1
|
Hossain MA. Targeting the RAS upstream and downstream signaling pathway for cancer treatment. Eur J Pharmacol 2024; 979:176727. [PMID: 38866361 DOI: 10.1016/j.ejphar.2024.176727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Cancer often involves the overactivation of RAS/RAF/MEK/ERK (MAPK) and PI3K-Akt-mTOR pathways due to mutations in genes like RAS, RAF, PTEN, and PIK3CA. Various strategies are employed to address the overactivation of these pathways, among which targeted therapy emerges as a promising approach. Directly targeting specific proteins, leads to encouraging results in cancer treatment. For instance, RTK inhibitors such as imatinib and afatinib selectively target these receptors, hindering ligand binding and reducing signaling initiation. These inhibitors have shown potent efficacy against Non-Small Cell Lung Cancer. Other inhibitors, like lonafarnib targeting Farnesyltransferase and GGTI 2418 targeting geranylgeranyl Transferase, disrupt post-translational modifications of proteins. Additionally, inhibition of proteins like SOS, SH2 domain, and Ras demonstrate promising anti-tumor activity both in vivo and in vitro. Targeting downstream components with RAF inhibitors such as vemurafenib, dabrafenib, and sorafenib, along with MEK inhibitors like trametinib and binimetinib, has shown promising outcomes in treating cancers with BRAF-V600E mutations, including myeloma, colorectal, and thyroid cancers. Furthermore, inhibitors of PI3K (e.g., apitolisib, copanlisib), AKT (e.g., ipatasertib, perifosine), and mTOR (e.g., sirolimus, temsirolimus) exhibit promising efficacy against various cancers such as Invasive Breast Cancer, Lymphoma, Neoplasms, and Hematological malignancies. This review offers an overview of small molecule inhibitors targeting specific proteins within the RAS upstream and downstream signaling pathways in cancer.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
2
|
Liu S, Meng Y, Zhang Y, Qiu L, Wan X, Yang X, Zhang Y, Liu X, Wen L, Lei X, Zhang B, Han J. Integrative analysis of senescence-related genes identifies robust prognostic clusters with distinct features in hepatocellular carcinoma. J Adv Res 2024:S2090-1232(24)00150-4. [PMID: 38614215 DOI: 10.1016/j.jare.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024] Open
Abstract
INTRODUCTION Senescence refers to a state of permanent cell growth arrest and is regarded as a tumor suppressive mechanism, whereas accumulative evidence demonstrate that senescent cells play an adverse role during cancer progression. The scarcity of specific and reliable markers reflecting senescence level in cancer impede our understanding of this biological basis. OBJECTIVES Senescence-related genes (SRGs) were collected for integrative analysis to reveal the role of senescence in hepatocellular carcinoma (HCC). METHODS Consensus clustering was used to subtype HCC based on SRGs. Several computational methods, including single sample gene set enrichment analysis (ssGSEA), fuzzy c-means algorithm, were performed. Data of drug sensitivities were utilized to screen potential therapeutic agents for different senescence patients. Additionally, we developed a method called signature-related gene analysis (SRGA) for identification of markers relevant to phenotype of interest. Experimental strategies consisting quantitative real-time PCR (qRT-PCR), β-galactosidase assay, western blot, and tumor-T cell co-culture system were used to validate the findings in vitro. RESULTS We identified three robust prognostic clusters of HCC patients with distinct survival outcome, mutational landscape, and immune features. We further extracted signature genes of senescence clusters to construct the senescence scoring system and profile senescence level in HCC at bulk and single-cell resolution. Senescence-induced stemness reprogramming was confirmed both in silico and in vitro. HCC patients with high senescence were immune suppressed and sensitive to Tozasertib and other drugs. We suggested that MAFG, PLIN3, and 4 other genes were pertinent to HCC senescence, and MAFG potentially mediated immune suppression, senescence, and stemness. CONCLUSION Our findings provide insights into the role of SRGs in patients stratification and precision medicine.
Collapse
Affiliation(s)
- Sicheng Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Meng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaguang Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaowen Wan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuyang Yang
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Zhang
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xueqin Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linda Wen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xue Lei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Zhang
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Hong J, Du K, Jin H, Chen Y, Jiang Y, Zhang W, Chen D, Zheng S, Cao L. Evidence of promoting effects of 6:2 Cl-PFESA on hepatocellular carcinoma proliferation in humans: An ideal alternative for PFOS in terms of environmental health? ENVIRONMENT INTERNATIONAL 2024; 186:108582. [PMID: 38513556 DOI: 10.1016/j.envint.2024.108582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are synthetic chemicals, encompassing compounds like perfluorooctane sulfonate (PFOS), which have widespread applications across various industries, including food packaging and firefighting. In recent years, China has increasingly employed 6:2 Cl-PFESA as an alternative to PFOS. Although the association between PFAS exposure and hepatocellular carcinoma (HCC) has been demonstrated, the underlying mechanisms that promote HCC proliferation are uncleared. Therefore, we aimed to investigate the effects and differences of PFOS and 6:2 Cl-PFESA on HCC proliferation through in vivo and in vitro tumor models. Our results reveal that both PFOS and 6:2 Cl-PFESA significantly contribute to HCC proliferation in vitro and in vivo. Exposure led to reduced population doubling times, enlarged cell colony sizes, enhanced DNA synthesis efficiency, and a higher proportion of cells undergoing mitosis. Furthermore, both PFOS and 6:2 Cl-PFES) have been shown to activate the PI3K/AKT/mTOR signaling pathway and inhibit necroptosis. This action consequently enhances the proliferation of HCC cells. Our phenotypic assay findings suggest that the tumorigenic potential of 6:2 Cl-PFESA surpasses that of PFOS; in a subcutaneous tumor model using nude mice, the mean tumor weight for the 6:2 Cl-PFESA-treated cohort was 2.33 times that observed in the PFOS cohort (p < 0.01). Despite 6:2 Cl-PFESA being considered a safer substitute for PFOS, the pronounced effects of this chemical on HCC cell growth warrant a thorough assessment of hepatotoxicity risks linked to its usage.
Collapse
Affiliation(s)
- Jiawei Hong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Keyi Du
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang 324400, China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang 324400, China
| | - Yifan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Weichen Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Linping Cao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China.
| |
Collapse
|
4
|
Neyazi S, Yamazawa E, Hack K, Tanaka S, Nagae G, Kresbach C, Umeda T, Eckhardt A, Tatsuno K, Pohl L, Hana T, Bockmayr M, Kim P, Dorostkar MM, Takami T, Obrecht D, Takai K, Suwala AK, Komori T, Godbole S, Wefers AK, Otani R, Neumann JE, Higuchi F, Schweizer L, Nakanishi Y, Monoranu CM, Takami H, Engertsberger L, Yamada K, Ruf V, Nomura M, Mohme T, Mukasa A, Herms J, Takayanagi S, Mynarek M, Matsuura R, Lamszus K, Ishii K, Kluwe L, Imai H, von Deimling A, Koike T, Benesch M, Kushihara Y, Snuderl M, Nambu S, Frank S, Omura T, Hagel C, Kugasawa K, Mautner VF, Ichimura K, Rutkowski S, Aburatani H, Saito N, Schüller U. Transcriptomic and epigenetic dissection of spinal ependymoma (SP-EPN) identifies clinically relevant subtypes enriched for tumors with and without NF2 mutation. Acta Neuropathol 2024; 147:22. [PMID: 38265489 PMCID: PMC10808175 DOI: 10.1007/s00401-023-02668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024]
Abstract
Ependymomas encompass multiple clinically relevant tumor types based on localization and molecular profiles. Tumors of the methylation class "spinal ependymoma" (SP-EPN) represent the most common intramedullary neoplasms in children and adults. However, their developmental origin is ill-defined, molecular data are scarce, and the potential heterogeneity within SP-EPN remains unexplored. The only known recurrent genetic events in SP-EPN are loss of chromosome 22q and NF2 mutations, but neither types and frequency of these alterations nor their clinical relevance have been described in a large, epigenetically defined series. Transcriptomic (n = 72), epigenetic (n = 225), genetic (n = 134), and clinical data (n = 112) were integrated for a detailed molecular overview on SP-EPN. Additionally, we mapped SP-EPN transcriptomes to developmental atlases of the developing and adult spinal cord to uncover potential developmental origins of these tumors. The integration of transcriptomic ependymoma data with single-cell atlases of the spinal cord revealed that SP-EPN display the highest similarities to mature adult ependymal cells. Unsupervised hierarchical clustering of transcriptomic data together with integrated analysis of methylation profiles identified two molecular SP-EPN subtypes. Subtype A tumors primarily carried previously known germline or sporadic NF2 mutations together with 22q loss (bi-allelic NF2 loss), resulting in decreased NF2 expression. Furthermore, they more often presented as multilocular disease and demonstrated a significantly reduced progression-free survival as compared to SP-EP subtype B. In contrast, subtype B predominantly contained samples without NF2 mutation detected in sequencing together with 22q loss (monoallelic NF2 loss). These tumors showed regular NF2 expression but more extensive global copy number alterations. Based on integrated molecular profiling of a large multi-center cohort, we identified two distinct SP-EPN subtypes with important implications for genetic counseling, patient surveillance, and drug development priorities.
Collapse
Affiliation(s)
- Sina Neyazi
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Erika Yamazawa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Karoline Hack
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Genta Nagae
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Catena Kresbach
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Takayoshi Umeda
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Alicia Eckhardt
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
- Department of Radiotherapy and Radiation Oncology, Hubertus Wald Tumor Center, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kenji Tatsuno
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Lara Pohl
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Taijun Hana
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Michael Bockmayr
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Phyo Kim
- Utsunomiya Neurospine Center, Symphony Clinic, Utsunomiya, Japan
| | - Mario M Dorostkar
- Center for Neuropathology and Prion Research, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Toshihiro Takami
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Denise Obrecht
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Keisuke Takai
- Department of Neurosurgery, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Abigail K Suwala
- Department of Neuropathology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Shweta Godbole
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika K Wefers
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ryohei Otani
- Department of Neurosurgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Julia E Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fumi Higuchi
- Department of Neurosurgery, University of Teikyo Hospital, 2-11-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Leonille Schweizer
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, Frankfurt Am Main, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt Am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt Am Main, Germany
| | - Yuta Nakanishi
- Department of Neurosurgery, Osaka Metropolitan City University Graduate School of Medicine, Osaka, Japan
| | - Camelia-Maria Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Hirokazu Takami
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Lara Engertsberger
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Keisuke Yamada
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Masashi Nomura
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Theresa Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jochen Herms
- Center for Neuropathology and Prion Research, Faculty of Medicine, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Shunsaku Takayanagi
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Martin Mynarek
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reiko Matsuura
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kazuhiko Ishii
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Lan Kluwe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hideaki Imai
- Department of Neurosurgery, Japan Community Health Care Organization Tokyo Shinjuku Medical Center, Tokyo, Japan
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Tsukasa Koike
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Martin Benesch
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Yoshihiro Kushihara
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Matija Snuderl
- Department of Pathology, NYU Langone Health, New York City, USA
| | - Shohei Nambu
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Stephan Frank
- Division of Neuropathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Takaki Omura
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kazuha Kugasawa
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Viktor F Mautner
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, Japan
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hiroyuki Aburatani
- Genome Science and Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany.
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
5
|
Hong J, Wang X, Jin H, Chen Y, Jiang Y, Du K, Chen D, Zheng S, Cao L. Environment relevant exposure of perfluorooctanoic acid accelerates the growth of hepatocellular carcinoma cells through mammalian target of rapamycin (mTOR) signal pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122910. [PMID: 37967710 DOI: 10.1016/j.envpol.2023.122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Perfluorooctanoic acid (PFOA), a synthetic alkyl chain fluorinated compound, has emerged as a persistent organic pollutant of grave concern, casting a shadow over both ecological integrity and humans. Its insidious presence raises alarms due to its capacity to bioaccumulate within the human liver, potentially paving the treacherous path toward liver cancer. Yet, the intricate mechanisms underpinning PFOA's role in promoting the growth of hepatocellular carcinoma (HCC) remain shrouded in ambiguity. Here, we determined the proliferation and transcription changes of HCC after PFOA exposure through integrated experiments including cell culture, nude mice tests, and colony-forming assays. Based on our findings, PFOA effectively promotes the proliferation of HCC cells within the experimental range of concentrations, both in vivo and in vitro. The proliferation efficiency of HCC cells was observed to increase by approximately 10% due to overexposure to PFOA. Additionally, the cancer weight of tumor-bearing nude mice increased by 87.0% (p < 0.05). We systematically evaluated the effects of PFOA on HCC cells and found that PFOA's exposure can selectively activate the PI3K/AKT/mTOR/4E-BP1 signaling pathway, thereby playing a pro-cancer effect on HCC cells Confirmation echoed through western blot assays and inhibitor combination analyses. These insights summon a response to PFOA's dual nature as both an environmental threat and a promoter of liver cancer. Our work illuminates the obscured domain of PFOA-induced hepatoxicity, shedding light on its ties to hepatocellular carcinoma progression.
Collapse
Affiliation(s)
- Jiawei Hong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Xiaoyan Wang
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Yifan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Keyi Du
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Linping Cao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China.
| |
Collapse
|
6
|
Huang X, You L, Nepovimova E, Psotka M, Malinak D, Valko M, Sivak L, Korabecny J, Heger Z, Adam V, Wu Q, Kuca K. Inhibitors of phosphoinositide 3-kinase (PI3K) and phosphoinositide 3-kinase-related protein kinase family (PIKK). J Enzyme Inhib Med Chem 2023; 38:2237209. [PMID: 37489050 PMCID: PMC10392309 DOI: 10.1080/14756366.2023.2237209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 02/02/2024] Open
Abstract
Phosphoinositide 3-kinases (PI3K) and phosphoinositide 3-kinase-related protein kinases (PIKK) are two structurally related families of kinases that play vital roles in cell growth and DNA damage repair. Dysfunction of PIKK members and aberrant stimulation of the PI3K/AKT/mTOR signalling pathway are linked to a plethora of diseases including cancer. In recent decades, numerous inhibitors related to the PI3K/AKT/mTOR signalling have made great strides in cancer treatment, like copanlisib and sirolimus. Notably, most of the PIKK inhibitors (such as VX-970 and M3814) related to DNA damage response have also shown good efficacy in clinical trials. However, these drugs still require a suitable combination therapy to overcome drug resistance or improve antitumor activity. Based on the aforementioned facts, we summarised the efficacy of PIKK, PI3K, and AKT inhibitors in the therapy of human malignancies and the resistance mechanisms of targeted therapy, in order to provide deeper insights into cancer treatment.
Collapse
Affiliation(s)
- Xueqin Huang
- College of Life Science, Yangtze University, Jingzhou, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Miroslav Psotka
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - David Malinak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
7
|
Singh S, Barik D, Lawrie K, Mohapatra I, Prasad S, Naqvi AR, Singh A, Singh G. Unveiling Novel Avenues in mTOR-Targeted Therapeutics: Advancements in Glioblastoma Treatment. Int J Mol Sci 2023; 24:14960. [PMID: 37834408 PMCID: PMC10573615 DOI: 10.3390/ijms241914960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
The mTOR signaling pathway plays a pivotal and intricate role in the pathogenesis of glioblastoma, driving tumorigenesis and proliferation. Mutations or deletions in the PTEN gene constitutively activate the mTOR pathway by expressing growth factors EGF and PDGF, which activate their respective receptor pathways (e.g., EGFR and PDGFR). The convergence of signaling pathways, such as the PI3K-AKT pathway, intensifies the effect of mTOR activity. The inhibition of mTOR has the potential to disrupt diverse oncogenic processes and improve patient outcomes. However, the complexity of the mTOR signaling, off-target effects, cytotoxicity, suboptimal pharmacokinetics, and drug resistance of the mTOR inhibitors pose ongoing challenges in effectively targeting glioblastoma. Identifying innovative treatment strategies to address these challenges is vital for advancing the field of glioblastoma therapeutics. This review discusses the potential targets of mTOR signaling and the strategies of target-specific mTOR inhibitor development, optimized drug delivery system, and the implementation of personalized treatment approaches to mitigate the complications of mTOR inhibitors. The exploration of precise mTOR-targeted therapies ultimately offers elevated therapeutic outcomes and the development of more effective strategies to combat the deadliest form of adult brain cancer and transform the landscape of glioblastoma therapy.
Collapse
Affiliation(s)
- Shilpi Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Debashis Barik
- Center for Computational Natural Science and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Karl Lawrie
- College of Saint Benedict, Saint John’s University, Collegeville, MN 56321, USA
| | - Iteeshree Mohapatra
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Sujata Prasad
- MLM Medical Laboratories, LLC, Oakdale, MN 55128, USA
| | - Afsar R. Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois, Chicago, IL 60612, USA
| | - Amar Singh
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gatikrushna Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Fan C, Wunderlich M, Cai X, Yan Z, Zhang F, Davis AK, Xu L, Guo F, Lu QR, Azam M, Tian W, Zheng Y. Kinase-independent role of mTOR and on-/off-target effects of an mTOR kinase inhibitor. Leukemia 2023; 37:2073-2081. [PMID: 37532788 DOI: 10.1038/s41375-023-01987-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
mTOR, as a serine/threonine kinase, is a widely pursued anticancer target. Multiple clinical trials of mTOR kinase inhibitors are ongoing, but their specificity and safety features remain lacking. Here, we have employed an inducible kinase-inactive D2338A mTOR knock-in mouse model (mTOR-/KI) together with a mTOR conditional knockout model (mTOR-/-) to assess the kinase-dependent/-independent function of mTOR in hematopoiesis and the on-/off-target effects of mTOR kinase inhibitor AZD2014. Despite exhibiting many similar phenotypes to mTOR-/- mice in hematopoiesis, the mTOR-/KI mice survived longer and showed differences in hematopoietic progenitor cells compared to mTOR-/- mice, suggesting a kinase-independent function of mTOR in hematopoiesis. Gene expression signatures in hematopoietic stem cells (HSCs) further revealed both kinase-dependent and independent effects of mTOR. AZD2014, a lead mTOR kinase inhibitor, appeared to work mostly on-target in suppressing mTOR kinase activity, mimicking that of mTOR-/KI HSCs in transcriptome analysis, but it also induced a small set of off-target responses in mTOR-/KI HSCs. In murine and human myeloid leukemia, besides kinase-inhibitory on-target effects, AZD2014 displayed similar off-target and growth-inhibitory cytostatic effects. These studies provide new insights into kinase-dependent/-independent effects of mTOR in hematopoiesis and present a genetic means for precisely assessing the specificity of mTOR kinase inhibitors.
Collapse
Affiliation(s)
- Cuiqing Fan
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Xiongwei Cai
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Zijun Yan
- State Key Laboratory of Genetic Engineering, Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Feng Zhang
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Ashley Kuenzi Davis
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Lingli Xu
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Q Richard Lu
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mohammad Azam
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Weidong Tian
- State Key Laboratory of Genetic Engineering, Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
9
|
Han A, Mukha D, Chua V, Purwin TJ, Tiago M, Modasia B, Baqai U, Aumiller JL, Bechtel N, Hunter E, Danielson M, Terai M, Wedegaertner PB, Sato T, Landreville S, Davies MA, Kurtenbach S, Harbour JW, Schug ZT, Aplin AE. Co-Targeting FASN and mTOR Suppresses Uveal Melanoma Growth. Cancers (Basel) 2023; 15:3451. [PMID: 37444561 PMCID: PMC10341317 DOI: 10.3390/cancers15133451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Uveal melanoma (UM) displays a high frequency of metastasis; however, effective therapies for metastatic UM are limited. Identifying unique metabolic features of UM may provide a potential targeting strategy. A lipid metabolism protein expression signature was induced in a normal choroidal melanocyte (NCM) line transduced with GNAQ (Q209L), a driver in UM growth and development. Consistently, UM cells expressed elevated levels of fatty acid synthase (FASN) compared to NCMs. FASN upregulation was associated with increased mammalian target of rapamycin (mTOR) activation and sterol regulatory element-binding protein 1 (SREBP1) levels. FASN and mTOR inhibitors alone significantly reduced UM cell growth. Concurrent inhibition of FASN and mTOR further reduced UM cell growth by promoting cell cycle arrest and inhibiting glucose utilization, TCA cycle metabolism, and de novo fatty acid biosynthesis. Our findings indicate that FASN is important for UM cell growth and co-inhibition of FASN and mTOR signaling may be considered for treatment of UM.
Collapse
Affiliation(s)
- Anna Han
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Republic of Korea
| | - Dzmitry Mukha
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA; (D.M.); (Z.T.S.)
| | - Vivian Chua
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Timothy J. Purwin
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Manoela Tiago
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Bhavik Modasia
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Usman Baqai
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Jenna L. Aumiller
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (J.L.A.); (P.B.W.)
| | - Nelisa Bechtel
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Emily Hunter
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
| | - Meggie Danielson
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.D.); (M.T.); (T.S.)
| | - Mizue Terai
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.D.); (M.T.); (T.S.)
| | - Philip B. Wedegaertner
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (J.L.A.); (P.B.W.)
| | - Takami Sato
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (M.D.); (M.T.); (T.S.)
| | - Solange Landreville
- Department of Ophthalmology and Otorhinolaryngology-Cervical-Facial Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Stefan Kurtenbach
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA; (S.K.); (J.W.H.)
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33101, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - J. William Harbour
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA; (S.K.); (J.W.H.)
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33101, USA
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA
- Department of Ophthalmology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zachary T. Schug
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA; (D.M.); (Z.T.S.)
| | - Andrew E. Aplin
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (A.H.); (V.C.); (T.J.P.); (M.T.); (U.B.); (E.H.)
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
10
|
Sterling J, Baker JR, McCluskey A, Munoz L. Systematic literature review reveals suboptimal use of chemical probes in cell-based biomedical research. Nat Commun 2023; 14:3228. [PMID: 37270653 PMCID: PMC10239480 DOI: 10.1038/s41467-023-38952-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 05/23/2023] [Indexed: 06/05/2023] Open
Abstract
Chemical probes have reached a prominent role in biomedical research, but their impact is governed by experimental design. To gain insight into the use of chemical probes, we conducted a systematic review of 662 publications, understood here as primary research articles, employing eight different chemical probes in cell-based research. We summarised (i) concentration(s) at which chemical probes were used in cell-based assays, (ii) inclusion of structurally matched target-inactive control compounds and (iii) orthogonal chemical probes. Here, we show that only 4% of analysed eligible publications used chemical probes within the recommended concentration range and included inactive compounds as well as orthogonal chemical probes. These findings indicate that the best practice with chemical probes is yet to be implemented in biomedical research. To achieve this, we propose 'the rule of two': At least two chemical probes (either orthogonal target-engaging probes, and/or a pair of a chemical probe and matched target-inactive compound) to be employed at recommended concentrations in every study.
Collapse
Affiliation(s)
- Jayden Sterling
- Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Jennifer R Baker
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Adam McCluskey
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Lenka Munoz
- Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
11
|
Alves CL, Ditzel HJ. Drugging the PI3K/AKT/mTOR Pathway in ER+ Breast Cancer. Int J Mol Sci 2023; 24:4522. [PMID: 36901954 PMCID: PMC10003259 DOI: 10.3390/ijms24054522] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
The frequent activation of the PI3K/AKT/mTOR pathway and its crucial role in estrogen receptor-positive (ER+) breast cancer tumorigenesis and drug resistance has made it a highly attractive therapeutic target in this breast cancer subtype. Consequently, the number of new inhibitors in clinical development targeting this pathway has drastically increased. Among these, the PIK3CA isoform-specific inhibitor alpelisib and the pan-AKT inhibitor capivasertib were recently approved in combination with the estrogen receptor degrader fulvestrant for the treatment of ER+ advanced breast cancer after progression on an aromatase inhibitor. Nevertheless, the clinical development of multiple inhibitors of the PI3K/AKT/mTOR pathway, in parallel with the incorporation of CDK4/6 inhibitors into the standard of care treatment in ER+ advanced breast cancer, has led to a multitude of available therapeutic agents and many possible combined strategies which complicate personalizing treatment. Here, we review the role of the PI3K/AKT/mTOR pathway in ER+ advanced breast cancer, highlighting the genomic contexts in which the various inhibitors of this pathway may have superior activity. We also discuss selected trials with agents targeting the PI3K/AKT/mTOR and related pathways as well as the rationale supporting the clinical development of triple combination therapy targeting ER, CDK4/6 and PI3K/AKT/mTOR in ER+ advanced breast cancer.
Collapse
Affiliation(s)
- Carla L. Alves
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Henrik J. Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- Department of Oncology, Institute of Clinical Research, Odense University Hospital, 5000 Odense, Denmark
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, 5000 Odense, Denmark
| |
Collapse
|
12
|
McNamara MC, Hosios AM, Torrence ME, Zhao T, Fraser C, Wilkinson M, Kwiatkowski DJ, Henske EP, Wu CL, Sarosiek KA, Valvezan AJ, Manning BD. Reciprocal effects of mTOR inhibitors on pro-survival proteins dictate therapeutic responses in tuberous sclerosis complex. iScience 2022; 25:105458. [PMID: 36388985 PMCID: PMC9663903 DOI: 10.1016/j.isci.2022.105458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/30/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022] Open
Abstract
mTORC1 is aberrantly activated in cancer and in the genetic tumor syndrome tuberous sclerosis complex (TSC), which is caused by loss-of-function mutations in the TSC complex, a negative regulator of mTORC1. Clinically approved mTORC1 inhibitors, such as rapamycin, elicit a cytostatic effect that fails to eliminate tumors and is rapidly reversible. We sought to determine the effects of mTORC1 on the core regulators of intrinsic apoptosis. In TSC2-deficient cells and tumors, we find that mTORC1 inhibitors shift cellular dependence from MCL-1 to BCL-2 and BCL-XL for survival, thereby altering susceptibility to BH3 mimetics that target specific pro-survival BCL-2 proteins. The BCL-2/BCL-XL inhibitor ABT-263 synergizes with rapamycin to induce apoptosis in TSC-deficient cells and in a mouse tumor model of TSC, resulting in a more complete and durable response. These data expose a therapeutic vulnerability in regulation of the apoptotic machinery downstream of mTORC1 that promotes a cytotoxic response to rapamycin.
Collapse
Affiliation(s)
- Molly C. McNamara
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Aaron M. Hosios
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Margaret E. Torrence
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
| | - Ting Zhao
- Department of Urology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Cameron Fraser
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02215, USA
| | - Meghan Wilkinson
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - David J. Kwiatkowski
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth P. Henske
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Chin-Lee Wu
- Department of Urology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Kristopher A. Sarosiek
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02215, USA
| | - Alexander J. Valvezan
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
| | - Brendan D. Manning
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Dunn S, Eberlein C, Yu J, Gris-Oliver A, Ong SH, Yelland U, Cureton N, Staniszewska A, McEwen R, Fox M, Pilling J, Hopcroft P, Coker EA, Jaaks P, Garnett MJ, Isherwood B, Serra V, Davies BR, Barry ST, Lynch JT, Yusa K. AKT-mTORC1 reactivation is the dominant resistance driver for PI3Kβ/AKT inhibitors in PTEN-null breast cancer and can be overcome by combining with Mcl-1 inhibitors. Oncogene 2022; 41:5046-5060. [PMID: 36241868 PMCID: PMC9652152 DOI: 10.1038/s41388-022-02482-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 11/08/2022]
Abstract
The PI3K pathway is commonly activated in breast cancer, with PI3K-AKT pathway inhibitors used clinically. However, mechanisms that limit or enhance the therapeutic effects of PI3K-AKT inhibitors are poorly understood at a genome-wide level. Parallel CRISPR screens in 3 PTEN-null breast cancer cell lines identified genes mediating resistance to capivasertib (AKT inhibitor) and AZD8186 (PI3Kβ inhibitor). The dominant mechanism causing resistance is reactivated PI3K-AKT-mTOR signalling, but not other canonical signalling pathways. Deletion of TSC1/2 conferred resistance to PI3Kβi and AKTi through mTORC1. However, deletion of PIK3R2 and INPPL1 drove specific PI3Kβi resistance through AKT. Conversely deletion of PIK3CA, ERBB2, ERBB3 increased PI3Kβi sensitivity while modulation of RRAGC, LAMTOR1, LAMTOR4 increased AKTi sensitivity. Significantly, we found that Mcl-1 loss enhanced response through rapid apoptosis induction with AKTi and PI3Kβi in both sensitive and drug resistant TSC1/2 null cells. The combination effect was BAK but not BAX dependent. The Mcl-1i + PI3Kβ/AKTi combination was effective across a panel of breast cancer cell lines with PIK3CA and PTEN mutations, and delivered increased anti-tumor benefit in vivo. This study demonstrates that different resistance drivers to PI3Kβi and AKTi converge to reactivate PI3K-AKT or mTOR signalling and combined inhibition of Mcl-1 and PI3K-AKT has potential as a treatment strategy for PI3Kβi/AKTi sensitive and resistant breast tumours.
Collapse
Affiliation(s)
- Shanade Dunn
- Wellcome Sanger Institute, Cambridge, UK
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Cath Eberlein
- Bioscience, Early Oncology, AstraZeneca, Alderley Park, UK
| | - Jason Yu
- Wellcome Sanger Institute, Cambridge, UK
- Molecular Biology of Metabolism Lab, The Francis Crick Institute, London, UK
| | | | | | - Urs Yelland
- Bioscience, Early Oncology, AstraZeneca, Alderley Park, UK
| | | | | | - Robert McEwen
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Millie Fox
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | | | | | | | | | | | | | - Violeta Serra
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK.
| | - James T Lynch
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Kosuke Yusa
- Wellcome Sanger Institute, Cambridge, UK.
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
14
|
Wilson C, Murnane JP. High-throughput screen to identify compounds that prevent or target telomere loss in human cancer cells. NAR Cancer 2022; 4:zcac029. [PMID: 36196242 PMCID: PMC9527662 DOI: 10.1093/narcan/zcac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/09/2022] [Accepted: 09/29/2022] [Indexed: 11/14/2022] Open
Abstract
Chromosome instability (CIN) is an early step in carcinogenesis that promotes tumor cell progression and resistance to therapy. Using plasmids integrated adjacent to telomeres, we have previously demonstrated that the sensitivity of subtelomeric regions to DNA double-strand breaks (DSBs) contributes to telomere loss and CIN in cancer. A high-throughput screen was created to identify compounds that affect telomere loss due to subtelomeric DSBs introduced by I-SceI endonuclease, as detected by cells expressing green fluorescent protein (GFP). A screen of a library of 1832 biologically-active compounds identified a variety of compounds that increase or decrease the number of GFP-positive cells following activation of I-SceI. A curated screen done in triplicate at various concentrations found that inhibition of classical nonhomologous end joining (C-NHEJ) increased DSB-induced telomere loss, demonstrating that C-NHEJ is functional in subtelomeric regions. Compounds that decreased DSB-induced telomere loss included inhibitors of mTOR, p38 and tankyrase, consistent with our earlier hypothesis that the sensitivity of subtelomeric regions to DSBs is a result of inappropriate resection during repair. Although this assay was also designed to identify compounds that selectively target cells experiencing telomere loss and/or chromosome instability, no compounds of this type were identified in the current screen.
Collapse
Affiliation(s)
- Chris Wilson
- Department of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, CA 94143, USA
| | - John P Murnane
- To whom correspondence should be addressed. Tel: +1 415 680 4434;
| |
Collapse
|
15
|
A lymphatic-absorbed multi-targeted kinase inhibitor for myelofibrosis therapy. Nat Commun 2022; 13:4730. [PMID: 35977945 PMCID: PMC9386018 DOI: 10.1038/s41467-022-32486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Activation of compensatory signaling nodes in cancer often requires combination therapies that are frequently plagued by dose-limiting toxicities. Intestinal lymphatic drug absorption is seldom explored, although reduced toxicity and sustained drug levels would be anticipated to improve systemic bioavailability. A potent orally bioavailable multi-functional kinase inhibitor (LP-182) is described with intrinsic lymphatic partitioning for the combined targeting of phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways without observable toxicity. We demonstrate selectivity and therapeutic efficacy through reduction of downstream kinase activation, amelioration of disease phenotypes, and improved survival in animal models of myelofibrosis. Our further characterization of synthetic and physiochemical properties for small molecule lymphatic uptake will support continued advancements in lymphatropic therapy for altering disease trajectories of a myriad of human disease indications. Combination therapies simultaneously inhibiting different therapeutic targets in cancer is challenged by individual pharmacokinetic profiles. Here, the authors generate an orally provided multi-targeted kinase inhibitor that is lymphatic absorbed and increases survival in a murine model of myelofibrosis.
Collapse
|
16
|
Yang L, Wei S, Zhang J, Hu Q, Hu W, Cao M, Zhang L, Wang Y, Wang P, Wang K. Construction of a predictive model for immunotherapy efficacy in lung squamous cell carcinoma based on the degree of tumor-infiltrating immune cells and molecular typing. Lab Invest 2022; 20:364. [PMID: 35962453 PMCID: PMC9373274 DOI: 10.1186/s12967-022-03565-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/02/2022] [Indexed: 12/20/2022]
Abstract
Background To construct a predictive model of immunotherapy efficacy for patients with lung squamous cell carcinoma (LUSC) based on the degree of tumor-infiltrating immune cells (TIIC) in the tumor microenvironment (TME). Methods The data of 501 patients with LUSC in the TCGA database were used as a training set, and grouped using non-negative matrix factorization (NMF) based on the degree of TIIC assessed by single-sample gene set enrichment analysis (GSEA). Two data sets (GSE126044 and GSE135222) were used as validation sets. Genes screened for modeling by least absolute shrinkage and selection operator (LASSO) regression and used to construct a model based on immunophenotyping score (IPTS). RNA extraction and qPCR were performed to validate the prognostic value of IPTS in our independent LUSC cohort. The receiver operating characteristic (ROC) curve was constructed to determine the predictive value of the immune efficacy. Kaplan–Meier survival curve analysis was performed to evaluate the prognostic predictive ability. Correlation analysis and enrichment analysis were used to explore the potential mechanism of IPTS molecular typing involved in predicting the immunotherapy efficacy for patients with LUSC. Results The training set was divided into a low immune cell infiltration type (C1) and a high immune cell infiltration type (C2) by NMF typing, and the IPTS molecular typing based on the 17-gene model could replace the results of the NMF typing. The area under the ROC curve (AUC) was 0.82. In both validation sets, the IPTS of patients who responded to immunotherapy were significantly higher than those who did not respond to immunotherapy (P = 0.0032 and P = 0.0451), whereas the AUC was 0.95 (95% CI = 1.00–0.84) and 0.77 (95% CI = 0.58–0.96), respectively. In our independent cohort, we validated its ability to predict the response to cancer immunotherapy, for the AUC was 0.88 (95% CI = 1.00–0.66). GSEA suggested that the high IPTS group was mainly involved in immune-related signaling pathways. Conclusions IPTS molecular typing based on the degree of TIIC in the TME could well predict the efficacy of immunotherapy in patients with LUSC with a certain prognostic value. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03565-7.
Collapse
Affiliation(s)
- Lingge Yang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Shuli Wei
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jingnan Zhang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Qiongjie Hu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Wansong Hu
- Department of Heart Center, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Mengqing Cao
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Long Zhang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
| | - Yongfang Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Pingli Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China.
| |
Collapse
|
17
|
Zhou Y, Che Y, Fu Z, Zhang H, Wu H. Triple-Negative Breast Cancer Analysis Based on Metabolic Gene Classification and Immunotherapy. Front Public Health 2022; 10:902378. [PMID: 35875026 PMCID: PMC9296841 DOI: 10.3389/fpubh.2022.902378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
Triple negative breast cancer (TNBC) has negative expression of ER, PR and HER-2. TNBC shows high histological grade and positive rate of lymph node metastasis, easy recurrence and distant metastasis. Molecular typing based on metabolic genes can reflect deeper characteristics of breast cancer and provide support for prognostic evaluation and individualized treatment. Metabolic subtypes of TNBC samples based on metabolic genes were determined by consensus clustering. CIBERSORT method was applied to evaluate the score distribution and differential expression of 22 immune cells in the TNBC samples. Linear discriminant analysis (LDA) established a subtype classification feature index. Kaplan-Meier (KM) and receiver operating characteristic (ROC) curves were generated to validate the performance of prognostic metabolic subtypes in different datasets. Finally, we used weighted correlation network analysis (WGCNA) to cluster the TCGA expression profile dataset and screen the co-expression modules of metabolic genes. Consensus clustering of the TCGA cohort/dataset obtained three metabolic subtypes (MC1, MC2, and MC3). The ROC analysis showed a high prognostic performance of the three clusters in different datasets. Specifically, MC1 had the optimal prognosis, MC3 had a poor prognosis, and the three metabolic subtypes had different prognosis. Consistently, the immune characteristic index established based on metabolic subtypes demonstrated that compared with the other two subtypes, MC1 had a higher IFNγ score, T cell lytic activity and lower angiogenesis score, T cell dysfunction and rejection score. TIDE analysis showed that MC1 patients were more likely to benefit from immunotherapy. MC1 patients were more sensitive to immune checkpoint inhibitors and traditional chemotherapy drugs Cisplatin, Paclitaxel, Embelin, and Sorafenib. Multiclass AUC based on RNASeq and GSE datasets were 0.85 and 0.85, respectively. Finally, based on co-expression network analysis, we screened 7 potential gene markers related to metabolic characteristic index, of which CLCA2, REEP6, SPDEF, and CRAT can be used to indicate breast cancer prognosis. Molecular classification related to TNBC metabolism was of great significance for comprehensive understanding of the molecular pathological characteristics of TNBC, contributing to the exploration of reliable markers for early diagnosis of TNBC and predicting metastasis and recurrence, improvement of the TNBC staging system, guiding individualized treatment.
Collapse
Affiliation(s)
- Yu Zhou
- Oncology Department, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Yingqi Che
- Hematology-Oncology Department, Long Nan Hospital, Daqing, China
| | - Zhongze Fu
- Gastroenterology Department, The First Hospital of Qiqihar, Qiqihar, China
| | - Henan Zhang
- Oncology Department, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Huiyu Wu
- Third Department of Oncology, People's Hospital of Daqing, Daqing, China
- *Correspondence: Huiyu Wu
| |
Collapse
|
18
|
Temaj G, Saha S, Dragusha S, Ejupi V, Buttari B, Profumo E, Beqa L, Saso L. Ribosomopathies and cancer: pharmacological implications. Expert Rev Clin Pharmacol 2022; 15:729-746. [PMID: 35787725 DOI: 10.1080/17512433.2022.2098110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The ribosome is a ribonucleoprotein organelle responsible for protein synthesis, and its biogenesis is a highly coordinated process that involves many macromolecular components. Any acquired or inherited impairment in ribosome biogenesis or ribosomopathies is associated with the development of different cancers and rare genetic diseases. Interference with multiple steps of protein synthesis has been shown to promote tumor cell death. AREAS COVERED We discuss the current insights about impaired ribosome biogenesis and their secondary consequences on protein synthesis, transcriptional and translational responses, proteotoxic stress, and other metabolic pathways associated with cancer and rare diseases. Studies investigating the modulation of different therapeutic chemical entities targeting cancer in in vitro and in vivo models have also been detailed. EXPERT OPINION Despite the association between inherited mutations affecting ribosome biogenesis and cancer biology, the development of therapeutics targeting the essential cellular machinery has only started to emerge. New chemical entities should be designed to modulate different checkpoints (translating oncoproteins, dysregulation of specific ribosome-assembly machinery, ribosomal stress, and rewiring ribosomal functions). Although safe and effective therapies are lacking, consideration should also be given to using existing drugs alone or in combination for long-term safety, with known risks for feasibility in clinical trials and synergistic effects.
Collapse
Affiliation(s)
| | - Sarmistha Saha
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | | | - Valon Ejupi
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Lule Beqa
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Italy
| |
Collapse
|
19
|
Heudel P, Frenel JS, Dalban C, Bazan F, Joly F, Arnaud A, Abdeddaim C, Chevalier-Place A, Augereau P, Pautier P, Chakiba C, You B, Lancry-Lecomte L, Garin G, Marcel V, Diaz JJ, Treilleux I, Pérol D, Fabbro M, Ray-Coquard I. Safety and Efficacy of the mTOR Inhibitor, Vistusertib, Combined With Anastrozole in Patients With Hormone Receptor-Positive Recurrent or Metastatic Endometrial Cancer: The VICTORIA Multicenter, Open-label, Phase 1/2 Randomized Clinical Trial. JAMA Oncol 2022; 8:1001-1009. [PMID: 35551299 PMCID: PMC9100474 DOI: 10.1001/jamaoncol.2022.1047] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Importance Endometrial cancer is often hormone-dependent and treated with aromatase inhibitors. The PI3K-AKT-mTOR pathway deregulation observed in endometrial cancer drives hormonal resistance, thus supporting the rationale of combining mTOR inhibitor with endocrine therapy. Objective To evaluate the safety and efficacy of vistusertib in combination with anastrozole in the treatment of women with hormone receptor-positive recurrent or metastatic endometrial cancer. Design, Settings, and Participants The VICTORIA study was a multicenter, open-label, randomized clinical trial that accrued 75 patients with hormone receptor-positive recurrent or metastatic endometrial cancer from 12 cancer centers in France in April 2016 to October 2019. After a safety run-in period, a Simon 2-stage design was used. Data analyses were performed from December 11, 2020, to March 11, 2021. Interventions Patients were randomized in a 2:1 ratio to oral vistusertib (125 mg twice daily 2 days per week) and oral anastrozole (1 mg daily) in the combination vistusertib with anastrozole arm (V+A arm) or oral anastrozole alone (A arm). Main Outcomes and Measures The primary end point was serious adverse events for the safety run-in period and progression-free rate at 8 weeks (8wk-PFR)-assessed with a blinded independent central review in phase 2. The secondary end points were objective response rate, duration of response, progression-free survival (PFS), overall survival, and incidence of adverse events. Results Of the 75 patients who were randomized, 73 (median [range] age, 69.5 [37-88] y; all female) were treated: V+A arm, 49 patients; A arm, 24 patients. In the V+A arm, the 8wk-PFR was 67.3% (unilateral 95% CI, 54.7%) and in the A arm, 39.1% (unilateral 95% CI, 22.2%). No significant serious adverse events were reported during the safety run-in period (n = 6 in V+A arm). The overall response rate was 24.5% (95% CI, 13.3%-38.9%) in the V+A arm vs 17.4% (95% CI, 5.0%-38.8%) in the A arm. With a median follow-up of 27.7 months, median PFS was 5.2 (95% CI, 3.4-8.9) in the V+A arm and 1.9 (95% CI, 1.6-8.9) months in the A arm. Fatigue, lymphopenia, hyperglycemia, and diarrhea were the most common (grade ≥2) adverse events associated with vistusertib. Conclusions and Relevance This multicenter, open-label, phase 1/2 randomized clinical trial demonstrated that adding vistusertib to anastrozole improved 8wk-PFR, overall response rate, and PFS for patients with endometrial cancer and had manageable adverse events. Identification of molecular subgroups would allow for more precise selection of patients who may be most likely to experience favorable outcomes. Trial Registration ClinicalTrials.gov Identifier: NCT02730923.
Collapse
Affiliation(s)
- Pierre Heudel
- Medical Oncology Department, Centre Léon Bérard, Lyon, France.,University Claude Bernard Lyon 1, Lyon, France.,Groupe d'Investigateurs National des Etudes des Cancers Ovariens et du Sein, France
| | - Jean-Sébastien Frenel
- Groupe d'Investigateurs National des Etudes des Cancers Ovariens et du Sein, France.,Medical Oncology Department Institut Cancérologie de l'Ouest, St Herblain, France
| | - Cécile Dalban
- Clinical Research Department, Centre Léon Bérard, Lyon, France
| | - Fernando Bazan
- Groupe d'Investigateurs National des Etudes des Cancers Ovariens et du Sein, France.,Medical Oncology Department, Hôpital Jean Minjoz, Besançon, France
| | - Florence Joly
- Groupe d'Investigateurs National des Etudes des Cancers Ovariens et du Sein, France.,Medical Oncology Department, Centre François Baclesse, Caen, France
| | - Antoine Arnaud
- Groupe d'Investigateurs National des Etudes des Cancers Ovariens et du Sein, France.,Institut Sainte Catherine, Avignon, France
| | - Cyril Abdeddaim
- Groupe d'Investigateurs National des Etudes des Cancers Ovariens et du Sein, France.,Centre Oscar Lambret, Lille, France
| | - Annick Chevalier-Place
- Groupe d'Investigateurs National des Etudes des Cancers Ovariens et du Sein, France.,Centre Oscar Lambret, Lille, France
| | - Paule Augereau
- Groupe d'Investigateurs National des Etudes des Cancers Ovariens et du Sein, France.,Institut Cancérologie Paul Papin, Angers, France
| | - Patricia Pautier
- Groupe d'Investigateurs National des Etudes des Cancers Ovariens et du Sein, France.,Institut Gustave Roussy, Villejuif, France
| | - Camille Chakiba
- Groupe d'Investigateurs National des Etudes des Cancers Ovariens et du Sein, France.,Institut Bergonié, Bordeaux, France
| | - Benoit You
- University Claude Bernard Lyon 1, Lyon, France.,Groupe d'Investigateurs National des Etudes des Cancers Ovariens et du Sein, France.,Department of Medical Oncology, Centre Hospitalier Lyon Sud, Pierre Bénite, France.,EMR EA UCBL/HCL 3738 CICLY, Lyon, France
| | - Laurence Lancry-Lecomte
- Groupe d'Investigateurs National des Etudes des Cancers Ovariens et du Sein, France.,Institut Daniel Hollard, Grenoble, France
| | - Gwenaelle Garin
- Clinical Research Department, Centre Léon Bérard, Lyon, France
| | - Virginie Marcel
- University Claude Bernard Lyon 1, Lyon, France.,Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Institut Convergence PLAsCAN, Lyon, France
| | - Jean Jacques Diaz
- University Claude Bernard Lyon 1, Lyon, France.,Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Institut Convergence PLAsCAN, Lyon, France
| | - Isabelle Treilleux
- Groupe d'Investigateurs National des Etudes des Cancers Ovariens et du Sein, France.,Biopathology Department, Centre Léon Bérard, Lyon, France
| | - David Pérol
- Clinical Research Department, Centre Léon Bérard, Lyon, France
| | - Michel Fabbro
- Medical Oncology Department, Institut de Cancérologie de Montpellier, Montpellier, France
| | - Isabelle Ray-Coquard
- Medical Oncology Department, Centre Léon Bérard, Lyon, France.,University Claude Bernard Lyon 1, Lyon, France.,Groupe d'Investigateurs National des Etudes des Cancers Ovariens et du Sein, France
| |
Collapse
|
20
|
Liao H, Wang Y, Xu X, Zhou C, Zhang J, Zhong K, Yang D. [The dual mTORC1/2 inhibitor AZD2014 inhibits acute graft rejection in a rat liver transplantation model]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:598-603. [PMID: 35527497 PMCID: PMC9085585 DOI: 10.12122/j.issn.1673-4254.2022.04.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the inhibitory effect of AZD2014, a dual mTORC1/2 inhibitor, against acute graft rejection in a rat model of allogeneic liver transplantation. METHODS Liver transplantation from Lewis rat to recipient BN rat (a donor-recipient combination that was prone to induce acute graft rejection) was performed using Kamada's two-cuff technique. The recipient BN rats were randomized into 2 groups for treatment with daily intraperitoneal injection of AZD2014 (5 mg/kg, n=4) or vehicle (2.5 mL/kg, n=4) for 14 consecutive days, starting from the first day after the transplantation. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBIL) levels of the rats were measured 3 days before and at 1, 3, 5, 7, 10, and 14 days after the transplantation, and the survival time of the rats within 14 days were recorded. Immunohistochemical staining was used to examine the expressions of CD3 and Foxp3 in the liver graft, and acute graft rejection was assessed using HE staining based on the Banff schema. RESULTS Three rats in the control group died within 14 days after the surgery, while no death occurred in the AZD2014 group, demonstrating a significantly longer survival time of the rats in AZD2014 group (χ2=4.213, P=0.04). Serum ALT, AST and TBIL levels in the control group increased progressively after the surgery and were all significantly higher than those in AZD2014 group at the same time point (P < 0.05). Pathological examination revealed significantly worse liver graft rejection in the control group than in AZD2014 group based on assessment of the rejection index (P < 0.01); the rats in the control group showed more serious T lymphocyte infiltration and significantly fewer Treg cells in the liver graft than those in AZD2014 group (P < 0.01). CONCLUSIONS AZD2014 can effectively inhibit acute graft rejection in rats with allogeneic liver transplantation.
Collapse
Affiliation(s)
- H Liao
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Y Wang
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - X Xu
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - C Zhou
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - J Zhang
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - K Zhong
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - D Yang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
21
|
Scott SC, Anders NM, Scardina M, Hann CL, Rudek MA. Validation of a rapid liquid chromatography tandem mass spectrometric method for the quantitative analysis of vistusertib. J Pharm Biomed Anal 2022; 208:114436. [PMID: 34735991 PMCID: PMC8693366 DOI: 10.1016/j.jpba.2021.114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 01/22/2023]
Abstract
Vistusertib is an orally bioavailable mTOR inhibitor that is being studied in clinical trials. A novel reliable method was developed to quantitate vistusertib using LC-MS/MS to explore drug exposure-response relationships. Sample preparation involved protein precipitation using acetonitrile. Separation of vistusertib and the internal standard, AZD8055, was achieved with a Waters Acquity UPLC BEH C18 column utilizing isocratic elution over a 3 min total analytical run time. A SCIEX 4500 triple quadrupole mass spectrometer operated in positive electrospray ionization mode was used for the detection of vistusertib. The assay range was 5-5000 ng/mL and proved to be accurate (98.7-105.7%) and precise (CV ≤ 10.5%). A 40,000 ng/mL sample that was diluted 1:10 (v/v) with plasma was accurately quantitated. Long-term frozen plasma stability for vistusertib at -70 °C has been determined for at least 29 months. The method was applied for the measurement of plasma concentrations of vistusertib in a patient a solid tumor receiving 35 mg twice daily dose orally.
Collapse
Affiliation(s)
- Susan C. Scott
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nicole M. Anders
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Morgan Scardina
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Christine L. Hann
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA,Correspondence to: Michelle A. Rudek, PharmD, PhD, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine,1650 Orleans Street, CRB1 Room 1M52, Baltimore, MD 21287, Phone: 443-287-6476, and Christine L. Hann, MD, PhD, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Viragh 8123 Box 6, 201 N. Broadway, Baltimore, MD 21287, Phone: 443-287-6476,
| | - Michelle A. Rudek
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA,Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, USA,Correspondence to: Michelle A. Rudek, PharmD, PhD, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine,1650 Orleans Street, CRB1 Room 1M52, Baltimore, MD 21287, Phone: 443-287-6476, and Christine L. Hann, MD, PhD, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Viragh 8123 Box 6, 201 N. Broadway, Baltimore, MD 21287, Phone: 443-287-6476,
| |
Collapse
|
22
|
Shams R, Ito Y, Miyatake H. Mapping of mTOR drug targets: Featured platforms for anti-cancer drug discovery. Pharmacol Ther 2021; 232:108012. [PMID: 34624427 DOI: 10.1016/j.pharmthera.2021.108012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
The mammalian/mechanistic target of rapamycin (mTOR) is a regulatory protein kinase involved in cell growth and proliferation. mTOR is usually assembled in two different complexes with different regulatory mechanisms, mTOR complex 1 (mTORC1) and mTORC2, which are involved in different functions such as cell proliferation and cytoskeleton assembly, respectively. In cancer cells, mTOR is hyperactivated in response to metabolic alterations and/or oncogenic signals to overcome the stressful microenvironments. Therefore, recent research progress for mTOR inhibition involves a variety of compounds that have been developed to disturb the metabolic processes of cancer cells through mTOR inhibition. In addition to competitive or allosteric inhibition, a new inhibition strategy that emerged mTOR complexes destabilization has recently been a concern. Here, we review the history of mTOR and its inhibition, along with the timeline of the mTOR inhibitors. We also introduce prospective drug targets to inhibit mTOR by disrupting the complexation of the components with peptides and small molecules.
Collapse
Affiliation(s)
- Raef Shams
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan; Department of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan.
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan; Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama 351-0198, Japan
| | - Hideyuki Miyatake
- Department of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan; Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
23
|
Quantitation of vistusertib by UHPLC-MS/MS in rat plasma and its application to a pharmacokinetic study. Bioanalysis 2021; 13:1333-1341. [PMID: 34470474 DOI: 10.4155/bio-2021-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: The present study aimed to develop a UHPLC-MS/MS method for determination of vistusertib in biological matrix, and to describe the pharmacokinetic behavior of vistusertib in SD rats. Methodology & results: After protein precipitation with acetone and acetonitrile (1:1), the chromatographic separation was achieved on an Agilent Poroshell 120 EC-C18 column and detected with a SCIEX QTRAP 4500 mass spectrometer under positive ionization mode. The developed UHPLC-MS/MS method showed an excellent linearity within the range of 1.0-3000 ng/ml with good accuracy and precision. Vistusertib showed a rapid absorption and reached the maximum concentration of 3532.2 ± 678.0 ng/ml 20-30 min after oral administration in Sprague-Dawley rats. Conclusion: The established analytical method was fast, sensitive and robust, and successfully applied to describe the pharmacokinetic behavior of vistusertib following an oral administration in rats.
Collapse
|
24
|
Grosso S, Marini A, Gyuraszova K, Voorde JV, Sfakianos A, Garland GD, Tenor AR, Mordue R, Chernova T, Morone N, Sereno M, Smith CP, Officer L, Farahmand P, Rooney C, Sumpton D, Das M, Teodósio A, Ficken C, Martin MG, Spriggs RV, Sun XM, Bushell M, Sansom OJ, Murphy D, MacFarlane M, Le Quesne JPC, Willis AE. The pathogenesis of mesothelioma is driven by a dysregulated translatome. Nat Commun 2021; 12:4920. [PMID: 34389715 PMCID: PMC8363647 DOI: 10.1038/s41467-021-25173-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 07/25/2021] [Indexed: 12/22/2022] Open
Abstract
Malignant mesothelioma (MpM) is an aggressive, invariably fatal tumour that is causally linked with asbestos exposure. The disease primarily results from loss of tumour suppressor gene function and there are no 'druggable' driver oncogenes associated with MpM. To identify opportunities for management of this disease we have carried out polysome profiling to define the MpM translatome. We show that in MpM there is a selective increase in the translation of mRNAs encoding proteins required for ribosome assembly and mitochondrial biogenesis. This results in an enhanced rate of mRNA translation, abnormal mitochondrial morphology and oxygen consumption, and a reprogramming of metabolic outputs. These alterations delimit the cellular capacity for protein biosynthesis, accelerate growth and drive disease progression. Importantly, we show that inhibition of mRNA translation, particularly through combined pharmacological targeting of mTORC1 and 2, reverses these changes and inhibits malignant cell growth in vitro and in ex-vivo tumour tissue from patients with end-stage disease. Critically, we show that these pharmacological interventions prolong survival in animal models of asbestos-induced mesothelioma, providing the basis for a targeted, viable therapeutic option for patients with this incurable disease.
Collapse
Affiliation(s)
- Stefano Grosso
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Alberto Marini
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Katarina Gyuraszova
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | | | | | - Gavin D Garland
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Angela Rubio Tenor
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Ryan Mordue
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Tanya Chernova
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Nobu Morone
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Marco Sereno
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Claire P Smith
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Leah Officer
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Pooyeh Farahmand
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | - Claire Rooney
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | - David Sumpton
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | - Madhumita Das
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Ana Teodósio
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Catherine Ficken
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Maria Guerra Martin
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Ruth V Spriggs
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Xiao-Ming Sun
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK
| | - Martin Bushell
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | - Owen J Sansom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK
| | - Daniel Murphy
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - Marion MacFarlane
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK.
| | - John P C Le Quesne
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, UK.
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK.
- Glenfield Hospital, Groby Road, University Hospitals Leicester NHS Trust Leicester, Leicester, UK.
| | - Anne E Willis
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, UK.
| |
Collapse
|
25
|
Abstract
Approximately 70% of invasive breast cancers have some degree of dependence on the estrogen hormone for cell proliferation and growth. These tumors have estrogen and/or progesterone receptors (ER/PR+), generally referred to as hormone receptor positive (HR+) tumors, as indicated by the presence of positive staining and varying intensity levels of estrogen and/or progesterone receptors on immunohistochemistry. Therapies that inhibit ER signaling pathways, such as aromatase inhibitors (letrozole, anastrozole, exemestane), selective ER modulators (tamoxifen), and ER down-regulators (fulvestrant), are the mainstays of treatment for hormone-receptor-positive breast cancers. However, de novo or acquired resistance to ER targeted therapies is present in many tumors, leading to disease progression. The PI3K/AKT/mTOR pathway is implicated in sustaining endocrine resistance and has become the target of many new drugs for ER+ breast cancer. This article reviews the function of the phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway and the various classes of PI3K pathway inhibitors that have been developed to disrupt this pathway signaling for the treatment of hormone-receptor-positive breast cancer.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Breast Neoplasms/diagnosis
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors
- Class I Phosphatidylinositol 3-Kinases/genetics
- Class I Phosphatidylinositol 3-Kinases/metabolism
- DNA Mutational Analysis
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Female
- Humans
- Mutation
- Neoplasm Recurrence, Local/diagnosis
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Neoplasm Staging
- Phosphoinositide-3 Kinase Inhibitors/metabolism
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/antagonists & inhibitors
- Receptors, Progesterone/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Sara E Nunnery
- Breast Cancer Program, Division of Hematology/Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, 2220 Pierce Avenue, 777 PRB, Nashville, TN, 37232-6307, USA
| | - Ingrid A Mayer
- Breast Cancer Program, Division of Hematology/Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, 2220 Pierce Avenue, 777 PRB, Nashville, TN, 37232-6307, USA.
| |
Collapse
|
26
|
Collins GP, Clevenger TN, Burke KA, Yang B, MacDonald A, Cunningham D, Fox CP, Goy A, Gribben J, Nowakowski GS, Roschewski M, Vose JM, Vallurupalli A, Cheung J, Raymond A, Nuttall B, Stetson D, Dougherty BA, Schalkwijk S, Carnevalli LS, Willis B, Tao L, Harrington EA, Hamdy A, Izumi R, Pease JE, Frigault MM, Flinn I. A phase 1/2 study of the combination of acalabrutinib and vistusertib in patients with relapsed/refractory B-cell malignancies. Leuk Lymphoma 2021; 62:2625-2636. [PMID: 34269152 DOI: 10.1080/10428194.2021.1938027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In a phase 1b study of acalabrutinib (a covalent Bruton tyrosine kinase (BTK) inhibitor) in combination with vistusertib (a dual mTORC1/2 inhibitor) in patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL), multiple ascending doses of the combination as intermittent or continuous schedules of vistusertib were evaluated. The overall response rate was 12% (3/25). The pharmacodynamic (PD) profile for acalabrutinib showed that BTK occupancy in all patients was >95%. In contrast, PD analysis for vistusertib showed variable inhibition of phosphorylated 4EBP1 (p4EBP1) without modulation of AKT phosphorylation (pAKT). The pharmacokinetic (PK)/PD relationship of vistusertib was direct for TORC1 inhibition (p4EBP1) but did not correlate with TORC2 inhibition (pAKT). Cell-of-origin subtyping or next-generation sequencing did not identify a subset of DLBCL patients with clinical benefit; however, circulating tumor DNA dynamics correlated with radiographic response. These data suggest that vistusertib does not modulate targets sufficiently to add to the clinical activity of acalabrutinib monotherapy. Clinicaltrials.gov identifier: NCT03205046.
Collapse
Affiliation(s)
- Graham P Collins
- NIHR Oxford Biomedical Research Center, Oxford Cancer and Haematology Centre, Churchill Hospital, Oxford, UK
| | | | - Kathleen A Burke
- Translational Medicine, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Buyue Yang
- Acerta Pharma, South San Francisco, CA, USA
| | - Alex MacDonald
- Clinical Pharmacology & Safety Sciences, Oncology R&D, AstraZeneca, Cambridge, UK
| | - David Cunningham
- Gastrointestinal and Lymphoma Unit, Royal Marsden and Institute of Cancer Research Biomedical Research Centre, London, UK
| | - Christopher P Fox
- Department of Clinical Haematology, Nottingham University Hospitals NHS Trust and Division of Cancer and Stem Cells, University of Nottingham, Nottingham, UK
| | - Andre Goy
- Department of Medicine, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - John Gribben
- Department of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Julie M Vose
- Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anusha Vallurupalli
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Amelia Raymond
- Translational Medicine, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Barrett Nuttall
- Translational Medicine, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Dan Stetson
- Translational Medicine, Oncology R&D, AstraZeneca, Boston, MA, USA
| | | | - Stein Schalkwijk
- Clinical Pharmacology & Safety Sciences, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | | - Lin Tao
- Biometrics, Oncology R&D, AstraZeneca, South San Francisco, CA, USA
| | | | | | | | | | | | - Ian Flinn
- Sarah Cannon Center for Blood Cancer, Nashville, TN, USA
| |
Collapse
|
27
|
Pore N, Wu S, Standifer N, Jure-Kunkel M, de Los Reyes M, Shrestha Y, Halpin R, Rothstein R, Mulgrew K, Blackmore S, Martin P, Meekin J, Griffin M, Bisha I, Proia TA, Miragaia RJ, Herbst R, Gupta A, Abdullah SE, Raja R, Frigault MM, Barrett JC, Dennis PA, Ascierto ML, Oberst MD. Resistance to durvalumab and durvalumab plus tremelimumab is associated with functional STK11 mutations in non-small-cell lung cancer patients and is reversed by STAT3 knockdown. Cancer Discov 2021; 11:2828-2845. [PMID: 34230008 DOI: 10.1158/2159-8290.cd-20-1543] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/30/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022]
Abstract
Mutations in the STK11 (LKB1) gene regulate resistance to PD-1/PD-L1 blockade. This study evaluated this association in patients with nonsquamous non-small-cell lung cancer enrolled in three Phase 1/2 trials. STK11 mutations were associated with resistance to the anti-PD-L1 antibody durvalumab (alone/with the anti-CTLA-4 antibody tremelimumab) independently of KRAS mutational status, highlighting STK11 as a potential driver of resistance to checkpoint blockade. Retrospective assessments of tumor tissue, whole blood and serum revealed a unique immune phenotype in patients with STK11 mutations, with increased expression of markers associated with neutrophils (i.e. CXCL2, IL6), Th17 contexture (i.e. IL17A) and immune checkpoints. Associated changes were observed in the periphery. Reduction of STAT3 in the tumor microenvironment using an antisense oligonucleotide reversed immunotherapy resistance in preclinical STK11 knockout models. These results suggest that STK11 mutations may hinder response to checkpoint blockade through mechanisms including suppressive myeloid cell biology, which could be reversed by STAT3-targeted therapy.
Collapse
Affiliation(s)
| | - Song Wu
- AstraZeneca, Gaithersburg, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Holloway RW, Marignani PA. Targeting mTOR and Glycolysis in HER2-Positive Breast Cancer. Cancers (Basel) 2021; 13:2922. [PMID: 34208071 PMCID: PMC8230691 DOI: 10.3390/cancers13122922] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022] Open
Abstract
Up to one third of all breast cancers are classified as the aggressive HER2-positive subtype, which is associated with a higher risk of recurrence compared to HER2-negative breast cancers. The HER2 hyperactivity associated with this subtype drives tumor growth by up-regulation of mechanistic target of rapamycin (mTOR) pathway activity and a metabolic shift to glycolysis. Although inhibitors targeting the HER2 receptor have been successful in treating HER2-positive breast cancer, anti-HER2 therapy is associated with a high risk of recurrence and drug resistance due to stimulation of the PI3K-Akt-mTOR signaling pathway and glycolysis. Combination therapies against HER2 with inhibition of mTOR improve clinical outcomes compared to HER2 inhibition alone. Here, we review the role of the HER2 receptor, mTOR pathway, and glycolysis in HER2-positive breast cancer, along with signaling mechanisms and the efficacy of treatment strategies of HER2-positive breast cancer.
Collapse
Affiliation(s)
| | - Paola A. Marignani
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| |
Collapse
|
29
|
Nailwal NP, Doshi GM. Role of intracellular signaling pathways and their inhibitors in the treatment of inflammation. Inflammopharmacology 2021; 29:617-640. [PMID: 34002330 DOI: 10.1007/s10787-021-00813-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022]
Abstract
Inflammation is not only a defense mechanism of the innate immune system against invaders, but it is also involved in the pathogenesis of many diseases such as atherosclerosis, thrombosis, diabetes, epilepsy, and many neurodegenerative disorders. The World Health Organization (WHO) reports worldwide estimates of people (9.6% in males and 18.0% in females) aged over 60 years, suffering from symptomatic osteoarthritis, and around 339 million suffering from asthma. Other chronic inflammatory diseases, such as ulcerative colitis and Crohn's disease are also highly prevalent. The existing anti-inflammatory agents, both non-steroidal and steroidal, are highly effective; however, their prolonged use is marred by the severity of associated side effects. A holistic approach to ensure patient compliance requires understanding the pathophysiology of inflammation and exploring new targets for drug development. In this regard, various intracellular cell signaling pathways and their signaling molecules have been identified to be associated with inflammation. Therefore, chemical inhibitors of these pathways may be potential candidates for novel anti-inflammatory drug approaches. This review focuses on the anti-inflammatory effect of these inhibitors (for JAK/STAT, MAPK, and mTOR pathways) describing their mechanism of action through literature search, current patents, and molecules under clinical trials.
Collapse
Affiliation(s)
- Namrata P Nailwal
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai Campus, Vile Parle (W), V. M. Road, 400056, Mumbai, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai Campus, Vile Parle (W), V. M. Road, 400056, Mumbai, India.
| |
Collapse
|
30
|
Georgopoulou D, Callari M, Rueda OM, Shea A, Martin A, Giovannetti A, Qosaj F, Dariush A, Chin SF, Carnevalli LS, Provenzano E, Greenwood W, Lerda G, Esmaeilishirazifard E, O'Reilly M, Serra V, Bressan D, Mills GB, Ali HR, Cosulich SS, Hannon GJ, Bruna A, Caldas C. Landscapes of cellular phenotypic diversity in breast cancer xenografts and their impact on drug response. Nat Commun 2021; 12:1998. [PMID: 33790302 PMCID: PMC8012607 DOI: 10.1038/s41467-021-22303-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/26/2021] [Indexed: 02/01/2023] Open
Abstract
The heterogeneity of breast cancer plays a major role in drug response and resistance and has been extensively characterized at the genomic level. Here, a single-cell breast cancer mass cytometry (BCMC) panel is optimized to identify cell phenotypes and their oncogenic signalling states in a biobank of patient-derived tumour xenograft (PDTX) models representing the diversity of human breast cancer. The BCMC panel identifies 13 cellular phenotypes (11 human and 2 murine), associated with both breast cancer subtypes and specific genomic features. Pre-treatment cellular phenotypic composition is a determinant of response to anticancer therapies. Single-cell profiling also reveals drug-induced cellular phenotypic dynamics, unravelling previously unnoticed intra-tumour response diversity. The comprehensive view of the landscapes of cellular phenotypic heterogeneity in PDTXs uncovered by the BCMC panel, which is mirrored in primary human tumours, has profound implications for understanding and predicting therapy response and resistance.
Collapse
Affiliation(s)
- Dimitra Georgopoulou
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Maurizio Callari
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Oscar M Rueda
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Abigail Shea
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Alistair Martin
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Agnese Giovannetti
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Laboratory of Clinical Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Fatime Qosaj
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Ali Dariush
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Institute of Astronomy, University of Cambridge, Cambridge, UK
| | - Suet-Feung Chin
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | | | - Elena Provenzano
- Breast Cancer Programme, CRUK Cambridge Centre, Cambridge, UK
- Cambridge Breast Cancer Research Unit, NIHR Cambridge Biomedical Research Centre and Cambridge Experimental Cancer Medicine Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Wendy Greenwood
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Giulia Lerda
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Elham Esmaeilishirazifard
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Bioscience, Oncology, Early Oncology R&D, AstraZeneca, Cambridge, UK
| | - Martin O'Reilly
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institut d'Oncologia, Barcelona, Spain
| | - Dario Bressan
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Gordon B Mills
- Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Sciences University, Portland, OR, USA
| | - H Raza Ali
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Sabina S Cosulich
- Bioscience, Oncology, Early Oncology R&D, AstraZeneca, Cambridge, UK
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Alejandra Bruna
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute and Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK.
- Breast Cancer Programme, CRUK Cambridge Centre, Cambridge, UK.
- Cambridge Breast Cancer Research Unit, NIHR Cambridge Biomedical Research Centre and Cambridge Experimental Cancer Medicine Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
31
|
Zhang J. Targeting mTOR by CZ415 Suppresses Cell Proliferation and Promotes Apoptosis via Lipin-1 in Cervical Cancer In Vitro and In Vivo. Reprod Sci 2021; 28:524-531. [PMID: 32944878 DOI: 10.1007/s43032-020-00313-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/03/2020] [Indexed: 12/18/2022]
Abstract
CZ415, a novel inhibitor of mammalian target of rapamycin (mTOR) kinase, has demonstrated anti-tumor activity in several types of cancer. However, its biological function and underlying mechanism of action in cervical cancer (CC) have not been fully studied. Two CC cell lines (Hela and Siha) were treated with increasing concentrations of CZ415. Cell viability was tested with the CCK-8 assay, cell proliferation was determined by Edu staining and the colony formation assay, and apoptosis was determined by flow cytometry and Hoechst 33342 staining. Protein expression was evaluated by western blotting. A nude mouse xenograft model was used to confirm the anti-tumor activity of CZ415 in vivo. Hematoxylin and eosin (H&E) and immunohistochemistry (IHC) staining were performed on samples of tumor tissue. Results showed that CZ415 inhibited CC cell survival in a dose- and time-dependent manner, and 100 nanomolar and 48 h were the optimal conditions. In vitro and in vivo experiments showed that treatment with CZ415 significantly inhibited spheroid formation, cell proliferation, and tumor growth. Further studies showed that the anti-cancer effects of CZ415 were due to an induction of apoptosis, which was accompanied by an upregulation of Bax and downregulation of Bcl-2 through Lipin-1. CZ415 also reduced the levels of mTOR/STAT3 expression. However, these phenotypic changes were reversed by overexpression of Lipin-1. Our results suggest that the novel mTOR inhibitor CZ415 mediates tumor malignancy via Lipin-1 and might be useful for treating CC.
Collapse
Affiliation(s)
- Jinfeng Zhang
- Department of Women's Health Care, Xiaonan District Maternity and Child Healthcare Hospital, Xiaogan City, 432000, Hubei Province, China.
| |
Collapse
|
32
|
Li S, Sheng J, Liu Z, Fan Y, Zhang C, Lv T, Hu S, Jin J, Yu W, Song Y. Potent antitumour of the mTORC1/2 dual inhibitor AZD2014 in docetaxel-sensitive and docetaxel-resistant castration-resistant prostate cancer cells. J Cell Mol Med 2021; 25:2436-2449. [PMID: 33507584 PMCID: PMC7933970 DOI: 10.1111/jcmm.16155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Recent studies indicate mammalian target of rapamycin (mTOR) may play an important role in PCa progression and drug resistance. Here, we investigated the effects of a novel mTORC1/C2 dual inhibitor, AZD2014, on naive and docetaxel (Doc)‐pre‐treated castration‐resistant PCa (CRPC) cells and explored its therapeutic potential in CRPCs. In the current study, AZD2014 has a greater inhibitory effect against 4EBP1 and AKT phosphorylation than rapamycin in CRPC cells and prevented the feedback activation of AKT signalling. Importantly, AZD2014 suppressed CRPC cell growth in vitro by suppressing proliferation, apoptosis, cell cycle arrest at G1 phase and autophagy to a greater extent than rapamycin. Moreover, AZD2014 was more efficacious than rapamycin in inhibiting migration, invasion and EMT progression in Doc‐sensitive and Doc‐resistant CRPC cells. Overall, AZD2014 showed significant antitumour effects. Thereby, the current study highlights a reliable theoretical basis for the clinical application of AZD2014 in both Doc‐sensitive and Doc‐resistant CRPCs.
Collapse
Affiliation(s)
- Senmao Li
- Department of Urology, Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| | - Jindong Sheng
- Department of Gynaecological Oncology, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhenhua Liu
- Department of Urology, Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| | - Yu Fan
- Department of Urology, Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| | - Cuijian Zhang
- Department of Urology, Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| | - Tianjing Lv
- Department of Urology, Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| | - Shuai Hu
- Department of Urology, Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| | - Jie Jin
- Department of Urology, Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| | - Wei Yu
- Department of Urology, Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| | - Yi Song
- Department of Urology, Beijing Key Laboratory of Urogenital Diseases (Male), Molecular Diagnosis and Treatment Center, National Research Center for Genitourinary Oncology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| |
Collapse
|
33
|
Maiti A, Hait NC. Autophagy-mediated tumor cell survival and progression of breast cancer metastasis to the brain. J Cancer 2021; 12:954-964. [PMID: 33442395 PMCID: PMC7797661 DOI: 10.7150/jca.50137] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
Brain metastases represent a substantial amount of morbidity and mortality in breast cancer (BC). Metastatic breast tumor cells committed to brain metastases are unique because they escape immune surveillance, can penetrate the blood-brain barrier, and also adapt to the brain tissue microenvironment (TME) for colonization and outgrowth. In addition, dynamic intracellular interactions between metastatic cancer cells and neighboring astrocytes in the brain are thought to play essential roles in brain tumor progression. A better understanding of the above mechanisms will lead to developing more effective therapies for brain metastases. Growing literature suggests autophagy, a conserved lysosomal degradation pathway involved in cellular homeostasis under stressful conditions, plays essential roles in breast tumor metastatic transformation and brain metastases. Cancer cells must adapt under various microenvironmental stresses, such as hypoxia, and nutrient (glucose) deprivation, in order to survive and progress. Clinical studies reveal that tumoral expression of autophagy-related proteins is higher in brain metastasis compared to primary breast tumors. In this review, we outline the molecular mechanisms underlying autophagy-mediated BC cell survival and metastasis to the brain.
Collapse
Affiliation(s)
- Aparna Maiti
- Division of Breast Surgery and Department of Surgical Oncology, Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, 14263, USA
| | - Nitai C. Hait
- Division of Breast Surgery and Department of Surgical Oncology, Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, 14263, USA
| |
Collapse
|
34
|
Hajj GNM, Nunes PBC, Roffe M. Genome-wide translation patterns in gliomas: An integrative view. Cell Signal 2020; 79:109883. [PMID: 33321181 DOI: 10.1016/j.cellsig.2020.109883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Gliomas are the most frequent tumors of the central nervous system (CNS) and include the highly malignant glioblastoma (GBM). Characteristically, gliomas have translational control deregulation related to overactivation of signaling pathways such as PI3K/AKT/mTORC1 and Ras/ERK1/2. Thus, mRNA translation appears to play a dominant role in glioma gene expression patterns. The, analysis of genome-wide translated transcripts, together known as the translatome, may reveal important information for understanding gene expression patterns in gliomas. This review provides a brief overview of translational control mechanisms altered in gliomas with a focus on the current knowledge related to the translatomes of glioma cells and murine glioma models. We present an integrative meta-analysis of selected glioma translatome data with the aim of identifying recurrent patterns of gene expression preferentially regulated at the level of translation and obtaining clues regarding the pathological significance of these alterations. Re-analysis of several translatome datasets was performed to compare the translatomes of glioma models with those of their non-tumor counterparts and to document glioma cell responses to radiotherapy and MNK modulation. The role of recurrently altered genes in the context of translational control and tumorigenesis are discussed.
Collapse
Affiliation(s)
- Glaucia Noeli Maroso Hajj
- International Research Institute, A.C.Camargo Cancer Center, Rua Taguá, 440, São Paulo ZIP Code: 01508-010, Brazil; National Institute of Oncogenomics and Innovation, Brazil.
| | - Paula Borzino Cordeiro Nunes
- International Research Institute, A.C.Camargo Cancer Center, Rua Taguá, 440, São Paulo ZIP Code: 01508-010, Brazil
| | - Martin Roffe
- International Research Institute, A.C.Camargo Cancer Center, Rua Taguá, 440, São Paulo ZIP Code: 01508-010, Brazil; National Institute of Oncogenomics and Innovation, Brazil.
| |
Collapse
|
35
|
Turnock S, Turton DR, Martins CD, Chesler L, Wilson TC, Gouverneur V, Smith G, Kramer-Marek G. 18F-meta-fluorobenzylguanidine ( 18F-mFBG) to monitor changes in norepinephrine transporter expression in response to therapeutic intervention in neuroblastoma models. Sci Rep 2020; 10:20918. [PMID: 33262374 PMCID: PMC7708446 DOI: 10.1038/s41598-020-77788-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Targeted radiotherapy with 131I-mIBG, a substrate of the human norepinephrine transporter (NET-1), shows promising responses in heavily pre-treated neuroblastoma (NB) patients. Combinatorial approaches that enhance 131I-mIBG tumour uptake are of substantial clinical interest but biomarkers of response are needed. Here, we investigate the potential of 18F-mFBG, a positron emission tomography (PET) analogue of the 123I-mIBG radiotracer, to quantify NET-1 expression levels in mouse models of NB following treatment with AZD2014, a dual mTOR inhibitor. The response to AZD2014 treatment was evaluated in MYCN amplified NB cell lines (Kelly and SK-N-BE(2)C) by Western blot (WB) and immunohistochemistry. PET quantification of 18F-mFBG uptake post-treatment in vivo was performed, and data correlated with NET-1 protein levels measured ex vivo. Following 72 h AZD2014 treatment, in vitro WB analysis indicated decreased mTOR signalling and enhanced NET-1 expression in both cell lines, and 18F-mFBG revealed a concentration-dependent increase in NET-1 function. AZD2014 treatment failed however to inhibit mTOR signalling in vivo and did not significantly modulate intratumoural NET-1 activity. Image analysis of 18F-mFBG PET data showed correlation to tumour NET-1 protein expression, while further studies are needed to elucidate whether NET-1 upregulation induced by blocking mTOR might be a useful adjunct to 131I-mIBG therapy.
Collapse
Affiliation(s)
- Stephen Turnock
- Preclinical Molecular Imaging, Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
| | - David R Turton
- PET Radiochemistry, Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
| | - Carlos Daniel Martins
- Preclinical Molecular Imaging, Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
| | - Louis Chesler
- Division of Clinical Studies, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
| | - Thomas C Wilson
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Véronique Gouverneur
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Graham Smith
- PET Radiochemistry, Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK
| | - Gabriela Kramer-Marek
- Preclinical Molecular Imaging, Division of Radiotherapy and Imaging, The Institute of Cancer Research, 123 Old Brompton Road, London, SW7 3RP, UK.
| |
Collapse
|
36
|
Ahmed AR, Candeo A, D'Abrantes S, Needham SR, Yadav RB, Botchway SW, Parker AW. Directly imaging the localisation and photosensitization properties of the pan-mTOR inhibitor, AZD2014, in living cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 213:112055. [PMID: 33142217 PMCID: PMC7762844 DOI: 10.1016/j.jphotobiol.2020.112055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/24/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
The range of cellular functions the mechanistic target of rapamycin (mTOR) protein performs makes it an attractive drug target for cancer therapy. However, the cellular localisation and mode of action of second generation inhibitors of mTOR is poorly understood despite the level of attention there is in targeting the mTOR protein. We have therefore studied the properties of the pan-mTOR inhibitor AZD2014, an ideal candidate to study because it is naturally fluorescent, characterising its photochemical properties in solution phase (DMSO, PBS and BSA) and within living cells, where it localises within both the nucleus and the cytoplasm but with different excited state lifetimes of 4.8 (+/- 0.5) and 3.9 (+/- 0.4) ns respectively. We measure the uptake of the inhibitor AZD2014 (7 μM) in monolayer HEK293 cells occurring with a half-life of 1 min but observe complex behaviour for 3D spheroids with the core of the spheroid showing a slower uptake and a slow biphasic behaviour at longer times. From a cellular perspective using fluorescence lifetime imaging microscopy AZD2014 was found to interact directly with GFP-tagged mTORC1 proteins including the downstream target, S6K1. We observe light sensitive behaviour of the cells containing AZD2014 which leads to cell death, in both monolayer and spheroids cells, demonstrating the potential of AZD2014 to act as a possible photodynamic drug under both single photon and multiphoton excitation and discuss its use as a photosensitizer. We also briefly characterise another pan-mTOR inhibitor, INK128.
Collapse
Affiliation(s)
- Abdullah R Ahmed
- Central Laser Facility, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, UK; Larch House, Woodlands Business Park, Breckland, Linford Wood, Milton Keynes MK14 6FG, UK
| | - Alessia Candeo
- Central Laser Facility, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, UK
| | - Sofia D'Abrantes
- Central Laser Facility, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, UK; CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Gray Laboratories, ORCRB Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Sarah R Needham
- Central Laser Facility, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, UK
| | - Rahul B Yadav
- Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, UK
| | - Stanley W Botchway
- Central Laser Facility, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, UK.
| | - Anthony W Parker
- Central Laser Facility, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, UK.
| |
Collapse
|
37
|
MacCallum PE, Blundell J. The mTORC1 inhibitor rapamycin and the mTORC1/2 inhibitor AZD2014 impair the consolidation and persistence of contextual fear memory. Psychopharmacology (Berl) 2020; 237:2795-2808. [PMID: 32601986 DOI: 10.1007/s00213-020-05573-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 05/29/2020] [Indexed: 12/17/2022]
Abstract
RATIONALE The mechanistic target of rapamycin (mTOR) kinase mediates various long-lasting forms of synaptic and behavioural plasticity. However, there is little information concerning the temporal pattern of mTOR activation and susceptibility to pharmacological intervention during consolidation of contextual fear memory. Moreover, the contribution of both mTOR complex 1 and 2 together or the mTOR complex 1 downstream effector p70S6K (S6K1) to consolidation of contextual fear memory is unknown. OBJECTIVE Here, we tested whether different timepoints of vulnerability to rapamycin, a first generation mTOR complex 1 inhibitor, exist for contextual fear memory consolidation and persistence. We also sought to characterize the effects of dually inhibiting mTORC1/2 as well as S6K1 on fear memory formation and persistence. METHODS Rapamycin was injected systemically to mice immediately, 3 h, or 12 h after contextual fear conditioning, and retention was measured at different timepoints thereafter. To determine the effects of a single injection of the dual mTROC1/2 inhibitor AZD2014 after learning on memory consolidation and persistence, a dose-response experiment was carried out. Memory formation and persistence was also assessed in response to the S6K1 inhibitor PF-4708671. RESULTS A single systemic injection of rapamycin immediately or 3 h, but not 12 h, after learning impaired the formation and persistence of contextual fear memory. AZD2014 was found, with limitations, to dose-dependently attenuate memory consolidation and persistence at the highest dose tested (50 mg/kg). In contrast, PF-4708671 had no effect on consolidation or persistence. CONCLUSION Our results indicate the need to further understand the role of mTORC1/2 kinase activity in the molecular mechanisms underlying memory processing and also demonstrate that the effects of mTORC1 inhibition at different timepoints well after learning on memory consolidation and persistence.
Collapse
Affiliation(s)
- Phillip E MacCallum
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jacqueline Blundell
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
38
|
Vishnoi K, Viswakarma N, Rana A, Rana B. Transcription Factors in Cancer Development and Therapy. Cancers (Basel) 2020. [PMID: 32824207 DOI: 10.339/cancers12082296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multi-step process and requires constitutive expression/activation of transcription factors (TFs) for growth and survival. Many of the TFs reported so far are critical for carcinogenesis. These include pro-inflammatory TFs, hypoxia-inducible factors (HIFs), cell proliferation and epithelial-mesenchymal transition (EMT)-controlling TFs, pluripotency TFs upregulated in cancer stem-like cells, and the nuclear receptors (NRs). Some of those, including HIFs, Myc, ETS-1, and β-catenin, are multifunctional and may regulate multiple other TFs involved in various pro-oncogenic events, including proliferation, survival, metabolism, invasion, and metastasis. High expression of some TFs is also correlated with poor prognosis and chemoresistance, constituting a significant challenge in cancer treatment. Considering the pivotal role of TFs in cancer, there is an urgent need to develop strategies targeting them. Targeting TFs, in combination with other chemotherapeutics, could emerge as a better strategy to target cancer. So far, targeting NRs have shown promising results in improving survival. In this review, we provide a comprehensive overview of the TFs that play a central role in cancer progression, which could be potential therapeutic candidates for developing specific inhibitors. Here, we also discuss the efforts made to target some of those TFs, including NRs.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA.,University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA.,University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
39
|
Vishnoi K, Viswakarma N, Rana A, Rana B. Transcription Factors in Cancer Development and Therapy. Cancers (Basel) 2020; 12:cancers12082296. [PMID: 32824207 PMCID: PMC7464564 DOI: 10.3390/cancers12082296] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multi-step process and requires constitutive expression/activation of transcription factors (TFs) for growth and survival. Many of the TFs reported so far are critical for carcinogenesis. These include pro-inflammatory TFs, hypoxia-inducible factors (HIFs), cell proliferation and epithelial-mesenchymal transition (EMT)-controlling TFs, pluripotency TFs upregulated in cancer stem-like cells, and the nuclear receptors (NRs). Some of those, including HIFs, Myc, ETS-1, and β-catenin, are multifunctional and may regulate multiple other TFs involved in various pro-oncogenic events, including proliferation, survival, metabolism, invasion, and metastasis. High expression of some TFs is also correlated with poor prognosis and chemoresistance, constituting a significant challenge in cancer treatment. Considering the pivotal role of TFs in cancer, there is an urgent need to develop strategies targeting them. Targeting TFs, in combination with other chemotherapeutics, could emerge as a better strategy to target cancer. So far, targeting NRs have shown promising results in improving survival. In this review, we provide a comprehensive overview of the TFs that play a central role in cancer progression, which could be potential therapeutic candidates for developing specific inhibitors. Here, we also discuss the efforts made to target some of those TFs, including NRs.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
40
|
Silva MC, Nandi GA, Tentarelli S, Gurrell IK, Jamier T, Lucente D, Dickerson BC, Brown DG, Brandon NJ, Haggarty SJ. Prolonged tau clearance and stress vulnerability rescue by pharmacological activation of autophagy in tauopathy neurons. Nat Commun 2020; 11:3258. [PMID: 32591533 PMCID: PMC7320012 DOI: 10.1038/s41467-020-16984-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/30/2020] [Indexed: 12/27/2022] Open
Abstract
Tauopathies are neurodegenerative diseases associated with accumulation of abnormal tau protein in the brain. Patient iPSC-derived neuronal cell models replicate disease-relevant phenotypes ex vivo that can be pharmacologically targeted for drug discovery. Here, we explored autophagy as a mechanism to reduce tau burden in human neurons and, from a small-molecule screen, identify the mTOR inhibitors OSI-027, AZD2014 and AZD8055. These compounds are more potent than rapamycin, and robustly downregulate phosphorylated and insoluble tau, consequently reducing tau-mediated neuronal stress vulnerability. MTORC1 inhibition and autophagy activity are directly linked to tau clearance. Notably, single-dose treatment followed by washout leads to a prolonged reduction of tau levels and toxicity for 12 days, which is mirrored by a sustained effect on mTORC1 inhibition and autophagy. This new insight into the pharmacodynamics of mTOR inhibitors in regulation of neuronal autophagy may contribute to development of therapies for tauopathies.
Collapse
Affiliation(s)
- M Catarina Silva
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge St CPZN 5400, Boston, MA, 02114, USA
| | - Ghata A Nandi
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge St CPZN 5400, Boston, MA, 02114, USA
| | - Sharon Tentarelli
- Chemistry, Oncology R&D, AstraZeneca, 35 Gatehouse Dr, Waltham, MA, 02451, USA
| | - Ian K Gurrell
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Tanguy Jamier
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Diane Lucente
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge St CPZN, RM 5820, Boston, MA, 02114, USA
| | - Bradford C Dickerson
- MGH Frontotemporal Disorders Unit, Gerontology Research Unit, Alzheimer's Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 149 13th St. Suite 2691, Charlestown, MA, 02129, USA
| | - Dean G Brown
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA
| | | | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge St CPZN 5400, Boston, MA, 02114, USA.
| |
Collapse
|
41
|
Bhola PD, Ahmed E, Guerriero JL, Sicinska E, Su E, Lavrova E, Ni J, Chipashvili O, Hagan T, Pioso MS, McQueeney K, Ng K, Aguirre AJ, Cleary JM, Cocozziello D, Sotayo A, Ryan J, Zhao JJ, Letai A. High-throughput dynamic BH3 profiling may quickly and accurately predict effective therapies in solid tumors. Sci Signal 2020; 13:13/636/eaay1451. [PMID: 32546544 DOI: 10.1126/scisignal.aay1451] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite decades of effort, the sensitivity of patient tumors to individual drugs is often not predictable on the basis of molecular markers alone. Therefore, unbiased, high-throughput approaches to match patient tumors to effective drugs, without requiring a priori molecular hypotheses, are critically needed. Here, we improved upon a method that we previously reported and developed called high-throughput dynamic BH3 profiling (HT-DBP). HT-DBP is a microscopy-based, single-cell resolution assay that enables chemical screens of hundreds to thousands of candidate drugs on freshly isolated tumor cells. The method identifies chemical inducers of mitochondrial apoptotic signaling, a mechanism of cell death. HT-DBP requires only 24 hours of ex vivo culture, which enables a more immediate study of fresh primary tumor cells and minimizes adaptive changes that occur with prolonged ex vivo culture. Effective compounds identified by HT-DBP induced tumor regression in genetically engineered and patient-derived xenograft (PDX) models of breast cancer. We additionally found that chemical vulnerabilities changed as cancer cells expanded ex vivo. Furthermore, using PDX models of colon cancer and resected tumors from colon cancer patients, our data demonstrated that HT-DBP could be used to generate personalized pharmacotypes. Thus, HT-DBP appears to be an ex vivo functional method with sufficient scale to simultaneously function as a companion diagnostic, therapeutic personalization, and discovery tool.
Collapse
Affiliation(s)
- Patrick D Bhola
- Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Eman Ahmed
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Ewa Sicinska
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Emily Su
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Jing Ni
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | | | | | - Kimmie Ng
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Andrew J Aguirre
- Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Broad Institute, Cambridge, MA 02115, USA
| | | | | | - Alaba Sotayo
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jeremy Ryan
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jean J Zhao
- Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Broad Institute, Cambridge, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Anthony Letai
- Dana-Farber Cancer Institute, Boston, MA 02215, USA. .,Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute, Cambridge, MA 02115, USA
| |
Collapse
|
42
|
Vaidya A, Jain S, Sahu S, Jain PK, Pathak K, Pathak D, Kumar R, Jain SK. Anticancer Agents Based on Vulnerable Components in a Signalling Pathway. Mini Rev Med Chem 2020; 20:886-907. [DOI: 10.2174/1389557520666200212105417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/05/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Traditional cancer treatment includes surgery, chemotherapy, radiotherapy and immunotherapy
that are clinically beneficial, but are associated with drawbacks such as drug resistance and side
effects. In quest for better treatment, many new molecular targets have been introduced in the last few
decades. Finding new molecular mechanisms encourages researchers to discover new anticancer agents.
Exploring the mechanism of action also facilitates anticipation of potential resistance mechanisms and
optimization of rational combination therapies. The write up describes the leading molecular mechanisms
for cancer therapy, including mTOR, tyrosine Wee1 kinase (WEE1), Janus kinases, PI3K/mTOR
signaling pathway, serine/threonine protein kinase AKT, checkpoint kinase 1 (Chk1), maternal embryonic
leucine-zipper kinase (MELK), DNA methyltransferase I (DNMT1), poly (ADP-ribose) polymerase
(PARP)-1/-2, sphingosine kinase-2 (SK2), pan-FGFR, inhibitor of apoptosis (IAP), murine double minute
2 (MDM2), Bcl-2 family protein and reactive oxygen species 1 (ROS1). Additionally, the manuscript
reviews the anticancer drugs currently under clinical trials.
Collapse
Affiliation(s)
- Ankur Vaidya
- Pharmacy College Saifai, Uttar Pradesh University of Medical Sciences, Saifai, Etawah (U.P.), India
| | - Shweta Jain
- Sir MadanLal Institute of Pharmacy, Etawah (U.P.), India
| | - Sanjeev Sahu
- Department of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, India
| | - Pankaj Kumar Jain
- Community Medicine, Uttar Pradesh University of Medical Sciences, Saifai, Etawah (U.P.), India
| | - Kamla Pathak
- Pharmacy College Saifai, Uttar Pradesh University of Medical Sciences, Saifai, Etawah (U.P.), India
| | - Devender Pathak
- Pharmacy College Saifai, Uttar Pradesh University of Medical Sciences, Saifai, Etawah (U.P.), India
| | - Raj Kumar
- Department of Neurosurgery, Uttar Pradesh University of Medical Sciences, Saifai, Etawah (U.P.), India
| | - Sanjay Kumar Jain
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, India
| |
Collapse
|
43
|
Shang J, Zhu Z, Chen Y, Song J, Huang Y, Song K, Zhong J, Xu X, Wei J, Wang C, Cui L, Liu CY, Zhang J. Small-molecule activating SIRT6 elicits therapeutic effects and synergistically promotes anti-tumor activity of vitamin D 3 in colorectal cancer. Theranostics 2020; 10:5845-5864. [PMID: 32483423 PMCID: PMC7255010 DOI: 10.7150/thno.44043] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the leading cause of cancer death; however, targets with broad anti-CRC effects are limited. Sirtuin6 (SIRT6) is a conserved nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase that is widely pathologically downregulated in CRC, but its pharmacological effect in CRC remains undefined due to the lack of small-molecule SIRT6 activators. We searched for a compound activating SIRT6 and investigated its anti-CRC effect in various models. Methods: We identified an allosteric SIRT6 activator, MDL-811. Its ability to enhance SIRT6 deacetylation at protein and cellular levels was evaluated by Fluor de Lys (FDL) and western blots. We assessed the proliferation of 26 CRC cell lines and patient-derived organoids (PDOs) treated with MDL-811. In vivo efficacy of MDL-811 was evaluated in HCT116 cell line- and patient-derived xenografts as well as a spontaneous CRC model. RNA sequencing and real-time quantitative PCR assays were performed to analyze gene expression changes in MDL-811-treated HCT116 cells. Along with controls in SIRT6-overexpressing HCT116 cells, the SIRT6-mediated histone H3 deacetylation at the Cytochrome P450 family 24 subfamily A member 1 (CYP24A1) gene locus was assessed by chromatin immunoprecipitation (ChIP) in MDL-811-treated HCT116 cells. A combination therapy against CRC based on the downstream gene of SIRT6 activation was evaluated in cells and mouse models. Results: MDL-811 significantly activated SIRT6 histone H3 deacetylation (H3K9Ac, H3K18Ac, and H3K56Ac) in vitro and had broad antiproliferative effects on diverse CRC cell lines and PDOs. More importantly, the in vivo anti-tumor efficacy of MDL-811 was demonstrated across cell line- and patient-derived xenografts and in the APCmin/+ spontaneous CRC model. Mechanically, we identified a new downstream target gene of SIRT6 in CRC, CYP24A1. Based on these findings, a combination drug strategy with MDL-811 to synergistically enhance the anti-CRC effect of vitamin D3 was validated in vitro and in vivo. Conclusions: Our data provide proof of concept that targeting SIRT6 using a small-molecule activator is an attractive therapeutic strategy for CRC and that MDL-811 could be a promising lead compound for further preclinical and clinical studies of treatments for CRC.
Collapse
|
44
|
Synthesis of (R) and (S)-3-Chloro-5-(3-methylmorpholino)-4H-1,2,6-thiadiazin-4-ones. MOLBANK 2020. [DOI: 10.3390/m1128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Reaction of 3,5-dichloro-4H-1,2,6-thiadiazin-4-one with (R) and (S)-3-methylmorpholines (2 equiv), in THF, at ca. 20 °C gave (R) and (S)-3-chloro-5-(3-methylmorpholino)-4H-1,2,6-thiadiazin-4-ones in 95 and 97% yields, respectively. The new compounds were fully characterized.
Collapse
|
45
|
Laham-Karam N, Pinto GP, Poso A, Kokkonen P. Transcription and Translation Inhibitors in Cancer Treatment. Front Chem 2020; 8:276. [PMID: 32373584 PMCID: PMC7186406 DOI: 10.3389/fchem.2020.00276] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Transcription and translation are fundamental cellular processes that govern the protein production of cells. These processes are generally up regulated in cancer cells, to maintain the enhanced metabolism and proliferative state of these cells. As such cancerous cells can be susceptible to transcription and translation inhibitors. There are numerous druggable proteins involved in transcription and translation which make lucrative targets for cancer drug development. In addition to proteins, recent years have shown that the "undruggable" transcription factors and RNA molecules can also be targeted to hamper the transcription or translation in cancer. In this review, we summarize the properties and function of the transcription and translation inhibitors that have been tested and developed, focusing on the advances of the last 5 years. To complement this, we also discuss some of the recent advances in targeting oncogenes tightly controlling transcription including transcription factors and KRAS. In addition to natural and synthetic compounds, we review DNA and RNA based approaches to develop cancer drugs. Finally, we conclude with the outlook to the future of the development of transcription and translation inhibitors.
Collapse
Affiliation(s)
- Nihay Laham-Karam
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Gaspar P. Pinto
- International Clinical Research Center, St. Anne University Hospital, Brno, Czechia
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- University Hospital Tübingen, Department of Internal Medicine VIII, University of Tübingen, Tübingen, Germany
| | - Piia Kokkonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
46
|
Qian JX, Yu M, Sun Z, Jiang AM, Long B. A 17-gene expression-based prognostic signature associated with the prognosis of patients with breast cancer: A STROBE-compliant study. Medicine (Baltimore) 2020; 99:e19255. [PMID: 32282693 PMCID: PMC7220332 DOI: 10.1097/md.0000000000019255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Identification of reliable predictive biomarkers for patients with breast cancer (BC).Univariate Cox proportional hazards regression model was conducted to identify genes correlated with the overall survival (OS) of patients in the TCGA-BRCA cohort. Functional enrichment analysis was conducted to investigate the biological meaning of these survival related genes. Then, patients in TCGA-BCRA were randomly divided into training set and test. Least absolute shrinkage and selection operator (LASSO) penalized Cox regression model was performed and the risk score of BC patients in this model was used to build a prognostic signature. The prognostic performance of the signature was evaluated in the training set, test set, and an independent validation set GSE7390.2519 genes were demonstrated to be significantly associated with the OS of BC patients. Functional annotation of the 2519 genes suggested that these genes were associated with immune response and protein synthesis related gene ontology terms and pathways. 17 genes were identified in the LASSO Cox regression model and used to construct a 17-gene signature. Patients in the 17-gene signature low risk group have better OS and event-free survival compared with those in the 17-gene signature high risk group in the TCGA-BRCA cohort. The prognostic role of the 17-gene signature has been confirmed in the validation cohort. Multivariable Cox proportional hazards regression model suggested the 17-gene signature was an independent prognostic factor in BC.The 17-gene signature we developed could successfully classify patients into high- and low-risk groups, indicating that it might serve as candidate biomarker in BC.
Collapse
Affiliation(s)
- Jin-Xian Qian
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, People's Republic of China
| | - Min Yu
- Yangtze University, Jingzhou Central Hospital, Galactophore Department, The Second Clinical Medical College, Jingzhou, People's Republic of China
| | - Zhe Sun
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, People's Republic of China
| | - Ai-Mei Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, People's Republic of China
| | - Bo Long
- School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
47
|
Li F, Li Z, Han Q, Cheng Y, Ji W, Yang Y, Lu S, Xia W. Enhanced autocrine FGF19/FGFR4 signaling drives the progression of lung squamous cell carcinoma, which responds to mTOR inhibitor AZD2104. Oncogene 2020; 39:3507-3521. [PMID: 32111983 PMCID: PMC7176586 DOI: 10.1038/s41388-020-1227-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/05/2020] [Accepted: 02/17/2020] [Indexed: 01/28/2023]
Abstract
Lung cancer occurrence and associated mortality ranks top in all countries. Despite the rapid development of targeted and immune therapies, many patients experience relapse within a few years. It is urgent to uncover the mechanisms that drive lung cancer progression and identify novel molecular targets. Our group has previously identified FGF19 as a prognostic marker and potential driver gene of lung squamous cell carcinomas (LSQ) in Chinese smoking patients. However, the underlying mechanism of how FGF19 promotes the progression of LSQ remains unclear. In this study, we characterized and confirmed that FGF19 serves as an oncogenic driver in LSQ development and progression, and reported that the amplification and high expression of FGF19 in LSQ was significantly associated with poor overall and progression-free survival. A higher serum level of FGF19 was found in lung cancer patients, which could also serve as a novel diagnostic index to screen lung cancer. Overproduction of FGF19 in LSQ cells markedly promoted cell growth, progression and metastasis, while downregulating FGF19 effectively inhibited LSQ progression in vitro and in vivo. Moreover, downregulating the receptor FGFR4 was also effective to suppress the growth and migration of LSQ cells. Since FGF19 could be induced by smoking or endoplasmic reticulum stress, to tackle the more malignant FGF19-overproducing LSQ, we reported for the first time that inhibiting mTOR pathway by using AZD2014 was effective and feasible. These findings have offered a new strategy by using anti-FGF19/FGFR4 therapy or mTOR-based therapy in FGF19-driven LSQ.
Collapse
Affiliation(s)
- Fan Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Han
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yirui Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxiang Ji
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Yang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Weiliang Xia
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
48
|
Morpholine as ubiquitous pharmacophore in medicinal chemistry: Deep insight into the structure-activity relationship (SAR). Bioorg Chem 2020; 96:103578. [PMID: 31978684 DOI: 10.1016/j.bioorg.2020.103578] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/09/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022]
Abstract
Morpholine is a versatile moiety, a privileged pharmacophore and an outstanding heterocyclic motif with wide ranges of pharmacological activities due to different mechanisms of action. The ability of morpholine to enhance the potency of the molecule through molecular interactions with the target protein (kinases) or to modulate the pharmacokinetic properties propelled medicinal chemists and researchers to synthesize morpholine ring by the efficient ways and to incorporate this moiety to develop various lead compounds with diverse therapeutic activities. The present review primarily focused on discussing the most promising synthetic leads containing morpholine ring along with structure-activity relationship (SAR) to reveal the active pharmacophores accountable for anticancer, anti-inflammatory, antiviral, anticonvulsant, antihyperlipidemic, antioxidant, antimicrobial and antileishmanial activity. This review outlines some of the recent effective chemical synthesis for morpholine ring. The review also highlighted the metabolic liability of some clinical drugs containing this nucleus and various researches on modified morpholine to enhance the metabolic stability of drugs as well. Drugs bearing morpholine ring and those under clinical trials are also mentioned with the role of morpholine and their mechanism of action. This review will provide the necessary knowledge base to the medicinal chemists in making strategic structural changes in designing morpholine derivatives.
Collapse
|
49
|
Kraus D, Palasuberniam P, Chen B. Therapeutic Enhancement of Verteporfin-mediated Photodynamic Therapy by mTOR Inhibitors. Photochem Photobiol 2019; 96:358-364. [PMID: 31769520 DOI: 10.1111/php.13187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/31/2019] [Indexed: 01/17/2023]
Abstract
Photodynamic therapy (PDT) with photosensitizer verteporfin is a clinically approved vascular disrupting modality that is currently in clinical trial for cancer treatment. In this study, we evaluated PDT in combination with either mTORC1 inhibitor rapamycin or mTORC1/C2 dual inhibitor AZD2014 for therapeutic enhancement in SVEC endothelial cells. Verteporfin-PDT alone induced cell apoptosis by activating the intrinsic apoptotic pathway. However, it increased the expression of anti-apoptotic protein MCL-1 and the phosphorylation of S6, a downstream molecule of mTOR signaling. In contrast, mTOR inhibitors rapamycin and AZD2014 did not induce apoptosis in SVEC cells. They suppressed MCL-1 expression and S6 phosphorylation and imposed a potent inhibition on cell proliferation. PDT in combination with mTOR inhibitors activated the intrinsic apoptotic pathway and resulted in increased apoptosis. Combination treatments also led to sustained inhibition of cell proliferation. Although AZD2014 was more effective for cell growth inhibition and PDT enhancement than rapamycin at the higher concentrations examined in the study, both inhibitors effectively enhanced PDT response, suggesting that inhibition of mTORC1 is crucial for PDT enhancement. Our results indicate that mTOR inhibitors mechanistically cooperate with PDT for enhanced cell death and sustained growth inhibition, supporting a combination approach for therapeutic enhancement.
Collapse
Affiliation(s)
- Daniel Kraus
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA
| | - Pratheeba Palasuberniam
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA.,Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
50
|
Pancholi S, Leal MF, Ribas R, Simigdala N, Schuster E, Chateau-Joubert S, Zabaglo L, Hills M, Dodson A, Gao Q, Johnston SR, Dowsett M, Cosulich SC, Maragoni E, Martin LA. Combination of mTORC1/2 inhibitor vistusertib plus fulvestrant in vitro and in vivo targets oestrogen receptor-positive endocrine-resistant breast cancer. Breast Cancer Res 2019; 21:135. [PMID: 31801615 PMCID: PMC6894349 DOI: 10.1186/s13058-019-1222-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/30/2019] [Indexed: 01/14/2023] Open
Abstract
Background Endocrine therapies are still the main strategy for the treatment of oestrogen receptor-positive (ER+) breast cancers (BC), but resistance remains problematic. Cross-talk between ER and PI3K/AKT/mTORC has been associated with ligand-independent transcription of ER. We have previously reported the anti-proliferative effects of the combination of everolimus (an mTORC1 inhibitor) with endocrine therapy in resistance models, but potential routes of escape via AKT signalling can lead to resistance; therefore, the use of dual mTORC1/2 inhibitors has met with significant interest. Methods To address this, we tested the effect of vistusertib, a dual mTORC1 and mTORC2 inhibitor, in a panel of endocrine-resistant and endocrine-sensitive ER+ BC cell lines, with varying PTEN, PIK3CA and ESR1 mutation status. End-points included proliferation, cell signalling, cell cycle and effect on ER-mediated transcription. Two patient-derived xenografts (PDX) modelling endocrine resistance were used to assess the efficacy of vistusertib, fulvestrant or the combination on tumour progression, and biomarker studies were conducted using immunohistochemistry and RNA-seq technologies. Results Vistusertib caused a dose-dependent decrease in proliferation of all the cell lines tested and reduced abundance of mTORC1, mTORC2 and cell cycle markers, but caused an increase in abundance of EGFR, IGF1R and ERBB3 in a context-dependent manner. ER-mediated transcription showed minimal effect of vistusertib. Combined therapy of vistusertib with fulvestrant showed synergy in two ER+ PDX models of resistance to endocrine therapy and delayed tumour progression after cessation of therapy. Conclusions These data support the notion that models of acquired endocrine resistance may have a different sensitivity to mTOR inhibitor/endocrine therapy combinations.
Collapse
Affiliation(s)
- Sunil Pancholi
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Mariana Ferreira Leal
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Ricardo Ribas
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Nikiana Simigdala
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Eugene Schuster
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK
| | | | - Lila Zabaglo
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Margaret Hills
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, SW3 6JJ, UK
| | - Andrew Dodson
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, SW3 6JJ, UK
| | - Qiong Gao
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK
| | | | - Mitch Dowsett
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, SW3 6JJ, UK
| | | | | | - Lesley-Ann Martin
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW7 3RP, UK.
| |
Collapse
|