1
|
Hale G. Living in LALA land? Forty years of attenuating Fc effector functions. Immunol Rev 2024. [PMID: 39158044 DOI: 10.1111/imr.13379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The Fc region of antibodies is vital for most of their physiological functions, many of which are engaged through binding to a range of Fc receptors. However, these same interactions are not always helpful or wanted when therapeutic antibodies are directed against self-antigens, and can sometimes cause catastrophic adverse reactions. Over the past 40 years, there have been intensive efforts to "silence" unwanted binding to Fc-gamma receptors, resulting in at least 45 different variants which have entered clinical trials. One of the best known is "LALA" (L234A/L235A). However, neither this, nor most of the other variants in clinical use are completely silenced, and in addition, the biophysical properties of many of them are compromised. I review the development of different variants to see what we can learn from their biological properties and use in the clinic. With the rise of powerful new uses of antibody therapy such as bispecific T-cell engagers, antibody-drug conjugates, and checkpoint inhibitors, it is increasingly important to optimize the Fc region as well as the antibody binding site in order to achieve the best combination of safety and efficacy.
Collapse
|
2
|
Hock BD, Goddard L, MacPherson SA, Strother M, Gibbs D, Pearson JF, McKenzie JL. Levels and in vitro functional effects of circulating anti-hinge antibodies in melanoma patients receiving the immune checkpoint inhibitor pembrolizumab. PLoS One 2023; 18:e0290793. [PMID: 37713423 PMCID: PMC10503750 DOI: 10.1371/journal.pone.0290793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/15/2023] [Indexed: 09/17/2023] Open
Abstract
The efficacy of PD-1 monoclonals such as pembrolizumab can be modulated by the signals delivered via their Fc region. Tumour/inflammation associated proteases can generate F(ab')2 fragments of therapeutic monoclonals, and subsequent recognition of F(ab')2 epitopes by circulating anti-hinge antibodies (AHA) can then, potentially, link F(ab')2 binding to the target antigen with novel Fc signalling. Although elevated in inflammatory diseases, AHA levels in cancer patients have not been investigated and functional studies utilising the full repertoire of AHA present in sera have been limited. AHA levels in pembrolizumab treated melanoma patients (n = 23) were therefore compared to those of normal donors and adalimumab treated patients. A subset of melanoma patients and the majority of adalimumab patients had elevated levels of AHA reactive with F(ab')2 fragments of IgG4 anti-PD-1 monoclonals (nivolumab, pembrolizumab) and IgG1 therapeutic monoclonals (rituximab, adalimumab). Survival analysis was restricted by the small patient numbers but those melanoma patients with the highest levels (>75% percentile, n = 5) of pembrolizumab-F(ab')2 reactive AHA had significantly better overall survival post pembrolizumab treatment (p = 0.039). In vitro functional studies demonstrated that the presence of AHA+ sera restored the neutrophil activating capacity of pembrolizumab to its F(ab')2 fragment. Neither pembrolizumab nor its F(ab')2 fragments can induce NK cell or complement dependent cytotoxicity (CDC). However, AHA+ sera in combination with pembrolizumab-F(ab')2 provided Fc regions that could activate NK cells. The ability of AHA+ sera to restore CDC activity was more restricted and observed using only one pembrolizumab and one adalimumab patient serum in combination with rituximab- F(ab')2. This study reports the presence of elevated AHA levels in pembrolizumab treated melanoma patients and highlight the potential for AHA to provide additional Fc signaling. The issue of whether tumour associated proteolysis of PD-1 mAbs and subsequent AHA recognition impacts on treatment efficacy requires further study.
Collapse
Affiliation(s)
- Barry D. Hock
- Haematology Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch Hospital, Christchurch, New Zealand
| | - Liping Goddard
- Haematology Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch Hospital, Christchurch, New Zealand
| | - Sean A. MacPherson
- Haematology Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch Hospital, Christchurch, New Zealand
- Haematology Department, Christchurch Hospital, Christchurch, New Zealand
| | - Matthew Strother
- Canterbury Regional Cancer and Haematology Service, Christchurch, New Zealand
| | - David Gibbs
- Canterbury Regional Cancer and Haematology Service, Christchurch, New Zealand
| | - John F. Pearson
- Biostatistics and Computational Biology Unit, University of Otago, Christchurch, Christchurch, New Zealand
| | - Judith L. McKenzie
- Haematology Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch Hospital, Christchurch, New Zealand
| |
Collapse
|
3
|
Sécher T, Heuzé-Vourc'h N. Barriers for orally inhaled therapeutic antibodies. Expert Opin Drug Deliv 2023; 20:1071-1084. [PMID: 37609943 DOI: 10.1080/17425247.2023.2249821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
INTRODUCTION Respiratory diseases represent a worldwide health issue. The recent Sars-CoV-2 pandemic, the burden of lung cancer, and inflammatory respiratory diseases urged the development of innovative therapeutic solutions. In this context, therapeutic antibodies (Abs) offer a tremendous opportunity to benefit patients with respiratory diseases. Delivering Ab through the airways has been demonstrated to be relevant to improve their therapeutic index. However, few inhaled Abs are on the market. AREAS COVERED This review describes the different barriers that may alter the fate of inhaled therapeutic Abs in the lungs at steady state. It addresses both physical and biological barriers and discusses the importance of taking into consideration the pathological changes occurring during respiratory disease, which may reinforce these barriers. EXPERT OPINION The pulmonary route remains rare for delivering therapeutic Abs, with few approved inhaled molecules, despite promising evidence. Efforts must focus on the intertwined barriers associated with lung diseases to develop appropriate Ab-formulation-device combo, ensuring optimal Ab deposition in the respiratory tract. Finally, randomized controlled clinical trials should be carried out to establish inhaled Ab therapy as prominent against respiratory diseases.
Collapse
Affiliation(s)
- Thomas Sécher
- INSERM, Centre d'Etude des Pathologies Respiratoires, Tours, France
- Université de Tours, Tours, France
| | - Nathalie Heuzé-Vourc'h
- INSERM, Centre d'Etude des Pathologies Respiratoires, Tours, France
- Université de Tours, Tours, France
| |
Collapse
|
4
|
Alasmari MM. A Review of Margetuximab-Based Therapies in Patients with HER2-Positive Metastatic Breast Cancer. Cancers (Basel) 2022; 15:cancers15010038. [PMID: 36612034 PMCID: PMC9817862 DOI: 10.3390/cancers15010038] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer globally, with high mortality rates. Targeted drug therapies have revolutionized cancer treatment. For example, treatment with human epidermal receptor 2 (HER2) antagonists has markedly improved the prognosis of patients with HER2-positive BC (HER2 + BC). However, HER2+ metastatic BC (MBC) remains prevalent owing to its resistance to conventional anti-HER2 drugs. Therefore, novel agents are needed to overcome the limitations of existing cancer treatments and to enhance the progression-free and overall survival rates. Progress has been made by optimizing the fragment crystallizable (Fc) domain of trastuzumab, an IgG1 monoclonal, chimeric anti-HER2 antibody, to develop margetuximab. The modified Fc domain of margetuximab enhances its binding affinity to CD16A and decreases its binding affinity to CD32B, thereby promoting its antitumor activity. This review summarizes studies on the efficacy of margetuximab, discusses its utility as an anti-HER2 monoclonal antibody drug for the treatment of HER2 + BC, and presents the latest advances in the treatment of BC. This review provides insights into the clinical implication of margetuximab in HER2 + MBC treatment.
Collapse
Affiliation(s)
- Moudi M. Alasmari
- College of Medicine, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), Jeddah 21461, Saudi Arabia;
- King Abdullah International Medical Research Centre (KAIMRC), Jeddah 21423, Saudi Arabia
| |
Collapse
|
5
|
Fan X, Yuan Z, Zhao Y, Xiong W, Hsiao HC, Pare R, Ding J, Almosa A, Sun K, Zhang S, Jordan RE, Lee CS, An Z, Zhang N. Impairment of IgG Fc functions promotes tumor progression and suppresses NK cell antitumor actions. Commun Biol 2022; 5:960. [PMID: 36104515 PMCID: PMC9474879 DOI: 10.1038/s42003-022-03931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 09/01/2022] [Indexed: 11/15/2022] Open
Abstract
Natural killer (NK) cells mediate antibody dependent cytotoxic killing of cancer cells via cross-linking FcγR on NK cells with IgG-Fc. Studies have shown that the single-hinge cleaved IgGs (scIgGs) have dysfunctional Fc and failed engagement with FcγRs on immune cells. However, little is known about how scIgGs impact on antitumor immunity in the tumor microenvironment. In this study, we revealed a significant association of tumor scIgGs with tumor progression and poor outcomes of breast cancer patients (n = 547). Using multiple mouse tumor models, we demonstrated that tumor scIgGs reduced NK cell cytotoxic activities and resulted in aggressive tumor progression. We further showed that an anti-hinge specific monoclonal antibody (AHA) rescued the dysfunctional Fc in scIgGs by providing a functional Fc and restored NK cell cytotoxic activity. These findings point to a novel immunotherapeutic strategy to enhance Fc engagement with FcγRs for activation of anticancer immunity.
Collapse
Affiliation(s)
- Xuejun Fan
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX, 77030, USA
| | - Zihao Yuan
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX, 77030, USA
| | - Yueshui Zhao
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX, 77030, USA
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Xiong
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX, 77030, USA
| | - Hao-Ching Hsiao
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX, 77030, USA
| | - Rahmawati Pare
- School of Medicine, Western Sydney University, Department of Anatomical Pathology, Liverpool Hospital, Cancer Pathology Laboratory, Ingham Institute for Applied Medical Research, Liverpool BC, NSW, 1871, Australia
- Medicine & Health Sciences, University Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Jianmin Ding
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ahmad Almosa
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Kai Sun
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX, 77030, USA
| | - Songlin Zhang
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Robert E Jordan
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX, 77030, USA
| | - Cheok Song Lee
- School of Medicine, Western Sydney University, Department of Anatomical Pathology, Liverpool Hospital, Cancer Pathology Laboratory, Ingham Institute for Applied Medical Research, Liverpool BC, NSW, 1871, Australia
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX, 77030, USA.
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Wilkinson I, Anderson S, Fry J, Julien LA, Neville D, Qureshi O, Watts G, Hale G. Fc-engineered antibodies with immune effector functions completely abolished. PLoS One 2021; 16:e0260954. [PMID: 34932587 PMCID: PMC8691596 DOI: 10.1371/journal.pone.0260954] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/20/2021] [Indexed: 01/12/2023] Open
Abstract
Elimination of the binding of immunoglobulin Fc to Fc gamma receptors (FcγR) is highly desirable for the avoidance of unwanted inflammatory responses to therapeutic antibodies and fusion proteins. Many different approaches have been described in the literature but none of them completely eliminates binding to all of the Fcγ receptors. Here we describe a set of novel variants having specific amino acid substitutions in the Fc region at L234 and L235 combined with the substitution G236R. They show no detectable binding to Fcγ receptors or to C1q, are inactive in functional cell-based assays and do not elicit inflammatory cytokine responses. Meanwhile, binding to FcRn, manufacturability, stability and potential for immunogenicity are unaffected. These variants have the potential to improve the safety and efficacy of therapeutic antibodies and Fc fusion proteins.
Collapse
Affiliation(s)
- Ian Wilkinson
- Absolute Antibody Ltd, Wilton, United Kingdom
- mAbsolve Limited, Oxford, United Kingdom
| | | | - Jeremy Fry
- ProImmune Limited, Oxford, United Kingdom
| | | | - David Neville
- Reading Scientific Services Limited, Reading, United Kingdom
| | | | - Gary Watts
- Abzena Limited, Babraham, United Kingdom
| | - Geoff Hale
- mAbsolve Limited, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Al Ojaimi Y, Blin T, Lamamy J, Gracia M, Pitiot A, Denevault-Sabourin C, Joubert N, Pouget JP, Gouilleux-Gruart V, Heuzé-Vourc'h N, Lanznaster D, Poty S, Sécher T. Therapeutic antibodies - natural and pathological barriers and strategies to overcome them. Pharmacol Ther 2021; 233:108022. [PMID: 34687769 PMCID: PMC8527648 DOI: 10.1016/j.pharmthera.2021.108022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
Antibody-based therapeutics have become a major class of therapeutics with over 120 recombinant antibodies approved or under review in the EU or US. This therapeutic class has experienced a remarkable expansion with an expected acceleration in 2021-2022 due to the extraordinary global response to SARS-CoV2 pandemic and the public disclosure of over a hundred anti-SARS-CoV2 antibodies. Mainly delivered intravenously, alternative delivery routes have emerged to improve antibody therapeutic index and patient comfort. A major hurdle for antibody delivery and efficacy as well as the development of alternative administration routes, is to understand the different natural and pathological barriers that antibodies face as soon as they enter the body up to the moment they bind to their target antigen. In this review, we discuss the well-known and more under-investigated extracellular and cellular barriers faced by antibodies. We also discuss some of the strategies developed in the recent years to overcome these barriers and increase antibody delivery to its site of action. A better understanding of the biological barriers that antibodies have to face will allow the optimization of antibody delivery near its target. This opens the way to the development of improved therapy with less systemic side effects and increased patients' adherence to the treatment.
Collapse
Affiliation(s)
- Yara Al Ojaimi
- UMR 1253, iBrain, Inserm, 37000 Tours, France; University of Tours, 37000 Tours, France
| | - Timothée Blin
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| | - Juliette Lamamy
- University of Tours, 37000 Tours, France; GICC, EA7501, 37000 Tours, France
| | - Matthieu Gracia
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | - Aubin Pitiot
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| | | | - Nicolas Joubert
- University of Tours, 37000 Tours, France; GICC, EA7501, 37000 Tours, France
| | - Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | | | | | - Débora Lanznaster
- UMR 1253, iBrain, Inserm, 37000 Tours, France; University of Tours, 37000 Tours, France
| | - Sophie Poty
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | - Thomas Sécher
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| |
Collapse
|
8
|
Deveuve Q, Gouilleux-Gruart V, Thibault G, Lajoie L. [The hinge region of therapeutic antibodies: major importance of a short sequence]. Med Sci (Paris) 2020; 35:1098-1105. [PMID: 31903923 DOI: 10.1051/medsci/2019218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The hinge region is a short sequence of the heavy chains (H) of antibodies linking the Fab (Fragment antigen binding) region to the Fc (Fragment crystallisable) region. The functional properties of the four IgG subclasses partly result from the sequence differences of their hinge regions as some amino acids of the lower hinge region are located within or in the close vicinity of the C1q and FcγR binding sites on the IgG H chains. In addition, the hinge is susceptible to proteolytic cleavage by many proteases present in tumor and/or inflammatory microenvironment capable of affecting functional responses. Thus, an optimal format of the hinge region remains a major challenge for the development of new therapeutic antibodies.
Collapse
Affiliation(s)
- Quentin Deveuve
- Université de Tours, EA7501 GICC (Groupe Innovation et Ciblage Cellulaire), équipe FRAME (Fc Récepteurs, Anticorps et MicroEnvironnement), 37032 Tours, France
| | - Valérie Gouilleux-Gruart
- Université de Tours, EA7501 GICC (Groupe Innovation et Ciblage Cellulaire), équipe FRAME (Fc Récepteurs, Anticorps et MicroEnvironnement), 37032 Tours, France - Service d'immunologie, CHRU de Tours, 37044 Tours, France
| | - Gilles Thibault
- Université de Tours, EA7501 GICC (Groupe Innovation et Ciblage Cellulaire), équipe FRAME (Fc Récepteurs, Anticorps et MicroEnvironnement), 37032 Tours, France - Service d'immunologie, CHRU de Tours, 37044 Tours, France
| | - Laurie Lajoie
- Université de Tours, EA7501 GICC (Groupe Innovation et Ciblage Cellulaire), équipe FRAME (Fc Récepteurs, Anticorps et MicroEnvironnement), 37032 Tours, France
| |
Collapse
|
9
|
EGFL6 promotes breast cancer by simultaneously enhancing cancer cell metastasis and stimulating tumor angiogenesis. Oncogene 2018; 38:2123-2134. [PMID: 30455428 DOI: 10.1038/s41388-018-0565-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/02/2018] [Accepted: 10/25/2018] [Indexed: 12/19/2022]
Abstract
EGFL6, a member of the EGF-like superfamily, plays an important role during embryonic development and has been implicated in promotion of tumor angiogenesis without affecting wound healing. There is very little known about the function of EGFL6 in cancer cells. Here, we investigated whether EGFL6 plays a direct role in cancer cells in addition to the promotion of tumor angiogenesis. Our study showed that EGFL6 promoted epithelial-mesenchymal transition (EMT) and stemness of breast cancer cells and increased cell migration and invasion in cell culture studies. We also found that EGFL6 reduced apoptotic signaling in cancer cells and promoted tumor growth in vivo. Importantly, expression of EGFL6 in cancer cells and tumor endothelial cells not only increased tumor angiogenesis but also promoted migration of cancer cells. Such dual engagement of cancer and stromal cells suggests crosstalk mediated by EGFL6 in the tumor microenvironment. Blockade of EGFL6 using our novel anti-EGFL6 monoclonal antibody significantly reduced cancer cell migration, tumor angiogenesis, and tumor growth in mouse xenograft tumor models. Silencing EGFL6 mRNA by shRNA transfection of cancer cells also significantly reduced cancer cell migration, tumor angiogenesis, and tumor growth in mouse xenograft tumor models. Taken together, the results of this study indicate that targeting EGFL6 is a unique strategy for inhibiting both cancer cell metastasis and tumor angiogenesis.
Collapse
|
10
|
Jordan RE, Fan X, Salazar G, Zhang N, An Z. Proteinase-nicked IgGs: an unanticipated target for tumor immunotherapy. Oncoimmunology 2018; 7:e1480300. [PMID: 30228951 PMCID: PMC6140550 DOI: 10.1080/2162402x.2018.1480300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/17/2018] [Accepted: 05/20/2018] [Indexed: 12/28/2022] Open
Abstract
The host immune system adopts multiple mechanisms involving antibodies to confront cancer cells. Accordingly, anti-tumor mAbs have become mainstays in cancer treatment. However, neither host immunity nor mAb therapies appear capable of controlling tumor growth in all cases. Structural instability of IgG was overlooked as a factor contributing to immunosuppression in the tumor microenvironment. Recently, physiological proteinases were identified that disable IgG immune effector functions. Evidence shows that these proteinases cause localized IgG impairment by selective cleavage of a single IgG peptide bond in the hinge-region. The recognition of IgG cleavage in the tumor microenvironment provides alternatives for tumor immunotherapy.
Collapse
Affiliation(s)
- Robert E Jordan
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, Health Science Center, University of Texas Medical School at Houston, Texas, USA
| | - Xuejun Fan
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, Health Science Center, University of Texas Medical School at Houston, Texas, USA
| | - Georgina Salazar
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, Health Science Center, University of Texas Medical School at Houston, Texas, USA
| | - Ningyan Zhang
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, Health Science Center, University of Texas Medical School at Houston, Texas, USA
| | - Zhiqiang An
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, Health Science Center, University of Texas Medical School at Houston, Texas, USA
| |
Collapse
|
11
|
Proteolytic single hinge cleavage of pertuzumab impairs its Fc effector function and antitumor activity in vitro and in vivo. Breast Cancer Res 2018; 20:43. [PMID: 29859099 PMCID: PMC5984793 DOI: 10.1186/s13058-018-0972-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/26/2018] [Indexed: 11/17/2022] Open
Abstract
Background Proteolytic impairment of the Fc effector functions of therapeutic monoclonal antibodies (mAbs) can compromise their antitumor efficacy in the tumor microenvironment and may represent an unappreciated mechanism of host immune evasion. Pertuzumab is a human epidermal growth factor receptor 2 (HER2)-targeting antibody and has been widely used in the clinic in combination with trastuzumab for treatment of HER2-overexpressing breast cancer. Pertuzumab susceptibility to proteolytic hinge cleavage and its impact on the drug’s efficacy has not been previously studied. Methods Pertuzumab was incubated with high and low HER2-expressing cancer cells and proteolytic cleavage in the lower hinge region was detected by western blotting. The single hinge cleaved pertuzumab (scIgG-P) was purified and evaluated for its ability to mediate antibody-dependent cellular cytotoxicity (ADCC) in vitro and anti-tumor efficacy in vivo. To assess the cleavage of trastuzumab (IgG-T) and pertuzumab (IgG-P) when simultaneously bound to the same cancer cell surface, F(ab’)2 fragments of IgG-T or IgG-P were combined with the intact IgG-P and IgG-T, respectively, to detect scIgG generation by western blotting. Results Pertuzumab hinge cleavage occurred when the mAb was incubated with high HER2-expressing cancer cells. The hinge cleavage of pertuzumab caused a substantial loss of ADCC in vitro and reduced antitumor efficacy in vivo. The reduced ADCC function of scIgG-P was restored by an anti-hinge mAb specific for a cleavage site neoepitope. In addition, we constructed a protease-resistant version of the anti-hinge mAb that restored ADCC and the cell-killing functions of pertuzumab when cancer cells exressed a potent IgG hinge-cleaving protease. We also observed increased hinge cleavage of pertuzumab when combined with trastuzumab. Conclusion The reduced Fc effector function of single hinge-cleaved pertuzumab can be restored by an anti-hinge mAb. The restoration effect indicated that immune function could be readily augmented when the damaged primary antibodies were bound to cancer cell surfaces. The anti-hinge mAb also restored Fc effector function to the mixture of proteolytically disabled trastuzumab and pertuzumab, suggesting a general therapeutic strategy to restore the immune effector function to protease-inactivated anticancer antibodies in the tumor microenvironment. The findings point to a novel tactic for developing breast cancer immunotherapy.
Collapse
|
12
|
Noh K, Mangala LS, Han HD, Zhang N, Pradeep S, Wu SY, Ma S, Mora E, Rupaimoole R, Jiang D, Wen Y, Shahzad MMK, Lyons Y, Cho M, Hu W, Nagaraja AS, Haemmerle M, Mak CSL, Chen X, Gharpure KM, Deng H, Xiong W, Kingsley CV, Liu J, Jennings N, Birrer MJ, Bouchard RR, Lopez-Berestein G, Coleman RL, An Z, Sood AK. Differential Effects of EGFL6 on Tumor versus Wound Angiogenesis. Cell Rep 2017; 21:2785-2795. [PMID: 29212026 PMCID: PMC5749980 DOI: 10.1016/j.celrep.2017.11.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 09/18/2017] [Accepted: 11/02/2017] [Indexed: 11/25/2022] Open
Abstract
Angiogenesis inhibitors are important for cancer therapy, but clinically approved anti-angiogenic agents have shown only modest efficacy and can compromise wound healing. This necessitates the development of novel anti-angiogenesis therapies. Here, we show significantly increased EGFL6 expression in tumor versus wound or normal endothelial cells. Using a series of in vitro and in vivo studies with orthotopic and genetically engineered mouse models, we demonstrate the mechanisms by which EGFL6 stimulates tumor angiogenesis. In contrast to its antagonistic effects on tumor angiogenesis, EGFL6 blockage did not affect normal wound healing. These findings have significant implications for development of anti-angiogenesis therapies.
Collapse
Affiliation(s)
- Kyunghee Noh
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hee-Dong Han
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, South Korea
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sunila Pradeep
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sherry Y Wu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shaolin Ma
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Edna Mora
- Department of Surgery, University of Puerto Rico, San Juan 00936, Puerto Rico; University of Puerto Rico Comprehensive Cancer Center, San Juan 00936, Puerto Rico; Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77584, USA
| | - Rajesha Rupaimoole
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dahai Jiang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yunfei Wen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mian M K Shahzad
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yasmin Lyons
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - MinSoon Cho
- Department of Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Archana S Nagaraja
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Monika Haemmerle
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Celia S L Mak
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiuhui Chen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kshipra M Gharpure
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hui Deng
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wei Xiong
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Charles V Kingsley
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicholas Jennings
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael J Birrer
- University of Alabama Comprehensive Cancer Center, Birmingham, AL 35294, USA
| | - Richard R Bouchard
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gabriel Lopez-Berestein
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert L Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
13
|
Huang T, Mathieu M, Lee S, Wang X, Kee YS, Bevers JJ, Ciferri C, Estavez A, Wong M, Chiang NY, Nakamura G, Brezski RJ. Molecular characterization of human anti-hinge antibodies derived from single-cell cloning of normal human B cells. J Biol Chem 2017; 293:906-919. [PMID: 29191832 DOI: 10.1074/jbc.ra117.000165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/20/2017] [Indexed: 01/04/2023] Open
Abstract
Anti-hinge antibodies (AHAs) are an autoantibody subclass that, following proteolytic cleavage, recognize cryptic epitopes exposed in the hinge regions of immunoglobulins (Igs) and do not bind to the intact Ig counterpart. AHAs have been postulated to exacerbate chronic inflammatory disorders such as inflammatory bowel disease and rheumatoid arthritis. On the other hand, AHAs may protect against invasive microbial pathogens and cancer. However, despite more than 50 years of study, the origin and specific B cell compartments that express AHAs remain elusive. Recent research on serum AHAs suggests that they arise during an active immune response, in contrast to previous proposals that they derive from the preexisting immune repertoire in the absence of antigenic stimuli. We report here the isolation and characterization of AHAs from memory B cells, although anti-hinge-reactive B cells were also detected in the naive B cell compartment. IgG AHAs cloned from a single human donor exhibited restricted specificity for protease-cleaved F(ab')2 fragments and did not bind the intact IgG counterpart. The cloned IgG-specific AHA-variable regions were mutated from germ line-derived sequences and displayed a high sequence variability, confirming that these AHAs underwent class-switch recombination and somatic hypermutation. Consistent with previous studies of serum AHAs, several of these clones recognized a linear, peptide-like epitope, but one clone was unique in recognizing a conformational epitope. All cloned AHAs could restore immune effector functions to proteolytically generated F(ab')2 fragments. Our results confirm that a diverse set of epitope-specific AHAs can be isolated from a single human donor.
Collapse
Affiliation(s)
- Tao Huang
- From the Antibody Engineering Department and
| | | | - Sophia Lee
- From the Antibody Engineering Department and
| | - Xinhua Wang
- From the Antibody Engineering Department and
| | | | | | - Claudio Ciferri
- Structural Biology Department-Cryo-EM Unit, Genentech, South San Francisco, California 94080
| | - Alberto Estavez
- Structural Biology Department-Cryo-EM Unit, Genentech, South San Francisco, California 94080
| | - Manda Wong
- Structural Biology Department-Cryo-EM Unit, Genentech, South San Francisco, California 94080
| | | | | | | |
Collapse
|
14
|
Järnum S, Runström A, Bockermann R, Winstedt L, Crispin M, Kjellman C. Enzymatic Inactivation of Endogenous IgG by IdeS Enhances Therapeutic Antibody Efficacy. Mol Cancer Ther 2017; 16:1887-1897. [DOI: 10.1158/1535-7163.mct-17-0108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/11/2017] [Accepted: 05/19/2017] [Indexed: 11/16/2022]
|
15
|
Tumors arise from the excessive repair of damaged stem cells. Med Hypotheses 2017; 102:112-122. [PMID: 28478815 DOI: 10.1016/j.mehy.2017.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 03/05/2017] [Indexed: 12/17/2022]
Abstract
Although many hypotheses for tumorigenesis have been proposed, none can explain the occurrence and development of tumors comprehensively until now. We put forward a new hypothesis: tumors arise from the excessive repair of damaged stem cells. There are stem cells in all tissues and organs, and the stem cells have perfect damage repair mechanisms, including damage repair systems and repair-inhibiting systems. Tumors arise from the excessive repair of damaged stem cells, i.e., carcinogens induce stem cell damage, leading to overexpression of damage repair systems, and simultaneous inactivation of repair-inhibiting systems through genetic or non-genetic mechanisms, finally forming tumors. The outcome (forming clinically significant tumors or death) and development (tumor recurrence, metastasis or spontaneous healing) of the tumor cells depends on whether the injury and the excessive repair persists, whether immune surveillance function is normal and the tumor microenvironment is appropriate. This hypothesis not only addresses the issues of where tumor cells arise from, how tumors form and where they go, but also provides a reasonable explanation for many unresolved issues in tumor occurrence, development, metastasis or healing. In addition, this hypothesis could guide the early diagnosis, reasonable treatment and effective prevention of tumors.
Collapse
|
16
|
Dhupkar P, Zhao H, Mujoo K, An Z, Zhang N. Crk II silencing down-regulates IGF-IR and inhibits migration and invasion of prostate cancer cells. Biochem Biophys Rep 2016; 8:382-388. [PMID: 28955980 PMCID: PMC5614478 DOI: 10.1016/j.bbrep.2016.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 06/24/2016] [Accepted: 10/19/2016] [Indexed: 12/31/2022] Open
Abstract
Crk (C10 regulator of kinase) adaptor proteins are highly expressed in many types of human cancers and often contribute to aggressive cancer phenotypes. Crk II, a member of CRK family, has been reported to regulate cell migration and metastasis in breast cancer cells. However, its role in other cancer types has not been reported. In this study, we investigated the molecular function of Crk II in prostate cancer (PCa) cells (CWR-22rv1) in vitro and using a mouse tumor model. Results showed that Crk II knockdown by shRNA-mediated silencing (Crk II-shRNA) in the PCa cells significantly inhibited both cancer cell migration and invasion in cell culture study. Crk II-shRNA cancer cells also significantly decreased colony formation in vitro, but had no significant reduction of tumor volume after 4 weeks of cancer cell xenografting in vivo when compared to the scramble control. Interestingly, Crk II-shRNA cancer cells showed a greatly reduced level of insulin-like growth factor 1 receptor (IGF-1R) and decreased signaling of the IGF-1R/PI3K/Akt axis upon IGF-1 ligand stimulation. A close interaction between Crk II and IGF-1R was demonstrated upon co-immunoprecipitation of IGF-1R with Crk II protein. Further, treatment of cells with either proteosomal degradation or protein synthesis inhibitor showed higher proportion of ubiquitin-associated IGF-1R and faster degradation of IGF-1R in Crk II-shRNA cells in comparison with that in the control cancer cells. Taken together, these data suggest that Crk II plays an important role in the regulation of IGF-1R protein stability and affects downstream of IGF-1R signaling pathways. Therefore, targeting Crk-II can block IGF-1R growth signaling and suppress cancer cell invasion and progression. Blocking Crk II inhibited cancer cell migration, invasion, and colony formation. Knockdown Crk II decreased IGF-1R protein and its downstream signaling. Crk II knockdown increased ubiquitination and degradation of IGF-1R.
Collapse
Affiliation(s)
- Pooja Dhupkar
- Brown Foundation Institute of Molecular Medicine, University of Texas Medical School at Houston, TX, USA.,Experimental Therapeutics Academic Program, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Huang Zhao
- Brown Foundation Institute of Molecular Medicine, University of Texas Medical School at Houston, TX, USA
| | - Kalpana Mujoo
- Brown Foundation Institute of Molecular Medicine, University of Texas Medical School at Houston, TX, USA
| | - Zhiqiang An
- Brown Foundation Institute of Molecular Medicine, University of Texas Medical School at Houston, TX, USA.,Experimental Therapeutics Academic Program, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ningyan Zhang
- Brown Foundation Institute of Molecular Medicine, University of Texas Medical School at Houston, TX, USA
| |
Collapse
|
17
|
Zhang N, Jordan RE, An Z. Tumor evasion of humoral immunity mediated by proteolytic impairment of antibody triggered immune effector function. Oncoimmunology 2016; 5:e1122861. [PMID: 27467920 DOI: 10.1080/2162402x.2015.1122861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022] Open
Abstract
Immune suppression is recognized as a hallmark of cancer and this notion is largely based on studies on cellular immunity. Our recent studies have demonstrated a potential new mechanism of cancer suppression of immunity by impairment of antibody effector function mediated by proteolytic enzymes in the tumor microenvironment.
Collapse
Affiliation(s)
- Ningyan Zhang
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Centerl at Houston , Hosuton, TX, USA
| | - Robert E Jordan
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Centerl at Houston , Hosuton, TX, USA
| | - Zhiqiang An
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Centerl at Houston , Hosuton, TX, USA
| |
Collapse
|
18
|
Jordan RE, Fernandez J, Brezski RJ, Greenplate AR, Knight DM, Raju TS, Lynch AS. A peptide immunization approach to counteract a Staphylococcus aureus protease defense against host immunity. Immunol Lett 2016; 172:29-39. [PMID: 26905931 DOI: 10.1016/j.imlet.2016.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/05/2016] [Accepted: 02/16/2016] [Indexed: 01/01/2023]
Abstract
Pathogens that induce acute and chronic infections, as well as certain cancers, employ numerous strategies to thwart host cellular and humoral immune defenses. One proposed evasion mechanism against humoral immunity is a localized expression of extracellular proteases that cleave the IgG hinge and disable host IgG functions. Host immunity appears to be prepared to counter such a proteolytic tactic by providing a group of autoantibodies, denoted anti-hinge antibodies that specifically bind to cleaved IgGs and provide compensating functional restoration in vitro. These respective counter-measures highlight the complex interrelationships among pathogens and host immunity and suggested to us a possible means for therapeutic intervention. In this study, we combined an investigation of pathogen-mediated proteolysis of host IgGs with an immunization strategy to boost host anti-hinge antibodies. In a Staphylococcus aureus infection model using an artificial tissue cage (wiffle ball) implanted into rabbits, cleaved rabbit IgGs were detected in abundance in the abscesses of untreated animals early after infection. However, in animals previously immunized with peptide analogs of the cleaved IgG hinge to generate substantial anti-hinge antibody titers, S. aureus colony formation was markedly reduced compared to control animals or those similarly immunized with a scrambled peptide sequence. The results of this study demonstrate that extensive local proteolysis of IgGs occurs in a test abscess setting and that immunization to increase host anti-hinge antibodies provided substantial acute protection against bacterial growth.
Collapse
Affiliation(s)
- Robert E Jordan
- Biologics Research, Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477 USA.
| | - Jeffrey Fernandez
- Infectious Diseases and Vaccines, Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477, USA.
| | - Randall J Brezski
- Biologics Research, Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477 USA
| | - Allison R Greenplate
- Biologics Research, Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477 USA
| | - David M Knight
- Biologics Research, Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477 USA
| | - T Shantha Raju
- Biologics Research, Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477 USA
| | - A Simon Lynch
- Infectious Diseases and Vaccines, Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477, USA
| |
Collapse
|
19
|
Zhang N, Deng H, Fan X, Gonzalez A, Zhang S, Brezski RJ, Choi BK, Rycyzyn M, Strohl W, Jordan R, An Z. Dysfunctional Antibodies in the Tumor Microenvironment Associate with Impaired Anticancer Immunity. Clin Cancer Res 2015. [PMID: 26224871 DOI: 10.1158/1078-0432.ccr-15-1057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Studies have demonstrated that cancer-associated matrix metalloproteinases (MMP) can generate single peptide bond cleavages in the hinge region of immunoglobulin G1 (IgG1). This study investigated the cleavage of endogenous IgGs by MMPs in the tumor microenvironment and the consequences of the IgG hinge cleavage for humoral immunity. EXPERIMENTAL DESIGN We investigated the occurrence of single peptide bond cleaved IgGs (scIgG) in tumor tissues and plasma samples collected from a cohort of breast cancer patients (n = 60). Samples from healthy people (n = 20) were used as the control. Antibody hinge cleavage was detected by multiple assays, including IHC, ELISA, and flow cytometry. A correlation analysis was conducted between scIgG levels and patient clinical parameters. RESULTS Levels of scIgGs in tumors were significantly higher than in normal tissues. In addition, scIgG levels in tumors were enriched compared with that in the plasma of the same patients. The appearance of scIgGs in tumor tissues was associated with altered host IgG content and decreased IgG1. Increased tumor scIgGs were found to be positively correlated with adverse clinical factors, such as elevated tumor-associated macrophages, increased expression of MMP9 and other MMPs, and local metastasis to axillary lymph nodes. CONCLUSIONS The study contributes to mounting evidence for the presence of hinge-cleaved antibodies with reduced Fc immune effector function in the tumor microenvironment. The results highlight a link between tumor scIgGs and poor patient outcomes, and reveal a component of compromised humoral immunity within tumors that could point to new immunotherapeutic strategies to rescue host immunity.
Collapse
Affiliation(s)
- Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas.
| | - Hui Deng
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Xuejun Fan
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Anneliese Gonzalez
- Division of Oncology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Songlin Zhang
- Clinical Pathology, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Randall J Brezski
- Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Spring House, Pennsylvania
| | - Byung-Kwon Choi
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Michael Rycyzyn
- Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Spring House, Pennsylvania
| | - William Strohl
- Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Spring House, Pennsylvania
| | - Robert Jordan
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas. Biologics Research, Biotechnology Center of Excellence, Janssen R&D, LLC, Spring House, Pennsylvania
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|