modulate the antitumor activity of immune cells. Cytokines have been explored as a promising cancer immunotherapy. However, there are several challenges to cytokine therapy, especially a lack of tumor targeting, resulting in high toxicity and limited efficacy. To overcome these limitations, novel approaches have been developed to engineer cytokines with improved properties, such as chimeric cytokines. Chimeric cytokines are fusion proteins that combine different cytokine domains or link cytokines to antibodies (immunocytokines) or other molecules that can target specific receptors or cells. Chimeric cytokines can enhance the selectivity and stability of cytokines, leading to reduced toxicity and improved efficacy. In this review, we focus on two promising cytokines, IL2 and IL15, and summarize the current advances and challenges of chimeric cytokine design and application for cancer immunotherapy. Most of the current approaches focus on increasing the potency of cytokines, but another important goal is to reduce toxicity. Cytokine engineering is promising for cancer immunotherapy as it can enhance tumor targeting while minimizing adverse effects.
Collapse
Affiliation(s)
| | - Xuhao Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yang-Xin Fu
- Changping Laboratory, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Salek-Ardakani S, Zajonc DM, Croft M. Agonism of 4-1BB for immune therapy: a perspective on possibilities and complications. Front Immunol 2023; 14:1228486. [PMID: 37662949 PMCID: PMC10469789 DOI: 10.3389/fimmu.2023.1228486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Costimulatory receptors on immune cells represent attractive targets for immunotherapy given that these molecules can increase the frequency of individual protective immune cell populations and their longevity, as well as enhance various effector functions. 4-1BB, a member of the TNF receptor superfamily, also known as CD137 and TNFRSF9, is one such molecule that is inducible on several cell types, including T cells and NK cells. Preclinical studies in animal models have validated the notion that stimulating 4-1BB with agonist reagents or its natural ligand could be useful to augment conventional T cell and NK cell immunity to protect against tumor growth and against viral infection. Additionally, stimulating 4-1BB can enhance regulatory T cell function and might be useful in the right context for suppressing autoimmunity. Two human agonist antibodies to 4-1BB have been produced and tested in clinical trials for cancer, with variable results, leading to the production of a wealth of second-generation antibody constructs, including bi- and multi-specifics, with the hope of optimizing activity and selectivity. Here, we review the progress to date in agonism of 4-1BB, discuss the complications in targeting the immune system appropriately to elicit the desired activity, together with challenges in engineering agonists, and highlight the untapped potential of manipulating this molecule in infectious disease and autoimmunity.
Collapse
Affiliation(s)
| | - Dirk M. Zajonc
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Medicine, University of California (UC) San Diego, La Jolla, CA, United States
| |
Collapse
|
5
|
Prodi E, Comacchio C, Gilardoni E, Di Nitto C, Puca E, Neri D, De Luca R. An Antibody Targeting Fibroblast Activation Protein Simultaneously Fused to Interleukin-2 and Tumor Necrosis Factor Selectively Localizes to Neoplastic Lesions. Antibodies (Basel) 2023; 12:antib12020029. [PMID: 37092450 PMCID: PMC10123652 DOI: 10.3390/antib12020029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
The delivery of specific cytokine payloads to a neoplastic environment employing antibodies able to selectively accumulate at the tumor site represents an attractive strategy to stimulate an immune response to cancer. Whilst conventional antibody-cytokine fusions based on a single payload have shown potent anticancer activity, the concomitant delivery of two cytokine payloads may further improve the therapeutic outcome as the immune system typically adopts multiple signals to reinforce an antitumor strategy. We here describe a potency-matched dual-cytokine antibody fusion protein containing a tumor-targeting antibody fragment specific to human fibroblast activation protein (FAP), simultaneously linked to both interleukin-2 (IL2) and a tumor necrosis factor (TNF) mutant. The resulting fusion protein, termed IL2-7NP2-TNFmut, formed stable non-covalent trimers driven by the interaction of the tumor necrosis factor subunits. Both cytokine payloads retained their biological activity within the fusion protein, as shown by in vitro cellular assays. The tumor-targeting properties and the anticancer activity of IL2-7NP2-TNFmut were investigated in vivo in immunocompromised mice bearing SKRC52 cells transduced with human FAP. The fusion protein preferentially localized to the cancer site and induced partial tumor retardation.
Collapse
Affiliation(s)
- Eleonora Prodi
- Philochem AG, Libernstrasse 3, 8112 Otelfingen, Switzerland
- CiBIO (Department of Cellular, Computational and Integrative Biology), University of Trento, 38123 Trento, Italy
| | | | | | | | - Emanuele Puca
- Philochem AG, Libernstrasse 3, 8112 Otelfingen, Switzerland
| | | | | |
Collapse
|
6
|
Aschmoneit N, Kocher K, Siegemund M, Lutz MS, Kühl L, Seifert O, Kontermann RE. Fc-based Duokines: dual-acting costimulatory molecules comprising TNFSF ligands in the single-chain format fused to a heterodimerizing Fc (scDk-Fc). Oncoimmunology 2022; 11:2028961. [PMID: 35083097 PMCID: PMC8786347 DOI: 10.1080/2162402x.2022.2028961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Targeting costimulatory receptors of the tumor necrosis factor superfamily (TNFSF) to activate T-cells and promote anti-tumor T-cell function have emerged as a promising strategy in cancer immunotherapy. Previous studies have shown that combining two different members of the TNFSF resulted in dual-acting costimulatory molecules with the ability to activate two different receptors either on the same cell or on different cell types. To achieve prolonged plasma half-life and extended drug disposition, we have developed novel dual-acting molecules by fusing single-chain ligands of the TNFSF to heterodimerizing Fc chains (scDuokine-Fc, scDk-Fc). Incorporating costimulatory ligands of the TNF superfamily into a scDk-Fc molecule resulted in enhanced T-cell proliferation translating in an increased anti-tumor activity in combination with a primary T-cell-activating bispecific antibody. Our data show that the scDk-Fc molecules are potent immune-stimulatory molecules that are able to enhance T-cell mediated anti-tumor responses.
Collapse
Affiliation(s)
- Nadine Aschmoneit
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Katharina Kocher
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Martin Siegemund
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Martina S. Lutz
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Lennart Kühl
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Oliver Seifert
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Roland E. Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
7
|
McArdel SL, Dugast AS, Hoover ME, Bollampalli A, Hong E, Castano Z, Leonard SC, Pawar S, Mellen J, Muriuki K, McLaughlin DC, Bayhi N, Carpenter CL, Turka LA, Wickham TJ, Elloul S. Anti-tumor effects of RTX-240: an engineered red blood cell expressing 4-1BB ligand and interleukin-15. Cancer Immunol Immunother 2021; 70:2701-2719. [PMID: 34244816 PMCID: PMC8360899 DOI: 10.1007/s00262-021-03001-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/28/2021] [Indexed: 01/22/2023]
Abstract
Recombinant agonists that activate co-stimulatory and cytokine receptors have shown limited clinical anticancer utility, potentially due to narrow therapeutic windows, the need for coordinated activation of co-stimulatory and cytokine pathways and the failure of agonistic antibodies to recapitulate signaling by endogenous ligands. RTX-240 is a genetically engineered red blood cell expressing 4-1BBL and IL-15/IL-15Rα fusion (IL-15TP). RTX-240 is designed to potently and simultaneously stimulate the 4-1BB and IL-15 pathways, thereby activating and expanding T cells and NK cells, while potentially offering an improved safety profile through restricted biodistribution. We assessed the ability of RTX-240 to expand and activate T cells and NK cells and evaluated the in vivo efficacy, pharmacodynamics and tolerability using murine models. Treatment of PBMCs with RTX-240 induced T cell and NK cell activation and proliferation. In vivo studies using mRBC-240, a mouse surrogate for RTX-240, revealed biodistribution predominantly to the red pulp of the spleen, leading to CD8 + T cell and NK cell expansion. mRBC-240 was efficacious in a B16-F10 melanoma model and led to increased NK cell infiltration into the lungs. mRBC-240 significantly inhibited CT26 tumor growth, in association with an increase in tumor-infiltrating proliferating and cytotoxic CD8 + T cells. mRBC-240 was tolerated and showed no evidence of hepatic injury at the highest feasible dose, compared with a 4-1BB agonistic antibody. RTX-240 promotes T cell and NK cell activity in preclinical models and shows efficacy and an improved safety profile. Based on these data, RTX-240 is now being evaluated in a clinical trial.
Collapse
Affiliation(s)
| | | | | | | | - Enping Hong
- Rubius Therapeutics® Inc., Cambridge, MA, USA
| | | | | | - Sneha Pawar
- Rubius Therapeutics® Inc., Cambridge, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Corbellari R, Stringhini M, Mock J, Ongaro T, Villa A, Neri D, De Luca R. A Novel Antibody-IL15 Fusion Protein Selectively Localizes to Tumors, Synergizes with TNF-based Immunocytokine, and Inhibits Metastasis. Mol Cancer Ther 2021; 20:859-871. [PMID: 33632875 DOI: 10.1158/1535-7163.mct-20-0853] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/14/2021] [Accepted: 02/09/2021] [Indexed: 12/23/2022]
Abstract
IL15 is an immunostimulatory cytokine that holds promises for cancer therapy, but its performance (alone or as partner for fusion proteins) has often been limited by suboptimal accumulation in the tumor and very rapid clearance from circulation. Most recently, the Sushi Domain (SD, the shortest region of IL15 receptor α, capable of binding to IL15) has been fused to IL15-based anticancer products to increase its biological activity. Here, we describe two novel antibody fusion proteins (termed F8-F8-IL15 and F8-F8-SD-IL15), specific to the alternatively spliced EDA domain of fibronectin (a marker of tumor neoangiogenisis, expressed in the majority of solid and hematologic tumors, but absent in normal healthy tissues) and featuring the F8 antibody in single-chain diabody format (with a short linker between VH and VL, thus allowing the domains to pair with the complementary ones of another chain). Unlike previously described fusions of the F8 antibody with human IL15, F8-F8-IL15 and F8-F8-SD-IL15 exhibited a preferential uptake in solid tumors, as evidenced by quantitative biodistribution analysis with radioiodinated protein preparations. Both products were potently active in vivo against mouse metastatic colon carcinomas and in sarcoma lesion in combination with targeted TNF. The results may be of clinical significance, as F8-F8-IL15 and F8-F8-SD-IL15 are fully human proteins, which recognize the cognate tumor-associated antigen with identical affinity in mouse and man.
Collapse
Affiliation(s)
- Riccardo Corbellari
- CiBIO (Department of Cellular, Computational and Integrative Biology), University of Trento, Povo, Trento, Italy.,Philochem AG, Otelfingen, Switzerland
| | - Marco Stringhini
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Jaqueline Mock
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | | | | | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | | |
Collapse
|
9
|
Neri D. Antibody-Cytokine Fusions: Versatile Products for the Modulation of Anticancer Immunity. Cancer Immunol Res 2020; 7:348-354. [PMID: 30824549 DOI: 10.1158/2326-6066.cir-18-0622] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The remarkable clinical success of immune-checkpoint inhibitors for the treatment of a growing number of cancer types has sparked interest in the discovery of novel forms of immunotherapy, which may be used alone or in combination. In this context, cytokine-based therapeutics are well poised to play a role in modern cancer therapy. This article focuses on antibody-cytokine fusion proteins (also called "immunocytokines") as one class of biopharmaceuticals that can substantially improve the therapeutic index and, thus, the applicability of cytokine products. In many preclinical settings, antibodies can be used to preferentially deliver many (but not all) types of cytokines to primary and metastatic tumor lesions. The antibody-based delivery of certain proinflammatory payloads (such as IL2, IL12, and TNF) to the tumor microenvironment can lead to a dramatic potentiation of their anticancer activity. However, although some fusion proteins have advanced to late-stage clinical trials, much work remains to be done in order to fully characterize the mechanism of action and the pharmaceutical potential of immunocytokines in the clinical setting. Various factors contribute to in vivo performance, including the target antigen, the antibody properties, the nature of the payload, the format of the fusion protein, the dose, and schedule, as well as their use in combination with other therapeutic modalities. Protein engineering opportunities and insights in cancer immunology are contributing to the development of next-generation immunocytokine products and of novel therapeutic concepts, with the goal to increase antitumor activity and reduce systemic toxicity (a common problem for cytokine-based biopharmaceuticals).
Collapse
Affiliation(s)
- Dario Neri
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
10
|
Comparative evaluation of bolus and fractionated administration modalities for two antibody-cytokine fusions in immunocompetent tumor-bearing mice. J Control Release 2020; 317:282-290. [PMID: 31790729 DOI: 10.1016/j.jconrel.2019.11.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/07/2019] [Accepted: 11/28/2019] [Indexed: 12/21/2022]
Abstract
Antibody-cytokine fusion proteins are being considered as biopharmaceuticals for cancer immunotherapy. Tumor-homing cytokine fusions typically display an improved therapeutic activity compared to the corresponding unmodified cytokine products, but toxicity profiles at equivalent doses are similar, since side effects are mainly driven by the cytokine concentration in blood. In order to explore avenues to harness the therapeutic potential of antibody-cytokine fusions while decreasing potential toxicity, we compared bolus and fractionated administration modalities for two tumor-targeting antibody-cytokine fusion proteins based on human interleukin-2 (IL2) and murine tumor necrosis factor (TNF) (i.e., L19-hIL2 and L19-mTNF) in two murine immunocompetent mouse models of cancer (F9 and C51). A comparative quantitative biodistribution analysis with radio-labeled protein preparations revealed that a fractionated administration of L19-hIL2 could deliver comparable product doses to the tumor with decreased product concentration in blood and normal organs, compared to bolus injection. By contrast, L19-mTNF (a product that causes a selective vascular shutdown in the tumor) accumulated most efficiently after bolus injection. Fractionated schedules allowed the safe administration of a cumulative dose of L19-mTNF, which was 2.5-times higher than the lethal dose for bolus injection. Dose fractionation led to a prolonged tumor growth inhibition for F9 teratocarcinomas, but not for C51 colorectal tumors, which responded best to bolus injection. Thus, dose fractionation may have different outcomes for the same antibody-cytokine product in different biological contexts.
Collapse
|
11
|
Beha N, Harder M, Ring S, Kontermann RE, Müller D. IL15-Based Trifunctional Antibody-Fusion Proteins with Costimulatory TNF-Superfamily Ligands in the Single-Chain Format for Cancer Immunotherapy. Mol Cancer Ther 2019; 18:1278-1288. [PMID: 31040163 DOI: 10.1158/1535-7163.mct-18-1204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/08/2019] [Accepted: 04/25/2019] [Indexed: 11/16/2022]
Abstract
IL15 and costimulatory receptors of the tumor necrosis superfamily (TNFRSF) have shown great potential to support and drive an antitumor immune response. However, their efficacy as monotherapy is limited. Here, we present the development of a novel format for a trifunctional antibody-fusion protein that combines and focuses the activity of IL15/TNFSF-ligand in a targeting-mediated manner to the tumor site. The previously reported format consisted of a tumor-directed antibody (scFv), IL15 linked to an IL15Rα-fragment (RD), and the extracellular domain of 4-1BBL, where noncovalent trimerization of 4-1BBL into its functional unit led to a homotrimeric molecule with 3 antibody and 3 IL15-RD units. To reduce the size and complexity of the molecule, we have now designed a second format, where 4-1BBL is introduced as single-chain (sc), that is 3 consecutively linked 4-1BBL ectodomains. Thus, a monomeric trifunctional fusion protein presenting only 1 functional unit of each component was generated. Interestingly, the in vitro activity on T-cell stimulation was conserved or even enhanced for the soluble and target-bound molecule, respectively. Also, in a lung tumor mouse model, comparable antitumor effects were observed. Furthermore, corroborating the concept, OX40L and GITRL were also successfully incorporated into the novel single-chain format and the advantage of target-bound trifunctional versus corresponding combined bifunctional fusion proteins demonstrated by measuring T-cell proliferation and cytotoxic potential in vitro and antitumor effects of RD_IL15_scFv_scGITRL in a lung tumor mouse model in vivo Thus, the trifunctional antibody-fusion protein single-chain format constitutes a promising innovative platform for further therapeutic developments.
Collapse
Affiliation(s)
- Nadine Beha
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Markus Harder
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Sarah Ring
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Dafne Müller
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
12
|
Murer P, Neri D. Antibody-cytokine fusion proteins: A novel class of biopharmaceuticals for the therapy of cancer and of chronic inflammation. N Biotechnol 2019; 52:42-53. [PMID: 30991144 DOI: 10.1016/j.nbt.2019.04.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 12/23/2022]
Abstract
Antibody-cytokine fusion proteins represent a novel class of biopharmaceuticals, with the potential to increase the therapeutic index of cytokine 'payloads' and to promote leukocyte infiltration at the site of disease. In this review, we present a survey of immunocytokines that have been used in preclinical models of cancer and in clinical trials. In particular, we highlight how antibody format, choice of target antigen and cytokine engineering, as well as combination strategies, may have a profound impact on therapeutic performance. Moreover, by using anti-inflammatory cytokines, antibody fusion strategies can conveniently be employed for the treatment of auto-immune and chronic inflammatory conditions.
Collapse
Affiliation(s)
- Patrizia Murer
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland.
| |
Collapse
|
13
|
Jones CN, Ellett F, Robertson AL, Forrest KM, Judice K, Balkovec JM, Springer M, Markmann JF, Vyas JM, Warren HS, Irimia D. Bifunctional Small Molecules Enhance Neutrophil Activities Against Aspergillus fumigatus in vivo and in vitro. Front Immunol 2019; 10:644. [PMID: 31024528 PMCID: PMC6465576 DOI: 10.3389/fimmu.2019.00644] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/08/2019] [Indexed: 12/17/2022] Open
Abstract
Aspergillosis is difficult to treat and carries a high mortality rate in immunocompromised patients. Neutrophils play a critical role in control of infection but may be diminished in number and function during immunosuppressive therapies. Here, we measure the effect of three bifunctional small molecules that target Aspergillus fumigatus and prime neutrophils to generate a more effective response against the pathogen. The molecules combine two moieties joined by a chemical linker: a targeting moiety (TM) that binds to the surface of the microbial target, and an effector moiety (EM) that interacts with chemoattractant receptors on human neutrophils. We report that the bifunctional compounds enhance the interactions between primary human neutrophils and A. fumigatus in vitro, using three microfluidic assay platforms. The bifunctional compounds significantly enhance the recruitment of neutrophils, increase hyphae killing by neutrophils in a uniform concentration of drug, and decrease hyphal tip growth velocity in the presence of neutrophils compared to the antifungal targeting moiety alone. We validated that the bifunctional compounds are also effective in vivo, using a zebrafish infection model with neutrophils expressing the appropriate EM receptor. We measured significantly increased phagocytosis of A. fumigatus conidia by neutrophils expressing the EM receptor in the presence of the compounds compared to receptor-negative cells. Finally, we demonstrate that treatment with our lead compound significantly improved the antifungal activity of neutrophils from immunosuppressed patients ex vivo. This type of bifunctional compounds strategy may be utilized to redirect the immune system to destroy fungal, bacterial, and viral pathogens.
Collapse
Affiliation(s)
- Caroline N Jones
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Felix Ellett
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Anne L Robertson
- Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Kevin Judice
- Cidara Therapeutics, San Diego, CA, United States
| | | | | | - James F Markmann
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Division of Transplantation, Massachusetts General Hospital, Boston, MA, United States
| | - Jatin M Vyas
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - H Shaw Warren
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Daniel Irimia
- BioMEMS Resource Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
Antibody-cytokine fusion proteins: Biopharmaceuticals with immunomodulatory properties for cancer therapy. Adv Drug Deliv Rev 2019; 141:67-91. [PMID: 30201522 DOI: 10.1016/j.addr.2018.09.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 01/07/2023]
Abstract
Cytokines have long been used for therapeutic applications in cancer patients. Substantial side effects and unfavorable pharmacokinetics limit their application and may prevent dose escalation to therapeutically active regimens. Antibody-cytokine fusion proteins (often referred to as immunocytokines) may help localize immunomodulatory cytokine payloads to the tumor, thereby activating anticancer immune responses. A variety of formats (e.g., intact IgGs or antibody fragments), molecular targets (e.g., extracellular matrix components and cell membrane antigens) and cytokine payloads have been considered for the development of this novel class of biopharmaceuticals. This review presents the basic concepts on the design and engineering of immunocytokines, reviews their potential limitations, points out emerging opportunities and summarizes key features of preclinical and clinical-stage products.
Collapse
|
15
|
Fellermeier-Kopf S, Gieseke F, Sahin U, Müller D, Pfizenmaier K, Kontermann RE. Duokines: a novel class of dual-acting co-stimulatory molecules acting in cis or trans. Oncoimmunology 2018; 7:e1471442. [PMID: 30228940 PMCID: PMC6140609 DOI: 10.1080/2162402x.2018.1471442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 11/23/2022] Open
Abstract
Co-stimulatory signals induced by ligands of the tumor necrosis factor superfamily (TNFSF) play a central role in T cell activation and have emerged as a promising strategy in cancer immunotherapy. Here, we established a novel class of bifunctional co-stimulatory fusion proteins with the aim to boost T cell activation at the level of T cell – antigen-presenting cell (APC) interaction. These novel dual-acting cytokine fusion proteins were created by connecting two different homotrimeric TNFSF ligands to form homotrimeric bifunctional molecules (Duokines) or by connecting single-chain derivatives of two different homotrimeric TNFSF with a single, flexible linker (single-chain Duokines, scDuokines). By linking the TNFSF ligands 4-1BBL, OX40L and CD27L in all possible combinations, cis-acting Duokines were generated that act on the same or adjacent T cells, while combining CD40L with 4-1BBL, OX40L and CD27L resulted in trans-acting Duokines acting simultaneously on APCs and T cells. In vitro, co-stimulation of T cells was seen for cis- and trans-acting Duokines and scDuokines in an antigen-independent as well as antigen-specific setting. Trans-acting molecules furthermore activated B cells, which represent a subclass of APCs. In a pilot experiment using the syngeneic B16-FAP mouse tumor model scDuokines displayed antitumoral activity in vivo in combination with a primary T cell-activating bispecific antibody, evident from reduced number of lung metastasis compared to the antibody-only treated group. Our data show that the bifunctional, co-stimulatory duokines are capable to enhance T cell-mediated anti-tumor immune responses, suggesting that they can serve as a new class of immuno-stimulatory molecules for use in cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Sina Fellermeier-Kopf
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany
| | | | - Ugur Sahin
- BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany
| | - Dafne Müller
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
16
|
Hickey JW, Kosmides AK, Schneck JP. Engineering Platforms for T Cell Modulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:277-362. [PMID: 30262034 DOI: 10.1016/bs.ircmb.2018.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T cells are crucial contributors to mounting an effective immune response and increasingly the focus of therapeutic interventions in cancer, infectious disease, and autoimmunity. Translation of current T cell immunotherapies has been hindered by off-target toxicities, limited efficacy, biological variability, and high costs. As T cell therapeutics continue to develop, the application of engineering concepts to control their delivery and presentation will be critical for their success. Here, we outline the engineer's toolbox and contextualize it with the biology of T cells. We focus on the design principles of T cell modulation platforms regarding size, shape, material, and ligand choice. Furthermore, we review how application of these design principles has already impacted T cell immunotherapies and our understanding of T cell biology. Recent, salient examples from protein engineering, synthetic particles, cellular and genetic engineering, and scaffolds and surfaces are provided to reinforce the importance of design considerations. Our aim is to provide a guide for immunologists, engineers, clinicians, and the pharmaceutical sector for the design of T cell-targeting platforms.
Collapse
Affiliation(s)
- John W Hickey
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Institute for NanoBiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alyssa K Kosmides
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Institute for NanoBiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jonathan P Schneck
- Institute for NanoBiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Fercher C, Keshvari S, McGuckin MA, Barnard RT. Evolution of the magic bullet: Single chain antibody fragments for the targeted delivery of immunomodulatory proteins. Exp Biol Med (Maywood) 2017; 243:166-183. [PMID: 29256259 DOI: 10.1177/1535370217748575] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Immunocytokines are fusion proteins that combine the specific antigen binding capacities of an antibody or derivative thereof and the potent bioactivity of a cytokine partner. These novel biopharmaceuticals have been directed to various targets of oncological as well as non-oncological origin and a handful of promising constructs are currently advancing in the clinical trial pipeline. Several factors such as the choice of a disease specific antigen, the antibody format and the modulatory nature of the payload are crucial, not only for therapeutic efficacy and safety but also for the commercial success of such a product. In this review, we provide an overview of the basic principles and obstacles in immunocytokine design with a specific focus on single chain antibody fragment-based constructs that employ interleukins as the immunoactive component. Impact statement Selective activation of the immune system in a variety of malignancies represents an attractive approach when existing strategies have failed to provide adequate treatment options. Immunocytokines as a novel class of bifunctional protein therapeutics have emerged recently and generated promising results in preclinical and clinical studies. In order to harness their full potential, multiple different aspects have to be taken into consideration. Several key points of these fusion constructs are discussed here and should provide an outline for the development of novel products based on an overview of selected formats.
Collapse
Affiliation(s)
- Christian Fercher
- 1 School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sahar Keshvari
- 2 Inflammatory Diseases Biology and Therapeutics, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Michael A McGuckin
- 2 Inflammatory Diseases Biology and Therapeutics, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Ross T Barnard
- 1 School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.,3 Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
18
|
Shibaguchi H, Luo N, Shirasu N, Kuroki M, Kuroki M. Enhancement of antitumor activity by using a fully human gene encoding a single-chain fragmented antibody specific for carcinoembryonic antigen. Onco Targets Ther 2017; 10:3979-3990. [PMID: 28860806 PMCID: PMC5574594 DOI: 10.2147/ott.s140174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Human leukocyte antigen and/or costimulatory molecules are frequently lacking in metastatic tumor cells, and thus tumor cells are able to escape from the immune system. Although lymphocytes with a chimeric antigen receptor (CAR) is a promising approach for overcoming this challenge in cancer immunotherapy, administration of modified T cells alone often demonstrates little efficacy in patients. Therefore, in order to enhance the antitumor activity of immune cells in the cancer microenvironment, we used lymphocytes expressing CAR in combination with a fusion protein of IL-2 that contained the single-chain fragmented antibody (scFv) specific for the carcinoembryonic antigen. Among a series of CAR constructs, with or without a spacer and the intracellular domain of CD28, the CAR construct containing CD8α, CD28, and CD3ζ most effectively activated and expressed INF-γ in CAR-bearing T cells. Furthermore, in comparison with free IL-2, the combination of peripheral blood mononuclear cells expressing CAR and the fusion protein containing IL-2 significantly enhanced the antitumor activity against MKN-45 cells, a human gastric cancer cell line. In conclusion, this novel combination therapy of CAR and a fusion protein consisting of a functional cytokine and a fully human scFv may be a promising approach for adoptive cancer immunotherapy.
Collapse
Affiliation(s)
- Hirotomo Shibaguchi
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Naixiang Luo
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Naoto Shirasu
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Motomu Kuroki
- School of Nursing, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Masahide Kuroki
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
19
|
The potential and promise of IL-15 in immuno-oncogenic therapies. Immunol Lett 2017; 190:159-168. [PMID: 28823521 DOI: 10.1016/j.imlet.2017.08.010] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 01/20/2023]
Abstract
This review provides an in-depth description of the preclinical and clinical studies demonstrating the effectiveness and limitations of IL-15 and IL-15 analogs given as an exogenous immuno-oncology agent. IL-15 is a cytokine that primarily stimulates the proliferation and cytotoxic functions of CD8T cells and NK cells leading to enhanced anti-tumor responses. While initially showing promise as a cancer therapeutic, the efficacy of IL-15 was limited by its short in vivo half-life. More recently, various approaches have been developed to improve the in vivo half-life and efficacy of IL-15, largely by generating IL-15/IL-15Rα conjugates. These new IL-15 based agents renew the prospect of IL-15 as a cancer immunotherapeutic agent. While having some efficacy in inducing tumor regression as a monotherapy, IL-15 agents also show great potential in being used in combination with other immuno-oncological therapies. Indeed, IL-15 used in combination therapy yields even better anti-tumor responses and prolongs survival than IL-15 treatment alone in numerous murine cancer models. The promising results from these preclinical studies have led to the implementation of several clinical trials to test the safety and efficacy of IL-15-based agents as a stand-alone treatment or in conjunction with other therapies to treat both advanced solid tumors and hematological malignancies.
Collapse
|
20
|
Hendriks D, Choi G, de Bruyn M, Wiersma VR, Bremer E. Antibody-Based Cancer Therapy: Successful Agents and Novel Approaches. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 331:289-383. [PMID: 28325214 DOI: 10.1016/bs.ircmb.2016.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since their discovery, antibodies have been viewed as ideal candidates or "magic bullets" for use in targeted therapy in the fields of cancer, autoimmunity, and chronic inflammatory disorders. A wave of antibody-dedicated research followed, which resulted in the clinical approval of a first generation of monoclonal antibodies for cancer therapy such as rituximab (1997) and cetuximab (2004), and infliximab (2002) for the treatment of autoimmune diseases. More recently, the development of antibodies that prevent checkpoint-mediated inhibition of T cell responses invigorated the field of cancer immunotherapy. Such antibodies induced unprecedented long-term remissions in patients with advanced stage malignancies, most notably melanoma and lung cancer, that do not respond to conventional therapies. In this review, we will recapitulate the development of antibody-based therapy, and detail recent advances and new functions, particularly in the field of cancer immunotherapy. With the advent of recombinant DNA engineering, a number of rationally designed molecular formats of antibodies and antibody-derived agents have become available, and we will discuss various molecular formats including antibodies with improved effector functions, bispecific antibodies, antibody-drug conjugates, antibody-cytokine fusion proteins, and T cells genetically modified with chimeric antigen receptors. With these exciting advances, new antibody-based treatment options will likely enter clinical practice and pave the way toward more successful control of malignant diseases.
Collapse
Affiliation(s)
- D Hendriks
- Department of Surgery, Translational Surgical Oncology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - G Choi
- Department of Hematology, Section Immunohematology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - M de Bruyn
- Department of Obstetrics & Gynecology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - V R Wiersma
- Department of Hematology, Section Immunohematology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands.
| | - E Bremer
- Department of Hematology, Section Immunohematology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands; University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
21
|
Osinalde N, Sanchez-Quiles V, Akimov V, Aloria K, Arizmendi JM, Blagoev B, Kratchmarova I. Characterization of Receptor-Associated Protein Complex Assembly in Interleukin (IL)-2- and IL-15-Activated T-Cell Lines. J Proteome Res 2017; 16:106-121. [PMID: 27463037 DOI: 10.1021/acs.jproteome.6b00233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It remains a paradox that IL-2 and IL-15 can differentially modulate the immune response using the same signaling receptors. We have previously dissected the phosphotyrosine-driven signaling cascades triggered by both cytokines in Kit225 T-cells, unveiling subtle differences that may contribute to their functional dichotomy. In this study, we aimed to decipher the receptor complex assembly in IL-2- and IL-15-activated T-lymphocytes that is highly orchestrated by site-specific phosphorylation events. Comparing the cytokine-induced interactome of the interleukin receptor beta and gamma subunits shared by the two cytokines, we defined the components of the early IL-2 and IL-15 receptor-associated complex discovering novel constituents. Additionally, phosphopeptide-directed analysis allowed us to detect several cytokine-dependent and -independent phosphorylation events within the activated receptor complex including novel phosphorylated sites located in the cytoplasmic region of IL-2 receptor β subunit (IL-2Rβ). We proved that the distinct phosphorylations induced by the cytokines serve for recruiting different types of effectors to the initial receptor/ligand complex. Overall, our study sheds new light into the initial molecular events triggered by IL-2 and IL-15 and constitutes a further step toward a better understanding of the early signaling aspects of the two closely related cytokines in T-lymphocytes.
Collapse
Affiliation(s)
- Nerea Osinalde
- Department of Biochemistry and Molecular Biology, University of Southern Denmark , 5230 Odense M, Denmark
| | - Virginia Sanchez-Quiles
- Department of Biochemistry and Molecular Biology, University of Southern Denmark , 5230 Odense M, Denmark
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark , 5230 Odense M, Denmark
| | - Kerman Aloria
- Proteomics Core Facility-SGIKER, University of the Basque Country, UPV/EHU , 48940 Leioa, Spain
| | - Jesus M Arizmendi
- Department of Biochemistry and Molecular Biology, University of the Basque Country, UPV/EHU , 48940 Leioa, Spain
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark , 5230 Odense M, Denmark
| | - Irina Kratchmarova
- Department of Biochemistry and Molecular Biology, University of Southern Denmark , 5230 Odense M, Denmark
| |
Collapse
|
22
|
IL-15 receptor alpha as the magic wand to boost the success of IL-15 antitumor therapies: The upswing of IL-15 transpresentation. Pharmacol Ther 2016; 170:73-79. [PMID: 27777088 DOI: 10.1016/j.pharmthera.2016.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Interleukin (IL)-15 as a stand-alone therapy can activate the antitumor functions of immune effector cells resulting in significant tumor regression. Interestingly, combining IL-15 with the α-moiety of its receptor (IL-15Rα), also called IL-15 transpresentation, increases the in vivo half-life of IL-15 and enhances binding of IL-15 with cells expressing the IL-15Rβγ, such as NK cells and CD8+ T cells. These features enlarge the signal transmission of IL-15, resulting in improved proliferation and antitumor activities of both NK cells and CD8+ T cells, eventually leading to enhanced killing of tumor cells. In this review, we discuss the antitumor strategies in which this IL-15 transpresentation mechanism is implemented, that are currently under preclinical investigation. Furthermore, we give an overview of the studies in which the IL-15/IL-15Rα complexes are combined with other antitumor therapies. The promising results in these preclinical studies have incited several clinical trials to test the safety and efficacy of IL-15 transpresentation strategies to treat both hematological and advanced solid tumors.
Collapse
|
23
|
Pilipow K, Roberto A, Roederer M, Waldmann TA, Mavilio D, Lugli E. IL15 and T-cell Stemness in T-cell-Based Cancer Immunotherapy. Cancer Res 2015; 75:5187-5193. [PMID: 26627006 DOI: 10.1158/0008-5472.can-15-1498] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/27/2015] [Indexed: 12/31/2022]
Abstract
Preclinical models revealed that the immune system can mediate rejection of established tumors, but direct evidence in humans has been limited to largely immunogenic tumors, such as melanoma. The recent success of immune checkpoint inhibitors and adoptive T-cell transfer immunotherapy in clinical trials has instilled new hope for the use of T-cell immunotherapy in the treatment of cancer. IL15, a potent immunostimulatory cytokine, both potentiates host T-cells and natural killer (NK) cell immune responses and promotes the generation of long-lived memory T cells with superior functional capacity, with potential use in adoptive T-cell transfer protocols. IL15 has been recently tested in the clinic and showed dramatic effects at the level of responding NK and CD8(+) memory T cells. The recent advances in the knowledge of IL15-dependent regulation of T-cell responses, gene expression, and metabolic adaptation have important implications for the use of IL15 in T-cell-based immunotherapy of cancer.
Collapse
Affiliation(s)
- Karolina Pilipow
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Alessandra Roberto
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thomas A Waldmann
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
24
|
Pulliam SR, Uzhachenko RV, Adunyah SE, Shanker A. Common gamma chain cytokines in combinatorial immune strategies against cancer. Immunol Lett 2015; 169:61-72. [PMID: 26597610 DOI: 10.1016/j.imlet.2015.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/15/2015] [Accepted: 11/12/2015] [Indexed: 01/10/2023]
Abstract
Common γ chain (γC) cytokines, namely IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21 are important for the proliferation, differentiation, and survival of lymphocytes that display antitumor activity, thus stimulating considerable interest for the use of cytokines in cancer immunotherapy. In this review, we will focus on the γC cytokines that demonstrate the greatest potential for immunotherapy, IL-2, IL-7, IL-15, and IL-21. We will briefly cover their biological function, potential applications in cancer therapy, and update on their use in combinatorial immune strategies for eradicating tumors and hematopoietic malignancies.
Collapse
Affiliation(s)
- Stephanie R Pulliam
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
| | - Roman V Uzhachenko
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Samuel E Adunyah
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA.
| | - Anil Shanker
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
25
|
Van den Bergh JMJ, Van Tendeloo VFI, Smits ELJM. Interleukin-15: new kid on the block for antitumor combination therapy. Cytokine Growth Factor Rev 2014; 26:15-24. [PMID: 25306466 DOI: 10.1016/j.cytogfr.2014.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 11/24/2022]
Abstract
Interleukin (IL)-15 is one of the most promising molecules to be used in antitumor immune therapy, as it is able to stimulate the main killer cells of both the innate and adaptive immune system. Although this cytokine can be used as a stand-alone immunotherapeutic agent, IL-15 will probably be most efficient in combination with other strategies to overcome high tumor burden, immune suppression of the tumor microenvironment and/or the short half-life of IL-15. In this review, we will discuss the combination strategies with IL-15 that have been tested to date in different animal tumor models, which include chemotherapy, other immunostimulatory cytokines, targeted therapy, adoptive cell transfer and gene therapy. In addition, we give an overview of IL-15 combination therapies that are currently tested in clinical studies to treat patients with hematological or advanced solid tumors.
Collapse
Affiliation(s)
- Johan M J Van den Bergh
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine & Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Viggo F I Van Tendeloo
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine & Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Evelien L J M Smits
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine & Health Sciences, University of Antwerp, Antwerp, Belgium; Center for Oncological Research Antwerp, Faculty of Medicine & Health Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|