1
|
Kazanietz MG, Cooke M. Protein kinase C signaling "in" and "to" the nucleus: Master kinases in transcriptional regulation. J Biol Chem 2024; 300:105692. [PMID: 38301892 PMCID: PMC10907189 DOI: 10.1016/j.jbc.2024.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
PKC is a multifunctional family of Ser-Thr kinases widely implicated in the regulation of fundamental cellular functions, including proliferation, polarity, motility, and differentiation. Notwithstanding their primary cytoplasmic localization and stringent activation by cell surface receptors, PKC isozymes impel prominent nuclear signaling ultimately impacting gene expression. While transcriptional regulation may be wielded by nuclear PKCs, it most often relies on cytoplasmic phosphorylation events that result in nuclear shuttling of PKC downstream effectors, including transcription factors. As expected from the unique coupling of PKC isozymes to signaling effector pathways, glaring disparities in gene activation/repression are observed upon targeting individual PKC family members. Notably, specific PKCs control the expression and activation of transcription factors implicated in cell cycle/mitogenesis, epithelial-to-mesenchymal transition and immune function. Additionally, PKCs isozymes tightly regulate transcription factors involved in stepwise differentiation of pluripotent stem cells toward specific epithelial, mesenchymal, and hematopoietic cell lineages. Aberrant PKC expression and/or activation in pathological conditions, such as in cancer, leads to profound alterations in gene expression, leading to an extensive rewiring of transcriptional networks associated with mitogenesis, invasiveness, stemness, and tumor microenvironment dysregulation. In this review, we outline the current understanding of PKC signaling "in" and "to" the nucleus, with significant focus on established paradigms of PKC-mediated transcriptional control. Dissecting these complexities would allow the identification of relevant molecular targets implicated in a wide spectrum of diseases.
Collapse
Affiliation(s)
- Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
2
|
Affandi T, Haas A, Ohm AM, Wright GM, Black JC, Reyland ME. PKCδ Regulates Chromatin Remodeling and DNA Repair through SIRT6. Mol Cancer Res 2024; 22:181-196. [PMID: 37889141 PMCID: PMC10872792 DOI: 10.1158/1541-7786.mcr-23-0493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/07/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023]
Abstract
Irradiation (IR) is a highly effective cancer therapy; however, IR damage to tumor-adjacent healthy tissues can result in significant comorbidities and potentially limit the course of therapy. We have previously shown that protein kinase C delta (PKCδ) is required for IR-induced apoptosis and that inhibition of PKCδ activity provides radioprotection in vivo. Here we show that PKCδ regulates histone modification, chromatin accessibility, and double-stranded break (DSB) repair through a mechanism that requires Sirtuin 6 (SIRT6). Overexpression of PKCδ promotes genomic instability and increases DNA damage and apoptosis. Conversely, depletion of PKCδ increases DNA repair via nonhomologous end joining (NHEJ) and homologous recombination (HR) as evidenced by increased formation of DNA damage foci, increased expression of DNA repair proteins, and increased repair of NHEJ and HR fluorescent reporter constructs. Nuclease sensitivity indicates that PKCδ depletion is associated with more open chromatin, while overexpression of PKCδ reduces chromatin accessibility. Epiproteome analysis reveals increased chromatin associated H3K36me2 in PKCδ-depleted cells which is accompanied by chromatin disassociation of KDM2A. We identify SIRT6 as a downstream mediator of PKCδ. PKCδ-depleted cells have increased SIRT6 expression, and depletion of SIRT6 reverses changes in chromatin accessibility, histone modification and DSB repair in PKCδ-depleted cells. Furthermore, depletion of SIRT6 reverses radioprotection in PKCδ-depleted cells. Our studies describe a novel pathway whereby PKCδ orchestrates SIRT6-dependent changes in chromatin accessibility to regulate DNA repair, and define a mechanism for regulation of radiation-induced apoptosis by PKCδ. IMPLICATIONS PKCδ controls sensitivity to irradiation by regulating DNA repair.
Collapse
Affiliation(s)
- Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ami Haas
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angela M. Ohm
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Gregory M. Wright
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joshua C. Black
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mary E. Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Singh B, Patwardhan RS, Pal D, Maurya DK, Singh BG, Checker R, Sharma D, Sandur SK. Repurposing of FDA approved kinase inhibitor bosutinib for mitigation of radiation induced damage via inhibition of JNK pathway. Toxicol Appl Pharmacol 2024; 482:116792. [PMID: 38142783 DOI: 10.1016/j.taap.2023.116792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Radiotherapy is a common modality for cancer treatment. However, it is often associated with normal tissue toxicity in 20-80% of the patients. Radioprotectors can improve the outcome of radiotherapy by selectively protecting normal cells against radiation toxicity. In the present study, compound libraries containing 54 kinase inhibitors and 80 FDA-approved drugs were screened for radioprotection of lymphocytes using high throughput cell analysis. A second-generation FDA-approved kinase inhibitor, bosutinib, was identified as a potential radioprotector for normal cells. The radioprotective efficacy of bosutinib was evinced from a reduction in radiation induced DNA damage, caspase-3 activation, DNA fragmentation and apoptosis. Oral administration of bosutinib protected mice against whole body irradiation (WBI) induced morbidity and mortality. Bosutinib also reduced radiation induced bone-marrow aplasia and hematopoietic damage in mice exposed to 4 Gy and 6 Gy dose of WBI. Mechanistic studies revealed that the radioprotective action of bosutinib involved interaction with cellular thiols and modulation of JNK pathway. The addition of glutathione and N-acetyl cysteine significantly reduced the radioprotective efficacy of bosutinib. Moreover, bosutinib did not protect cancer cells against radiation induced toxicity. On the contrary, bosutinib per se exhibited anticancer activity against human cancer cell lines. The results highlight possible use of bosutinib as a repurposable radioprotective agent for mitigation of radiation toxicity in cancer patients undergoing radiotherapy.
Collapse
Affiliation(s)
- Babita Singh
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Raghavendra S Patwardhan
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Debojyoti Pal
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Dharmendra K Maurya
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Beena G Singh
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India; Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Rahul Checker
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Santosh K Sandur
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
4
|
McKendrick JG, Jones GR, Elder SS, Watson E, T'Jonck W, Mercer E, Magalhaes MS, Rocchi C, Hegarty LM, Johnson AL, Schneider C, Becher B, Pridans C, Mabbott N, Liu Z, Ginhoux F, Bajenoff M, Gentek R, Bain CC, Emmerson E. CSF1R-dependent macrophages in the salivary gland are essential for epithelial regeneration after radiation-induced injury. Sci Immunol 2023; 8:eadd4374. [PMID: 37922341 DOI: 10.1126/sciimmunol.add4374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/03/2023] [Indexed: 11/05/2023]
Abstract
The salivary glands often become damaged in individuals receiving radiotherapy for head and neck cancer, resulting in chronic dry mouth. This leads to detrimental effects on their health and quality of life, for which there is no regenerative therapy. Macrophages are the predominant immune cell in the salivary glands and are attractive therapeutic targets due to their unrivaled capacity to drive tissue repair. Yet, the nature and role of macrophages in salivary gland homeostasis and how they may contribute to tissue repair after injury are not well understood. Here, we show that at least two phenotypically and transcriptionally distinct CX3CR1+ macrophage populations are present in the adult salivary gland, which occupy anatomically distinct niches. CD11c+CD206-CD163- macrophages typically associate with gland epithelium, whereas CD11c-CD206+CD163+ macrophages associate with blood vessels and nerves. Using a suite of complementary fate mapping systems, we show that there are highly dynamic changes in the ontogeny and composition of salivary gland macrophages with age. Using an in vivo model of radiation-induced salivary gland injury combined with genetic or antibody-mediated depletion of macrophages, we demonstrate an essential role for macrophages in clearance of cells with DNA damage. Furthermore, we show that epithelial-associated macrophages are indispensable for effective tissue repair and gland function after radiation-induced injury, with their depletion resulting in reduced saliva production. Our data, therefore, provide a strong case for exploring the therapeutic potential of manipulating macrophages to promote tissue repair and thus minimize salivary gland dysfunction after radiotherapy.
Collapse
Affiliation(s)
- John G McKendrick
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Gareth-Rhys Jones
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Sonia S Elder
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Erin Watson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Wouter T'Jonck
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Ella Mercer
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Marlene S Magalhaes
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Cecilia Rocchi
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Lizi M Hegarty
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Amanda L Johnson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | | | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Clare Pridans
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Neil Mabbott
- Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Marc Bajenoff
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, INSERM, U1104, CNRS UMR7280, Marseille 13288, France
| | - Rebecca Gentek
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Calum C Bain
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Elaine Emmerson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 4-5 Little France Drive, Edinburgh, EH16 4UU, UK
| |
Collapse
|
5
|
Affandi T, Haas A, Ohm AM, Wright GM, Black JC, Reyland ME. PKCδ regulates chromatin remodeling and DNA repair through SIRT6. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.541991. [PMID: 37292592 PMCID: PMC10245827 DOI: 10.1101/2023.05.24.541991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein kinase C delta (PKCδ) is a ubiquitous kinase whose function is defined in part by localization to specific cellular compartments. Nuclear PKCδ is both necessary and sufficient for IR-induced apoptosis, while inhibition of PKCδ activity provides radioprotection in vivo. How nuclear PKCδ regulates DNA-damage induced cell death is poorly understood. Here we show that PKCδ regulates histone modification, chromatin accessibility, and double stranded break (DSB) repair through a mechanism that requires SIRT6. Overexpression of PKCδ promotes genomic instability and increases DNA damage and apoptosis. Conversely, depletion of PKCδ increases DNA repair via non-homologous end joining (NHEJ) and homologous recombination (HR) as evidenced by more rapid formation of NHEJ (DNA-PK) and HR (Rad51) DNA damage foci, increased expression of repair proteins, and increased repair of NHEJ and HR fluorescent reporter constructs. Nuclease sensitivity indicates that PKCδ depletion is associated with more open chromatin, while overexpression of PKCδ reduces chromatin accessibility. Epiproteome analysis revealed that PKCδ depletion increases chromatin associated H3K36me2, and reduces ribosylation of KDM2A and chromatin bound KDM2A. We identify SIRT6 as a downstream mediator of PKCδ. PKCδ-depleted cells have increased expression of SIRT6, and depletion of SIRT6 reverses the changes in chromatin accessibility, histone modification and NHEJ and HR DNA repair seen with PKCδ-depletion. Furthermore, depletion of SIRT6 reverses radioprotection in PKCδ-depleted cells. Our studies describe a novel pathway whereby PKCδ orchestrates SIRT6-dependent changes in chromatin accessibility to increase DNA repair, and define a mechanism for regulation of radiation-induced apoptosis by PKCδ.
Collapse
Affiliation(s)
- Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ami Haas
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angela M. Ohm
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Gregory M. Wright
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joshua C. Black
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mary E. Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Chibly AM, Aure MH, Patel VN, Hoffman MP. Salivary gland function, development, and regeneration. Physiol Rev 2022; 102:1495-1552. [PMID: 35343828 PMCID: PMC9126227 DOI: 10.1152/physrev.00015.2021] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/27/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Salivary glands produce and secrete saliva, which is essential for maintaining oral health and overall health. Understanding both the unique structure and physiological function of salivary glands, as well as how they are affected by disease and injury, will direct the development of therapy to repair and regenerate them. Significant recent advances, particularly in the OMICS field, increase our understanding of how salivary glands develop at the cellular, molecular, and genetic levels: the signaling pathways involved, the dynamics of progenitor cell lineages in development, homeostasis, and regeneration, and the role of the extracellular matrix microenvironment. These provide a template for cell and gene therapies as well as bioengineering approaches to repair or regenerate salivary function.
Collapse
Affiliation(s)
- Alejandro M Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
7
|
Black JD, Affandi T, Black AR, Reyland ME. PKCα and PKCδ: Friends and Rivals. J Biol Chem 2022; 298:102194. [PMID: 35760100 PMCID: PMC9352922 DOI: 10.1016/j.jbc.2022.102194] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
PKC comprises a large family of serine/threonine kinases that share a requirement for allosteric activation by lipids. While PKC isoforms have significant homology, functional divergence is evident among subfamilies and between individual PKC isoforms within a subfamily. Here, we highlight these differences by comparing the regulation and function of representative PKC isoforms from the conventional (PKCα) and novel (PKCδ) subfamilies. We discuss how unique structural features of PKCα and PKCδ underlie differences in activation and highlight the similar, divergent, and even opposing biological functions of these kinases. We also consider how PKCα and PKCδ can contribute to pathophysiological conditions and discuss challenges to targeting these kinases therapeutically.
Collapse
Affiliation(s)
- Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE.
| | - Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus.
| |
Collapse
|
8
|
Harada K, Ferdous T, Fujiwara R, Watanabe K, Mizukami Y, Mishima K. An elemental diet protects mouse salivary glands from 5‑fluorouracil‑induced atrophy. Oncol Lett 2022; 23:178. [PMID: 35464303 PMCID: PMC9025579 DOI: 10.3892/ol.2022.13298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
An elemental diet (ED) reduces adverse effects of chemotherapy, including oral mucositis, in patients with cancer. However, the detailed mechanism(s) of the healing effects of an ED remains unclear. In the present study, the protective effects of the ED, Elental®, were examined against 5-fluorouracil (5-FU)-induced oral mucositis and salivary gland atrophy in mice. Mucositis was induced in female ICR mice by injection of 5-FU. The mice were orally administered Elental® (ED group) or saline (control group). After treatment, the mice body weight, salivary gland weight and the histological changes in the salivary gland granular duct area were monitored. The mice body weight remained stable in the ED group, but was significantly decreased in the control group. Moreover, the salivary gland weight was higher in the ED group compared with the control group. In addition, the salivary gland granular duct area cells were larger in the ED group compared with the control group. Whole transcriptome analysis and network analysis were conducted to understand the mechanisms of action of Elental® against oral mucositis. Whole transcriptome analysis and Ingenuity Pathways Analysis data suggested that Elental® contributed to the recovery of mitochondrial function in 5-FU-damaged salivary glands. Immunohistochemical analysis of salivary gland tissue demonstrated that the expression of cytochrome c oxidase subunit 4 and epidermal growth factor were higher in the ED group compared with the control group. Next, the rate of apoptosis in the salivary glands was examined using terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assays. The number of TUNEL-positive cells in the salivary glands was lower in the ED group compared with the control group. These findings suggested that Elental® may protect mouse salivary glands from 5-FU-induced atrophic changes, which suggests that ED treatment may improve xerostomia and alleviate oral mucositis in patients with cancer receiving 5-FU-based chemotherapy.
Collapse
Affiliation(s)
- Koji Harada
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755‑8505, Japan
| | - Tarannum Ferdous
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755‑8505, Japan
| | - Rieko Fujiwara
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755‑8505, Japan
| | - Kenji Watanabe
- Center for Gene Research, Yamaguchi University, Ube, Yamaguchi 755‑8505, Japan
| | - Yoichi Mizukami
- Center for Gene Research, Yamaguchi University, Ube, Yamaguchi 755‑8505, Japan
| | - Katsuaki Mishima
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755‑8505, Japan
| |
Collapse
|
9
|
Frank DN, Qiu Y, Cao Y, Zhang S, Lu L, Kofonow JM, Robertson CE, Liu Y, Wang H, Levens CL, Kuhn KA, Song J, Ramakrishnan VR, Lu SL. A dysbiotic microbiome promotes head and neck squamous cell carcinoma. Oncogene 2022; 41:1269-1280. [PMID: 35087236 PMCID: PMC8882136 DOI: 10.1038/s41388-021-02137-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/10/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
Recent studies have reported dysbiotic oral microbiota and tumor-resident bacteria in human head and neck squamous cell carcinoma (HNSCC). We aimed to identify and validate oral microbial signatures in treatment-naïve HNSCC patients compared with healthy control subjects. We confirm earlier reports that the relative abundances of Lactobacillus spp. and Neisseria spp. are elevated and diminished, respectively, in human HNSCC. In parallel, we examined the disease-modifying effects of microbiota in HNSCC, through both antibiotic depletion of microbiota in an induced HNSCC mouse model (4-Nitroquinoline 1-oxide, 4NQO) and reconstitution of tumor-associated microbiota in a germ-free orthotopic mouse model. We demonstrate that depletion of microbiota delays oral tumorigenesis, while microbiota transfer from mice with oral cancer accelerates tumorigenesis. Enrichment of Lactobacillus spp. was also observed in murine HNSCC, and activation of the aryl-hydrocarbon receptor was documented in both murine and human tumors. Together, our findings support the hypothesis that dysbiosis promotes HNSCC development.
Collapse
Affiliation(s)
- Daniel N Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| | - Yue Qiu
- Department of Otolaryngology-Head & Neck Surgery, University of Colorado Anschutz Medical Center, Aurora, CO, USA
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, China
| | - Yu Cao
- Department of Otolaryngology-Head & Neck Surgery, University of Colorado Anschutz Medical Center, Aurora, CO, USA
- Department of Surgical Oncology, The First University Hospital, China Medical University, Shenyang, 110122, China
| | - Shuguang Zhang
- Department of Otolaryngology-Head & Neck Surgery, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Ling Lu
- Department of Otolaryngology-Head & Neck Surgery, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Jennifer M Kofonow
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Charles E Robertson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Yanqiu Liu
- Department of Otolaryngology-Head & Neck Surgery, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Haibo Wang
- Department of Otolaryngology-Head & Neck Surgery, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Cassandra L Levens
- Division of Rheumatology and the Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Kristine A Kuhn
- Division of Rheumatology and the Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - John Song
- Department of Otolaryngology-Head & Neck Surgery, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Vijay R Ramakrishnan
- Department of Otolaryngology-Head & Neck Surgery, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Shi-Long Lu
- Department of Otolaryngology-Head & Neck Surgery, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| |
Collapse
|
10
|
Liu Z, Dong L, Zheng Z, Liu S, Gong S, Meng L, Xin Y, Jiang X. Mechanism, Prevention, and Treatment of Radiation-Induced Salivary Gland Injury Related to Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10111666. [PMID: 34829539 PMCID: PMC8614677 DOI: 10.3390/antiox10111666] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Radiation therapy is a common treatment for head and neck cancers. However, because of the presence of nerve structures (brain stem, spinal cord, and brachial plexus), salivary glands (SGs), mucous membranes, and swallowing muscles in the head and neck regions, radiotherapy inevitably causes damage to these normal tissues. Among them, SG injury is a serious adverse event, and its clinical manifestations include changes in taste, difficulty chewing and swallowing, oral infections, and dental caries. These clinical symptoms seriously reduce a patient’s quality of life. Therefore, it is important to clarify the mechanism of SG injury caused by radiotherapy. Although the mechanism of radiation-induced SG injury has not yet been determined, recent studies have shown that the mechanisms of calcium signaling, microvascular injury, cellular senescence, and apoptosis are closely related to oxidative stress. In this article, we review the mechanism by which radiotherapy causes oxidative stress and damages the SGs. In addition, we discuss effective methods to prevent and treat radiation-induced SG damage.
Collapse
Affiliation(s)
- Zijing Liu
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (Z.L.); (L.D.); (Z.Z.); (S.L.); (S.G.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Lihua Dong
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (Z.L.); (L.D.); (Z.Z.); (S.L.); (S.G.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (Z.L.); (L.D.); (Z.Z.); (S.L.); (S.G.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Shiyu Liu
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (Z.L.); (L.D.); (Z.Z.); (S.L.); (S.G.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Shouliang Gong
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (Z.L.); (L.D.); (Z.Z.); (S.L.); (S.G.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China;
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (Z.L.); (L.D.); (Z.Z.); (S.L.); (S.G.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
- Correspondence: ; Tel.: +86-158-0430-2750
| |
Collapse
|
11
|
Kurata A, Takanashi M, Ohno SI, Fujita K, Kuroda M. Cisplatin induces differentiation in teratomas derived from pluripotent stem cells. Regen Ther 2021; 18:117-126. [PMID: 34141836 PMCID: PMC8192819 DOI: 10.1016/j.reth.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/30/2021] [Accepted: 05/22/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction Currently, embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can be induced to differentiate at the cellular level but not to form mature tissues or organs suitable for transplantation. ESCs/iPSCs form immature teratomas after injection into immunodeficient mice. In humans, immature teratomas often transform into fully differentiated mature teratomas after administration of anticancer agents. Methods We first investigated the ability of cisplatin to induce changes in mouse ESCs/iPSCs in vitro. Next, we designed experiments to analyze ESC/iPSC-derived immature teratoma tissue in vivo after treatment of cisplatin. Groups of six mice carrying ESC- or iPSC-derived teratomas were given either low or high dose intraperitoneal injection of cisplatin, while the control group received saline for 4 weeks. Results Treatment of ESC/iPSC cultures with cisplatin for 3 days caused a dose-related decrease in cell numbers without inducing any morphological changes to the cells. ESC/iPSC-derived teratomas showed lower growth rates with a significantly higher mature components ratio in a concentration dependent manner after cisplatin treatment (P < 0.05); however, immunohistochemical analyses demonstrated a significantly reduced PCNA labelling index and an increase in an apoptosis marker on immature neural components (P < 0.05) along with emergence of h-Caldesmon+ mature smooth muscle cells in treated mice. Moreover, newly differentiated components not found in the control group, such as mature adipose tissue, cartilage, and pancreas, as well as striated muscle, salivary glands, gastric mucosa with fundic glands, and hair follicles emerged. The identities of these components were confirmed by immunostaining for specific markers. Conclusions Cisplatin has the ability to reduce immature components in ESC/iPSC-derived teratomas, presumably through apoptosis, and also to induce them to differentiate. Transformation of immature to mature teratoma after chemotherapy was verified. Mice bearing ESC/iPSC-derived immature teratomas were used. Mice were treated with intraperitoneal injection of cisplatin for 4 weeks. Newly differentiated structures were found only in the tumors of treated mice. Cisplatin can induce differentiation in ESC/iPSC-derived immature teratomas.
Collapse
Key Words
- ALP, alkaline phosphatase
- ATP4B, ATPase H+/K+ transporting beta subunit
- CR, chemotherapeutic retroconversion
- Cisplatin
- DMEM, Dulbecco's modified Eagle's medium
- Differentiation
- ESC, embryonic stem cell
- Embryonic stem cells
- FCS, fetal calf serum
- HE, hematoxylin and eosin
- Immature teratoma
- Induced pluripotent stem cells
- KSR, knockout serum replacement
- LIF, leukemia inhibitory factor
- MEF, mouse embryonic fibroblast
- PBS, phosphate buffered saline
- PCNA, proliferating cell nuclear antigen
- RAG, recombination activating gene
- RLU, relative light units
- RT, room temperature
- iPSC, induced pluripotent stem cell
- ssDNA, single stranded DNA
- α-SMA, α-smooth muscle actin
Collapse
Affiliation(s)
- Atsushi Kurata
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo, Japan
| | - Masakatsu Takanashi
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo, Japan
| | - Shin-Ichiro Ohno
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo, Japan
| | - Koji Fujita
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
12
|
Hu S, Xie D, Zhou P, Liu X, Yin X, Huang B, Guan H. LINCS gene expression signature analysis revealed bosutinib as a radiosensitizer of breast cancer cells by targeting eIF4G1. Int J Mol Med 2021; 47:72. [PMID: 33693953 PMCID: PMC7952247 DOI: 10.3892/ijmm.2021.4905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/22/2021] [Indexed: 11/06/2022] Open
Abstract
Radioresistance is the predominant cause for radiotherapy failure and disease progression, resulting in increased breast cancer‑associated mortality. Using gene expression signature analysis of the Library of Integrated Network‑Based Cellular Signatures (LINCS) and Gene Expression Omnibus (GEO), the aim of the present study was to systematically identify potential candidate radiosensitizers from known drugs. The similarity of integrated gene expression signatures between irradiated eukaryotic translation initiation factor 4 γ 1 (eIF4G1)‑silenced breast cancer cells and known drugs was measured using enrichment scores (ES). Drugs with positive ES were selected as potential radiosensitizers. The radiosensitizing effects of the candidate drugs were analyzed in breast cancer cell lines (MCF‑7, MX‑1 and MDA‑MB‑231) using CCK‑8 and colony formation assays following exposure to ionizing radiation. Cell apoptosis was measured using flow cytometry. The expression levels of eIF4G1 and DNA damage response (DDR) proteins were analyzed by western blotting. Bosutinib was identified as a promising radiosensitizer, as its administration markedly reduced the dosage required both for the drug and for ionizing radiation, which may be associated with fewer treatment‑associated adverse reactions. Moreover, combined treatment of ionizing radiation and bosutinib significantly increased cell killing in all three cell lines, compared with ionizing radiation or bosutinib alone. Among the three cell lines, MX‑1 cells were identified as the most sensitive to both ionizing radiation and bosutinib. Bosutinib markedly downregulated the expression of eIF4G1 in a dose‑dependent manner and also reduced the expression of DDR proteins (including ATM, XRCC4, ATRIP, and GADD45A). Moreover, eIF4G1 was identified as a key target of bosutinib that may regulate DNA damage induced by ionizing radiation. Thus, bosutinib may serve as a potential candidate radiosensitizer for breast cancer therapy.
Collapse
Affiliation(s)
- Sai Hu
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, Hunan 421001, P.R. China
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Dafei Xie
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Pingkun Zhou
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, Hunan 421001, P.R. China
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Xiaodan Liu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Xiaoyao Yin
- College of Computer, National University of Defence Technology, Changsha, Hunan 410073, P.R. China
| | - Bo Huang
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hua Guan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| |
Collapse
|
13
|
Tyrosine kinase inhibitors protect the salivary gland from radiation damage by increasing DNA double-strand break repair. J Biol Chem 2021; 296:100401. [PMID: 33571522 PMCID: PMC7973138 DOI: 10.1016/j.jbc.2021.100401] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 11/23/2022] Open
Abstract
We have previously shown that the tyrosine kinase inhibitors (TKIs) dasatinib and imatinib can protect salivary glands from irradiation (IR) damage without impacting tumor therapy. However, how they induce this protection is unknown. Here we show that TKIs mediate radioprotection by increasing the repair of DNA double-stranded breaks. DNA repair in IR-treated parotid cells, but not oral cancer cells, occurs more rapidly following pretreatment with imatinib or dasatinib and is accompanied by faster formation of DNA damage-induced foci. Similar results were observed in the parotid glands of mice pretreated with imatinib prior to IR, suggesting that TKIs "prime" cells for DNA repair. Mechanistically, we observed that TKIs increased IR-induced activation of DNA-PK, but not ATM. Pretreatment of parotid cells with the DNA-PK inhibitor NU7441 reversed the increase in DNA repair induced by TKIs. Reporter assays specific for homologous recombination (HR) or nonhomologous end joining (NHEJ) verified regulatation of both DNA repair pathways by imatinib. Moreover, TKIs also increased basal and IR-induced expression of genes associated with NHEJ (DNA ligase 4, Artemis, XLF) and HR (Rad50, Rad51 and BRCA1); depletion of DNA ligase 4 or BRCA1 reversed the increase in DNA repair mediated by TKIs. In addition, TKIs increased activation of the ERK survival pathway in parotid cells, and ERK was required for the increased survival of TKI-treated cells. Our studies demonstrate a dual mechanism by which TKIs provide radioprotection of the salivary gland tissues and support exploration of TKIs clinically in head and neck cancer patients undergoing IR therapy.
Collapse
|
14
|
Radiation-Induced Salivary Gland Dysfunction: Mechanisms, Therapeutics and Future Directions. J Clin Med 2020; 9:jcm9124095. [PMID: 33353023 PMCID: PMC7767137 DOI: 10.3390/jcm9124095] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
Salivary glands sustain collateral damage following radiotherapy (RT) to treat cancers of the head and neck, leading to complications, including mucositis, xerostomia and hyposalivation. Despite salivary gland-sparing techniques and modified dosing strategies, long-term hypofunction remains a significant problem. Current therapeutic interventions provide temporary symptom relief, but do not address irreversible glandular damage. In this review, we summarize the current understanding of mechanisms involved in RT-induced hyposalivation and provide a framework for future mechanistic studies. One glaring gap in published studies investigating RT-induced mechanisms of salivary gland dysfunction concerns the effect of irradiation on adjacent non-irradiated tissue via paracrine, autocrine and direct cell-cell interactions, coined the bystander effect in other models of RT-induced damage. We hypothesize that purinergic receptor signaling involving P2 nucleotide receptors may play a key role in mediating the bystander effect. We also discuss promising new therapeutic approaches to prevent salivary gland damage due to RT.
Collapse
|
15
|
Speidel JT, Affandi T, Jones DNM, Ferrara SE, Reyland ME. Functional proteomic analysis reveals roles for PKCδ in regulation of cell survival and cell death: Implications for cancer pathogenesis and therapy. Adv Biol Regul 2020; 78:100757. [PMID: 33045516 PMCID: PMC8294469 DOI: 10.1016/j.jbior.2020.100757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022]
Abstract
Protein Kinase C-δ (PKCδ), regulates a broad group of biological functions and disease processes, including well-defined roles in immune function, cell survival and apoptosis. PKCδ primarily regulates apoptosis in normal tissues and non-transformed cells, and genetic disruption of the PRKCD gene in mice is protective in many diseases and tissue damage models. However pro-survival/pro-proliferative functions have also been described in some transformed cells and in mouse models of cancer. Recent evidence suggests that the contribution of PKCδ to specific cancers may depend in part on the oncogenic context of the tumor, consistent with its paradoxical role in cell survival and cell death. Here we will discuss what is currently known about biological functions of PKCδ and potential paradigms for PKCδ function in cancer. To further understand mechanisms of regulation by PKCδ, and to gain insight into the plasticity of PKCδ signaling, we have used functional proteomics to identify pathways that are dependent on PKCδ. Understanding how these distinct functions of PKCδ are regulated will be critical for the logical design of therapeutics to target this pathway.
Collapse
Affiliation(s)
- Jordan T Speidel
- Department of Craniofacial Biology, School of Dental Medicine, USA
| | - Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, USA
| | | | - Sarah E Ferrara
- University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, USA.
| |
Collapse
|
16
|
Jensen SB, Vissink A, Limesand KH, Reyland ME. Salivary Gland Hypofunction and Xerostomia in Head and Neck Radiation Patients. J Natl Cancer Inst Monogr 2020; 2019:5551361. [PMID: 31425600 DOI: 10.1093/jncimonographs/lgz016] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 05/21/2019] [Accepted: 05/26/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The most manifest long-term consequences of radiation therapy in the head and neck cancer patient are salivary gland hypofunction and a sensation of oral dryness (xerostomia). METHODS This critical review addresses the consequences of radiation injury to salivary gland tissue, the clinical management of salivary gland hypofunction and xerostomia, and current and potential strategies to prevent or reduce radiation injury to salivary gland tissue or restore the function of radiation-injured salivary gland tissue. RESULTS Salivary gland hypofunction and xerostomia have severe implications for oral functioning, maintenance of oral and general health, and quality of life. Significant progress has been made to spare salivary gland function chiefly due to advances in radiation techniques. Other strategies have also been developed, e.g., radioprotectors, identification and preservation/expansion of salivary stem cells by stimulation with cholinergic muscarinic agonists, and application of new lubricating or stimulatory agents, surgical transfer of submandibular glands, and acupuncture. CONCLUSION Many advances to manage salivary gland hypofunction and xerostomia induced by radiation therapy still only offer partial protection since they are often of short duration, lack the protective effects of saliva, or potentially have significant adverse effects. Intensity-modulated radiation therapy (IMRT), and its next step, proton therapy, have the greatest potential as a management strategy for permanently preserving salivary gland function in head and neck cancer patients.Presently, gene transfer to supplement fluid formation and stem cell transfer to increase the regenerative potential in radiation-damaged salivary glands are promising approaches for regaining function and/or regeneration of radiation-damaged salivary gland tissue.
Collapse
Affiliation(s)
- Siri Beier Jensen
- Department of Dentistry and Oral Health, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Arjan Vissink
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center, Groningen, The Netherlands
| | | | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
17
|
Gaillard D, Shechtman LA, Millar SE, Barlow LA. Fractionated head and neck irradiation impacts taste progenitors, differentiated taste cells, and Wnt/β-catenin signaling in adult mice. Sci Rep 2019; 9:17934. [PMID: 31784592 PMCID: PMC6884601 DOI: 10.1038/s41598-019-54216-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/10/2019] [Indexed: 12/13/2022] Open
Abstract
Head and neck cancer patients receiving conventional repeated, low dose radiotherapy (fractionated IR) suffer from taste dysfunction that can persist for months and often years after treatment. To understand the mechanisms underlying functional taste loss, we established a fractionated IR mouse model to characterize how taste buds are affected. Following fractionated IR, we found as in our previous study using single dose IR, taste progenitor proliferation was reduced and progenitor cell number declined, leading to interruption in the supply of new taste receptor cells to taste buds. However, in contrast to a single dose of IR, we did not encounter increased progenitor cell death in response to fractionated IR. Instead, fractionated IR induced death of cells within taste buds. Overall, taste buds were smaller and fewer following fractionated IR, and contained fewer differentiated cells. In response to fractionated IR, expression of Wnt pathway genes, Ctnnb1, Tcf7, Lef1 and Lgr5 were reduced concomitantly with reduced progenitor proliferation. However, recovery of Wnt signaling post-IR lagged behind proliferative recovery. Overall, our data suggest carefully timed, local activation of Wnt/β-catenin signaling may mitigate radiation injury and/or speed recovery of taste cell renewal following fractionated IR.
Collapse
Affiliation(s)
- Dany Gaillard
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
- Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
| | - Lauren A Shechtman
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA
- Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA
| | - Sarah E Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Linda A Barlow
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
- Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Mail Stop 8108, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
18
|
PKCδ Mediates NF-κB Inflammatory Response and Downregulates SIRT1 Expression in Liver Fibrosis. Int J Mol Sci 2019; 20:ijms20184607. [PMID: 31533364 PMCID: PMC6770793 DOI: 10.3390/ijms20184607] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 01/08/2023] Open
Abstract
The precise mechanism of hepatic cirrhosis remains largely unclear. In particular, a potential regulatory mechanism by which protein kinase C-delta (PKCδ ) affects profibrogenic gene expression involved in hepatic cirrhosis has never been explored. In the present study, we investigated whether PKCδ activation is involved in liver inflammatory fibrosis in both lipopolysaccharide (LPS)-treated RAW 264.7 and CCl4-treated mice. PKCδ was strongly activated by LPS or CCl4 treatment and consequently stimulated nuclear factor (NF)-κB inflammatory response. Interestingly, the activation of PKCδ negatively regulated sirtuin-1 (SIRT1) expression, whereas PKCδ suppression by PKCδ peptide inhibitor V1-1 or siRNA dramatically increased SIRT1 expression. Furthermore, we showed that the negative regulation of PKCδ leads to a decrease in SIRT1 expression. To our knowledge, these results are the first demonstration of the involvement of PKCδ in modulating NF-κB through SIRT1 signaling in fibrosis in mice, suggesting a novel role of PKCδ in inflammatory fibrosis. The level of NF-κB p65 in the nucleus was also negatively regulated by SIRT1 activity. We showed that the inhibition of PKCδ promoted SIRT1 expression and decreased p65 levels in the nucleus through deacetylation. Moreover, the inactivation of PKCδ with V1-1 dramatically suppressed the inflammatory fibrosis, indicating that PKCδ represents a promising target for treating fibrotic diseases like hepatic cirrhosis.
Collapse
|
19
|
Liu C, Li H, Zheng H, Zhai M, Lu F, Dong S, Fang T, Zhang W. CaSR activates PKCδ to induce cardiomyocyte apoptosis via ER stress‑associated apoptotic pathways during ischemia/reperfusion. Int J Mol Med 2019; 44:1117-1126. [PMID: 31257458 DOI: 10.3892/ijmm.2019.4255] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/17/2019] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum (ER) stress can be activated by ischemia/reperfusion (I/R) injury in cardiomyocytes. Persistent ER stress, with an increase in intracellular Ca2+ ([Ca2+]i) concentration, leads to apoptosis. Protein kinase C (PKC) has a key role in myocardial damage by elevation of [Ca2+]i. The calcium‑sensing receptor (CaSR), a G protein‑coupled receptor, can increase the release of [Ca2+]i from the ER through the inositol triphosphate receptor (IP3R). Intracellular calcium overload has been demonstrated to cause cardiac myocyte apoptosis during I/R. However, the associations between PKC, CaSR and ER stress are not clear. The present study examined the hypothesis that activation of PKCδ by CaSR participates in ER stress‑associated apoptotic pathways within myocardial I/R. Rat hearts were subjected to 30 min of ischemia in vivo, followed by reperfusion for 120 min. GdCl3 (a CaSR activator) was used to elevate the intracellular Ca2+ concentration, but the Ca2+ concentration in the ER was significantly decreased during I/R. Following exposure to GdCl3, expression levels of CaSR, glucose‑regulated protein 78 (GRP78), Caspase‑12, phosphorylated JNK and Caspase‑3 were increased, and the ratios of apoptotic myocardial cells were significantly increased. By contrast, following exposure to rottlerin, a PKCδ inhibitor, the expression levels of these proteins and the ratio of apoptotic myocardial cells were significantly reduced. The present study also demonstrated that PKCδ translocated into the ER to induce an ER stress response and participate in the ER stress‑related apoptosis pathway. These results confirmed that CaSR activated PKCδ to induce cardiomyocyte apoptosis through ER stress‑associated apoptotic pathways during I/R in vivo.
Collapse
Affiliation(s)
- Chong Liu
- Department of Anesthesiology, Central Laboratory, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, P.R. China
| | - Huanming Li
- Department of Cardiology, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, Tianjin 300140, P.R. China
| | - Huishuang Zheng
- Department of Pathology, Haiyang Renmin Hospital, Haiyang, Shandong 265100, P.R. China
| | - Meili Zhai
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Central Gynecology Obstetrics Hospital of Nankai University, Tianjin 300052, P.R. China
| | - Fanghao Lu
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Shiyun Dong
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Tao Fang
- Central Laboratory, Tianjin 4th Centre Hospital, The Fourth Central Hospital Affiliated to Nankai University, Tianjin 300140, P.R. China
| | - Weihua Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
20
|
Ohm AM, Affandi T, Reyland ME. EGF receptor and PKCδ kinase activate DNA damage-induced pro-survival and pro-apoptotic signaling via biphasic activation of ERK and MSK1 kinases. J Biol Chem 2019; 294:4488-4497. [PMID: 30679314 DOI: 10.1074/jbc.ra118.006944] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/16/2019] [Indexed: 01/18/2023] Open
Abstract
DNA damage-mediated activation of extracellular signal-regulated kinase (ERK) can regulate both cell survival and cell death. We show here that ERK activation in this context is biphasic and that early and late activation events are mediated by distinct upstream signals that drive cell survival and apoptosis, respectively. We identified the nuclear kinase mitogen-sensitive kinase 1 (MSK1) as a downstream target of both early and late ERK activation. We also observed that activation of ERK→MSK1 up to 4 h after DNA damage depends on epidermal growth factor receptor (EGFR), as EGFR or mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK)/ERK inhibitors or short hairpin RNA-mediated MSK1 depletion enhanced cell death. This prosurvival response was partially mediated through enhanced DNA repair, as EGFR or MEK/ERK inhibitors delayed DNA damage resolution. In contrast, the second phase of ERK→MSK1 activation drove apoptosis and required protein kinase Cδ (PKCδ) but not EGFR. Genetic disruption of PKCδ reduced ERK activation in an in vivo irradiation model, as did short hairpin RNA-mediated depletion of PKCδ in vitro In both models, PKCδ inhibition preferentially suppressed late activation of ERK. We have shown previously that nuclear localization of PKCδ is necessary and sufficient for apoptosis. Here we identified a nuclear PKCδ→ERK→MSK1 signaling module that regulates apoptosis. We also show that expression of nuclear PKCδ activates ERK and MSK1, that ERK activation is required for MSK1 activation, and that both ERK and MSK1 activation are required for apoptosis. Our findings suggest that location-specific activation by distinct upstream regulators may enable distinct functional outputs from common signaling pathways.
Collapse
Affiliation(s)
- Angela M Ohm
- From the Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Trisiani Affandi
- From the Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Mary E Reyland
- From the Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
21
|
Abstract
Radiotherapy is one of the most common treatments for head and neck cancers, with an almost obligate side effect of altered taste (Conger AD. 1973. Loss and recovery of taste acuity in patients irradiated to the oral cavity. Radiat Res. 53:338-347.). In mice, targeted irradiation of the head and neck causes transient repression of proliferation of basal epithelial cells responsible for taste cell replacement, leading to a temporary depletion of taste sensory cells within taste buds, including Type II taste cells involved in detection of sweet stimuli (Nguyen HM, Reyland ME, Barlow LA. 2012. Mechanisms of taste bud cell loss after head and neck irradiation. J Neurosci. 32:3474-3484.). These findings suggest that irradiation may elevate sucrose detection thresholds, peaking at 7 days postirradiation when loss of Type II cells is greatest. To test this hypothesis, sucrose detection thresholds (concentration detected in 50% of presentations) were measured in mice for 15 days after treatment of: 1) irradiation while anesthetized, 2) anesthetic alone, or 3) saline. Mice were trained to distinguish water from several concentrations of sucrose. Mice were irradiated with one 8 Gy dose (RADSOURCE-2000 X-ray Irradiator) to the nose and mouth while under 2,2,2-tribromethanol anesthesia (Avertin). Unexpectedly, mice given anesthesia showed a small elevation in sucrose thresholds compared to saline-injected mice, but irradiated mice show significantly elevated sucrose thresholds compared to either control group, an effect that peaked at 6-8 days postirradiation. The timing of loss and recovery of sucrose sensitivity generally coincides with the reported maximal reduction and recovery of Type II taste cells (Nguyen HM, Reyland ME, Barlow LA. 2012. Mechanisms of taste bud cell loss after head and neck irradiation. J Neurosci. 32:3474-3484.). Thus, even a single dose of irradiation can significantly alter detection of carbohydrates, an important consideration for patients undergoing radiotherapy.
Collapse
Affiliation(s)
| | - Linda A Barlow
- Department of Cell & Developmental Biology and Rocky Mountain Taste and Smell Center, University of Colorado, Anschutz Medical Campus, USA
| | | |
Collapse
|