1
|
Ma Q, Chen L, Feng K, Guo W, Huang T, Cai YD. Exploring Prognostic Gene Factors in Breast Cancer via Machine Learning. Biochem Genet 2024; 62:5022-5050. [PMID: 38383836 DOI: 10.1007/s10528-024-10712-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/21/2024] [Indexed: 02/23/2024]
Abstract
Breast cancer remains the most prevalent cancer in women. To date, its underlying molecular mechanisms have not been fully uncovered. The determination of gene factors is important to improve our understanding on breast cancer, which can correlate the specific gene expression and tumor staging. However, the knowledge in this regard is still far from complete. Thus, this study aimed to explore these knowledge gaps by analyzing existing gene expression profile data from 3149 breast cancer samples, where each sample was represented by the expression of 19,644 genes and classified into Nottingham histological grade (NHG) classes (Grade 1, 2, and 3). To this end, a machine learning-based framework was designed. First, the profile data were analyzed by using seven feature ranking algorithms to evaluate the importance of features (genes). Seven feature lists were generated, each of which sorted features in accordance with feature importance evaluated from a special aspect. Then, the incremental feature selection method was applied to each list to determine essential features for classification and building efficient classifiers. Consequently, overlapping genes, such as AURKA, CBX2, and MYBL2, were deemed as potentially related to breast cancer malignancy and prognosis, indicating that such genes were identified to be important by multiple feature ranking algorithms. In addition, the study formulated classification rules to reflect special gene expression patterns for three NHG classes. Some genes and rules were analyzed and supported by recent literature, providing new references for studying breast cancer.
Collapse
Affiliation(s)
- QingLan Ma
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, 510507, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200030, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
2
|
Poyil PK, Siraj AK, Padmaja D, Parvathareddy SK, Alobaisi K, Thangavel S, Begum R, Diaz R, Al-Dayel F, Al-Kuraya KS. Polo-like Kinase 1 Predicts Lymph Node Metastasis in Middle Eastern Colorectal Cancer Patients; Its Inhibition Reverses 5-Fu Resistance in Colorectal Cancer Cells. Cells 2024; 13:1700. [PMID: 39451218 PMCID: PMC11506015 DOI: 10.3390/cells13201700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine-protein kinase essential for regulating multiple stages of cell cycle progression in mammals. Aberrant regulation of PLK1 has been observed in numerous human cancers and is linked to poor prognoses. However, its role in the pathogenesis of colorectal cancer (CRC) in the Middle East remains unexplored. PLK1 overexpression was noted in 60.3% (693/1149) of CRC cases and was significantly associated with aggressive clinico-pathological parameters and p-ERK1/2 overexpression. Intriguingly, multivariate logistic regression analysis identified PLK1 as an independent predictor of lymph node metastasis. Our in vitro experiments demonstrated that CRC cells with high PLK1 levels were resistant to 5-Fu treatment, while those with low PLK1 expression were sensitive. To investigate PLK1's role in chemoresistance, we used the specific inhibitor volasertib, which effectively reversed 5-Fu resistance. Interestingly, forced PLK1 expression activated the CRAF-MEK-ERK signaling cascade, while its inhibition suppressed this cascade. PLK1 knockdown reduced epithelial-to-mesenchymal transition (EMT) progression and stem cell-like traits in 5-Fu-resistant cells, implicating PLK1 in EMT induction and stemness in CRC. Moreover, silencing ERK1/2 significantly mitigated chemoresistance, EMT, and stemness properties in CRC cell lines that express PLK1. Furthermore, the knockdown of Zeb1 attenuated EMT and stemness, suggesting a possible link between EMT activation and the maintenance of stemness in CRC. Our findings underscore the pivotal role of PLK1 in mediating chemoresistance and suggest that PLK1 inhibition may represent a potential therapeutic strategy for the management of aggressive colorectal cancer subtypes.
Collapse
Affiliation(s)
- Pratheesh Kumar Poyil
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.K.P.); (A.K.S.); (D.P.); (S.K.P.); (K.A.); (S.T.); (R.B.); (R.D.)
| | - Abdul K. Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.K.P.); (A.K.S.); (D.P.); (S.K.P.); (K.A.); (S.T.); (R.B.); (R.D.)
| | - Divya Padmaja
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.K.P.); (A.K.S.); (D.P.); (S.K.P.); (K.A.); (S.T.); (R.B.); (R.D.)
| | - Sandeep Kumar Parvathareddy
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.K.P.); (A.K.S.); (D.P.); (S.K.P.); (K.A.); (S.T.); (R.B.); (R.D.)
| | - Khadija Alobaisi
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.K.P.); (A.K.S.); (D.P.); (S.K.P.); (K.A.); (S.T.); (R.B.); (R.D.)
| | - Saravanan Thangavel
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.K.P.); (A.K.S.); (D.P.); (S.K.P.); (K.A.); (S.T.); (R.B.); (R.D.)
| | - Rafia Begum
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.K.P.); (A.K.S.); (D.P.); (S.K.P.); (K.A.); (S.T.); (R.B.); (R.D.)
| | - Roxanne Diaz
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.K.P.); (A.K.S.); (D.P.); (S.K.P.); (K.A.); (S.T.); (R.B.); (R.D.)
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia;
| | - Khawla S. Al-Kuraya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.K.P.); (A.K.S.); (D.P.); (S.K.P.); (K.A.); (S.T.); (R.B.); (R.D.)
| |
Collapse
|
3
|
Dwivedi D, Meraldi P. Balancing Plk1 activity levels: The secret of synchrony between the cell and the centrosome cycle. Bioessays 2024; 46:e2400048. [PMID: 39128131 DOI: 10.1002/bies.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
The accuracy of cell division requires precise regulation of the cellular machinery governing DNA/genome duplication, ensuring its equal distribution among the daughter cells. The control of the centrosome cycle is crucial for the formation of a bipolar spindle, ensuring error-free segregation of the genome. The cell and centrosome cycles operate in close synchrony along similar principles. Both require a single duplication round in every cell cycle, and both are controlled by the activity of key protein kinases. Nevertheless, our comprehension of the precise cellular mechanisms and critical regulators synchronizing these two cycles remains poorly defined. Here, we present our hypothesis that the spatiotemporal regulation of a dynamic equilibrium of mitotic kinases activities forms a molecular clock that governs the synchronous progression of both the cell and the centrosome cycles.
Collapse
Affiliation(s)
- Devashish Dwivedi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Kiaie SH, Zangi AR, Sheibani M, Hemmati S, Baradaran B, Valizadeh H. Novel synthesized ionizable lipid for LNP-mediated P2X7siRNA to inhibit migration and induce apoptosis of breast cancer cells. Purinergic Signal 2024; 20:533-546. [PMID: 38436880 PMCID: PMC11377399 DOI: 10.1007/s11302-024-09989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/23/2024] [Indexed: 03/05/2024] Open
Abstract
The development of ionizable lipid (IL) was necessary to enable the effective formulation of small interfering RNA (siRNA) to inhibit P2X7 receptors (P2X7R), a key player in tumor proliferation, apoptosis, and metastasis. In this way, the synthesis and utility of IL for enhancing cellular uptake of lipid nanoparticles (LNP) improve the proper delivery of siRNA-LNPs for knockdown overexpression of P2X7R. Therefore, to evaluate the impact of P2X7 knockdown on breast cancer (BC) migration and apoptosis, a branched and synthesized ionizable lipid (SIL) was performed for efficient transfection of LNP with siRNA for targeting P2X7 receptors (siP2X7) in mouse 4T-1 cells. Following synthesis and structural analysis of SIL, excellent characterization of the LNP was achieved (Z-average 126.8 nm, zeta-potential - 12.33, PDI 0.16, and encapsulation efficiency 85.35%). Afterward, the stability of the LNP was evaluated through an analysis of the leftover composition, and toxic concentration values for SIL and siP2X7 were determined. Furthermore, siP2X7-LNP cellular uptake in the formulation was assessed via confocal microscopy. Following determining the optimal dose (45 pmol), wound healing analysis was assessed using scratch assay microscopy, and apoptosis was evaluated using flow cytometry. The use of the innovative branched SIL in the formulation of siP2X7-LNP resulted in significant inhibition of migration and induction of apoptosis in 4T-1 cells due to improved cellular uptake. Subsequently, the innovative SIL represents a critical role in efficiently delivering siRNA against murine triple-negative breast cancer cells (TNBC) using LNP formulation, resulting in significant efficacy.
Collapse
Affiliation(s)
- Seyed Hossein Kiaie
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rajabi Zangi
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Hemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center and School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Zhao Z, Bourne PE. Advances in reversible covalent kinase inhibitors. Med Res Rev 2024. [PMID: 39287197 DOI: 10.1002/med.22084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Reversible covalent kinase inhibitors (RCKIs) are a class of novel kinase inhibitors attracting increasing attention because they simultaneously show the selectivity of covalent kinase inhibitors yet avoid permanent protein-modification-induced adverse effects. Over the last decade, RCKIs have been reported to target different kinases, including Atypical group of kinases. Currently, three RCKIs are undergoing clinical trials. Here, advances in RCKIs are reviewed to systematically summarize the characteristics of electrophilic groups, chemical scaffolds, nucleophilic residues, and binding modes. In so doing, we integrate key insights into privileged electrophiles, the distribution of nucleophiles, and hence effective design strategies for the development of RCKIs. Finally, we provide a further perspective on future design strategies for RCKIs, including those that target proteins other than kinases.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Data Science, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Philip E Bourne
- School of Data Science, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
Tsuji K, Tamamura H, Burke TR. Affinity enhancement of polo-like kinase 1 polo box domain-binding ligands by a bivalent approach using a covalent kinase-binding component. RSC Chem Biol 2024; 5:721-728. [PMID: 39092437 PMCID: PMC11289893 DOI: 10.1039/d4cb00031e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/21/2024] [Indexed: 08/04/2024] Open
Abstract
The polo-like kinase 1 (Plk1) is an important cell cycle regulator that is recognized as a target molecule for development of anti-cancer agents. Plk1 consists of a catalytic kinase domain (KD) and a polo-box domain (PBD), which engages in protein-protein interactions (PPIs) essential to proper Plk1 function. Recently, we developed extremely high-affinity PBD-binding inhibitors based on a bivalent approach using the Plk1 KD-binding inhibitor, BI2536, and a PBD-binding peptide. Certain of the resulting bivalent constructs exhibited more than 100-fold Plk1 affinity enhancement relative to the best monovalent PBD-binding ligands. Herein, we report an extensive investigation of bivalent ligands that utilize the non-selective kinase inhibitor Wortmannin as a Plk1 KD-binding component. We found that bivalent ligands incorporating Wortmannin demonstrated affinity enhancements that could be similar to what we had obtained with BI2536 and that they could tightly bind to the protein. This suggests that these tight binding ligands might be useful for structural analysis of full-length Plk1.
Collapse
Affiliation(s)
- Kohei Tsuji
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health Frederick MD 21702 USA
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University Tokyo 101-0062 Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University Tokyo 101-0062 Japan
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health Frederick MD 21702 USA
| |
Collapse
|
7
|
Athwal H, Kochiyanil A, Bhat V, Allan AL, Parsyan A. Centrosomes and associated proteins in pathogenesis and treatment of breast cancer. Front Oncol 2024; 14:1370565. [PMID: 38606093 PMCID: PMC11007099 DOI: 10.3389/fonc.2024.1370565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
Breast cancer is the most prevalent malignancy among women worldwide. Despite significant advances in treatment, it remains one of the leading causes of female mortality. The inability to effectively treat advanced and/or treatment-resistant breast cancer demonstrates the need to develop novel treatment strategies and targeted therapies. Centrosomes and their associated proteins have been shown to play key roles in the pathogenesis of breast cancer and thus represent promising targets for drug and biomarker development. Centrosomes are fundamental cellular structures in the mammalian cell that are responsible for error-free execution of cell division. Centrosome amplification and aberrant expression of its associated proteins such as Polo-like kinases (PLKs), Aurora kinases (AURKs) and Cyclin-dependent kinases (CDKs) have been observed in various cancers, including breast cancer. These aberrations in breast cancer are thought to cause improper chromosomal segregation during mitosis, leading to chromosomal instability and uncontrolled cell division, allowing cancer cells to acquire new genetic changes that result in evasion of cell death and the promotion of tumor formation. Various chemical compounds developed against PLKs and AURKs have shown meaningful antitumorigenic effects in breast cancer cells in vitro and in vivo. The mechanism of action of these inhibitors is likely related to exacerbation of numerical genomic instability, such as aneuploidy or polyploidy. Furthermore, growing evidence demonstrates enhanced antitumorigenic effects when inhibitors specific to centrosome-associated proteins are used in combination with either radiation or chemotherapy drugs in breast cancer. This review focuses on the current knowledge regarding the roles of centrosome and centrosome-associated proteins in breast cancer pathogenesis and their utility as novel targets for breast cancer treatment.
Collapse
Affiliation(s)
- Harjot Athwal
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Arpitha Kochiyanil
- Faculty of Science, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Vasudeva Bhat
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Regional Cancer Program, London Health Sciences Centre, Lawson Health Research Institute, London, ON, Canada
| | - Alison L. Allan
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Regional Cancer Program, London Health Sciences Centre, Lawson Health Research Institute, London, ON, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Armen Parsyan
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- London Regional Cancer Program, London Health Sciences Centre, Lawson Health Research Institute, London, ON, Canada
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Division of General Surgery, Department of Surgery, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Surgery, St. Joseph’s Health Care London and London Health Sciences Centre, London, ON, Canada
| |
Collapse
|
8
|
Hago S, Lu T, Alzain AA, Abdelgadir AA, Yassin S, Ahmed EM, Xu H. Phytochemical constituents, in-vitro anticancer activity and computational studies of Cymbopogon schoenanthus. Nat Prod Res 2024; 38:1073-1079. [PMID: 37144384 DOI: 10.1080/14786419.2023.2208360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
The cytotoxic effects of Cymbopogon schoenanthus L. aerial part ethanol extract were examined against some cancer cell lines, and HUVEC normal cell lines using MTT assay. The ethanolic extract was prepared by ultrasonic-assisted extraction and analyzed by GC-MS and HPLC. The extract was found to be rich in terpene compounds. The extract proved to be highly selective and effective against breast and prostate cancer cell lines (MDA-MB-435, MCF-7, and DU 145) with IC50 as low as 0.7913 ± 0.14, 12.841 ± 0.21, and 30.51 ± 0.18 µg/ml, respectively. In silico modeling was performed to investigate the binding orientation and affinity of the major identified compounds against Polo-like kinase (PLK1 protein) a cancer molecular target using molecular docking and molecular dynamic whereas eudesm-5-en-11-ol, piperitone, and 2,3-dihydrobenzofuran displayed better binding affinity and stability against PLK1 compared to the reference drug. These findings encourage further in vivo studies to assess the anti-cancer effects of C. schoenanthus extract and its components.
Collapse
Affiliation(s)
- Salma Hago
- Department of Pharmacognosy, Faculty of Pharmacy, University of Gezira, Wad Madani, Gezira State, Sudan
| | - Tang Lu
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| | - Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani, Gezira State, Sudan
| | - Abdelgadir A Abdelgadir
- Department of Pharmacognosy, Faculty of Pharmacy, University of Gezira, Wad Madani, Gezira State, Sudan
| | - Sitelbanat Yassin
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Madani, Gezira State, Sudan
| | - Elhadi M Ahmed
- Medicinal and Aromatic Plant Research Center, Faculty of Pharmacy, Gezira University, Wad Madani, Gezira State, Sudan
| | - Hanmei Xu
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
9
|
Chang LY, Lee MZ, Wu Y, Lee WK, Ma CL, Chang JM, Chen CW, Huang TC, Lee CH, Lee JC, Tseng YY, Lin CY. Gene set correlation enrichment analysis for interpreting and annotating gene expression profiles. Nucleic Acids Res 2024; 52:e17. [PMID: 38096046 PMCID: PMC10853793 DOI: 10.1093/nar/gkad1187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 02/10/2024] Open
Abstract
Pathway analysis, including nontopology-based (non-TB) and topology-based (TB) methods, is widely used to interpret the biological phenomena underlying differences in expression data between two phenotypes. By considering dependencies and interactions between genes, TB methods usually perform better than non-TB methods in identifying pathways that include closely relevant or directly causative genes for a given phenotype. However, most TB methods may be limited by incomplete pathway data used as the reference network or by difficulties in selecting appropriate reference networks for different research topics. Here, we propose a gene set correlation enrichment analysis method, Gscore, based on an expression dataset-derived coexpression network to examine whether a differentially expressed gene (DEG) list (or each of its DEGs) is associated with a known gene set. Gscore is better able to identify target pathways in 89 human disease expression datasets than eight other state-of-the-art methods and offers insight into how disease-wide and pathway-wide associations reflect clinical outcomes. When applied to RNA-seq data from COVID-19-related cells and patient samples, Gscore provided a means for studying how DEGs are implicated in COVID-19-related pathways. In summary, Gscore offers a powerful analytical approach for annotating individual DEGs, DEG lists, and genome-wide expression profiles based on existing biological knowledge.
Collapse
Affiliation(s)
- Lan-Yun Chang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Meng-Zhan Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yujia Wu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wen-Kai Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chia-Liang Ma
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Jun-Mao Chang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Ciao-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Tzu-Chun Huang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chia-Hwa Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan
| | - Jih-Chin Lee
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 110, Taiwan
| | - Yu-Yao Tseng
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 104, Taiwan
| | - Chun-Yu Lin
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Data Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
10
|
Tsuji K, Tamamura H, Burke TR. Application of a Fluorescence Recovery-Based Polo-Like Kinase 1 Binding Assay to Polo-Like Kinase 2 and Polo-Like Kinase 3. Biol Pharm Bull 2024; 47:1282-1287. [PMID: 38987177 DOI: 10.1248/bpb.b24-00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Assay systems for evaluating compound protein-binding affinities are essential for developing agonists and/or antagonists. Targeting individual members of a protein family can be extremely important and for this reason it is critical to have methods for evaluating selectivity. We have previously reported a fluorescence recovery assay that employs a fluorescein-labelled probe to determine IC50 values of ATP-competitive type 1 inhibitors of polo-like kinase 1 (Plk1). This probe is based on the potent Plk1 inhibitor BI2536 [fluorescein isothiocyanate (FITC)-polyethylene glycol (PEG)-lysine (Lys) (BI2536) 1]. Herein, we extend this approach to the highly homologous Plk2 and Plk3 members of this kinase family. Our results suggest that this assay system is suitable for evaluating binding affinities against Plk2 and Plk3 as well as Plk1. The new methodology represents the first example of evaluating N-terminal catalytic kinase domain (KD) affinities of Plk2 and Plk3. It represents a simple and cost-effective alternative to traditional kinase assays to explore the KD-binding compounds against Plk2 and Plk3 as well as Plk1.
Collapse
Affiliation(s)
- Kohei Tsuji
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| |
Collapse
|
11
|
Chen R, Wang H, Zheng C, Zhang X, Li L, Wang S, Chen H, Duan J, Zhou X, Peng H, Guo J, Zhang A, Li F, Wang W, Zhang Y, Wang J, Wang C, Meng Y, Du X, Zhang H. Polo-like kinase 1 promotes pulmonary hypertension. Respir Res 2023; 24:204. [PMID: 37598171 PMCID: PMC10440037 DOI: 10.1186/s12931-023-02498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/22/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a lethal vascular disease with limited therapeutic options. The mechanistic connections between alveolar hypoxia and PH are not well understood. The aim of this study was to investigate the role of mitotic regulator Polo-like kinase 1 (PLK1) in PH development. METHODS Mouse lungs along with human pulmonary arterial smooth muscle cells and endothelial cells were used to investigate the effects of hypoxia on PLK1. Hypoxia- or Sugen5416/hypoxia was applied to induce PH in mice. Plk1 heterozygous knockout mice and PLK1 inhibitors (BI 2536 and BI 6727)-treated mice were checked for the significance of PLK1 in the development of PH. RESULTS Hypoxia stimulated PLK1 expression through induction of HIF1α and RELA. Mice with heterozygous deletion of Plk1 were partially resistant to hypoxia-induced PH. PLK1 inhibitors ameliorated PH in mice. CONCLUSIONS Augmented PLK1 is essential for the development of PH and is a druggable target for PH.
Collapse
Affiliation(s)
- Rongrong Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hongfei Wang
- Department of Cardiac Surgery, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cuiting Zheng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Department of Pathology, Beijing Lab for Cardiovascular Precision Medicine, Key Laboratory of Medical Engineering for Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Xiyu Zhang
- Department of Pathology, Beijing Lab for Cardiovascular Precision Medicine, Key Laboratory of Medical Engineering for Cardiovascular Disease, Capital Medical University, Beijing, China
| | - Li Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shengwei Wang
- Department of Cardiac Surgery, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyu Chen
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Duan
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xian Zhou
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Haiyong Peng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Guo
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Anchen Zhang
- Department of Cardiac Surgery, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feifei Li
- Department of Cardiac Surgery, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wang Wang
- Department of Physiology, Capital Medical University, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Wang
- Department of Physiology, Capital Medical University, Beijing, China
| | - Chen Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Meng
- Department of Pathology, Beijing Lab for Cardiovascular Precision Medicine, Key Laboratory of Medical Engineering for Cardiovascular Disease, Capital Medical University, Beijing, China.
| | - Xinling Du
- Department of Cardiac Surgery, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hongbing Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
12
|
Feng Y, Li T, Lin Z, Li Y, Han X, Pei X, Fu Z, Wu Q, Shao D, Li C. Inhibition of Polo-like kinase 1 (PLK1) triggers cell apoptosis via ROS-caused mitochondrial dysfunction in colorectal carcinoma. J Cancer Res Clin Oncol 2023; 149:6883-6899. [PMID: 36810816 DOI: 10.1007/s00432-023-04624-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most frequently diagnosed cancers. Polo-like kinase 1 (PLK1), a member of the serine/threonine kinase PLK family, is the most investigated and essential in the regulation of cell cycle progression, including chromosome segregation, centrosome maturation and cytokinesis. However, the nonmitotic role of PLK1 in CRC is poorly understood. In this study, we explored the tumorigenic effects of PLK1 and its potential as a therapeutic target in CRC. METHODS GEPIA database and immunohistochemistry analysis were performed to evaluate the abnormal expression of PLK1 in CRC patients. MTT assay, colony formation and transwell assay were performed to assess cell viability, colony formation ability and migration ability after inhibiting PLK1 by RNAi or the small molecule inhibitor BI6727. Cell apoptosis, mitochondrial membrane potential (MMP) and ROS levels were evaluated by flow cytometry. Bioluminescence imaging was performed to evaluate the impact of PLK1 on CRC cell survival in a preclinical model. Finally, xenograft tumor model was established to study the effect of PLK1 inhibition on tumor growth. RESULTS First, immunohistochemistry analysis revealed the significant accumulation of PLK1 in patient-derived CRC tissues compared with adjacent healthy tissues. Furthermore, PLK1 inhibition genetically or pharmacologically significantly reduced cell viability, migration and colony formation, and triggered apoptosis of CRC cells. Additionally, we found that PLK1 inhibition elevated cellular reactive oxygen species (ROS) accumulation and decreased the Bcl2/Bax ratio, which led to mitochondrial dysfunction and the release of Cytochrome c, a key process in initiating cell apoptosis. CONCLUSION These data provide new insights into the pathogenesis of CRC and support the potential value of PLK1 as an appealing target for CRC treatment. Overall, the underlying mechanism of inhibiting PLK1-induced apoptosis indicates that the PLK1 inhibitor BI6727 may be a novel potential therapeutic strategy in the treatment of CRC.
Collapse
Affiliation(s)
- Ya Feng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Tianjiao Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Yin Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Xiao Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Xiaolin Pei
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Zhenkun Fu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
- Department of Immunology & Wu Lien-Teh Institute & Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University & Heilongjiang Academy of Medical Science, Harbin, 150081, People's Republic of China
| | - Qiao Wu
- Department of Hepatobiliary Surgery, Beijing Chao Yang Hospital, Capital Medical University, Beijing, 10020, People's Republic of China
| | - Di Shao
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, No. 1 Health Road, Yuzhong District, Chongqing, 400014, People's Republic of China.
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
13
|
Accattatis FM, Caruso A, Carleo A, Del Console P, Gelsomino L, Bonofiglio D, Giordano C, Barone I, Andò S, Bianchi L, Catalano S. CEBP-β and PLK1 as Potential Mediators of the Breast Cancer/Obesity Crosstalk: In Vitro and In Silico Analyses. Nutrients 2023; 15:2839. [PMID: 37447165 DOI: 10.3390/nu15132839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Over the last two decades, obesity has reached pandemic proportions in several countries, and expanding evidence is showing its contribution to several types of malignancies, including breast cancer (BC). The conditioned medium (CM) from mature adipocytes contains a complex of secretes that may mimic the obesity condition in studies on BC cell lines conducted in vitro. Here, we report a transcriptomic analysis on MCF-7 BC cells exposed to adipocyte-derived CM and focus on the predictive functional relevance that CM-affected pathways/processes and related biomarkers (BMs) may have in BC response to obesity. CM was demonstrated to increase cell proliferation, motility and invasion as well as broadly alter the transcript profiles of MCF-7 cells by significantly modulating 364 genes. Bioinformatic functional analyses unraveled the presence of five highly relevant central hubs in the direct interaction networks (DIN), and Kaplan-Meier analysis sorted the CCAAT/enhancer binding protein beta (CEBP-β) and serine/threonine-protein kinase PLK1 (PLK1) as clinically significant biomarkers in BC. Indeed, CEBP-β and PLK1 negatively correlated with BC overall survival and were up-regulated by adipocyte-derived CM. In addition to their known involvement in cell proliferation and tumor progression, our work suggests them as a possible "deus ex machina" in BC response to fat tissue humoral products in obese women.
Collapse
Affiliation(s)
- Felice Maria Accattatis
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Amanda Caruso
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Alfonso Carleo
- Department of Pulmonology, Hannover Medical School, Carl-Neuberg-Straße, 30625 Hannover, Germany
| | - Piercarlo Del Console
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Laura Bianchi
- Section of Functional Proteomics, Department of Life Sciences, Via Aldo Moro, University of Siena, 53100 Siena, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| |
Collapse
|
14
|
Deng J, Fu F, Zhang F, Xia Y, Zhou Y. Construct ceRNA Network and Risk Model of Breast Cancer Using Machine Learning Methods under the Mechanism of Cuproptosis. Diagnostics (Basel) 2023; 13:diagnostics13061203. [PMID: 36980514 PMCID: PMC10047351 DOI: 10.3390/diagnostics13061203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Breast cancer (BRCA) has an undesirable prognosis and is the second most common cancer among women after lung cancer. A novel mechanism of programmed cell death called cuproptosis is linked to the development and spread of tumor cells. However, the function of cuproptosis in BRCA remains unknown. To this date, no studies have used machine learning methods to screen for characteristic genes to explore the role of cuproptosis-related genes (CRGs) in breast cancer. Therefore, 14 cuproptosis-related characteristic genes (CRCGs) were discovered by the feature selection of 39 differentially expressed CRGs using the three machine learning methods LASSO, SVM-RFE, and random forest. Through the PPI network and immune infiltration analysis, we found that PRNP was the key CRCG. The miRTarBase, TargetScan, and miRDB databases were then used to identify hsa-miR-192-5p and hsa-miR-215-5p as the upstream miRNA of PRNP, and the upstream lncRNA, CARMN, was identified by the StarBase database. Thus, the mRNA PRNP/miRNA hsa-miR-192-5p and hsa-miR-215-5p/lncRNA CARMN ceRNA network was constructed. This ceRNA network, which has not been studied before, is extremely innovative. Furthermore, four cuproptosis-related lncRNAs (CRLs) were screened in TCGA-BRCA by univariate Cox, LASSO, and multivariate Cox regression analysis. The risk model was constructed by using these four CRLs, and the risk score = C9orf163 * (1.8365) + PHC2-AS1 * (-2.2985) + AC087741.1 * (-0.9504) + AL109824.1 * (0.6016). The ROC curve and C-index demonstrated the superior predictive capacity of the risk model, and the ROC curve demonstrated that the AUC of 1-, 3-, and 5-year OS in all samples was 0.721, 0.695, and 0.633, respectively. Finally, 50 prospective sensitive medicines were screened with the pRRophetic R package, among which 17-AAG may be a therapeutic agent for high-risk patients, while the other 49 medicines may be suitable for the treatment of low-risk patients. In conclusion, our study constructs a new ceRNA network and a novel risk model, which offer a theoretical foundation for the treatment of BRCA and will aid in improving the prognosis of BRCA.
Collapse
Affiliation(s)
- Jianzhi Deng
- Guangxi Key Laboratory of Embedded Technology and Intelligent Information Processing, Guilin University of Technology, Guilin 541006, China
- College of Information Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Fei Fu
- College of Information Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Fengming Zhang
- College of Information Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Yuanyuan Xia
- College of Information Science and Engineering, Guilin University of Technology, Guilin 541006, China
- College of Foreign Studies, Guilin University of Technology, Guilin 541004, China
| | - Yuehan Zhou
- College of Pharmacy, Guilin Medical University, Guilin 541199, China
| |
Collapse
|
15
|
Yan CY, Zhao ML, Wei YN, Zhao XH. Mechanisms of drug resistance in breast cancer liver metastases: Dilemmas and opportunities. Mol Ther Oncolytics 2023; 28:212-229. [PMID: 36860815 PMCID: PMC9969274 DOI: 10.1016/j.omto.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths in females worldwide, and the liver is one of the most common sites of distant metastases in breast cancer patients. Patients with breast cancer liver metastases face limited treatment options, and drug resistance is highly prevalent, leading to a poor prognosis and a short survival. Liver metastases respond extremely poorly to immunotherapy and have shown resistance to treatments such as chemotherapy and targeted therapies. Therefore, to develop and to optimize treatment strategies as well as to explore potential therapeutic approaches, it is crucial to understand the mechanisms of drug resistance in breast cancer liver metastases patients. In this review, we summarize recent advances in the research of drug resistance mechanisms in breast cancer liver metastases and discuss their therapeutic potential for improving patient prognoses and outcomes.
Collapse
Affiliation(s)
- Chun-Yan Yan
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Meng-Lu Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Ya-Nan Wei
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Xi-He Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| |
Collapse
|
16
|
Hyperactivation of p21-Activated Kinases in Human Cancer and Therapeutic Sensitivity. Biomedicines 2023; 11:biomedicines11020462. [PMID: 36830998 PMCID: PMC9953343 DOI: 10.3390/biomedicines11020462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Over the last three decades, p21-activated kinases (PAKs) have emerged as prominent intracellular nodular signaling molecules in cancer cells with a spectrum of cancer-promoting functions ranging from cell survival to anchorage-independent growth to cellular invasiveness. As PAK family members are widely overexpressed and/or hyperactivated in a variety of human tumors, over the years PAKs have also emerged as therapeutic targets, resulting in the development of clinically relevant PAK inhibitors. Over the last two decades, this has been a promising area of active investigation for several academic and pharmaceutical groups. Similar to other kinases, blocking the activity of one PAK family member leads to compensatory activity on the part of other family members. Because PAKs are also activated by stress-causing anticancer drugs, PAKs are components in the rewiring of survival pathways in the action of several therapeutic agents; in turn, they contribute to the development of therapeutic resistance. This, in turn, creates an opportunity to co-target the PAKs to achieve a superior anticancer cellular effect. Here we discuss the role of PAKs and their effector pathways in the modulation of cellular susceptibility to cancer therapeutic agents and therapeutic resistance.
Collapse
|
17
|
Liu N, Zhang GD, Bai P, Su L, Tian H, He M. Eight hub genes as potential biomarkers for breast cancer diagnosis and prognosis: A TCGA-based study. World J Clin Oncol 2022; 13:675-687. [PMID: 36160462 PMCID: PMC9476610 DOI: 10.5306/wjco.v13.i8.675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/23/2021] [Accepted: 07/26/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common malignant tumor in women.
AIM To investigate BC-associated hub genes to obtain a better understanding of BC tumorigenesis.
METHODS In total, 1203 BC samples were downloaded from The Cancer Genome Atlas database, which included 113 normal samples and 1090 tumor samples. The limma package of R software was used to analyze the differentially expressed genes (DEGs) in tumor tissues compared with normal tissues. The cluster Profiler package was used to perform Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of upregulated and downregulated genes. Univariate Cox regression was conducted to explore the DEGs with statistical significance. Protein-protein interaction (PPI) network analysis was employed to investigate the hub genes using the CytoHubba plug-in of Cytoscape software. Survival analyses of the hub genes were carried out using the Kaplan-Meier method. The expression level of these hub genes was validated in the Gene Expression Profiling Interactive Analysis database and Human Protein Atlas database.
RESULTS A total of 1317 DEGs (fold change > 2; P < 0.01) were confirmed through bioinformatics analysis, which included 744 upregulated and 573 downregulated genes in BC samples. KEGG enrichment analysis indicated that the upregulated genes were mainly enriched in the cytokine-cytokine receptor interaction, cell cycle, and the p53 signaling pathway (P < 0.01); and the downregulated genes were mainly enriched in the cytokine-cytokine receptor interaction, peroxisome proliferator-activated receptor signaling pathway, and AMP-activated protein kinase signaling pathway (P < 0.01).
CONCLUSION In view of the results of PPI analysis, which were verified by survival and expression analyses, we conclude that MAD2L1, PLK1, SAA1, CCNB1, SHCBP1, KIF4A, ANLN, and ERCC6L may act as biomarkers for the diagnosis and prognosis in BC patients.
Collapse
Affiliation(s)
- Nan Liu
- Department of Hematology and Oncology, Chongqing Traditional Chinese Medicine Hospital, Chengdu University of Traditional Chinese Medicine, Chongqing 400011, China
| | - Guo-Duo Zhang
- Department of Hematology and Oncology, Chongqing Traditional Chinese Medicine Hospital, Chengdu University of Traditional Chinese Medicine, Chongqing 400011, China
| | - Ping Bai
- Department of Hematology and Oncology, Chongqing Traditional Chinese Medicine Hospital, Chengdu University of Traditional Chinese Medicine, Chongqing 400011, China
| | - Li Su
- Department of Hematology and Oncology, Chongqing Traditional Chinese Medicine Hospital, Chengdu University of Traditional Chinese Medicine, Chongqing 400011, China
| | - Hao Tian
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Miao He
- Department of Hematology and Oncology, Chongqing Traditional Chinese Medicine Hospital, Chengdu University of Traditional Chinese Medicine, Chongqing 400011, China
| |
Collapse
|
18
|
Huo J, Shen Y, Zhang Y, Shen L. BI 2536 induces gasdermin E-dependent pyroptosis in ovarian cancer. Front Oncol 2022; 12:963928. [PMID: 36016611 PMCID: PMC9396031 DOI: 10.3389/fonc.2022.963928] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background The frequent emergence of drug resistance to chemotherapy is a major obstacle for the treatment of ovarian cancer. There is a need for novel drugs to fulfill this challenge. Pyroptosis-inducing drugs can inhibit tumor growth. However, their roles in ovarian cancer have not been demonstrated. Methods We tested the effectiveness of a novel drug, BI 2536, which we found in colorectal cancer. Cell proliferation, cell cycle, and drug-induced apoptosis and pyroptosis were tested. In vivo treatments were performed using a cell-derived xenograft model. Results BI 2536 significantly inhibited the proliferation of ovarian cancer cells and induced cell cycle arrest at the G2/M phases. After BI 2536 treatment, DNA fragmentation and PS exposure on the outside of apoptotic cells were detected. Moreover, the pyroptotic phenotype of ovarian cancer cells along with the release of LDH and HMGB1 were observed, indicating the leakage of cells. Western blot analysis verified that BI 2536 induced GSDME-mediated pyroptosis. Pyroptosis was abolished after additional treatment with Z-DEVD-FMK, a caspase-3 inhibitor. Thus, BI 2536 induced pyroptosis in ovarian cancer through the caspase-3/GSDME pathway. In vivo experiments further demonstrated the antitumoral effect and ability of BI 2536 to accumulate CD8+ T cells in ovarian cancer. Conclusion In this study, we identified BI 2536 as an effective anti-ovarian cancer drug that inhibits proliferation, arrests the cell cycle, induces apoptosis and pyroptosis, and leads to the accumulation of CD8+ T cells in tumor sites. Drug-induced pyroptosis may have promising prospects for reducing side effects and activating immune responses.
Collapse
Affiliation(s)
- Jianting Huo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuhong Shen
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuchen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Yuchen Zhang, ; Lifei Shen,
| | - Lifei Shen
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Yuchen Zhang, ; Lifei Shen,
| |
Collapse
|
19
|
Athira K, Gopakumar G. Breast cancer stage prediction: a computational approach guided by transcriptome analysis. Mol Genet Genomics 2022; 297:1467-1479. [PMID: 35922530 DOI: 10.1007/s00438-022-01932-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 07/17/2022] [Indexed: 11/25/2022]
Abstract
Breast cancer is the second leading cancer among women in terms of mortality rate. In recent years, its incidence frequency has been continuously rising across the globe. In this context, the new therapeutic strategies to manage the deadly disease attracts tremendous research focus. However, finding new prognostic predictors to refine the selection of therapy for the various stages of breast cancer is an unattempted issue. Aberrant expression of genes at various stages of cancer progression can be studied to identify specific genes that play a critical role in cancer staging. Moreover, while many schemes for subtype prediction in breast cancer have been explored in the literature, stage-wise classification remains a challenge. These observations motivated the proposed two-phased method: stage-specific gene signature selection and stage classification. In the first phase, meta-analysis of gene expression data is conducted to identify stage-wise biomarkers that were then used in the second phase of cancer classification. From the analysis, 118, 12 and 4 genes respectively in stage I, stage II and stage III are determined as potential biomarkers. Pathway enrichment, gene network and literature analysis validate the significance of the identified genes in breast cancer. In this study, machine learning methods were combined with principal component and posterior probability analysis. Such a scheme offers a unique opportunity to build a meaningful model for predicting breast cancer staging. Among the machine learning models compared, Support Vector Machine (SVM) is found to perform the best for the selected datasets with an accuracy of 92.21% during test data evaluation. Perhaps, biomarker identification performed here for stage-specific cancer treatment would be a meaningful step towards predictive medicine. Significantly, the determination of correct cancer stage using the proposed 134 gene signature set can possibly act as potential target for breast cancer therapeutics.
Collapse
Affiliation(s)
- K Athira
- Department of Computer Science and Engineering, NIT Campus PO, National Institute of Technology Calicut, Calicut, Kerala, India.
| | - G Gopakumar
- Department of Computer Science and Engineering, NIT Campus PO, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
20
|
Rajendran S, Swaroop SS, Roy J, Inemai E, Murugan S, Rayala SK, Venkatraman G. p21 activated kinase-1 and tamoxifen - A deadly nexus impacting breast cancer outcomes. Biochim Biophys Acta Rev Cancer 2021; 1877:188668. [PMID: 34896436 DOI: 10.1016/j.bbcan.2021.188668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022]
Abstract
Tamoxifen is a commonly used drug in the treatment of ER + ve breast cancers since 1970. However, development of resistance towards tamoxifen limits its remarkable clinical success. In this review, we have attempted to provide a brief overview of multiple mechanism that may lead to tamoxifen resistance, with a special emphasis on the roles played by the oncogenic kinase- PAK1. Analysing the genomic data sets available in the cBioPortal, we found that PAK1 gene amplification significantly affects the Relapse Free Survival of the ER + ve breast cancer patients. While PAK1 is known to promote tamoxifen resistance by phosphorylating ERα at Ser305, existing literature suggests that PAK1 can fuel up tamoxifen resistance obliquely by phosphorylating other substrates. We have summarised some of the approaches in the mass spectrometry based proteomics, which would enable us to study the tamoxifen resistance specific phosphoproteomic landscape of PAK1. We also propose that elucidating the multiple mechanisms by which PAK1 promotes tamoxifen resistance might help us discover druggable targets and biomarkers.
Collapse
Affiliation(s)
- Swetha Rajendran
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Srikanth Swamy Swaroop
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Joydeep Roy
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, India
| | - Ezhil Inemai
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, India
| | - Sowmiya Murugan
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, India
| | - Suresh K Rayala
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, India.
| | - Ganesh Venkatraman
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
| |
Collapse
|
21
|
Zhou J, Yang Q, Lu L, Tuo Z, Shou Z, Cheng J. PLK1 Inhibition Induces Immunogenic Cell Death and Enhances Immunity against NSCLC. Int J Med Sci 2021; 18:3516-3525. [PMID: 34522178 PMCID: PMC8436107 DOI: 10.7150/ijms.60135] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/02/2021] [Indexed: 01/22/2023] Open
Abstract
PLK1 inhibitors were shown, in vitro and in vivo, to possess inhibitory activities against non-small cell lung cancer (NSCLC), and such inhibition has been proven by clinical trials. However, it remains unclear whether and how the immune microenvironment is associated with the action. In this study, we found that inhibiting PLK1 could alter the tumor immune microenvironment by increasing DC maturation, and enriching T cells infiltration. PLK1 inhibitors, serving as immunogenic cell death (ICD) inducers, indirectly activated DCs, instead of directly acting on DC cells, through the surface expression of costimulatory molecules on and enhanced phagocytosis by DCs. Furthermore, upon targeting PLK1, tumor cells that had undergone ICD were converted into an endogenous vaccine, which triggered the immune memory responses and protected the mice from tumor challenge. Collectively, these results suggested that the PLK1 inhibitor might function as an immune modulator in antitumor treatment.
Collapse
Affiliation(s)
- Jie Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Qifan Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Lisen Lu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Zhan Tuo
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Zhexing Shou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Jing Cheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| |
Collapse
|
22
|
Al‐Qahtani QH, Moghrabi WN, Al‐Yahya S, Al‐Haj L, Al‐Saif M, Mahmoud L, Al‐Mohanna F, Al‐Souhibani N, Alaiya A, Hitti E, Khabar KSA. Kinome inhibition reveals a role for polo-like kinase 1 in targeting post-transcriptional control in cancer. Mol Oncol 2021; 15:2120-2139. [PMID: 33411958 PMCID: PMC8334256 DOI: 10.1002/1878-0261.12897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/09/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022] Open
Abstract
Dysfunctions in post-transcriptional control are observed in cancer and chronic inflammatory diseases. Here, we employed a kinome inhibitor library (n = 378) in a reporter system selective for 3'-untranslated region-AU-rich elements (ARE). Fifteen inhibitors reduced the ARE-reporter activity; among the targets is the polo-like kinase 1 (PLK1). RNA-seq experiments demonstrated that the PLK1 inhibitor, volasertib, reduces the expression of cytokine and cell growth ARE mRNAs. PLK1 inhibition caused accelerated mRNA decay in cancer cells and was associated with reduced phosphorylation and stability of the mRNA decay-promoting protein, tristetraprolin (ZFP36/TTP). Ectopic expression of PLK1 increased abundance and stability of high molecular weight of ZFP36/TTP likely of the phosphorylated form. PLK1 effect was associated with the MAPK-MK2 pathway, a major regulator of ARE-mRNA stability, as evident from MK2 inhibition, in vitro phosphorylation, and knockout experiments. Mutational analysis demonstrates that TTP serine 186 is a target for PLK1 effect. Treatment of mice with the PLK1 inhibitor reduced both ZFP36/TTP phosphorylation in xenograft tumor tissues, and the tumor size. In cancer patients' tissues, PLK1/ARE-regulated gene cluster was overexpressed in solid tumors and associated with poor survival. The data showed that PLK1-mediated post-transcriptional aberration could be a therapeutic target.
Collapse
Affiliation(s)
- Qamraa H. Al‐Qahtani
- Molecular BioMedicine ProgramFaisal Specialist Hospital and Research CentreRiyadhKingSaudi Arabia
- Present address:
Department of Pharmacology and ToxicologyCollege of PharmacyKing Saud UniversityRiyadh11495Saudi Arabia
| | - Walid N. Moghrabi
- Molecular BioMedicine ProgramFaisal Specialist Hospital and Research CentreRiyadhKingSaudi Arabia
| | - Suhad Al‐Yahya
- Molecular BioMedicine ProgramFaisal Specialist Hospital and Research CentreRiyadhKingSaudi Arabia
| | - Latifa Al‐Haj
- Molecular BioMedicine ProgramFaisal Specialist Hospital and Research CentreRiyadhKingSaudi Arabia
| | - Maher Al‐Saif
- Molecular BioMedicine ProgramFaisal Specialist Hospital and Research CentreRiyadhKingSaudi Arabia
| | - Linah Mahmoud
- Molecular BioMedicine ProgramFaisal Specialist Hospital and Research CentreRiyadhKingSaudi Arabia
| | - Falah Al‐Mohanna
- Department of Comparative MedicineKing Faisal Specialist Hospital and Research CentreRiyadhSaudi Arabia
| | - Norah Al‐Souhibani
- Molecular BioMedicine ProgramFaisal Specialist Hospital and Research CentreRiyadhKingSaudi Arabia
| | - Ayodele Alaiya
- Stem Cell and Tissue Engineering ProgramFaisal Specialist Hospital and Research CentreRiyadhKingSaudi Arabia
| | - Edward Hitti
- Molecular BioMedicine ProgramFaisal Specialist Hospital and Research CentreRiyadhKingSaudi Arabia
| | - Khalid S. A. Khabar
- Molecular BioMedicine ProgramFaisal Specialist Hospital and Research CentreRiyadhKingSaudi Arabia
| |
Collapse
|
23
|
Wang B, Huang X, Liang H, Yang H, Guo Z, Ai M, Zhang J, Khan M, Tian Y, Sun Q, Mao Z, Zheng R, Yuan Y. PLK1 Inhibition Sensitizes Breast Cancer Cells to Radiation via Suppressing Autophagy. Int J Radiat Oncol Biol Phys 2021; 110:1234-1247. [PMID: 33621661 DOI: 10.1016/j.ijrobp.2021.02.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/13/2021] [Accepted: 02/11/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Polo-like kinase 1 (PLK1) is a protein kinase that is overexpressed in breast cancer and may represent an attractive target for breast cancer treatment. However, few studies have investigated the relationship between PLK1 and radiosensitivity in breast cancer. Here, we attempted to explore whether PLK1 inhibition could sensitize breast cancer cells to radiation. METHODS AND MATERIALS Breast cancer cells were treated with PLK1 small interference RNA or the PLK1-inhibitor, GSK461364. Cell proliferation was assessed using a colony formation assay. Cell cycle analyses were performed by flow cytometry. DNA damage, autophagy, and reactive oxygen species induced by ionizing radiation were detected by immunofluorescence, Western blot, and flow cytometry, respectively. Microtubule-associated protein 1 light chain 3 alpha (LC3) puncta were detected using an immunofluorescence assay. A clonogenic survival assay was used to determine the effect of PLK1 inhibition on cell radiosensitivity. A xenograft mouse model of breast cancer cells was used to investigate the potential synergistic effects of PLK1 inhibition and irradiation in vivo. Finally, the expression of PLK1 and LC3 in the breast cancer tissues was evaluated by immunohistochemistry. RESULTS PLK1 inhibition significantly suppressed the proliferation and increased the radiosensitivity of breast cancer cells. Pharmacologic inhibition of PLK1 by the selective inhibitor, GSK461364, enhanced the radiosensitivity of breast cancer cells in vivo (n = 4, P = .002). Mechanistically, PLK1 inhibition led to the downregulation of radiation-induced reactive oxygen species and autophagy, thereby increasing the radiosensitivity of breast cancer cells. Additionally, we detected a positive correlation between the expression of PLK1 and LC3 in human breast cancer samples (n = 102, R = 0.486, P = .005). CONCLUSIONS Our findings indicate that PLK1 inhibition enhances the radiosensitivity of breast cancer cells in a manner associated with the suppression of radiation-induced autophagy. The inhibition of PLK1 represents a promising strategy for radiosensitizing breast cancer.
Collapse
Affiliation(s)
- Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Xiaoting Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Huiping Liang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Hongli Yang
- Department of Radiation Oncology, Shenzhen People's Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Zhaoze Guo
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Meiling Ai
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Jian Zhang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Muhammad Khan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Yunhong Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Quanquan Sun
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Zixu Mao
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, Georgia
| | - Ronghui Zheng
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China.
| |
Collapse
|
24
|
Wei L, Wang Y, Zhou D, Li X, Wang Z, Yao G, Wang X. Bioinformatics analysis on enrichment analysis of potential hub genes in breast cancer. Transl Cancer Res 2021; 10:2399-2408. [PMID: 35116555 PMCID: PMC8797715 DOI: 10.21037/tcr-21-749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/21/2021] [Indexed: 11/07/2022]
Abstract
Background Despite recent advances in screening, treatment, and survival, breast cancer remains the most invasive cancer in women. The development of novel diagnostic and therapeutic markers for breast cancer may provide more information about its pathogenesis and progression. Methods We obtained GSE86374 micro-expression matrix chip data from the Gene Expression Omnibus (GEO) database consisting of 159 samples (124 normal samples and 35 breast cancer samples). The language was then used to perform data processing and differential expression analysis. For all differentially expressed genes (DEGs), “FDR <0.01 and |logFC| ≥1” were selected as thresholds. Results In this study, 173 up-regulated genes and 143 down-regulated genes were selected for GO and KEGG enrichment analysis. These genes are also significantly enriched in the KEGG pathway, including phenylalanine metabolism, staphylococcus aureus infection, and the PPAR signaling pathway. The survival and prognosis of the selected eight key genes (DLGAP5, PRC1, TOP2A, CENPF, RACGAP1, RRM2, PLK1, and ASPM) were analyzed by the Kaplan-Meier plotter database. Conclusions Eight hub genes and pathways closely related to the onset and progression of breast cancer were identified. We found that the PPAR signaling pathway, especially PPARγ, plays an important role in breast cancer and suggest this pathway be the subject of further research.
Collapse
Affiliation(s)
- Limin Wei
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Yukun Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Dan Zhou
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Xinyang Li
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Ziming Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Ge Yao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Xinshuai Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
25
|
Gheghiani L, Wang L, Zhang Y, Moore XTR, Zhang J, Smith SC, Tian Y, Wang L, Turner K, Jackson-Cook CK, Mukhopadhyay ND, Fu Z. PLK1 Induces Chromosomal Instability and Overrides Cell-Cycle Checkpoints to Drive Tumorigenesis. Cancer Res 2021; 81:1293-1307. [PMID: 33376114 PMCID: PMC8026515 DOI: 10.1158/0008-5472.can-20-1377] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/19/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022]
Abstract
Polo-like kinase 1 (PLK1) is an essential cell-cycle regulator that is frequently overexpressed in various human cancers. To determine whether Plk1 overexpression drives tumorigenesis, we established transgenic mouse lines that ubiquitously express increased levels of Plk1. High Plk1 levels were a driving force for different types of spontaneous tumors. Increased Plk1 levels resulted in multiple defects in mitosis and cytokinesis, supernumerary centrosomes, and compromised cell-cycle checkpoints, allowing accumulation of chromosomal instability (CIN), which resulted in aneuploidy and tumor formation. Clinically, higher expression of PLK1 positively associated with an increase in genome-wide copy-number alterations in multiple human cancers. This study provides in vivo evidence that aberrant expression of PLK1 triggers CIN and tumorigenesis and highlights potential therapeutic opportunities for CIN-positive cancers. SIGNIFICANCE: These findings establish roles for PLK1 as a potent proto-oncogene and a CIN gene and provide insights for the development of effective treatment regimens across PLK1-overexpressing and CIN-positive cancers.
Collapse
Affiliation(s)
- Lilia Gheghiani
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Lei Wang
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Youwei Zhang
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Xavier T R Moore
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Jinglei Zhang
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Steven C Smith
- Department of Pathology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Yijun Tian
- Department of Tumor Biology, Moffitt Cancer Center, University of South Florida, Tampa, Florida
| | - Liang Wang
- Department of Tumor Biology, Moffitt Cancer Center, University of South Florida, Tampa, Florida
| | - Kristi Turner
- Department of Pathology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Colleen K Jackson-Cook
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- Department of Pathology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Nitai D Mukhopadhyay
- Department of Biostatistics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Zheng Fu
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.
| |
Collapse
|
26
|
Tai CS, Lan KC, Wang E, Chan FE, Hsieh MT, Huang CW, Weng SL, Chen PC, Chen WL. Nanotopography as Artificial Microenvironment for Accurate Visualization of Metastasis Development via Simulation of ECM Dynamics. NANO LETTERS 2021; 21:1400-1411. [PMID: 33522822 DOI: 10.1021/acs.nanolett.0c04209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metastatic progression is mediated by complex interactions between deregulated extracellular matrix (ECM) and cancer cells and remains a major challenge in cancer management. To investigate the role of ECM dynamics in promoting metastasis development, we developed an artificial microenvironment (AME) platform comprised of nanodot arrays of increasing diameter. Cells cultured on the platform showed increasing signs of mesenchymal-like cell transition as AME diameter increased, suggesting accurate simulation of ECM-mediated gene regulation. Gene expression was analyzed to determine genes significant to transition, which were then used to select appropriate small molecule drugs for time course treatments. Our results suggest that the platform can identify critical target genes as well as possible drug candidates. Overall, the AME platform allows for the study of intricate ECM-induced gene expression trends across metastasis development that would otherwise be difficult to visualize in vivo and may open new avenues toward successful personalized cancer management.
Collapse
Affiliation(s)
- Chun-San Tai
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Kuan-Chun Lan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Erick Wang
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Fu-Erh Chan
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Ming-Ting Hsieh
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Ching-Wen Huang
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Shun-Long Weng
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu City, Taiwan
| | - Po-Chun Chen
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan
- Institute of Material Science and Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Wen Liang Chen
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
27
|
Li H, An X, Li Q, Yu H, Li Z. Construction and analysis of competing endogenous RNA network of MCF-7 breast cancer cells based on the inhibitory effect of 6-thioguanine on cell proliferation. Oncol Lett 2020; 21:104. [PMID: 33376537 PMCID: PMC7751352 DOI: 10.3892/ol.2020.12365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022] Open
Abstract
Previous research has proven that 6-thioguanine (6-TG) inhibits the growth of MCF-7 breast cancer cells. Accumulating evidence indicates that long non-coding (lnc)RNAs are involved in the development of various cancer types as competitive endogenous (ce)RNA molecules. The present study was conducted to investigate the regulatory mechanism underlying the function of lncRNAs as ceRNA molecules in MCF-7 cells and to identify more effective prognostic biomarkers for breast cancer treatment. The expression profiles of lncRNAs in untreated MCF-7 cells and 6-TG-treated MCF-7 cells were compared by RNA-seq. The regulatory associations among lncRNAs, micro (mi)RNAs and mRNAs were analyzed and verified by the TargetScan, miRDB and miRTarBas databases. The ceRNA networks were constructed by Cytoscape. The expression levels of two lncRNAs and two miRNAs in the ceRNA network were measured by reverse transcription-quantitative PCR. The OncoLnc and Kaplan-Meier plotter network databases were utilized to determine the effects of lncRNA and miRNA expression on the survival of patients with breast cancer. A ceRNA network was constructed for MCF-7 breast cancer cells treated with 6-TG, and this network may provide valuable information for further research elucidating the molecular mechanism underlying the effects of 6-TG on breast cancer. Moreover, LINC00324, MIR22HG, miR-370-3p and miR-424-5p were identified as potential prognostic and therapeutic biomarkers for breast cancer.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xinglan An
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Qi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hao Yu
- College of Animal Sciences, Jilin University, Changchun, Jilin 130062, P.R. China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
28
|
Zhang Y, Tian J, Qu C, Peng Y, Lei J, Sun L, Zong B, Liu S. A look into the link between centrosome amplification and breast cancer. Biomed Pharmacother 2020; 132:110924. [PMID: 33128942 DOI: 10.1016/j.biopha.2020.110924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Centrosome amplification (CA) is a common feature of human tumors, but it is not clear whether this is a cause or a consequence of cancer. The centrosome amplification observed in tumor cells may be explained by a series of events, such as failure of cell division, dysregulation of centrosome cycle checkpoints, and de novo centriole biogenesis disorder. The formation and progression of breast cancer are characterized by genomic abnormality. The centrosomes in breast cancer cells show characteristic structural aberrations, caused by centrosome amplification, which include: an increase in the number and volume of centrosomes, excessive increase of pericentriolar material (PCM), inappropriate phosphorylation of centrosomal molecular, and centrosome clustering formation induced by the dysregulation of important genes. The mechanism of intracellular centrosome amplification, the impact of which on breast cancer and the latest breast cancer target treatment options for centrosome amplification are exhaustively elaborated in this review.
Collapse
Affiliation(s)
- Yingzi Zhang
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Jiao Tian
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Chi Qu
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Yang Peng
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Jinwei Lei
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Lu Sun
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Beige Zong
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Shengchun Liu
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
29
|
Pan Y, Liu L, Zhang Q, Shi W, Feng W, Wang J, Wang Q, Li S, Li M. Activation of AMPK suppresses S1P-induced airway smooth muscle cells proliferation and its potential mechanisms. Mol Immunol 2020; 128:106-115. [PMID: 33126079 DOI: 10.1016/j.molimm.2020.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 01/13/2023]
Abstract
The aims of the present study were to investigate the signaling mechanisms for sphingosine-1-phosphate (S1P)-induced airway smooth muscle cells (ASMCs) proliferation and to explore the effect of activation of adenosine monophosphate-activated protein kinase (AMPK) on S1P-induced ASMCs proliferation and its underlying mechanisms. S1P phosphorylated signal transducer and activator of transcription 3 (STAT3) through binding to S1PR2/3, and this further sequentially up-regulated polo-like kinase 1 (PLK1) and inhibitor of differentiation 2 (ID2) protein expression. Pretreatment of cells with S1PR2 antagonist JTE-013, S1PR3 antagonist CAY-10444, knockdown of STAT3, PLK1 and ID2 attenuated S1P-triggered ASMCs proliferation. In addition, activation of AMPK by metformin inhibited S1P-induced ASMCs proliferation by suppressing STAT3 phosphorylation and therefore suppression of PLK1 and ID2 protein expression. Our study suggests that S1P promotes ASMCs proliferation by stimulating S1PR2/3/STAT3/PLK1/ID2 axis, and activation of AMPK suppresses ASMCs proliferation by targeting on STAT3 signaling pathway. Activation of AMPK might benefit asthma by inhibiting airway remodeling.
Collapse
Affiliation(s)
- Yilin Pan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Pulmonary and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lu Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wei Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
30
|
Li Y, Zhao ZG, Luo Y, Cui H, Wang HY, Jia YF, Gao YT. Dual targeting of Polo-like kinase 1 and baculoviral inhibitor of apoptosis repeat-containing 5 in TP53-mutated hepatocellular carcinoma. World J Gastroenterol 2020; 26:4786-4801. [PMID: 32921957 PMCID: PMC7459198 DOI: 10.3748/wjg.v26.i32.4786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/04/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), often diagnosed at advanced stages without curative therapies, is the fifth most common malignant cancer and the second leading cause of cancer-related mortality. Polo-like kinase 1 (PLK1) is activated in the late G2 phase of the cell cycle and is required for entry to mitosis. Interestingly, PLK1 is overexpressed in many HCC patients and is highly associated with poor clinical outcome. Baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) is also highly overexpressed in HCC and plays key roles in this malignancy. AIM To determine the expression patterns of PLK1 and BIRC5, as well as their correlation with p53 mutation status and patient clinical outcome. METHODS The expression patterns of PLK1 and BIRC5, and their correlation with p53 mutation status or patient clinical outcome were analyzed using a TCGA HCC dataset. Cell viability, cell apoptosis, and cell cycle arrest assays were conducted to investigate the efficacy of the PLK1 inhibitors volasertib and GSK461364 and the BIRC5 inhibitor YM155, alone or in combination. The in vivo efficacy of volasertib and YM155, alone or in combination, was assessed in p53-mutated Huh7-derived xenograft models in immune-deficient NSIG mice. RESULTS Our bioinformatics analysis using a TCGA HCC dataset revealed that PLK1 and BIRC5 were overexpressed in the same patient subset and their expression was highly correlated. The overexpression of both PLK1 and BIRC5 was more frequently detected in HCC with p53 mutations. High PLK1 or BIRC5 expression significantly correlated with poor clinical outcome. PLK1 inhibitors (volasertib and GSK461364) or a BIRC5 inhibitor (YM155) selectively targeted Huh7 cells with mutated p53, but not HepG2 cells with wild-type p53. The combination treatment of volasertib and YM155 synergistically inhibited the viability of Huh7 cells via apoptotic pathway. The efficacy of volasertib and YM155, alone or in combination, was validated in vivo in a Huh7-derived xenograft model. CONCLUSION PLK1 and BIRC5 are highly co-expressed in p53-mutated HCC and inhibition of both PLK1 and BIRC5 synergistically compromises the viability of p53-mutated HCC cells in vitro and in vivo.
Collapse
Affiliation(s)
- Yan Li
- Department of Hepatology, Nankai University Affiliated Third Center Hospital, Tianjin 300170, China
| | - Zhen-Gang Zhao
- Department of Hepatology, Nankai University Affiliated Third Center Hospital, Tianjin 300170, China
| | - Yin Luo
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Nankai University Affiliated Third Center Hospital, Tianjin 300170, China
| | - Hao Cui
- Department of Hepatology, Nankai University Affiliated Third Center Hospital, Tianjin 300170, China
| | - Hao-Yu Wang
- Department of Hepatology, Nankai University Affiliated Third Center Hospital, Tianjin 300170, China
| | - Yan-Fang Jia
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Medical University Third Center Clinical College, Tianjin 300170, China
| | - Ying-Tang Gao
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Nankai University Affiliated Third Center Hospital, Tianjin 300170, China
| |
Collapse
|
31
|
Ahodantin J, Lekbaby B, Bou Nader M, Soussan P, Kremsdorf D. Hepatitis B virus X protein enhances the development of liver fibrosis and the expression of genes associated with epithelial-mesenchymal transitions and tumor progenitor cells. Carcinogenesis 2020; 41:358-367. [PMID: 31175830 DOI: 10.1093/carcin/bgz109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/03/2019] [Accepted: 06/06/2019] [Indexed: 12/24/2022] Open
Abstract
The hepatitis B virus X protein (HBx) has pleiotropic biological effects, which underlies its potential role in cell transformation. However, its involvement in hepatic fibrosis remains unclear. In this study, we wanted to clarify, in vivo, the role of HBx protein in the development of liver fibrosis. Mice transgenic for the full-length HBx (FL-HBx) were used. To create liver fibrosis, FL-HBx transgenic and control mice were chronically exposed to carbon tetrachloride (CCl4). Modulation of the expression of proteins involved in matrix remodeling, hepatic metabolism and epithelial-mesenchymal transition (EMT) were investigated. In transgenic mice, FL-HBx expression potentiates CCl4-induced liver fibrosis with increased expression of proteins involved in matrix remodeling (Collagen1a, α-Sma, PdgfR-β, MMP-13). In FL-HBx transgenic mice, an increase in EMT was observed with a higher transcription of two inflammatory cytokines (TNF-α and TGF-β) and a decrease of glutamine synthetase expression level. This was associated with a sustained cell cycle and hepatocyte polyploidy alteration consistent with p38 and ERK1/2 overactivation, increase of PLK1 transcription, accumulation of SQSTM1/p62 protein and increase expression of Beclin-1. This correlates with a higher expression of tumor progenitor cell markers (AFP, Ly6D and EpCam), indicating a higher risk of progression from fibrosis to hepatocellular carcinoma (HCC) in the presence of FL-HBx protein. In conclusion, our results show that FL-HBx protein enhances the development of liver fibrosis and contributes to the progression of liver disease from chronic hepatitis to HCC.
Collapse
Affiliation(s)
- James Ahodantin
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Sorbonne Universités, Paris, France.,Centre National de la Recherche Scientifique (CNRS, ERL8255), Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Sorbonne Universités, Paris, France
| | - Bouchra Lekbaby
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Sorbonne Universités, Paris, France.,Centre National de la Recherche Scientifique (CNRS, ERL8255), Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Sorbonne Universités, Paris, France
| | - Myriam Bou Nader
- Team Proliferation Stress and Liver Physiopathology, Genome and Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (Inserm), Paris, France.,Sorbonne Unversité, USPC, Paris, France.,Université Paris Descartes, Paris, France.,Université Paris Diderot, Paris, France
| | - Patrick Soussan
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Sorbonne Universités, Paris, France.,Centre National de la Recherche Scientifique (CNRS, ERL8255), Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Sorbonne Universités, Paris, France
| | - Dina Kremsdorf
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Sorbonne Universités, Paris, France.,Centre National de la Recherche Scientifique (CNRS, ERL8255), Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Sorbonne Universités, Paris, France
| |
Collapse
|
32
|
Wu J, Lv Q, Huang H, Zhu M, Meng D. Screening and Identification of Key Biomarkers in Inflammatory Breast Cancer Through Integrated Bioinformatic Analyses. Genet Test Mol Biomarkers 2020; 24:484-491. [PMID: 32598242 DOI: 10.1089/gtmb.2020.0047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Inflammatory breast cancer (IBC) is a rare type of breast cancer with poor prognoses, moreover its pathogenesis is not entirely clear. The aim of this study was to identify key genes of IBC, which might serve as diagnostic biomarkers and/or therapeutic targets. Methods: Two microarray datasets, GSE23720 and GSE45581, were obtained from the Gene Expression Omnibus database, and a differential expression analysis was performed. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to understand the potential biological functions of the differentially expressed genes (DEGs). Next, a protein-protein interaction (PPI) network was constructed and visualized by Cytoscape. Functional modules and hub genes were screened using MCODE and cytohubba plug-ins, and the Cancer Genome Atlas survival analysis along with quantitative reverse transcriptional polymerase chain reactions of clinical samples was used to validate the effect that the hub genes have on IBC. Results: A total of 215 DEGs were identified, consisting of 105 upregulated and 110 downregulated genes. GO and KEGG analyses showed that the enriched terms and pathways were mainly associated with cell cycle, proliferation, drug metabolism, and oncogenesis. From the PPI network, we identified six hub genes, including Cell Division Cycle 45 (CDC45), Polo Like Kinase 1 (PLK1), BUB1 Mitotic Checkpoint Serine/Threonine Kinase B (BUB1B), Cell Division Cycle 20 (CDC20), Aurora Kinase A (AURKA), and Mitotic Arrest Deficient 2 Like 1 (MAD2L1). The survival analyses and expression validation studies verified the robustness of these hub genes. Conclusion: This study provides new insights into the understanding of the molecular mechanisms of IBC; in addition, the identified hub genes may serve as potential targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Junqiang Wu
- Department of Breast Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Qing Lv
- Department of Breast Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Hu Huang
- Department of Breast Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Mingjie Zhu
- Department of Breast Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Dong Meng
- Department of Breast Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
33
|
Shi H, Sun S, Xu H, Zhao Z, Han Z, Jia J, Wu D, Lu J, Liu H, Yu R. Combined Delivery of Temozolomide and siPLK1 Using Targeted Nanoparticles to Enhance Temozolomide Sensitivity in Glioma. Int J Nanomedicine 2020; 15:3347-3362. [PMID: 32494134 PMCID: PMC7229804 DOI: 10.2147/ijn.s243878] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Temozolomide (TMZ) is the first-line chemotherapeutic option to treat glioma; however, its efficacy and clinical application are limited by its drug resistance properties. Polo-like kinase 1 (PLK1)-targeted therapy causes G2/M arrest and increases the sensitivity of glioma to TMZ. Therefore, to limit TMZ resistance in glioma, an angiopep-2 (A2)-modified polymeric micelle (A2PEC) embedded with TMZ and a small interfering RNA (siRNA) targeting PLK1 (siPLK1) was developed (TMZ-A2PEC/siPLK). MATERIALS AND METHODS TMZ was encapsulated by A2-PEG-PEI-PCL (A2PEC) through the hydrophobic interaction, and siPLK1 was complexed with the TMZ-A2PEC through electrostatic interaction. Then, an angiopep-2 (A2) modified polymeric micelle (A2PEC) embedding TMZ and siRNA targeting polo-like kinase 1 (siPLK1) was developed (TMZ-A2PEC/siPLK). RESULTS In vitro experiments indicated that TMZ-A2PEC/siPLK effectively enhanced the cellular uptake of TMZ and siPLK1 and resulted in significant cell apoptosis and cytotoxicity of glioma cells. In vivo experiments showed that glioma growth was inhibited, and the survival time of the animals was prolonged remarkably after TMZ-A2PEC/siPLK1 was injected via their tail vein. DISCUSSION The results demonstrate that the combination of TMZ and siPLK1 in A2PEC could enhance the efficacy of TMZ in treating glioma.
Collapse
Affiliation(s)
- Hui Shi
- Clinical Medical College, Nanjing Medical University, Nanjing, People’s Republic of China
- The Second People’s Hospital of Lianyungang, Lianyungang, People’s Republic of China
| | - Shuo Sun
- Clinical Medical College, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Haoyue Xu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Zongren Zhao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Zhengzhong Han
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Jun Jia
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Dongmei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, People’s Republic of China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, People’s Republic of China
| | - Hongmei Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, People’s Republic of China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Rutong Yu
- Clinical Medical College, Nanjing Medical University, Nanjing, People’s Republic of China
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, People’s Republic of China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| |
Collapse
|
34
|
Zhu J, Cui K, Cui Y, Ma C, Zhang Z. PLK1 Knockdown Inhibits Cell Proliferation and Cell Apoptosis, and PLK1 Is Negatively Regulated by miR-4779 in Osteosarcoma Cells. DNA Cell Biol 2020; 39:747-755. [PMID: 32182129 DOI: 10.1089/dna.2019.5002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is a ubiquitous serine/threonine protein kinase. It is reported to be involved in the occurrence and progression of various human cancers. In the present study, we explored the role and molecular mechanism of PLK1 in the proliferation of osteosarcoma (OS) cells. We found that PLK1 expression was higher in MG63/Dox cells than in MG63 cells, while inhibiting or interfering with the level of PLK1 suppressed cell proliferation of MG63/Dox cells. TargetScan analysis predicted that miR-4779 would interact with the 3'-UTR of PLK1 mRNAs and also inhibit cell autophagy of MG63/Dox cells. The data demonstrated that miR-4779 negatively regulates the expression of PLK1, and both miR-4779 and PLK1 regulate cell proliferation and cell apoptosis of MG63/Dox cells, processes that are involved in the drug resistance of OS cells.
Collapse
Affiliation(s)
- Jiajun Zhu
- Department of Orthopaedics, The 4th Affiliated Hospital of China Medical University, Shenyang, China
| | - Kai Cui
- Department of Orthopaedics, The 4th Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Cui
- Department of Orthopaedics, The 4th Affiliated Hospital of China Medical University, Shenyang, China
| | - Chengbin Ma
- Department of Orthopaedics, The 4th Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyu Zhang
- Department of Orthopaedics, The 4th Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
35
|
Transcriptomic Profiling Identifies Differentially Expressed Genes in Palbociclib-Resistant ER+ MCF7 Breast Cancer Cells. Genes (Basel) 2020; 11:genes11040467. [PMID: 32344635 PMCID: PMC7230561 DOI: 10.3390/genes11040467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022] Open
Abstract
Acquired resistance to cyclin-dependent kinases 4 and 6 (CDK4/6) inhibition in estrogen receptor-positive (ER+) breast cancer remains a significant clinical challenge. Efforts to uncover the mechanisms underlying resistance are needed to establish clinically actionable targets effective against resistant tumors. In this study, we sought to identify differentially expressed genes (DEGs) associated with acquired resistance to palbociclib in ER+ breast cancer. We performed next-generation transcriptomic RNA sequencing (RNA-seq) and pathway analysis in ER+ MCF7 palbociclib-sensitive (MCF7/pS) and MCF7 palbociclib-resistant (MCF7/pR) cells. We identified 2183 up-regulated and 1548 down-regulated transcripts in MCF7/pR compared to MCF7/pS cells. Functional analysis of the DEGs using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database identified several pathways associated with breast cancer, including ‘cell cycle’, ‘DNA replication’, ‘DNA repair’ and ‘autophagy’. Additionally, Ingenuity Pathway Analysis (IPA) revealed that resistance to palbociclib is closely associated with deregulation of several key canonical and metabolic pathways. Further studies are needed to determine the utility of these DEGs and pathways as therapeutics targets against ER+ palbociclib-resistant breast cancer.
Collapse
|
36
|
Roberts MS, Sahni JM, Schrock MS, Piemonte KM, Weber-Bonk KL, Seachrist DD, Avril S, Anstine LJ, Singh S, Sizemore ST, Varadan V, Summers MK, Keri RA. LIN9 and NEK2 Are Core Regulators of Mitotic Fidelity That Can Be Therapeutically Targeted to Overcome Taxane Resistance. Cancer Res 2020; 80:1693-1706. [PMID: 32054769 PMCID: PMC7165041 DOI: 10.1158/0008-5472.can-19-3466] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/07/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022]
Abstract
A significant therapeutic challenge for patients with cancer is resistance to chemotherapies such as taxanes. Overexpression of LIN9, a transcriptional regulator of cell-cycle progression, occurs in 65% of patients with triple-negative breast cancer (TNBC), a disease commonly treated with these drugs. Here, we report that LIN9 is further elevated with acquisition of taxane resistance. Inhibiting LIN9 genetically or by suppressing its expression with a global BET inhibitor restored taxane sensitivity by inducing mitotic progression errors and apoptosis. While sustained LIN9 is necessary to maintain taxane resistance, there are no inhibitors that directly repress its function. Hence, we sought to discover a druggable downstream transcriptional target of LIN9. Using a computational approach, we identified NIMA-related kinase 2 (NEK2), a regulator of centrosome separation that is also elevated in taxane-resistant cells. High expression of NEK2 was predictive of low survival rates in patients who had residual disease following treatment with taxanes plus an anthracycline, suggesting a role for this kinase in modulating taxane sensitivity. Like LIN9, genetic or pharmacologic blockade of NEK2 activity in the presence of paclitaxel synergistically induced mitotic abnormalities in nearly 100% of cells and completely restored sensitivity to paclitaxel, in vitro. In addition, suppressing NEK2 activity with two distinct small molecules potentiated taxane response in multiple in vivo models of TNBC, including a patient-derived xenograft, without inducing toxicity. These data demonstrate that the LIN9/NEK2 pathway is a therapeutically targetable mediator of taxane resistance that can be leveraged to improve response to this core chemotherapy. SIGNIFICANCE: Resistance to chemotherapy is a major hurdle for treating patients with cancer. Combining NEK2 inhibitors with taxanes may be a viable approach for improving patient outcomes by enhancing mitotic defects induced by taxanes alone.
Collapse
Affiliation(s)
- Melyssa S Roberts
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Jennifer M Sahni
- Department of Pathology, School of Medicine, New York University, New York, New York
| | - Morgan S Schrock
- Department of Radiation Oncology, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Katrina M Piemonte
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | | | - Darcie D Seachrist
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Stefanie Avril
- Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Lindsey J Anstine
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Salendra Singh
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Steven T Sizemore
- Department of Radiation Oncology, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Vinay Varadan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Matthew K Summers
- Department of Radiation Oncology, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Ruth A Keri
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
37
|
Shi L, Zhu H, Shen Y, Dou X, Guo H, Wang P, Zhang S, Zhou L, Zou X. Regulation of E2F Transcription Factor 3 by microRNA-152 Modulates Gastric Cancer Invasion and Metastasis. Cancer Manag Res 2020; 12:1187-1197. [PMID: 32110093 PMCID: PMC7034297 DOI: 10.2147/cmar.s239752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Background The transcription factor, E2F transcription factor 3 (E2F3), has been proved to modulate metastasis in multiple human cancers. The present study was aimed to expound the function and specific mechanism of E2F3 in gastric cancer (GC) progression. Materials and Methods The expression of E2F3, microRNA-152 (miR-152) and PLK1 (polo-like kinase 1) in GC cell lines was detected by quantitative RT-PCR and Western blot. The roles of E2F3 and miR-152 in GC metastasis were classified using gain-of-function and loss-of-function assays. The miRNAs directly targeting E2F3 were identified by bioinformatics analysis and luciferase reporter experiment. Chromatin immunoprecipitation was carried out to reveal the correlation between E2F3 and PLK1. Results E2F3 expression was frequently up-regulated in GC tissues, and its high expression might imply poor prognosis. Downregulation of E2F3 restrained GC migration and invasion in vitro and in vivo. Interestingly, we proved that miR-152 was an upstream regulator of E2F3. Moreover, miR-152 reduced E2F3 expression by directly targeting its 3ʹ-UTR, and then modulated GC metastasis via polo-like kinase 1 (PLK1) mediated protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) signals. Conclusion E2F3 plays a crucial role in GC progression and the newly discovered miR-152/E2F3/PLK1 axis provides a new underlying target for therapy of metastasis in GC patients.
Collapse
Affiliation(s)
- Liangliang Shi
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, People's Republic of China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing 210008, People's Republic of China
| | - Hao Zhu
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, People's Republic of China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing 210008, People's Republic of China
| | - Yonghua Shen
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, People's Republic of China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing 210008, People's Republic of China
| | - Xiaotan Dou
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, People's Republic of China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing 210008, People's Republic of China
| | - Huimin Guo
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, People's Republic of China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing 210008, People's Republic of China
| | - Pin Wang
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, People's Republic of China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing 210008, People's Republic of China
| | - Shu Zhang
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, People's Republic of China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing 210008, People's Republic of China
| | - Lin Zhou
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, People's Republic of China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing 210008, People's Republic of China
| | - Xiaoping Zou
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, People's Republic of China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, People's Republic of China.,Jiangsu Clinical Medical Center of Digestive Disease, Nanjing 210008, People's Republic of China
| |
Collapse
|
38
|
Li H, An X, Zhang D, Li Q, Zhang N, Yu H, Li Z. Transcriptomics Analysis of the Tumor-Inhibitory Pathways of 6-Thioguanine in MCF-7 Cells via Silencing DNMT1 Activity. Onco Targets Ther 2020; 13:1211-1223. [PMID: 32103989 PMCID: PMC7023860 DOI: 10.2147/ott.s236543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/24/2020] [Indexed: 12/24/2022] Open
Abstract
Background 6-thioguanine (6-TG), as a conventional “ancient” drug for the treatment of acute leukemia, has been proved to have extensive anti-tumor roles. This study was created to investigate the hidden function of 6-TG on the MCF-7 breast cancer cell line (ER+, PR+) and its mechanisms. Methods MCF-7 cells were treated with 6-TG, and the IC50 value was measured by a cell counting kit-8 assay. Differentially expressed genes (DEGs) were confirmed by RNA-seq analysis. Apoptosis and cell cycle consequences were determined by flow cytometry and Western blot analyses. Results The results showed that colony formation decreased markedly and the percentage of cell apoptosis increased after 6-TG treatment. DNMT1 mRNA and protein expression decreased, and FAS expression increased. Moreover, 6-TG also induced MCF-7 cells to undergo G2/M phase cell cycle arrest and upregulated CDKN1A (p21). Conclusion Overall, our results suggest that 6-TG may induce FAS-mediated exogenous apoptosis and p21-dependent G2/M arrest by inhibiting the activity of DNMT1 in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun 130021, People's Republic of China
| | - Xinglan An
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun 130021, People's Republic of China
| | - Daoyu Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun 130021, People's Republic of China
| | - Qi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun 130021, People's Republic of China
| | - Nan Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun 130021, People's Republic of China
| | - Hao Yu
- College of Animal Sciences, Jilin University, Changchun 130062, People's Republic of China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
39
|
Ruszkowska M, Sadowska A, Nynca A, Orlowska K, Swigonska S, Molcan T, Paukszto L, Jastrzebski JP, Ciereszko RE. The effects of 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) on the transcriptome of aryl hydrocarbon receptor (AhR) knock-down porcine granulosa cells. PeerJ 2020; 8:e8371. [PMID: 32002328 PMCID: PMC6982409 DOI: 10.7717/peerj.8371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
Background 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a toxic man-made chemical, adversely affecting reproductive processes. The well-characterized canonical mechanism of TCDD action involves the activation of aryl hydrocarbon receptor (AhR) pathway, but AhR-independent mechanisms were also suggested. By applying RNA interference technology and Next Generation Sequencing (NGS) we aimed to identify genes involved in the mechanism of TCDD action in AhR knock-down porcine granulosa cells. Methods Porcine granulosa cells were transfected with small interfering RNAs targeting mRNA of AhR. After transfection, medium was exchanged and the AhR knock-down cells were treated with TCDD (100 nM) for 3, 12 or 24 h, total cellular RNA was isolated and designated for NGS. Following sequencing, differentially expressed genes (DEGs) were identified. To analyze functions and establish possible interactions of DEGs, the Gene Ontology (GO) database and the Search Tool for the Retrieval of Interacting Genes (STRING) database were used, respectively. Results The AhR gene expression level and protein abundance were significantly decreased after AhR-targeted siRNAs transfection of the cells. In TCDD-treated AhR knock-down cells we identified 360 differentially expressed genes (DEGs; P-adjusted < 0.05 and log2 fold change [log2FC] ≥ 1.0). The functional enrichment analysis of DEGs revealed that TCDD influenced the expression of genes involved, among other, in the metabolism of vitamin A, follicular development and oocyte maturation, proliferation and differentiation as well as inflammation, stress response, apoptosis and oncogenesis. The three-time point study demonstrated that TCDD-induced changes in the transcriptome of AhR knock-down porcine granulosa cells were especially pronounced during the early stages of the treatment (3 h). Conclusions TCDD affected the transcriptome of AhR knock-down porcine granulosa cells. The molecules involved in the AhR-independent action of TCDD were indicated in the study. The obtained data contribute to better understanding of molecular processes induced by xenobiotics in the ovary.
Collapse
Affiliation(s)
- Monika Ruszkowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Agnieszka Sadowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anna Nynca
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Karina Orlowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Sylwia Swigonska
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tomasz Molcan
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Lukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jan P Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Renata E Ciereszko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.,Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
40
|
Qi B, Zhong L, He J, Zhang H, Li F, Wang T, Zou J, Lin YX, Zhang C, Guo X, Li R, Shi J. Discovery of Inhibitors of Aurora/PLK Targets as Anticancer Agents. J Med Chem 2019; 62:7697-7707. [PMID: 31381325 DOI: 10.1021/acs.jmedchem.9b00353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aurora and polo-like kinases control the G2/M phase in cell mitosis, which are both considered as crucial targets for cancer cell proliferations. Here, naphthalene-based Aurora/PLK coinhibitors as leading compounds were designed through in silico approach, and a total of 36 derivatives were synthesized. One candidate (AAPK-25) was selected under in vitro cell based high throughput screening with an IC50 value = 0.4 μM to human colon cancer cell HCT-116. A kinome scan assay showed that AAPK-25 was remarkably selective to both Aurora and PLK families. The relevant genome pathways were also depicted by microarray based gene expression analysis. Furthermore, validated from a set of in vitro and in vivo studies, AAPK-25 significantly inhibited the development of the colon cancer growth and prolonged the median survival time at the end of the administration (p < 0.05). To sum up, AAPK-25 has a great potential to be developed for a chemotherapeutic agent in clinical use.
Collapse
Affiliation(s)
- Baowen Qi
- College of Pharmacy and Biological Engineering , Chengdu University , Chengdu 610106 , China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Ling Zhong
- Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Individualized Medication Key Laboratory of Sichuan Province, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, School of Medicine, Center for Information in Medicine , University of Electronic Science and Technology of China , Chengdu 610072 , China
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu 610041 , China
| | - Jun He
- Cancer Center, West China Hospital , Sichuan University, and Collaborative Innovation Center for Biotherapy , Sichuan 610041 , China
| | - Hongjia Zhang
- Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Individualized Medication Key Laboratory of Sichuan Province, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, School of Medicine, Center for Information in Medicine , University of Electronic Science and Technology of China , Chengdu 610072 , China
| | - Fengqiong Li
- Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Individualized Medication Key Laboratory of Sichuan Province, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, School of Medicine, Center for Information in Medicine , University of Electronic Science and Technology of China , Chengdu 610072 , China
| | - Ting Wang
- Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Individualized Medication Key Laboratory of Sichuan Province, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, School of Medicine, Center for Information in Medicine , University of Electronic Science and Technology of China , Chengdu 610072 , China
| | - Jing Zou
- Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Individualized Medication Key Laboratory of Sichuan Province, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, School of Medicine, Center for Information in Medicine , University of Electronic Science and Technology of China , Chengdu 610072 , China
| | - Yao-Xin Lin
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Chengchen Zhang
- Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Individualized Medication Key Laboratory of Sichuan Province, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, School of Medicine, Center for Information in Medicine , University of Electronic Science and Technology of China , Chengdu 610072 , China
| | - Xiaoqiang Guo
- College of Pharmacy and Biological Engineering , Chengdu University , Chengdu 610106 , China
| | - Rui Li
- Cancer Center, West China Hospital , Sichuan University, and Collaborative Innovation Center for Biotherapy , Sichuan 610041 , China
| | - Jianyou Shi
- Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Individualized Medication Key Laboratory of Sichuan Province, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, School of Medicine, Center for Information in Medicine , University of Electronic Science and Technology of China , Chengdu 610072 , China
| |
Collapse
|
41
|
Park M, Kim J, Phuong NTT, Park JG, Park JH, Kim YC, Baek MC, Lim SC, Kang KW. Involvement of the P2X7 receptor in the migration and metastasis of tamoxifen-resistant breast cancer: effects on small extracellular vesicles production. Sci Rep 2019. [PMID: 31406126 DOI: 10.1038/s41598-019-47734-z.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Tamoxifen (TAM) is the standard anti-hormonal therapy for estrogen receptor-positive breast cancer. However, long-term TAM therapy can make acquisition of TAM resistance and there are still no solutions to treat TAM-resistant breast cancer. In this study, we found that protein and mRNA expression of the P2X purinoreceptor 7 (P2X7) was higher in tamoxifen resistant MCF-7 (TAMR-MCF-7) cells than in control MCF-7 cells. P2X7 inhibition potently inhibited the migration of TAMR-MCF-7 cells and the liver metastasis burden of TAMR-MCF-7 cells in the spleen-liver metastasis experiment. However, the P2X7 antagonist did not affect protein expression of matrix metalloproteinase (MMP)-2, MMP-9, and epithelial-mesenchymal transition markers. Here our data indicate a link between small extracellular vesicles (sEV) and P2X7, and suggest a new mechanism of metastasis in TAM-resistant breast cancer cells through P2X7 receptors. The migration of TAMR-MCF-7 cells was increased in a concentration-dependent manner by purified sEV treatment. The number of secreted sEVs and the protein levels of CD63 in TAMR-MCF-7 cells were decreased by the P2X7 antagonist, showing that P2X7 influences the production of sEV. Our results suggest that inhibiting the P2X7 could be considered for metastasis prevention in TAM-resistant cancer patients.
Collapse
Affiliation(s)
- Miso Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jieun Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nguyen T T Phuong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung Gyu Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Hee Park
- School of Life Sciences, Gwangju Institute of Science & Technology, Gwangju, 61005, Republic of Korea
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science & Technology, Gwangju, 61005, Republic of Korea
| | - Moon Chang Baek
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Sung Chul Lim
- Department of Pathology, College of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
42
|
Park M, Kim J, Phuong NTT, Park JG, Park JH, Kim YC, Baek MC, Lim SC, Kang KW. Involvement of the P2X7 receptor in the migration and metastasis of tamoxifen-resistant breast cancer: effects on small extracellular vesicles production. Sci Rep 2019; 9:11587. [PMID: 31406126 PMCID: PMC6690963 DOI: 10.1038/s41598-019-47734-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Tamoxifen (TAM) is the standard anti-hormonal therapy for estrogen receptor-positive breast cancer. However, long-term TAM therapy can make acquisition of TAM resistance and there are still no solutions to treat TAM-resistant breast cancer. In this study, we found that protein and mRNA expression of the P2X purinoreceptor 7 (P2X7) was higher in tamoxifen resistant MCF-7 (TAMR-MCF-7) cells than in control MCF-7 cells. P2X7 inhibition potently inhibited the migration of TAMR-MCF-7 cells and the liver metastasis burden of TAMR-MCF-7 cells in the spleen-liver metastasis experiment. However, the P2X7 antagonist did not affect protein expression of matrix metalloproteinase (MMP)-2, MMP-9, and epithelial-mesenchymal transition markers. Here our data indicate a link between small extracellular vesicles (sEV) and P2X7, and suggest a new mechanism of metastasis in TAM-resistant breast cancer cells through P2X7 receptors. The migration of TAMR-MCF-7 cells was increased in a concentration-dependent manner by purified sEV treatment. The number of secreted sEVs and the protein levels of CD63 in TAMR-MCF-7 cells were decreased by the P2X7 antagonist, showing that P2X7 influences the production of sEV. Our results suggest that inhibiting the P2X7 could be considered for metastasis prevention in TAM-resistant cancer patients.
Collapse
Affiliation(s)
- Miso Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jieun Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nguyen T T Phuong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung Gyu Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin-Hee Park
- School of Life Sciences, Gwangju Institute of Science & Technology, Gwangju, 61005, Republic of Korea
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science & Technology, Gwangju, 61005, Republic of Korea
| | - Moon Chang Baek
- Department of Biochemistry, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Sung Chul Lim
- Department of Pathology, College of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
43
|
Abstract
Centrosome amplification is a feature of multiple tumour types and has been postulated to contribute to both tumour initiation and tumour progression. This chapter focuses on the mechanisms by which an increase in centrosome number might lead to an increase or decrease in tumour progression and the role of proteins that regulate centrosome number in driving tumorigenesis.
Collapse
Affiliation(s)
- Arunabha Bose
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sorab N Dalal
- KS215, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India.
- Homi Bhabha National Institute, Mumbai, Maharashtra, India.
| |
Collapse
|
44
|
Inhibition of Polo-like Kinase 1 Prevents the Male Pronuclear Formation Via Alpha-tubulin Recruiting in In Vivo-fertilized Murine Embryos. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2018. [DOI: 10.12750/jet.2018.33.4.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
45
|
Li L, Yu J, Jiao S, Wang W, Zhang F, Sun S. Vandetanib (ZD6474) induces antiangiogenesis through mTOR-HIF-1 alpha-VEGF signaling axis in breast cancer cells. Onco Targets Ther 2018; 11:8543-8553. [PMID: 30555244 PMCID: PMC6278704 DOI: 10.2147/ott.s175578] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective Vandetanib, also known as ZD6474, has recently been proved to be a clinical drug for cancer by targeting vascular endothelial growth factor receptor 2 (VEGFR2), EGFR, and RET tyrosine kinases. We hypothesized that vandetanib will be a drug candidate for breast cancer treatment by targeting angiogenesis. Materials and methods Vandetanib was used to treat different breast cancer cell lines, and its effect on growth, apoptosis, and cell cycle was studied by MTT assay and flow cytometry. VEGF level in culture medium was measured by ELISA. Gene expression of mechanistic target of rapamycin (mTOR), hypoxia-inducible factor (HIF)-1 alpha, and VEGF at mRNA and protein level were analyzed by quantitative real-time-PCR and Western blot. The cellular behavior variations were investigated by using wound healing assay, transwell invasion assay, and tubular formation assay as well as experiments in vivo. Result We found that vandetanib can inhibit breast cancer cell line growth via apoptosis and cell cycle regulation. VEGF secretion decreases upon treatment. Vandetanib can reduce both mRNA and protein level of mTOR, HIF-1 alpha, and VEGF. Angiogenesis assays showed that vandetanib can inhibit wound healing, invasion, and tubular formation in culture. Furthermore, vandetanib inhibited the growth of breast tumor in vivo. Conclusion In short, our study showed that vandetanib can control angiogenesis of breast cancer in culture via mTOR, HIF-1 alpha, and VEGF signaling pathway.
Collapse
Affiliation(s)
- Ling Li
- Department of Oncology, Affiliated Tengzhou Central People's Hospital of Jining Medical University, Zaozhuang, Shandong, China,
| | - Jingkui Yu
- Breast Surgery Department, Affiliated Tengzhou Central People's Hospital of Jining Medical University, Zaozhuang, Shandong, China
| | - Shuhong Jiao
- Department of Oncology, Affiliated Tengzhou Central People's Hospital of Jining Medical University, Zaozhuang, Shandong, China,
| | - Wei Wang
- Department of Oncology, Affiliated Tengzhou Central People's Hospital of Jining Medical University, Zaozhuang, Shandong, China,
| | - Fen Zhang
- Department of Oncology, Affiliated Tengzhou Central People's Hospital of Jining Medical University, Zaozhuang, Shandong, China,
| | - Shiqing Sun
- Department of Oncology, Affiliated Tengzhou Central People's Hospital of Jining Medical University, Zaozhuang, Shandong, China,
| |
Collapse
|
46
|
Li W, Liu J, Fu W, Zheng X, Ren L, Liu S, Wang J, Ji T, Du G. 3-O-acetyl-11-keto-β-boswellic acid exerts anti-tumor effects in glioblastoma by arresting cell cycle at G2/M phase. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:132. [PMID: 29970196 PMCID: PMC6029111 DOI: 10.1186/s13046-018-0805-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/20/2018] [Indexed: 12/31/2022]
Abstract
Background Glioblastoma (GBM) is the most common, malignant, and lethal primary brain tumor in adults accounting for about 50% of all gliomas. Up to now, the chemotherapy approaches for GBM were limited. 3-O-acetyl-11-keto-β-boswellic acid (AKBA), the major active ingredient of the gum resin from Boswellia serrata and Boswellia carteri Birdw., was reported to inhibit the growth of many types of cancer cells; however, the underlying mechanism of its anticancer effects are still unclear. Methods The effects of AKBA on cell viability and its cytotoxicity were determined using CCK8 and LDH kits respectively. The EdU-DNA synthesis assay was used to evaluate inhibition of cell proliferation by AKBA. The role of AKBA in glioblastoma cell functions such as migration/invasion, and colony formation was evaluated using transwell chambers and soft agar, respectively. Flow cytometry and western blotting were used to detect AKBA-induced apoptosis. Potential mechanisms of AKBA action were explored by RNA sequencing and the identified hub genes were validated by real-time quantitative PCR and western blotting. Finally, the in vivo anti-tumor activity of AKBA was evaluated against a human glioblastoma cell line, U87-MG, in a xenograft mouse model. Results AKBA inhibited cell proliferation, caused the release of LDH, decreased DNA synthesis, and inhibited the migration, invasion, and colony formation of U251 and U87-MG human glioblastoma cell lines. AKBA increased apoptosis as well as the activity of caspase 3/7 and the protein expression of cleaved-caspase 3 and cleaved PARP, while decreasing mitochondrial membrane potential. RNA-sequencing analyses showed that AKBA suppressed the expression of pRB, FOXM1, Aurora A, PLK1, CDC25C, p-CDK1, cyclinB1, Aurora B, and TOP2A while increasing the expression of p21 and GADD45A. These findings were validated by qRT-PCR and western blotting. The data are consistent with a mechanism in which AKBA arrested the cell cycle in glioblastoma cells at the G2/M phase by regulating the p21/FOXM1/cyclin B1 pathway, inhibited mitosis by downregulating the Aurora B/TOP2A pathway, and induced mitochondrial-dependent apoptosis. Oral administration of AKBA (100 mg/kg) significantly suppressed the tumorigenicity of U87-MG cells in a xenograft mouse model. Conclusions Taken together, these results suggest that AKBA (molecular weight, 512.7 Da) might be a promising chemotherapy drug in the treatment of GBM. Electronic supplementary material The online version of this article (10.1186/s13046-018-0805-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jinyi Liu
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.,Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650500, China
| | - Weiqi Fu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Shiwei Liu
- Department of Endocrinology, Shanxi DAYI Hospital, Shanxi Medical University, Taiyuan, 030002, Shanxi, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China. .,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Tengfei Ji
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China. .,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
47
|
O'Regan RM, Nahta R. Targeting forkhead box M1 transcription factor in breast cancer. Biochem Pharmacol 2018; 154:407-413. [PMID: 29859987 DOI: 10.1016/j.bcp.2018.05.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/30/2018] [Indexed: 12/28/2022]
Abstract
Breast cancer continues to be the most commonly diagnosed malignancy and second most common cause of cancer-related deaths among women in the United States. Improved understanding of the molecular heterogeneity of breast tumors and the approval of multiple targeted therapies have revolutionized the treatment landscape and long-term survival rates for patients with breast cancer. Despite the development of highly effective targeted agents, drug resistance and disease progression remain major clinical concerns. Improved understanding of the molecular mechanisms mediating drug resistance will allow new treatments to be developed. The forkhead box M1 (FoxM1) transcription factor is overexpressed in breast cancer and strongly associated with resistance to targeted therapies and chemotherapy. FoxM1 regulates all hallmarks of cancer, including proliferation, mitosis, EMT, invasion, and metastasis. Inhibition of FoxM1 transcription factor function is a potential strategy for overcoming breast cancer progression. In this research update, we review the role of FoxM1 in breast cancer and pharmacological approaches for blocking FoxM1 transcription factor function. Future preclinical studies should evaluate combination drug strategies to inhibit FoxM1 function and upstream kinase signaling pathways as potential strategies to treat resistant and metastatic breast cancers.
Collapse
Affiliation(s)
- Ruth M O'Regan
- University of Wisconsin Carbone Cancer Center, United States
| | - Rita Nahta
- Departments of Pharmacology and Hematology & Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, United States.
| |
Collapse
|