1
|
Sokolova V, Gruber R, Pammer LM, Kocher F, Klieser E, Amann A, Pichler R, Günther M, Ormanns S, Neureiter D, Seeber A. Prognostic and functional role of the nuclear export receptor 1 (XPO1) in gastrointestinal cancers: a potential novel target? Mol Biol Rep 2024; 52:87. [PMID: 39729162 PMCID: PMC11680630 DOI: 10.1007/s11033-024-10169-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
In the last decades the survival of metastatic gastrointestinal (GI) cancer patients could have been significantly extended due to the introduction of targeted- and immunotherapy. However, only the minority of patients will experience long-lasting survival. Hence, novel therapeutics are clearly necessary for GI cancer patients. Molecular high-throughput profiling techniques have revealed potential novel targetable molecular alterations, emphasizing the necessity for tailored therapeutic approaches. Nuclear export proteins, particularly Exportin-1 (XPO1), have emerged as promising targets in cancer therapy due to their crucial role in cellular homeostasis and regulation of key cellular functions. Dysregulation of XPO1-mediated nuclear export leads to the functional loss of tumor suppressors and pro-apoptotic factors, facilitating cancer progression. Selinexor, a XPO1 inhibitor, has shown promising activity in preclinical and clinical studies, particularly in hematological malignancies. However, its efficacy in GI cancers remains underexplored. This review aims to elucidate the functional and pathophysiological role of XPO1 in GI cancers. Despite the potential of XPO1 inhibitors in suppressing cell proliferation and inducing apoptosis, comprehensive molecular landscape data and validation of selective inhibitors in GI cancers are lacking. Targeting XPO1 presents a significant therapeutic potential for the treatment of GI cancer patients. Further research is necessary to fully elucidate the molecular landscape according to XPO1 expression in GI tumors and to validate the efficacy of selective XPO1 inhibitors. These efforts are expected to contribute to the development of more effective and personalized therapeutic strategies for GI cancer patients.
Collapse
Affiliation(s)
- Viktorija Sokolova
- Department of Nuclear Medicine, Provincial Hospital of Bolzano (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University, Bolzano-Bozen, Italy
| | - Rebecca Gruber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Lorenz M Pammer
- Department of Medicine I, Gastroenterology, Hepatology and Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Kocher
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Eckhard Klieser
- Institute of Pathology, University Clinics Salzburg, Paracelsus Medical University, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Arno Amann
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Renate Pichler
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Günther
- Institute of Pathology, INNPATH GmbH, Tirol Kliniken Innsbruck, Innsbruck, Austria
| | - Steffen Ormanns
- Institute of Pathology, INNPATH GmbH, Tirol Kliniken Innsbruck, Innsbruck, Austria
| | - Daniel Neureiter
- Institute of Pathology, University Clinics Salzburg, Paracelsus Medical University, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Andreas Seeber
- Department of Nuclear Medicine, Provincial Hospital of Bolzano (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University, Bolzano-Bozen, Italy.
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
2
|
Mateos MV, Engelhardt M, Leleu X, Mesa MG, Cavo M, Dimopoulos M, Bianco M, Merlo GM, Porte CL, Richardson PG, Moreau P. Impact of prior treatment on selinexor, bortezomib, dexamethasone outcomes in patients with relapsed/refractory multiple myeloma: Extended follow-up subgroup analysis of the BOSTON trial. Eur J Haematol 2024; 113:242-252. [PMID: 38693052 DOI: 10.1111/ejh.14223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVES To analyze the impact of prior therapies on outcomes with selinexor, bortezomib, and dexamethasone (SVd) versus bortezomib and dexamethasone (Vd) in 402 patients with relapsed/refractory multiple myeloma (RRMM) in the phase 3 BOSTON trial. METHODS Post hoc analysis of progression-free survival (PFS), overall survival (OS), and safety for lenalidomide-refractory, proteasome inhibitor (PI)-naïve, bortezomib-naïve, and one prior line of therapy (1LOT) patient subgroups. RESULTS At a median follow-up of over 28 months, clinically meaningful improvements in PFS were noted across all groups with SVd. The median SVd PFS was longer in all subgroups (lenalidomide-refractory: 10.2 vs. 7.1 months, PI-naïve: 29.5 vs. 9.7; bortezomib-naïve: 29.5 vs. 9.7; 1LOT: 21.0 vs. 10.7; p < .05). The lenalidomide-refractory subgroup had longer OS with SVd (26.7 vs. 18.6 months; HR 0.53; p = .015). In all subgroups, overall response and ≥very good partial response rates were higher with SVd. The manageable safety profile of SVd was similar to the overall patient population. CONCLUSIONS With over 2 years of follow-up, these clinically meaningful outcomes further support the use of SVd in patients who are lenalidomide-refractory, PI-naïve, bortezomib-naïve, or who received 1LOT (including a monoclonal antibody) and underscore the observed synergy between selinexor and bortezomib.
Collapse
Affiliation(s)
- Maria-Victoria Mateos
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Monika Engelhardt
- Interdisciplinary Cancer Center, University of Freiburg, Faculty of Freiburg, Freiburg, Germany
| | | | | | - Michele Cavo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Seràgnoli Institute of Haematology, Bologna University School of Medicine, Bologna, Italy
| | - Meletios Dimopoulos
- National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | | | | | | | | | | |
Collapse
|
3
|
Lai C, Xu L, Dai S. The nuclear export protein exportin-1 in solid malignant tumours: From biology to clinical trials. Clin Transl Med 2024; 14:e1684. [PMID: 38783482 PMCID: PMC11116501 DOI: 10.1002/ctm2.1684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Exportin-1 (XPO1), a crucial protein regulating nuclear-cytoplasmic transport, is frequently overexpressed in various cancers, driving tumor progression and drug resistance. This makes XPO1 an attractive therapeutic target. Over the past few decades, the number of available nuclear export-selective inhibitors has been increasing. Only KPT-330 (selinexor) has been successfully used for treating haematological malignancies, and KPT-8602 (eltanexor) has been used for treating haematologic tumours in clinical trials. However, the use of nuclear export-selective inhibitors for the inhibition of XPO1 expression has yet to be thoroughly investigated in clinical studies and therapeutic outcomes for solid tumours. METHODS We collected numerous literatures to explain the efficacy of XPO1 Inhibitors in preclinical and clinical studies of a wide range of solid tumours. RESULTS In this review, we focus on the nuclear export function of XPO1 and results from clinical trials of its inhibitors in solid malignant tumours. We summarized the mechanism of action and therapeutic potential of XPO1 inhibitors, as well as adverse effects and response biomarkers. CONCLUSION XPO1 inhibition has emerged as a promising therapeutic strategy in the fight against cancer, offering a novel approach to targeting tumorigenic processes and overcoming drug resistance. SINE compounds have demonstrated efficacy in a wide range of solid tumours, and ongoing research is focused on optimizing their use, identifying response biomarkers, and developing effective combination therapies. KEY POINTS Exportin-1 (XPO1) plays a critical role in mediating nucleocytoplasmic transport and cell cycle. XPO1 dysfunction promotes tumourigenesis and drug resistance within solid tumours. The therapeutic potential and ongoing researches on XPO1 inhibitors in the treatment of solid tumours. Additional researches are essential to address safety concerns and identify biomarkers for predicting patient response to XPO1 inhibitors.
Collapse
Affiliation(s)
- Chuanxi Lai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Lingna Xu
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Sheng Dai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
4
|
Xu J, Wu S, Li G. Selective nuclear export inhibitor KPT‑330 enhances the radiosensitivity of esophageal carcinoma cells. Exp Ther Med 2023; 26:326. [PMID: 37346402 PMCID: PMC10280315 DOI: 10.3892/etm.2023.12025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 04/17/2023] [Indexed: 06/23/2023] Open
Abstract
Although the concurrent application of definitive chemoradiation has improved the prognosis of patients with esophageal cancer, resistance to therapy poses a major threat to treatment. The present study aimed to investigate whether the use of KPT-330, a selective inhibitor of nuclear export (SINE), enhances the radiosensitivity of esophageal cancer cells. Immunohistochemical staining assays were employed to evaluate the expression and prognostic significance of chromosome maintenance protein-1 (CRM1) in 111 esophageal carcinoma (ESCA) tissues collected from patients with esophageal squamous cell carcinoma. The data showed that the expression of CRM1 in the ESCA tissues was significantly upregulated compared with that in the normal adjacent tissues. Furthermore, patients with higher CRM1 expression had significantly decreased overall survival compared with those with lower CRM1 expression. The effects of KPT-330 and/or radiation on ECA109 human ESCA cells were also evaluated. KPT-330 suppressed the viability of the ECA109 cells. A colony formation assay demonstrated that a combination of KPT-330 and radiation significantly decreased ECA109 cell proliferation. Flow cytometric analysis showed that KPT-330 increased the arrest of the ECA109 cells at the G2/M phase and induced apoptosis. In addition, western blotting revealed that the inhibitory effect of KPT-330 on cell viability was associated with the increased expression of p53 and promotion of the nuclear accumulation of the p53 protein. In conclusion, the present study demonstrated that CRM1 expression is associated with the prognosis of patients with ESCA following radiotherapy. The inhibition of CRM1 expression by the SINE inhibitor KPT-330 increases radiosensitivity and is potentially useful in a combination treatment strategy for esophageal cancers.
Collapse
Affiliation(s)
- Jing Xu
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shan Wu
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guang Li
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
5
|
The efficacy of selinexor (KPT-330), an XPO1 inhibitor, on non-hematologic cancers: a comprehensive review. J Cancer Res Clin Oncol 2022; 149:2139-2155. [PMID: 35941226 DOI: 10.1007/s00432-022-04247-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE Selinexor is a novel XPO1 inhibitor which inhibits the export of tumor suppressor proteins and oncoprotein mRNAs, leading to cell-cycle arrest and apoptosis in cancer cells. While selinexor is currently FDA approved to treat multiple myeloma, compelling preclinical and early clinical studies reveal selinexor's efficacy in treating hematologic and non-hematologic malignancies, including sarcoma, gastric, bladder, prostate, breast, ovarian, skin, lung, and brain cancers. Current reviews of selinexor primarily highlight its use in hematologic malignancies; however, this review seeks to summarize the recent evidence of selinexor treatment in solid tumors. METHODS Pertinent literature searches in PubMed and the Karyopharm Therapeutics website for selinexor and non-hematologic malignancies preclinical and clinical trials. RESULTS This review provides evidence that selinexor is a promising agent used alone or in combination with other anticancer medications in non-hematologic malignancies. CONCLUSION Further clinical investigation of selinexor treatment for solid malignancies is warranted.
Collapse
|
6
|
Hu F, Chen XQ, Li XP, Lu YX, Chen SL, Wang DW, Liang Y, Dai YJ. Drug resistance biomarker ABCC4 of selinexor and immune feature in multiple myeloma. Int Immunopharmacol 2022; 108:108722. [DOI: 10.1016/j.intimp.2022.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/26/2022]
|
7
|
Lawrence YR, Shacham-Shmueli E, Yarom N, Khaikin M, Venturero M, Apter S, Inbar Y, Symon Z, Aderka D, Halpern N, Berger R, Boursi B, Jacobson G, Raskin S, Ackerstein A, Margalit O, Appel S, Schvimer M, Crochiere M, Yang F, Landesman Y, Rashal T, Shacham S, Golan T. Nuclear Export Inhibition for Radiosensitization; a Proof-of-Concept Phase I Clinical Trial of Selinexor (KPT-330) Combined with Neoadjuvant Chemoradiation in Locally Advanced Rectal Cancer. Int J Radiat Oncol Biol Phys 2022; 114:250-255. [PMID: 35667526 DOI: 10.1016/j.ijrobp.2022.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Selinexor (KPT-330, XPOVIO®) is a first-in-class, oral selective inhibitor of nuclear export (SINE) compound that blocks XPO1, forcing nuclear retention of tumor suppressor proteins. Selinexor potentiates radiation-induced cell death in preclinical models, but has yet to be combined with radiation in the clinic. We hypothesized that selinexor would increase the activity of neoadjuvant fluoropyrimidine-based chemoradiation (ChRT) for locally advanced rectal cancer (LARC). METHODS A phase I clinical trial of selinexor plus ChRT for LARC was performed, 3+3 design. Eligibility criteria included stage II-III LARC requiring neoadjuvant chemoradiation, and ECOG 0-1 performance status. Patients received 50.4 Gy over 5.5 weeks plus capecitabine 825 mg/m2 twice daily on radiation days. Three selinexor dose-levels were tested: 1) 20 mg/m2 twice weekly concurrent with ChRT, 2) 35 mg/m2 twice weekly concurrent with ChRT, and 3) 35 mg/m2 twice weekly concurrent with ChRT, and for an additional two weeks. Subsequently, patients underwent definitive curative resection. DNA variant analysis and RNAseq were performed to characterize responders. RESULTS Eleven patients were enrolled, median age 60.5 years, six were stage III. Nine completed selinexor plus ChRT; two patients withdrew consent. Side effects attributed to selinexor included fatigue, hyponatremia and mild thrombocytopenia. Dose level 3 was poorly tolerated, (dehydration, anorexia). Of the 9 patients who completed treatment, median volumetric tumor shrinkage was 93% (IQR 59-98). Comparing baseline clinical stage to final pathological stage, 82% of patients were down-staged. Two patients experienced a complete / near-complete pathological response. Expression of PTGS2 and CD177 were identified as potential biomarkers of response. CONCLUSION Selinexor combined with neoadjuvant ChRT in LARC is well tolerated. Potential biomarkers were identified based upon a preliminary analysis.
Collapse
Affiliation(s)
- Yaacov R Lawrence
- Sheba Medical Center affiliated with Tel Aviv University, Israel; Department Radiation Oncology, Sidney Kimmel Medical College at Thomas Jefferson University.
| | | | | | - Marat Khaikin
- Sheba Medical Center affiliated with Tel Aviv University, Israel
| | | | - Sara Apter
- Sheba Medical Center affiliated with Tel Aviv University, Israel
| | - Yael Inbar
- Sheba Medical Center affiliated with Tel Aviv University, Israel
| | - Zvi Symon
- Sheba Medical Center affiliated with Tel Aviv University, Israel
| | - Dan Aderka
- Sheba Medical Center affiliated with Tel Aviv University, Israel
| | - Naama Halpern
- Sheba Medical Center affiliated with Tel Aviv University, Israel
| | - Raanan Berger
- Sheba Medical Center affiliated with Tel Aviv University, Israel
| | - Ben Boursi
- Sheba Medical Center affiliated with Tel Aviv University, Israel
| | - Galia Jacobson
- Sheba Medical Center affiliated with Tel Aviv University, Israel; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen Raskin
- Sheba Medical Center affiliated with Tel Aviv University, Israel
| | - Aliza Ackerstein
- Sheba Medical Center affiliated with Tel Aviv University, Israel
| | - Ofer Margalit
- Sheba Medical Center affiliated with Tel Aviv University, Israel
| | - Sarit Appel
- Sheba Medical Center affiliated with Tel Aviv University, Israel
| | - Michael Schvimer
- Sheba Medical Center affiliated with Tel Aviv University, Israel
| | | | - Fan Yang
- Karyopharm Therapeutics, Newton, MA, USA
| | | | - Tami Rashal
- Sheba Medical Center affiliated with Tel Aviv University, Israel
| | | | - Talia Golan
- Sheba Medical Center affiliated with Tel Aviv University, Israel
| |
Collapse
|
8
|
Bortezomib potentiates the antitumor effect of tributyltin(IV) ferulate in colon cancer cells exacerbating ER stress and promoting apoptosis. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Somarelli JA, Rupprecht G, Altunel E, Flamant EM, Rao S, Sivaraj D, Lazarides AL, Hoskinson SM, Sheth MU, Cheng S, Kim SY, Ware KE, Agarwal A, Cullen MM, Selmic LE, Everitt JI, McCall SJ, Eward C, Eward WC, Hsu DS. A Comparative Oncology Drug Discovery Pipeline to Identify and Validate New Treatments for Osteosarcoma. Cancers (Basel) 2020; 12:cancers12113335. [PMID: 33187254 PMCID: PMC7696249 DOI: 10.3390/cancers12113335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/31/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Osteosarcoma is a rare bone cancer that occurs primarily in children. The discovery of new treatments for osteosarcoma and other rare cancer types has been severely limited by access to patient samples to study these often-complex diseases. Here we capitalize on naturally-occurring cancers in pet dogs to study the biology of these rare cancers. Using living cells from canine and human patients to test thousands of drugs simultaneously, we identify a unique combination of drugs that disrupts protein degradation and protein trafficking in cancer cells. This drug combination represents a promising new treatment to treat both dogs and people with osteosarcoma. Abstract Background: Osteosarcoma is a rare but aggressive bone cancer that occurs primarily in children. Like other rare cancers, treatment advances for osteosarcoma have stagnated, with little improvement in survival for the past several decades. Developing new treatments has been hampered by extensive genomic heterogeneity and limited access to patient samples to study the biology of this complex disease. Methods: To overcome these barriers, we combined the power of comparative oncology with patient-derived models of cancer and high-throughput chemical screens in a cross-species drug discovery pipeline. Results: Coupling in vitro high-throughput drug screens on low-passage and established cell lines with in vivo validation in patient-derived xenografts we identify the proteasome and CRM1 nuclear export pathways as therapeutic sensitivities in osteosarcoma, with dual inhibition of these pathways inducing synergistic cytotoxicity. Conclusions: These collective efforts provide an experimental framework and set of new tools for osteosarcoma and other rare cancers to identify and study new therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Jason A. Somarelli
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; (G.R.); (E.A.); (E.M.F.); (D.S.); (M.U.S.); (S.C.); (K.E.W.); (A.A.); (D.S.H.)
- Duke Cancer Institute, Durham, NC 27710, USA; (J.I.E.); (S.J.M.); (W.C.E.)
- Correspondence:
| | - Gabrielle Rupprecht
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; (G.R.); (E.A.); (E.M.F.); (D.S.); (M.U.S.); (S.C.); (K.E.W.); (A.A.); (D.S.H.)
| | - Erdem Altunel
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; (G.R.); (E.A.); (E.M.F.); (D.S.); (M.U.S.); (S.C.); (K.E.W.); (A.A.); (D.S.H.)
| | - Etienne M. Flamant
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; (G.R.); (E.A.); (E.M.F.); (D.S.); (M.U.S.); (S.C.); (K.E.W.); (A.A.); (D.S.H.)
| | - Sneha Rao
- Department of Orthopaedics, Duke University Medical Center, Durham, NC 27710, USA; (S.R.); (A.L.L.); (S.M.H.); (M.M.C.)
| | - Dharshan Sivaraj
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; (G.R.); (E.A.); (E.M.F.); (D.S.); (M.U.S.); (S.C.); (K.E.W.); (A.A.); (D.S.H.)
| | - Alexander L. Lazarides
- Department of Orthopaedics, Duke University Medical Center, Durham, NC 27710, USA; (S.R.); (A.L.L.); (S.M.H.); (M.M.C.)
| | - Sarah M. Hoskinson
- Department of Orthopaedics, Duke University Medical Center, Durham, NC 27710, USA; (S.R.); (A.L.L.); (S.M.H.); (M.M.C.)
| | - Maya U. Sheth
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; (G.R.); (E.A.); (E.M.F.); (D.S.); (M.U.S.); (S.C.); (K.E.W.); (A.A.); (D.S.H.)
| | - Serene Cheng
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; (G.R.); (E.A.); (E.M.F.); (D.S.); (M.U.S.); (S.C.); (K.E.W.); (A.A.); (D.S.H.)
| | - So Young Kim
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Kathryn E. Ware
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; (G.R.); (E.A.); (E.M.F.); (D.S.); (M.U.S.); (S.C.); (K.E.W.); (A.A.); (D.S.H.)
| | - Anika Agarwal
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; (G.R.); (E.A.); (E.M.F.); (D.S.); (M.U.S.); (S.C.); (K.E.W.); (A.A.); (D.S.H.)
| | - Mark M. Cullen
- Department of Orthopaedics, Duke University Medical Center, Durham, NC 27710, USA; (S.R.); (A.L.L.); (S.M.H.); (M.M.C.)
| | - Laura E. Selmic
- College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Jeffrey I. Everitt
- Duke Cancer Institute, Durham, NC 27710, USA; (J.I.E.); (S.J.M.); (W.C.E.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Shannon J. McCall
- Duke Cancer Institute, Durham, NC 27710, USA; (J.I.E.); (S.J.M.); (W.C.E.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Cindy Eward
- Surgery Service, Triangle Veterinary Referral Hospital, Durham, NC 27710, USA;
| | - William C. Eward
- Duke Cancer Institute, Durham, NC 27710, USA; (J.I.E.); (S.J.M.); (W.C.E.)
- Department of Orthopaedics, Duke University Medical Center, Durham, NC 27710, USA; (S.R.); (A.L.L.); (S.M.H.); (M.M.C.)
| | - David S. Hsu
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; (G.R.); (E.A.); (E.M.F.); (D.S.); (M.U.S.); (S.C.); (K.E.W.); (A.A.); (D.S.H.)
- Duke Cancer Institute, Durham, NC 27710, USA; (J.I.E.); (S.J.M.); (W.C.E.)
| |
Collapse
|
10
|
Mendes A, Jühlen R, Martinelli V, Fahrenkrog B. Targeted CRM1-inhibition perturbs leukemogenic NUP214 fusion proteins and exerts anti-cancer effects in leukemia cell lines with NUP214 rearrangements. Oncotarget 2020; 11:3371-3386. [PMID: 32934780 PMCID: PMC7486696 DOI: 10.18632/oncotarget.27711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/01/2020] [Indexed: 11/25/2022] Open
Abstract
Chromosomal translocations fusing the locus of nucleoporin NUP214 each with the proto-oncogenes SET and DEK are recurrent in, largely intractable, acute leukemias. The molecular basis underlying the pathogenesis of SET-NUP214 and DEK-NUP214 are still poorly understood, but both chimeras inhibit protein nuclear export mediated by the β-karyopherin CRM1. In this report, we show that SET-NUP214 and DEK-NUP214 both disturb the localization of proteins essential for nucleocytoplasmic transport, in particular for CRM1-mediated protein export. Endogenous and exogenous SET-NUP214 and DEK-NUP214 form nuclear bodies. These nuclear bodies disperse upon targeted inhibition of CRM1 and the two fusion proteins re-localize throughout the nucleoplasm. Moreover, SET-NUP214 and DEK-NUP214 nuclear bodies reestablish shortly after removal of CRM1 inhibitors. Likewise, cell viability, metabolism, and proliferation of leukemia cell lines harboring SET-NUP214 and DEK-NUP214 are compromised by CRM1 inhibition, which is even sustained after clearance from CRM1 antagonists. Our results indicate CRM1 as a possible therapeutic target in NUP214-related leukemia. This is especially important, since no specific or targeted treatment options for NUP214 driven leukemia are available yet.
Collapse
Affiliation(s)
- Adélia Mendes
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi 6041, Belgium
| | - Ramona Jühlen
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi 6041, Belgium.,Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen 52074, Germany
| | - Valérie Martinelli
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi 6041, Belgium
| | - Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi 6041, Belgium
| |
Collapse
|
11
|
Saavedra-García P, Martini F, Auner HW. Proteasome inhibition in multiple myeloma: lessons for other cancers. Am J Physiol Cell Physiol 2019; 318:C451-C462. [PMID: 31875696 DOI: 10.1152/ajpcell.00286.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cellular protein homeostasis (proteostasis) depends on the controlled degradation of proteins that are damaged or no longer required by the ubiquitin-proteasome system (UPS). The 26S proteasome is the principal executer of substrate-specific proteolysis in eukaryotic cells and regulates a myriad of cellular functions. Proteasome inhibitors were initially developed as chemical tools to study proteasomal function but rapidly became widely used anticancer drugs that are now used at all stages of treatment for the bone marrow cancer multiple myeloma (MM). Here, we review the mechanisms of action of proteasome inhibitors that underlie their preferential toxicity to MM cells, focusing on endoplasmic reticulum stress, depletion of amino acids, and effects on glucose and lipid metabolism. We also discuss mechanisms of resistance to proteasome inhibition such as autophagy and metabolic rewiring and what lessons we may learn from the success and failure of proteasome inhibition in MM for treating other cancers with proteostasis-targeting drugs.
Collapse
Affiliation(s)
- Paula Saavedra-García
- Cancer Cell Metabolism Group, Hugh and Josseline Langmuir Centre for Myeloma Research, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Francesca Martini
- Department of Translational Research on New Technologies in Medicine and Surgery, Hematology Unit, Ospedale Santa Chiara, Pisa, Italy
| | - Holger W Auner
- Cancer Cell Metabolism Group, Hugh and Josseline Langmuir Centre for Myeloma Research, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Higuchi C, Yamamoto M, Shin SW, Miyamoto K, Matsumoto K. Perturbation of maternal PIASy abundance disrupts zygotic genome activation and embryonic development via SUMOylation pathway. Biol Open 2019; 8:bio.048652. [PMID: 31640975 PMCID: PMC6826278 DOI: 10.1242/bio.048652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
During the maternal-to-zygotic transition (MZT), mRNAs and proteins stored in oocytes are degraded and zygotic genes are activated. We have previously shown that the ubiquitin-proteasome system (UPS)-mediated degradation of maternal proteins plays a role in the onset of zygotic transcription. However, it is still unclear which maternal proteins should be degraded for zygotic genome activation and ensuring subsequent embryonic development. In this study, we screen for these maternal factors that are degraded via the UPS. We thus identified a maternal protein PIASy (protein inhibitor of activated STATy), which is an E3 SUMO ligase. The overexpression of PIASy in fertilized embryos causes developmental arrest at the two-cell stage due to severe abnormal chromosome segregation and impaired zygotic transcription. We find that this developmental role of PIASy is related to its SUMOylation activity. Moreover, PIASy overexpression leads to increased trimethylation of histone H3 lysine 9 (H3K9me3) in two-cell nuclei and enhanced translocation of H3K9me3 methyltransferase to the pronucleus. Hence, PIASy is a maternal factor that is degraded after fertilization and may be important for the proper induction of zygotic genome activation and embryonic development.
Collapse
Affiliation(s)
- Chika Higuchi
- Laboratory of Molecular Developmental Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Mari Yamamoto
- Laboratory of Molecular Developmental Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Seung-Wook Shin
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kei Miyamoto
- Laboratory of Molecular Developmental Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Kazuya Matsumoto
- Laboratory of Molecular Developmental Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| |
Collapse
|
13
|
Birnbaum DJ, Finetti P, Birnbaum D, Mamessier E, Bertucci F. XPO1 Expression Is a Poor-Prognosis Marker in Pancreatic Adenocarcinoma. J Clin Med 2019; 8:E596. [PMID: 31052304 PMCID: PMC6572621 DOI: 10.3390/jcm8050596] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/20/2022] Open
Abstract
Pancreatic adenocarcinoma (PAC) is one of the most aggressive human cancers and new systemic therapies are urgently needed. Exportin-1 (XPO1), which is a member of the importin-β superfamily of karyopherins, is the major exporter of many tumor suppressor proteins that are involved in the progression of PAC. Promising pre-clinical data using XPO1 inhibitors have been reported in PAC, but very few data are available regarding XPO1 expression in clinical samples. Retrospectively, we analyzed XPO1 mRNA expression in 741 pancreatic samples, including 95 normal, 73 metastatic and 573 primary cancers samples, and searched for correlations with clinicopathological and molecular data, including overall survival. XPO1 expression was heterogeneous across the samples, higher in metastatic samples than in the primary tumors, and higher in primaries than in the normal samples. "XPO1-high" tumors were associated with positive pathological lymph node status and aggressive molecular subtypes. They were also associated with shorter overall survival in both uni- and multivariate analyses. Supervised analysis between the "XPO1-high" and "XPO1-low" tumors identified a robust 268-gene signature, whereby ontology analysis suggested increased XPO1 activity in the "XPO1-high" tumors. XPO1 expression refines the prognostication in PAC and higher expression exists in secondary versus primary tumors, which supports the development of XPO1 inhibitors in this so-lethal disease.
Collapse
Affiliation(s)
- David Jérémie Birnbaum
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, INSERM UMR1068, CNRS UMR725, F-13273 Marseille, France.
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, F-13273 Marseille, France.
- Département de Chirurgie Générale et Viscérale, AP-HM, F-13000 Marseille, France.
| | - Pascal Finetti
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, INSERM UMR1068, CNRS UMR725, F-13273 Marseille, France.
| | - Daniel Birnbaum
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, INSERM UMR1068, CNRS UMR725, F-13273 Marseille, France.
| | - Emilie Mamessier
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, INSERM UMR1068, CNRS UMR725, F-13273 Marseille, France.
| | - François Bertucci
- Laboratoire d'Oncologie Prédictive, Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, INSERM UMR1068, CNRS UMR725, F-13273 Marseille, France.
- Département d'Oncologie Médicale, Institut Paoli-Calmettes, F-13273 Marseille, France.
| |
Collapse
|
14
|
Astakhova TM, Morozov AV, Erokhov PA, Mikhailovskaya MI, Akopov SB, Chupikova NI, Safarov RR, Sharova NP. Combined Effect of Bortezomib and Menadione Sodium Bisulfite on Proteasomes of Tumor Cells: The Dramatic Decrease of Bortezomib Toxicity in a Preclinical Trial. Cancers (Basel) 2018; 10:E351. [PMID: 30257462 PMCID: PMC6209890 DOI: 10.3390/cancers10100351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/12/2018] [Accepted: 09/22/2018] [Indexed: 11/16/2022] Open
Abstract
Tumor growth is associated with elevated proteasome expression and activity. This makes proteasomes a promising target for antitumor drugs. Current antitumor drugs such as bortezomib that inhibit proteasome activity have significant side effects. The purpose of the present study was to develop effective low-toxic antitumor compositions with combined effects on proteasomes. For compositions, we used bortezomib in amounts four and ten times lower than its clinical dose, and chose menadione sodium bisulfite (MSB) as the second component. MSB is known to promote oxidation of NADH, generate superoxide radicals, and as a result damage proteasome function in cells that ensure the relevance of MSB use for the composition development. The proteasome pool was investigated by the original native gel electrophoresis method, proteasome chymotrypsin-like activity-by Suc-LLVY-AMC-hydrolysis. For the compositions, we detected 10 and 20 μM MSB doses showing stronger proteasome-suppressing and cytotoxic in cellulo effects on malignant cells than on normal ones. MSB indirectly suppressed 26S-proteasome activity in cellulo, but not in vitro. At the same time, MSB together with bortezomib displayed synergetic action on the activity of all proteasome forms in vitro as well as synergetic antitumor effects in cellulo. These findings determine the properties of the developed compositions in vivo: antitumor efficiency, higher (against hepatocellular carcinoma and mammary adenocarcinoma) or comparable to bortezomib (against Lewis lung carcinoma), and drastically reduced toxicity (LD50) relative to bortezomib. Thus, the developed compositions represent a novel generation of bortezomib-based anticancer drugs combining high efficiency, low general toxicity, and a potentially expanded range of target tumors.
Collapse
Affiliation(s)
- Tatiana M Astakhova
- Laboratory of Biochemistry of Ontogenesis Processes, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia.
| | - Alexey V Morozov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 119991 Moscow, Russia.
| | - Pavel A Erokhov
- Laboratory of Biochemistry of Ontogenesis Processes, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia.
| | - Maria I Mikhailovskaya
- Laboratory of Biochemistry of Ontogenesis Processes, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia.
| | - Sergey B Akopov
- Laboratory of Human Genes Structure and Functions, Shemyakin⁻Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 16/10 Miklukho-Maklay Street, 117997 Moscow, Russia.
| | - Natalia I Chupikova
- Laboratory of Biochemistry of Ontogenesis Processes, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia.
| | - Ruslan R Safarov
- Laboratory of Biochemistry of Ontogenesis Processes, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia.
| | - Natalia P Sharova
- Laboratory of Biochemistry of Ontogenesis Processes, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia.
| |
Collapse
|
15
|
Subhash VV, Yeo MS, Wang L, Tan SH, Wong FY, Thuya WL, Tan WL, Peethala PC, Soe MY, Tan DSP, Padmanabhan N, Baloglu E, Shacham S, Tan P, Koeffler HP, Yong WP. Anti-tumor efficacy of Selinexor (KPT-330) in gastric cancer is dependent on nuclear accumulation of p53 tumor suppressor. Sci Rep 2018; 8:12248. [PMID: 30115935 PMCID: PMC6095850 DOI: 10.1038/s41598-018-30686-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/06/2018] [Indexed: 12/17/2022] Open
Abstract
Exportin-1 (XPO1) controls the nucleo-cytoplasmic trafficking of several key growth regulatory and tumor suppressor proteins. Nuclear export blockade through XPO1 inhibition is a target for therapeutic inhibition in many cancers. Studies have suggested XPO1 upregulation as an indicator of poor prognosis in gastric cancer. In the current study, we investigated the anti-tumor efficacy of selective inhibitors of nuclear export (SINE) compounds KPT-185, KTP-276 and clinical stage selinexor (KPT-330) in gastric cancer. XPO1 was found to be overexpressed in gastric cancer as compared to adjacent normal tissues and was correlated with poor survival outcomes. Among the 3 SINE compounds, in vitro targeting of XPO1 with selinexor resulted in greatest potency with significant anti-proliferative effects at nano molar concentrations. XPO1 inhibition by selinexor resulted in nuclear accumulation of p53, causing cell cycle arrest and apoptosis. Also, inhibition of XPO1 lead to the cytoplasmic retention of p21 and suppression of survivin. Orally administered selienxor caused significant inhibition of tumor growth in xenograft models of gastric cancer. Furthermore, combination of selinexor with irinotecan exhibited greater anti-tumor effect compared to individual treatment. Taken together, our study underscores the therapeutic utility of XPO1 targeting in gastric cancer and suggests the potential benefits of XPO1 inhibition in-combination with chemotherapy.
Collapse
Affiliation(s)
- Vinod Vijay Subhash
- Cancer Science Institute of Singapore, Yong loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Mei Shi Yeo
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, Yong loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shi Hui Tan
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
| | - Foong Ying Wong
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
| | - Win Lwin Thuya
- Cancer Science Institute of Singapore, Yong loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Woei Loon Tan
- Cancer Science Institute of Singapore, Yong loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Praveen C Peethala
- Cancer Science Institute of Singapore, Yong loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mu Yar Soe
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
| | - David S P Tan
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
| | - Nisha Padmanabhan
- Department of Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Erkan Baloglu
- Karyopharm Therapeutics Inc, Newton, Massachusetts, USA
| | | | - Patrick Tan
- Department of Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, Yong loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei Peng Yong
- Cancer Science Institute of Singapore, Yong loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Department of Haematology-Oncology, National University Hospital, Singapore, Singapore.
| |
Collapse
|
16
|
Muqbil I, Azmi AS, Mohammad RM. Nuclear Export Inhibition for Pancreatic Cancer Therapy. Cancers (Basel) 2018; 10:E138. [PMID: 29735942 PMCID: PMC5977111 DOI: 10.3390/cancers10050138] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer is a deadly disease that is resistant to most available therapeutics. Pancreatic cancer to date has no effective drugs that could enhance the survival of patients once their disease has metastasized. There is a need for the identification of novel actionable drug targets in this unusually recalcitrant cancer. Nuclear protein transport is an important mechanism that regulates the function of several tumor suppressor proteins (TSPs) in a compartmentalization-dependent manner. High expression of the nuclear exporter chromosome maintenance region 1 (CRM1) or exportin 1 (XPO1), a common feature of several cancers including pancreatic cancer, results in excessive export of critical TSPs to the incorrect cellular compartment, leading to their functional inactivation. Small molecule inhibitors of XPO1 can block this export, retaining very important and functional TSPs in the nucleus and leading to the effective killing of the cancer cells. This review highlights the current knowledge on the role of XPO1 in pancreatic cancer and how this serves as a unique and clinically viable target in this devastating and by far incurable cancer.
Collapse
Affiliation(s)
- Irfana Muqbil
- Department of Chemistry, University of Detroit Mercy, Detroit, MI 48221, USA.
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Ramzi M Mohammad
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
17
|
Fan H, Jiang C, Zhong B, Sheng J, Chen T, Chen Q, Li J, Zhao H. Matrine Ameliorates Colorectal Cancer in Rats via Inhibition of HMGB1 Signaling and Downregulation of IL-6, TNF- α, and HMGB1. J Immunol Res 2018; 2018:5408324. [PMID: 29546074 PMCID: PMC5818890 DOI: 10.1155/2018/5408324] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/09/2017] [Accepted: 11/12/2017] [Indexed: 02/07/2023] Open
Abstract
Matrine may be protective against colorectal cancer (CRC), but how it may work is unclear. Thus, we explored the underlying mechanisms of matrine in CRC. Matrine-related proteins and CRC-related genes and therapeutic targets of matrine in CRC were predicted using a network pharmacology approach. Five targets, including interleukin 6 (IL-6), the 26S proteasome, tumor necrosis factor alpha (TNF-α), transforming growth factor beta 1 (TGF-β1) and p53, and corresponding high-mobility group box 1 (HMGB1) signaling and T helper cell differentiation were thought to be associated with matrine's mechanism. Expression of predicted serum targets were verified in a 1,2-dimethylhydrazine dihydrochloride-induced CRC model rats that were treated with matrine (ip) for 18 weeks. Data show that matrine suppressed CRC growth and decreased previously elevated expression of IL-6, TNF-α, p53, and HMGB1. Matrine may have had a therapeutic effect on CRC via inhibition of HMGB1 signaling, and this occurred through downregulation of IL-6, TNF-α, and HMGB1.
Collapse
Affiliation(s)
- Huizhen Fan
- Department of Gastroenterology, The People's Hospital of Yichun City, Yichun, China
| | - Chunyan Jiang
- Department of Dermatology, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Baoyuan Zhong
- Department of General Surgery, First Affiliated Hospital of Gannan Medical College, Ganzhou, China
| | - Jianwen Sheng
- Department of Gastroenterology, The People's Hospital of Yichun City, Yichun, China
| | - Ting Chen
- Department of Gastroenterology, The People's Hospital of Yichun City, Yichun, China
| | - Qingqing Chen
- Department of Gastroenterology, The People's Hospital of Yichun City, Yichun, China
| | - Jingtao Li
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Hongchuan Zhao
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|