1
|
Mehravanfar H, Farhadian N, Abnous K. Indocyanine green-loaded N-doped carbon quantum dot nanoparticles for effective photodynamic therapy and cell imaging of melanoma cancer: in vitro, ex vivo and in vivo study. J Drug Target 2024; 32:820-837. [PMID: 38779708 DOI: 10.1080/1061186x.2024.2358511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Indocyanine Green (ICG) as an agent for photodynamic therapy (PDT) of melanoma cancer has low quantum yield, short circulation half-life, poor photo-stability, and tendency to aggregation. PURPOSE N-doped carbon quantum dot (CQD) nanoparticle was applied to encapsulate ICG and overcome ICG obstacle in PDT with simultaneous cell imaging property. METHODS CQD was prepared using hydrothermal method. Cell culture study and In vivo assessments on C57BL/6 mice containing melanoma cancer cells was performed. RESULTS Results showed that CQD size slightly enhanced from 24.55 nm to 42.67 nm after ICG loading. Detection of reactive oxygen species (ROS) demonstrated that CQD improved ICG photo-stability and ROS generation capacity upon laser irradiation. Cell culture study illustrated that ICG@CQD could decrease survival rate of melanoma cancer cells of B16F10 cell line from 48% for pure ICG to 28% for ICG@CQD. Confocal microscopy images approved more cellular uptake and more qualified cell imaging ability of ICG@CQD. In vivo assessments displayed obvious inhibitory effect of tumor growth for ICG@CQD in comparison to free ICG on the C57BL/6 mice. In vivo fluorescence images confirmed that ICG@CQD accumulates remarkably more than free ICG in tumor region. Finally, ICG@CQD was proposed as an innovative nanocarrier for PDT and diagnosis.
Collapse
Affiliation(s)
- Hadiseh Mehravanfar
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nafiseh Farhadian
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Sitia L, Saccomandi P, Bianchi L, Sevieri M, Sottani C, Allevi R, Grignani E, Mazzucchelli S, Corsi F. Combined Ferritin Nanocarriers with ICG for Effective Phototherapy Against Breast Cancer. Int J Nanomedicine 2024; 19:4263-4278. [PMID: 38766663 PMCID: PMC11102096 DOI: 10.2147/ijn.s445334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/30/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Photodynamic Therapy (PDT) is a promising, minimally invasive treatment for cancer with high immunostimulatory potential, no reported drug resistance, and reduced side effects. Indocyanine Green (ICG) has been used as a photosensitizer (PS) for PDT, although its poor stability and low tumor-target specificity strongly limit its efficacy. To overcome these limitations, ICG can be formulated as a tumor-targeting nanoparticle (NP). Methods We nanoformulated ICG into recombinant heavy-ferritin nanocages (HFn-ICG). HFn has a specific interaction with transferrin receptor 1 (TfR1), which is overexpressed in most tumors, thus increasing HFn tumor tropism. First, we tested the properties of HFn-ICG as a PS upon irradiation with a continuous-wave diode laser. Then, we evaluated PDT efficacy in two breast cancer (BC) cell lines with different TfR1 expression levels. Finally, we measured the levels of intracellular endogenous heavy ferritin (H-Fn) after PDT treatment. In fact, it is known that cells undergoing ROS-induced autophagy, as in PDT, tend to increase their ferritin levels as a defence mechanism. By measuring intracellular H-Fn, we verified whether this interplay between internalized HFn and endogenous H-Fn could be used to maximize HFn uptake and PDT efficacy. Results We previously demonstrated that HFn-ICG stabilized ICG molecules and increased their delivery to the target site in vitro and in vivo for fluorescence guided surgery. Here, with the aim of using HFn-ICG for PDT, we showed that HFn-ICG improved treatment efficacy in BC cells, depending on their TfR1 expression. Our data revealed that endogenous H-Fn levels were increased after PDT treatment, suggesting that this defence reaction against oxidative stress could be used to enhance HFn-ICG uptake in cells, increasing treatment efficacy. Conclusion The strong PDT efficacy and peculiar Trojan horse-like mechanism, that we revealed for the first time in literature, confirmed the promising application of HFn-ICG in PDT.
Collapse
Affiliation(s)
- Leopoldo Sitia
- Department of Biomedical and Clinical Sciences, Università degli studi di Milano, Milan, Italy
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Leonardo Bianchi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Marta Sevieri
- Department of Biomedical and Clinical Sciences, Università degli studi di Milano, Milan, Italy
| | - Cristina Sottani
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Raffaele Allevi
- Department of Biomedical and Clinical Sciences, Università degli studi di Milano, Milan, Italy
| | - Elena Grignani
- Environmental Research Center, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Serena Mazzucchelli
- Department of Biomedical and Clinical Sciences, Università degli studi di Milano, Milan, Italy
| | - Fabio Corsi
- Department of Biomedical and Clinical Sciences, Università degli studi di Milano, Milan, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
3
|
Chen HY, Ko ML, Chan HL. Effects of hyperglycemia on the TGF-β pathway in trabecular meshwork cells. Biochim Biophys Acta Gen Subj 2024; 1868:130538. [PMID: 38072209 DOI: 10.1016/j.bbagen.2023.130538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Hyperglycemia, which can lead to apoptosis, hypertrophy, fibrosis, and induces hyperinflammation in diabetic vascular complications due to oxidative stress. In order to elucidate the potential dual roles and regulatory signal transduction of TGF-β1 and TGF-β2 in human trabecular meshwork cells (HTMCs), we established an oxidative cell model in HTMCs using 5.5, 25, 50, and 100 mM d-glucose-supplemented media and characterized the TGF-β-related oxidative stress pathway. METHODS Further analysis was conducted to investigate oxidative damage and protein alterations in the HTMC caused by the signal transduction. This was done through a series of qualitative cell function studies, such as cell viability/apoptosis analysis, intracellular reactive oxygen species (ROS) detection, analysis of calcium release concentration, immunoblot analysis to detect the related protein expression alteration, and analysis of cell fibrosis to study the effect of different severities of hyperglycemia. Also, we illustrated the role of TGF-β1/2 in oxidative stress-induced injury by shRNA-mediated knockdown or stimulation with recombinant human TGF-β1 protein (rhTGF-β1). RESULTS Results from the protein expression analysis showed that p-JNK, p-p38, p-AKT, and related SMAD family members were upregulated in HTMCs under hyperglycemia. In the cell functional assays, HTMCs treated with rhTGFβ-1 (1 ng/mL) under hyperglycemic conditions showed higher proliferation rates and lower ROS and calcium levels. CONCLUSIONS To summarize, mechanistic analyses in HTMCs showed that hyperglycemia-induced oxidative stress activated TGF-β1 along with its associated pathway. GENERAL SIGNIFICANCE While at low concentrations, TGF-β1 protects cells from antioxidation, whereas at high concentrations, it accumulates in the extracellular matrix, causing further HTMC dysfunction.
Collapse
Affiliation(s)
- Hsin-Yi Chen
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Mei-Lan Ko
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; Department of Ophthalmology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300, Taiwan.
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
4
|
Ma S, Xu W, Fei Y, Li D, Jia X, Wang J, Wang E. Mn 2+ /Ir 3+ -Doped and CaCO 3 -Covered Prussian Blue Nanoparticles with Indocyanine Green Encapsulation for Tumor Microenvironment Modulation and Image-Guided Synergistic Cancer Therapy. Adv Healthc Mater 2023; 12:e2301413. [PMID: 37657182 DOI: 10.1002/adhm.202301413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/20/2023] [Indexed: 09/03/2023]
Abstract
The development of smart theranostic nanoplatforms has gained great interest in effective cancer treatment against the complex tumor microenvironment (TME), including weak acidity, hypoxia, and glutathione (GSH) overexpression. Herein, a TME-responsive nanoplatform named PMICApt /ICG, based on PB:Mn&Ir@CaCO3 Aptamer /ICG, is designed for the competent synergistic photothermal therapy and photodynamic therapy (PDT) under the guidance of photothermal and magnetic resonance imaging. The nanoplatform's aptamer modification targeting the transferrin receptor and the epithelial cell adhesion molecule on breast cancer cells, and the acid degradable CaCO3 shell allow for effective tumor accumulation and TME-responsive payload release in situ. The nanoplatform also exhibits excellent PDT properties due to its ability to generate O2 and consume antioxidant GSH in tumors. Additionally, the synergistic therapy is achieved by a single wavelength of near-infrared laser. RNA sequencing is performed to identify differentially expressed genes, which show that the expressions of proliferation and migration-associated genes are inhibited, while the apoptosis and immune response gene expressions are upregulated after the synergistic treatments. This multifunctional nanoplatform that responds to the TME to realize the on-demand payload release and enhance PDT induced by TME modulation holds great promise for clinical applications in tumor therapy.
Collapse
Affiliation(s)
- Shuaining Ma
- College of Physics, Jilin University, Changchun, Jilin, 130012, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Polymer Ecomaterials (W. Xu), Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Weiguo Xu
- State Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Polymer Ecomaterials (W. Xu), Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Yunwei Fei
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Dan Li
- State Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Polymer Ecomaterials (W. Xu), Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Xiuna Jia
- State Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Polymer Ecomaterials (W. Xu), Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Jin Wang
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400, USA
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Polymer Ecomaterials (W. Xu), Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| |
Collapse
|
5
|
Lee J, Choi MK, Song IS. Recent Advances in Doxorubicin Formulation to Enhance Pharmacokinetics and Tumor Targeting. Pharmaceuticals (Basel) 2023; 16:802. [PMID: 37375753 PMCID: PMC10301446 DOI: 10.3390/ph16060802] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Doxorubicin (DOX), a widely used drug in cancer chemotherapy, induces cell death via multiple intracellular interactions, generating reactive oxygen species and DNA-adducted configurations that induce apoptosis, topoisomerase II inhibition, and histone eviction. Despite its wide therapeutic efficacy in solid tumors, DOX often induces drug resistance and cardiotoxicity. It shows limited intestinal absorption because of low paracellular permeability and P-glycoprotein (P-gp)-mediated efflux. We reviewed various parenteral DOX formulations, such as liposomes, polymeric micelles, polymeric nanoparticles, and polymer-drug conjugates, under clinical use or trials to increase its therapeutic efficacy. To improve the bioavailability of DOX in intravenous and oral cancer treatment, studies have proposed a pH- or redox-sensitive and receptor-targeted system for overcoming DOX resistance and increasing therapeutic efficacy without causing DOX-induced toxicity. Multifunctional formulations of DOX with mucoadhesiveness and increased intestinal permeability through tight-junction modulation and P-gp inhibition have also been used as orally bioavailable DOX in the preclinical stage. The increasing trends of developing oral formulations from intravenous formulations, the application of mucoadhesive technology, permeation-enhancing technology, and pharmacokinetic modulation with functional excipients might facilitate the further development of oral DOX.
Collapse
Affiliation(s)
- Jihoon Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an 31116, Republic of Korea;
| | - Im-Sook Song
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea;
| |
Collapse
|
6
|
Zhou H, Liao Y, Han X, Chen DS, Hong X, Zhou K, Jiang X, Xiao Y, Shi J. ROS-Responsive Nanoparticle Delivery of mRNA and Photosensitizer for Combinatorial Cancer Therapy. NANO LETTERS 2023; 23:3661-3668. [PMID: 37093620 DOI: 10.1021/acs.nanolett.2c03784] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Messenger RNA (mRNA) therapy has shown tremendous potential for different diseases including cancer. While mRNA has been extensively used in cancer vaccine development as antigen or in cancer immunotherapy as immunomodulatory agent, the combination of mRNA therapy with photodynamic therapy has not been explored in cancer treatment. Herein, we report a reactive oxygen species (ROS)-responsive polymeric nanoparticle (NP) platform for first-in-field codelivery of mRNA and photosensitizer for effective cancer treatment. We developed ROS-responsive oligomer-based polymeric NPs and applied them to test a combination of p53 mRNA and indocyanine green (ICG). The ROS-triggered disassembly of the NPs could promote mRNA translation efficiency, whereby p53 expression induced apoptosis of lung tumor cells. Meanwhile, the released ICG could lead to generation of ROS under 808 nm laser irradiation to induce photodynamic therapy. The NP codelivery of p53 mRNA and ICG demonstrated an effective and safe anti-tumor effect in a lung cancer model.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yuqin Liao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiangfei Han
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Dean Shuailin Chen
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xuechuan Hong
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Kun Zhou
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115 United States
| | - Xingya Jiang
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yuling Xiao
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Itakura H, Hata T, Okuzaki D, Takeda K, Iso K, Qian Y, Morimoto Y, Adachi T, Hirose H, Yokoyama Y, Ogino T, Miyoshi N, Takahashi H, Uemura M, Mizushima T, Hinoi T, Mori M, Doki Y, Eguchi H, Yamamoto H. Tumor-suppressive role of the musculoaponeurotic fibrosarcoma gene in colorectal cancer. iScience 2023; 26:106478. [PMID: 37091240 PMCID: PMC10119606 DOI: 10.1016/j.isci.2023.106478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/21/2022] [Accepted: 03/19/2023] [Indexed: 04/25/2023] Open
Abstract
Somatic cell reprogramming using the microRNAs miR-200c, miR-302s, and miR-369s leads to increased expression of cyclin-dependent kinase inhibitors in human colorectal cancer (CRC) cells and suppressed tumor growth. Here, we investigated whether these microRNAs inhibit colorectal tumorigenesis in CPC;Apc mice, which are prone to colon and rectal polyps. Repeated administration of microRNAs inhibited polyp formation. Microarray analysis indicated that c-MAF, which reportedly shows oncogene-like behavior in multiple myeloma and T cell lymphoma, decreased in tumor samples but increased in microRNA-treated normal mucosa. Immunohistochemistry identified downregulation of c-MAF as an early tumorigenesis event in CRC, with low c-MAF expression associated with poor prognosis. Of note, c-MAF expression and p53 protein levels were inversely correlated in CRC samples. c-MAF knockout led to enhanced tumor formation in azoxymethane/dextran sodium sulfate-treated mice, with activation of cancer-promoting genes. c-MAF may play a tumor-suppressive role in CRC development.
Collapse
Affiliation(s)
- Hiroaki Itakura
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Hata
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Centre, Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita, Osaka 565-0871, Japan
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Research Center, Osaka University, Yamadaoka 3-1, Suita, Osaka 565-0871, Japan
| | - Koki Takeda
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Kenji Iso
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan
| | - Yamin Qian
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Morimoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Tomohiro Adachi
- Department of Surgery, Hiroshima City North Medical Center Asa Citizens Hospital, 1-2-1, Kameyama-minami, Asakita-ku, Horoshima 731-0293, Japan
| | - Haruka Hirose
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan
| | - Takayuki Ogino
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Norikatsu Miyoshi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hidekazu Takahashi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Mamoru Uemura
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Tsunekazu Mizushima
- Department of Surgery, Osaka Police Hospital, 10-31, Kitayama-town, Tennoji-ku, Osaka city, Osaka 543-0035, Japan
| | - Takao Hinoi
- Department of Clinical and Molecular Genetics, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Masaki Mori
- Department of Surgery, Graduate School of Medical Sciences, Tokai University, 143, Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Yuichiro Doki
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hirofumi Yamamoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan
- Corresponding author
| |
Collapse
|
8
|
Tsujimura N, Ogino T, Hiraki M, Kai T, Yamamoto H, Hirose H, Yokoyama Y, Sekido Y, Hata T, Miyoshi N, Takahashi H, Uemura M, Mizushima T, Doki Y, Eguchi H, Yamamoto H. Super Carbonate Apatite-miR-497a-5p Complex Is a Promising Therapeutic Option against Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2023; 16:618. [PMID: 37111375 PMCID: PMC10146939 DOI: 10.3390/ph16040618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The incidence of inflammatory bowel disease (IBD) is increasing worldwide. It is reported that TGF-β/Smad signal pathway is inactivated in patients with Crohn's disease by overexpression of Smad 7. With expectation of multiple molecular targeting by microRNAs (miRNAs), we currently attempted to identify certain miRNAs that activate TGF-β/Smad signal pathway and aimed to prove in vivo therapeutic efficacy in mouse model. Through Smad binding element (SBE) reporter assays, we focused on miR-497a-5p. This miRNA is common between mouse and human species and enhanced the activity of TGF-β/Smad signal pathway, decreased Smad 7 and/or increased phosphorylated Smad 3 expression in non-tumor cell line HEK293, colorectal cancer cell line HCT116 and mouse macrophage J774a.1 cells. MiR-497a-5p also suppressed the production of inflammatory cytokines TNF-α, IL-12p40, a subunit of IL-23, and IL-6 when J774a.1 cells were stimulated by lipopolysaccharides (LPS). In a long-term therapeutic model for mouse dextran sodium sulfate (DSS)-induced colitis, systemic delivery of miR-497a-5p load on super carbonate apatite (sCA) nanoparticle as a vehicle restored epithelial structure of the colonic mucosa and suppressed bowel inflammation compared with negative control miRNA treatment. Our data suggest that sCA-miR-497a-5p may potentially have a therapeutic ability against IBD although further investigation is essential.
Collapse
Affiliation(s)
- Naoto Tsujimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City 565-0871, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City 565-0871, Japan
| | - Masayuki Hiraki
- Department of Gastroenterological Surgery, Kansai Rosai Hospital, 3-1-69 Inabaso, Amagasaki 660-8511, Japan
| | - Taisei Kai
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City 565-0871, Japan
| | - Hiroyuki Yamamoto
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City 565-0871, Japan
| | - Haruka Hirose
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City 565-0871, Japan
| | - Yuki Sekido
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City 565-0871, Japan
| | - Tsuyoshi Hata
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City 565-0871, Japan
| | - Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City 565-0871, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City 565-0871, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City 565-0871, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Osaka Police Hospital, Osaka 543-0035, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City 565-0871, Japan
| | - Hirofumi Yamamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City 565-0871, Japan
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City 565-0871, Japan
| |
Collapse
|
9
|
Huis in ‘t Veld RV, Heuts J, Ma S, Cruz LJ, Ossendorp FA, Jager MJ. Current Challenges and Opportunities of Photodynamic Therapy against Cancer. Pharmaceutics 2023; 15:pharmaceutics15020330. [PMID: 36839652 PMCID: PMC9965442 DOI: 10.3390/pharmaceutics15020330] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is an established, minimally invasive treatment for specific types of cancer. During PDT, reactive oxygen species (ROS) are generated that ultimately induce cell death and disruption of the tumor area. Moreover, PDT can result in damage to the tumor vasculature and induce the release and/or exposure of damage-associated molecular patterns (DAMPs) that may initiate an antitumor immune response. However, there are currently several challenges of PDT that limit its widespread application for certain indications in the clinic. METHODS A literature study was conducted to comprehensively discuss these challenges and to identify opportunities for improvement. RESULTS The most notable challenges of PDT and opportunities to improve them have been identified and discussed. CONCLUSIONS The recent efforts to improve the current challenges of PDT are promising, most notably those that focus on enhancing immune responses initiated by the treatment. The application of these improvements has the potential to enhance the antitumor efficacy of PDT, thereby broadening its potential application in the clinic.
Collapse
Affiliation(s)
- Ruben V. Huis in ‘t Veld
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
- Department of Radiology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
- Correspondence:
| | - Jeroen Heuts
- Department of Immunology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Sen Ma
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Luis J. Cruz
- Department of Radiology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Ferry A. Ossendorp
- Department of Immunology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| |
Collapse
|
10
|
Folic acid conjugated PAMAM-modified mesoporous silica-coated superparamagnetic iron oxide nanoparticles for potential cancer therapy. J Colloid Interface Sci 2022; 625:711-721. [PMID: 35772201 DOI: 10.1016/j.jcis.2022.06.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/06/2022] [Accepted: 06/17/2022] [Indexed: 01/10/2023]
Abstract
In this study, novel folate-receptor-targeted polyamidoamine (PAMAM) dendrimer functional mesoporous silica-coated magnetic nanoparticles were prepared for drug delivery agents for photodynamic therapy applications. The surface of the magnetic nanoparticles was coated with mesoporous silica (M-MSN). The M-MSN nanoparticles were functionalized with siloxane-cored PAMAM dendrons (generation 1 to 3). The surface of the M-MSN-PAMAM nanocarriers was targeted with folic acid. Indocyanine green (ICG) a near-infrared dye was loaded in the M-MSN-PAMAM nanocarriers and the photodynamic therapy efficiency of the drug-loaded nanocarriers was evaluated on MCF-7 cells. MCF-7 cells were subjected to tissue culture E-Plate that was used to generate dynamic real-time data by measuring electrical impedance across interdigitated microelectrodes on the bottom of the plate. Light source (LEDs) was designed as a system that fit 96 well-plate and cells were irradiated at 785 nm for 20 min. Also, these results were confirmed by WST-1 assay in dark and light conditions for MCF-7 cells. The results showed that in vitro application of ICG loaded M-MSN-PAMAM-FA causes apoptosis in the MCF-7 cell line.
Collapse
|
11
|
Grabarnick (Portnoy) E, Andriyanov AV, Han H, Eyal S, Barenholz Y. PEGylated Liposomes Remotely Loaded with the Combination of Doxorubicin, Quinine, and Indocyanine Green Enable Successful Treatment of Multidrug-Resistant Tumors. Pharmaceutics 2021; 13:pharmaceutics13122181. [PMID: 34959462 PMCID: PMC8708987 DOI: 10.3390/pharmaceutics13122181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Multidrug resistance (MDR) of cancer cells remains a major obstacle to favorable outcomes of treatment with many drugs, including doxorubicin. Most of the clinical trials failed to demonstrate the benefit of the drug efflux transporter P-glycoprotein (P-gp) inhibitors to circumvent P-gp-mediated drug resistance in vivo. The present study explored the therapeutic potential of combined treatment with liposomal doxorubicin, P-gp inhibitor quinine, and the photodynamic therapy (PDT) using indocyanine green (ICG) in the adenocarcinoma drug-resistant tumor model. Liposomes were actively co-remotely loaded with doxorubicin and quinine, and ICG was passively adsorbed. The liposomes were characterized by differential scanning calorimetry (DSC) and cryogenic transmission microscopy (Cryo-TEM). We found that quinine impaired the crystalline structure of doxorubicin. In vitro, treatment with single agents themselves was insufficient to inhibit the growth of HT-29 MDR1 cells. However, pegylated liposomal doxorubicin and quinine (PLDQ) significantly diminished HT-29 MDR1 cell survival. Furthermore, survival inhibition intensified by the addition of ICG to the PLDQ (ICG + PLDQ). In vivo, ICG + PLDQ significantly decreased tumor growth when combined with tumor irradiation with NIR light (** p < 0.01). ICG + PLDQ + irradiation was superior to single treatments or combinational treatments without irradiation. These findings suggest that ICG + PLDQ can overcome P-gp-mediated MDR in cancer cells.
Collapse
Affiliation(s)
- Emma Grabarnick (Portnoy)
- Department of Biochemistry, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University, P.O. Box 12272, Jerusalem 9112102, Israel; (E.G.); (A.V.A.)
| | - Alexander V. Andriyanov
- Department of Biochemistry, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University, P.O. Box 12272, Jerusalem 9112102, Israel; (E.G.); (A.V.A.)
| | - Hadas Han
- Institute for Drug Research, Faculty of Medicine, Hebrew University, Jerusalem 9112102, Israel; (H.H.); (S.E.)
| | - Sara Eyal
- Institute for Drug Research, Faculty of Medicine, Hebrew University, Jerusalem 9112102, Israel; (H.H.); (S.E.)
| | - Yechezkel Barenholz
- Department of Biochemistry, Institute for Medical Research Israel-Canada, Hadassah Medical School, Hebrew University, P.O. Box 12272, Jerusalem 9112102, Israel; (E.G.); (A.V.A.)
- Correspondence:
| |
Collapse
|
12
|
Wu X, Yokoyama Y, Takahashi H, Kouda S, Yamamoto H, Wang J, Morimoto Y, Minami K, Hata T, Shamma A, Inoue A, Ohtsuka M, Shibata S, Kobayashi S, Akai S, Yamamoto H. Improved In Vivo Delivery of Small RNA Based on the Calcium Phosphate Method. J Pers Med 2021; 11:jpm11111160. [PMID: 34834512 PMCID: PMC8623677 DOI: 10.3390/jpm11111160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 01/06/2023] Open
Abstract
In the past few years, we have demonstrated the efficacy of a nanoparticle system, super carbonate apatite (sCA), for the in vivo delivery of siRNA/miRNA. Intravenous injection of sCA loaded with small RNAs results in safe, high tumor delivery in mouse models. To further improve the efficiency of tumor delivery and avoid liver toxicity, we successfully developed an inorganic nanoparticle device (iNaD) via high-frequency ultrasonic pulverization combined with PEG blending during the production of sCA. Compared to sCA loaded with 24 μg of miRNA, systemic administration of iNaD loaded with 0.75 μg of miRNA demonstrated similar delivery efficiency to mouse tumors with little accumulation in the liver. In the mouse therapeutic model, iNaD loaded with 3 μg of the tumor suppressor small RNA MIRTX resulted in an improved anti-tumor effect compared to sCA loaded with 24 μg. Our findings on the bio-distribution and therapeutic effect of iNaD provide new perspectives for future nanomedicine engineering.
Collapse
Affiliation(s)
- Xin Wu
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan; (X.W.); (Y.Y.); (S.K.); (H.Y.); (J.W.); (A.S.); (S.S.)
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan; (X.W.); (Y.Y.); (S.K.); (H.Y.); (J.W.); (A.S.); (S.S.)
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan; (H.T.); (Y.M.); (T.H.); (A.I.); (M.O.); (S.K.)
| | - Shihori Kouda
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan; (X.W.); (Y.Y.); (S.K.); (H.Y.); (J.W.); (A.S.); (S.S.)
| | - Hiroyuki Yamamoto
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan; (X.W.); (Y.Y.); (S.K.); (H.Y.); (J.W.); (A.S.); (S.S.)
| | - Jiaqi Wang
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan; (X.W.); (Y.Y.); (S.K.); (H.Y.); (J.W.); (A.S.); (S.S.)
| | - Yoshihiro Morimoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan; (H.T.); (Y.M.); (T.H.); (A.I.); (M.O.); (S.K.)
| | - Kazumasa Minami
- Department of Radiation Oncology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan;
| | - Tsuyoshi Hata
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan; (H.T.); (Y.M.); (T.H.); (A.I.); (M.O.); (S.K.)
| | - Awad Shamma
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan; (X.W.); (Y.Y.); (S.K.); (H.Y.); (J.W.); (A.S.); (S.S.)
| | - Akira Inoue
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan; (H.T.); (Y.M.); (T.H.); (A.I.); (M.O.); (S.K.)
| | - Masahisa Ohtsuka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan; (H.T.); (Y.M.); (T.H.); (A.I.); (M.O.); (S.K.)
| | - Satoshi Shibata
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan; (X.W.); (Y.Y.); (S.K.); (H.Y.); (J.W.); (A.S.); (S.S.)
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan; (H.T.); (Y.M.); (T.H.); (A.I.); (M.O.); (S.K.)
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka 565-0871, Japan;
| | - Hirofumi Yamamoto
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita, Osaka 565-0871, Japan; (X.W.); (Y.Y.); (S.K.); (H.Y.); (J.W.); (A.S.); (S.S.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan; (H.T.); (Y.M.); (T.H.); (A.I.); (M.O.); (S.K.)
- Correspondence: ; Tel.: +81-6-6879-2591; Fax: +81-6-6879-2591
| |
Collapse
|
13
|
Dash BS, Das S, Chen JP. Photosensitizer-Functionalized Nanocomposites for Light-Activated Cancer Theranostics. Int J Mol Sci 2021; 22:6658. [PMID: 34206318 PMCID: PMC8268703 DOI: 10.3390/ijms22136658] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
Photosensitizers (PSs) have received significant attention recently in cancer treatment due to its theranostic capability for imaging and phototherapy. These PSs are highly responsive to light source of a suitable wavelength for image-guided cancer therapy from generated singlet oxygen and/or thermal heat. Various organic dye PSs show tremendous attenuation of tumor cells during cancer treatment. Among them, porphyrin and chlorophyll-based ultraviolet-visible (UV-Vis) dyes are employed for photodynamic therapy (PDT) by reactive oxygen species (ROS) and free radicals generated with 400-700 nm laser lights, which have poor tissue penetration depth. To enhance the efficacy of PDT, other light sources such as red light laser and X-ray have been suggested; nonetheless, it is still a challenging task to improve the light penetration depth for deep tumor treatment. To overcome this deficiency, near infrared (NIR) (700-900 nm) PSs, indocyanine green (ICG), and its derivatives like IR780, IR806 and IR820, have been introduced for imaging and phototherapy. These NIR PSs have been used in various cancer treatment modality by combining photothermal therapy (PTT) and/or PDT with chemotherapy or immunotherapy. In this review, we will focus on the use of different PSs showing photothermal/photodynamic response to UV-Vis or NIR-Vis light. The emphasis is a comprehensive review of recent smart design of PS-loaded nanocomposites for targeted delivery of PSs in light-activated combination cancer therapy.
Collapse
Affiliation(s)
- Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.); (S.D.)
| | - Suprava Das
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.); (S.D.)
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.); (S.D.)
- Craniofacial Research Center, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
14
|
Akakuru OU, Xu C, Liu C, Li Z, Xing J, Pan C, Li Y, Nosike EI, Zhang Z, Iqbal ZM, Zheng J, Wu A. Metal-Free Organo-Theranostic Nanosystem with High Nitroxide Stability and Loading for Image-Guided Targeted Tumor Therapy. ACS NANO 2021; 15:3079-3097. [PMID: 33464053 DOI: 10.1021/acsnano.0c09590] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The desire for all-organic-composed nanoparticles (NPs) of considerable biocompatibility to simultaneously diagnose and treat cancer is undeniably interminable. Heretofore, metal-based agents dominate the landscape of available magnetic resonance imaging (MRI) contrast agents and photothermal therapeutic agents, but with associated metal-specific downsides. Here, an all-organic metal-free nanoprobe, whose appreciable biocompatibility is synergistically contributed by its tetra-organo-components, is developed as a viable alternative to metal-based probes for MRI-guided tumor-targeted photothermal therapy (PTT). This rationally entails a glycol chitosan (GC)-linked polypyrrole (PP) nanoscaffold that provides abundant primary and secondary amino groups for amidation with the carboxyl groups in a nitroxide radical (TEMPO) and folic acid (FA), to obtain GC-PP@TEMPO-FA NPs. Advantageously, the appreciably benign GC-PP@TEMPO-FA features high nitroxide loading (r1 = 1.58 mM-1 s-1) and in vivo nitroxide-reduction resistance, prolonged nitroxide-systemic circulation times, appreciable water dispersibility, potential photodynamic therapeutic and electron paramagnetic resonance imaging capabilities, considerable biocompatibility, and ultimately achieves a 17 h commensurate MRI contrast enhancement. Moreover, its GC component conveys a plethora of PP to tumor sites, where FA-mediated tumor targeting enables substantial NP accumulation with consequential near-complete tumor regression within 16 days in an MRI-guided PTT. The present work therefore promotes the engineering of organic-based metal-free biocompatible NPs in synergism, in furtherance of tumor-targeted image-guided therapy.
Collapse
Affiliation(s)
- Ozioma U Akakuru
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Chen Xu
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Zihou Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
| | - Jie Xing
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Chunshu Pan
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
| | - Yanying Li
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Elvis I Nosike
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Zhoujing Zhang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
| | - Zubair M Iqbal
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, No. 2 Road of Xiasha, Hangzhou 310018, China
| | - Jianjun Zheng
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
| |
Collapse
|
15
|
Characterization of TGF-β by Induced Oxidative Stress in Human Trabecular Meshwork Cells. Antioxidants (Basel) 2021; 10:antiox10010107. [PMID: 33451157 PMCID: PMC7828702 DOI: 10.3390/antiox10010107] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress generated by reactive oxygen species (ROS) plays a critical role in the pathomechanism of glaucoma, which is a multifactorial blinding disease that may cause irreversible damage within human trabecular meshwork cells (HTMCs). It is known that the transforming growth factor-β (TGF-β) signaling pathway is an important component of oxidative stress-induced damage related to extracellular matrix (ECM) fibrosis and activates cell antioxidative mechanisms. To elucidate the dual potential roles and regulatory mechanisms of TGF-β in effects on HTMCs, we established an in vitro oxidative model using hydrogen peroxide (H2O2) and further focused on TGF-β-related oxidative stress pathways and the related signal transduction. Via a series of cell functional qualitative analyses to detect related protein level alterations and cell fibrosis status, we illustrated the role of TGF-β1 and TGF-β2 in oxidative stress-induced injury by shTGF-β1 and shTGF-β2 knockdown or added recombinant human TGF-β1 protein (rhTGF-β1). The results of protein level showed that p38 MAPK, TGF-β, and its related SMAD family were activated after H2O2 stimulation. Cell functional assays showed that HTMCs with H2O2 exposure duration had a more irregular actin architecture compared to normal TM cells. Data with rhTGF-β1 (1 ng/mL) pretreatment reduced the cell apoptosis rate and amount of reactive oxygen species (ROS), while it also enhanced survival. Furthermore, TGF-β1 and TGF-β2 in terms of antioxidant signaling were related to the activation of collagen I and laminin, which are fibrosis-response proteins. Succinctly, our study demonstrated that low concentrations of TGF-β1 (1 ng/mL) preserves HTMCs from free radical-mediated injury by p-p38 MAPK level and p-AKT signaling balance, presenting a signaling transduction mechanism of TGF-β1 in HTMC oxidative stress-related therapies.
Collapse
|
16
|
Dhas N, Kudarha R, Garkal A, Ghate V, Sharma S, Panzade P, Khot S, Chaudhari P, Singh A, Paryani M, Lewis S, Garg N, Singh N, Bangar P, Mehta T. Molybdenum-based hetero-nanocomposites for cancer therapy, diagnosis and biosensing application: Current advancement and future breakthroughs. J Control Release 2020; 330:257-283. [PMID: 33345832 DOI: 10.1016/j.jconrel.2020.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023]
Abstract
In recent years, there have been significant advancements in the nanotechnology for cancer therapy. Even though molybdenum disulphide (MoS2)-based nanocomposites demonstrated extensive applications in biosensing, bioimaging, phototherapy, the review article focusing on MoS2 nanocomposite platform has not been accounted for yet. The review summarizes recent strategies on design and fabrication of MoS2-based nanocomposites and their modulated properties in cancer treatment. The review also discussed several therapeutic strategies (photothermal, photodynamic, immunotherapy, gene therapy and chemotherapy) and their combinations for efficient cancer therapy along with certain case studies. The review also inculcates various diagnostic techniques viz. magnetic resonance imaging, computed tomography, photoacoustic imaging and fluorescence imaging for diagnosis of cancer.
Collapse
Affiliation(s)
- Namdev Dhas
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Ritu Kudarha
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Vivek Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Shilpa Sharma
- Department of Chemistry, Indian Institute of Technology, Ropar, Rupnagar, Punjab 140001, India
| | - Prabhakar Panzade
- Department of Pharmaceutics, Srinath College of Pharmacy, Dr. Babasaheb Ambedkar Technological University, Aurangabad, Maharashtra 431133, India
| | - Shubham Khot
- Sinhgad Institute of Pharmacy, Narhe, Pune, Maharashtra 411041, India
| | - Pinal Chaudhari
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Ashutosh Singh
- School of Basic Sciences, Indian Institute of Technology, Mandi, Kamand, Himachal Pradesh 175005, India
| | - Mitali Paryani
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Shaila Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh 221005, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology, Ropar, Rupnagar, Punjab 140001, India
| | - Priyanka Bangar
- Intas Pharmaceuticals Ltd., Ahmedabad, Gujarat 382213, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
17
|
TGF-β1 signaling protects retinal ganglion cells from oxidative stress via modulation of the HO-1/Nrf2 pathway. Chem Biol Interact 2020; 331:109249. [DOI: 10.1016/j.cbi.2020.109249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/08/2020] [Accepted: 08/27/2020] [Indexed: 01/10/2023]
|
18
|
Akakuru OU, Liu C, Iqbal MZ, Dar GI, Yang G, Qian K, Nosike EI, Xing J, Zhang Z, Li Y, Li J, Wu A. A Hybrid Organo-Nanotheranostic Platform of Superlative Biocompatibility for Near-Infrared-Triggered Fluorescence Imaging and Synergistically Enhanced Ablation of Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002445. [PMID: 32954652 DOI: 10.1002/smll.202002445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/04/2020] [Indexed: 06/11/2023]
Abstract
The quest for an all-organic nanosystem with negligible cytotoxicity and remarkable in vivo tumor theranostic capability is inescapably unending. Hitherto, the landscape of available photothermal agents is dominated by metal-based nanoparticles (NPs) with attendant in vivo negatives. Here, an all-organic-composed theranostic nanosystem with outstanding biocompatibility for fluorescence image-guided tumor photothermal therapy, and as a potential alternative to metal-based photothermal agents is developed. This is rationally achieved by compartmentalizing indocyanine green (ICG) in glycol chitosan (GC)-polypyrrole (PP) nanocarrier to form hybrid ICG@GC-PP NPs (≈65 nm). The compartmentalization strategy, alongside the high photothermal conversion ability of PP jointly enhances the low photostability of free ICG. Advantageously, ICG@GC-PP is endowed with an impeccable in vivo performance by the well-known biocompatibility track records of its individual tri organo-components (GC, PP, and ICG). As a proof of concept, ICG@GC-PP NPs enables a sufficiently prolonged tumor diagnosis by fluorescence imaging up to 20 h post-injection. Furthermore, owing to the complementary heating performances of PP and ICG, ICG@GC-PP NPs-treated mice by one-time near-infrared irradiation exhibit total tumor regression within 14 days post-treatment. Therefore, leveraging the underlying benefits of this study will help to guide the development of new all-organic biocompatible systems in synergism, for safer tumor theranostics.
Collapse
Affiliation(s)
- Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - M Zubair Iqbal
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, No. 2 Road of Xiasha, Hangzhou, 310018, China
| | - Gohar Ijaz Dar
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Gao Yang
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
| | - Kun Qian
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Elvis Ikechukwu Nosike
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Jie Xing
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Zhoujing Zhang
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
| | - Yanying Li
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Juan Li
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China
| |
Collapse
|
19
|
Chen HY, Ho YJ, Chou HC, Liao EC, Tsai YT, Wei YS, Lin LH, Lin MW, Wang YS, Ko ML, Chan HL. The Role of Transforming Growth Factor-Beta in Retinal Ganglion Cells with Hyperglycemia and Oxidative Stress. Int J Mol Sci 2020; 21:ijms21186482. [PMID: 32899874 PMCID: PMC7554964 DOI: 10.3390/ijms21186482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
A characteristic of diabetes mellitus is hyperglycemia, which is considered with an emphasis on the diabetic retinopathy of progressive neurodegenerative disease. Retinal ganglion cells (RGCs) are believed to be important cells affected in the pathogenesis of diabetic retinopathy. Transforming growth factor-beta (TGF-β) is a neuroprotective protein that helps to withstand various neuronal injuries. To investigate the potential roles and regulatory mechanisms of TGF-β in hyperglycemia-triggered damage of RGCs in vitro, we established RGCs in 5.5, 25, 50, and 100 mM D-glucose supplemented media and focused on the TGF-β-related oxidative stress pathway in combination with hydrogen peroxide (H2O2). Functional experiments showed that TGF-β1/2 protein expression was upregulated in RGCs with hyperglycemia. The knockdown of TGF-β enhanced the accumulation of reactive oxygen species (ROS), inhibited the cell proliferation rate, and reduced glutathione content in hyperglycemia. Furthermore, the results showed that the TGF-β-mediated enhancement of antioxidant signaling was correlated with the activation of stress response proteins and the antioxidant pathway, such as aldehyde dehydrogenase 3A1 (ALDH3A1), heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor (Nrf2), and hypoxia-inducible factor (HIF-1α). Summarizing, our results demonstrated that TGF-β keeps RGCs from hyperglycemia-triggered harm by promoting the activation of the antioxidant pathway, suggesting a potential anti-diabetic therapy for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Hsin-Yi Chen
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (H.-Y.C.); (E.-C.L.); (Y.-T.T.); (Y.-S.W.); (L.-H.L.); (M.-W.L.); (Y.-S.W.)
| | - Yi-Jung Ho
- Department of Ophthalmology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300, Taiwan;
| | - Hsiu-Chuan Chou
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan;
| | - En-Chi Liao
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (H.-Y.C.); (E.-C.L.); (Y.-T.T.); (Y.-S.W.); (L.-H.L.); (M.-W.L.); (Y.-S.W.)
| | - Yi-Ting Tsai
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (H.-Y.C.); (E.-C.L.); (Y.-T.T.); (Y.-S.W.); (L.-H.L.); (M.-W.L.); (Y.-S.W.)
| | - Yu-Shan Wei
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (H.-Y.C.); (E.-C.L.); (Y.-T.T.); (Y.-S.W.); (L.-H.L.); (M.-W.L.); (Y.-S.W.)
| | - Li-Hsun Lin
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (H.-Y.C.); (E.-C.L.); (Y.-T.T.); (Y.-S.W.); (L.-H.L.); (M.-W.L.); (Y.-S.W.)
| | - Meng-Wei Lin
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (H.-Y.C.); (E.-C.L.); (Y.-T.T.); (Y.-S.W.); (L.-H.L.); (M.-W.L.); (Y.-S.W.)
| | - Yi-Shiuan Wang
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (H.-Y.C.); (E.-C.L.); (Y.-T.T.); (Y.-S.W.); (L.-H.L.); (M.-W.L.); (Y.-S.W.)
| | - Mei-Lan Ko
- Department of Ophthalmology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300, Taiwan;
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan;
- Correspondence: (M.-L.K.); (H.-L.C.); Tel.: +88-63-5326-151 (M.-L.K.); +88-63-5742-476 (H.-L.C.); Fax: +88-63-5324-584 (M.-L.K.); +88-63-5715-934 (H.-L.C.)
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu 300, Taiwan; (H.-Y.C.); (E.-C.L.); (Y.-T.T.); (Y.-S.W.); (L.-H.L.); (M.-W.L.); (Y.-S.W.)
- Correspondence: (M.-L.K.); (H.-L.C.); Tel.: +88-63-5326-151 (M.-L.K.); +88-63-5742-476 (H.-L.C.); Fax: +88-63-5324-584 (M.-L.K.); +88-63-5715-934 (H.-L.C.)
| |
Collapse
|
20
|
Aoki M, Matsumoto NM, Dohi T, Kuwahawa H, Akaishi S, Okubo Y, Ogawa R, Yamamoto H, Takabe K. Direct Delivery of Apatite Nanoparticle-Encapsulated siRNA Targeting TIMP-1 for Intractable Abnormal Scars. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:50-61. [PMID: 32911344 PMCID: PMC7486579 DOI: 10.1016/j.omtn.2020.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/24/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022]
Abstract
Hypertrophic scars (HSs) and keloids are histologically characterized by excessive extracellular matrix (ECM) deposition. ECM deposition depends on the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteases (TIMPs). TIMP-1 has been linked to ECM degradation and is therefore a promising therapeutic strategy. In this study, we generated super carbonate apatite (sCA) nanoparticle-encapsulated TIMP-1 small interfering RNA (siRNA) (siTIMP1) preparations and examined the effect of local injections on mouse HSs and on ex vivo-cultured keloids. The sCA-siTIMP1 injections significantly reduced scar formation, scar cross-sectional areas, collagen densities, and collagen types I and III levels in the lesions. None of the mice died or exhibited abnormal endpoints. Apatite accumulation was not detected in the other organs. In an ex vivo keloid tissue culture system, sCA-siTIMP1 injections reduced the thickness and complexity of collagen bundles. Our results showed that topical sCA-siTIMP1 injections during mechanical stress-induced HS development reduced scar size. When keloids were injected three times with sCA-siTIMP1 during 6 days, keloidal collagen levels decreased substantially. Accordingly, sCA-siRNA delivery may be an effective approach for keloid treatment, and further investigations are needed to enable its practical use.
Collapse
Affiliation(s)
- Masayo Aoki
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Nippon Medical School, Tokyo 113-8603, Japan; Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan.
| | - Noriko M Matsumoto
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Teruyuki Dohi
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Hiroaki Kuwahawa
- Department of Plastic and Reconstructive Surgery, Nippon Medical School Musashi Kosugi Hospital, Kanagawa, Japan
| | - Satoshi Akaishi
- Department of Plastic and Reconstructive Surgery, Nippon Medical School Musashi Kosugi Hospital, Kanagawa, Japan
| | - Yuri Okubo
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Rei Ogawa
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | | | - Kazuaki Takabe
- Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA; Department of Surgery, University at Buffalo Jacob School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
21
|
Pisarevsky E, Blau R, Epshtein Y, Ben-Shushan D, Eldar-Boock A, Tiram G, Koshrovski-Michael S, Scomparin A, Pozzi S, Krivitsky A, Shenbach-Koltin G, Yeini E, Fridrich L, White R, Satchi-Fainaro R. Rational Design of Polyglutamic Acid Delivering an Optimized Combination of Drugs Targeting Mutated BRAF and MEK in Melanoma. ADVANCED THERAPEUTICS 2020; 3:2000028. [PMID: 35754977 PMCID: PMC9223483 DOI: 10.1002/adtp.202000028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Indexed: 12/17/2022]
Abstract
Targeted therapies against cancer can relieve symptoms and induce remission, however, they often present limited duration of disease control, cause side effects and often induce acquired resistance. Therefore, there is a great motivation to develop a unique delivery system, targeted to the tumor, in which we can combine several active entities, increase the therapeutic index by reducing systemic exposure, and enhance their synergistic activity. To meet these goals, we chose the biocompatible and biodegradable poly(α,L-glutamic acid) (PGA) as a nanocarrier that facilitates extravasation-dependent tumor targeting delivery. The RAS/RAF/MEK/ERK pathway when aberrantly activated in melanoma, can lead to uncontrolled cell proliferation, induced invasion, and reduced apoptosis. Here, we selected two drugs targeting this pathway; a MEK1/2 inhibitor (selumetinib; SLM) and a modified BRAF inhibitor (modified dabrafenib; mDBF), that exhibited synergism in vitro. We synthesized and characterized our nanomedicine of PGA conjugated to SLM and mDBF (PGA-SLM-mDBF). PGA-SLM-mDBF inhibited the proliferation of melanoma cells and decreased their migratory and sprouting abilities without inducing a hemolytic effect. Moreover, the polymer-2-drugs conjugate exhibited superior anti-tumor activity in comparison with the two separate polymer-drug conjugates in vitro and with free drugs in a mouse model of primary melanoma and prolonged survival at a lower dose.
Collapse
Affiliation(s)
- Evgeni Pisarevsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rachel Blau
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yana Epshtein
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dikla Ben-Shushan
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anat Eldar-Boock
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shani Koshrovski-Michael
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gal Shenbach-Koltin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lidar Fridrich
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Richard White
- Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
22
|
Sevieri M, Silva F, Bonizzi A, Sitia L, Truffi M, Mazzucchelli S, Corsi F. Indocyanine Green Nanoparticles: Are They Compelling for Cancer Treatment? Front Chem 2020; 8:535. [PMID: 32766203 PMCID: PMC7378786 DOI: 10.3389/fchem.2020.00535] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Indocyanine green (ICG) is a Food and Drug Administration–approved near-infrared fluorescent dye, employed as an imaging agent for different clinical applications due to its attractive physicochemical properties, high sensitivity, and safety. However, free ICG suffers from some drawbacks, such as relatively short circulation half-life, concentration-dependent aggregation, and rapid clearance from the body, which would confine its feasible application in oncology. Here, we aim to discuss encapsulation of ICG within a nanoparticle formulation as a strategy to overcome some of its current limitations and to enlarge its possible applications in cancer diagnosis and treatment. Our purpose is to provide a short but exhaustive overview of clinical outcomes that these nanocomposites would provide, discussing opportunities, limitations, and possible impacts with regard to the main clinical needs in oncology.
Collapse
Affiliation(s)
- Marta Sevieri
- Laboratorio di Nanomedicina, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
| | - Filippo Silva
- Laboratorio di Nanomedicina, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
| | - Arianna Bonizzi
- Laboratorio di Nanomedicina, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
| | - Leopoldo Sitia
- Laboratorio di Nanomedicina, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
| | - Marta Truffi
- Laboratorio di Nanomedicina e Imaging Molecolare, Istituti Clinici Scientifici Spa-Società Benefit IRCCS, Pavia, Italy
| | - Serena Mazzucchelli
- Laboratorio di Nanomedicina, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy
| | - Fabio Corsi
- Laboratorio di Nanomedicina, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy.,Laboratorio di Nanomedicina e Imaging Molecolare, Istituti Clinici Scientifici Spa-Società Benefit IRCCS, Pavia, Italy
| |
Collapse
|
23
|
Sah B, Wu J, Vanasse A, Pandey NK, Chudal L, Huang Z, Song W, Yu H, Ma L, Chen W, Antosh MP. Effects of Nanoparticle Size and Radiation Energy on Copper-Cysteamine Nanoparticles for X-ray Induced Photodynamic Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1087. [PMID: 32492775 PMCID: PMC7353381 DOI: 10.3390/nano10061087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/07/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022]
Abstract
The Copper-cysteamine (Cu-Cy) nanoparticle is a novel sensitizer with a potential to increase the effectiveness of radiation therapy for cancer treatment. In this work, the effect of nanoparticle size and the energy of X-rays on the effectiveness of radiation therapy are investigated. The effect of the particle size on their performance is very complicated. The nanoparticles with an average size of 300 nm have the most intense photoluminescence, the nanoparticles with the average size of 100 nm have the most reactive oxygen species production upon X-ray irradiation, while the nanoparticles with the average size of 40 nm have the best outcome in the tumor suppression in mice upon X-ray irradiation. For energy, 90 kVp radiation resulted in smaller tumor sizes than 250 kVp or 350 kVp radiation energies. Overall, knowledge of the effect of nanoparticle size and radiation energy on radiation therapy outcomes could be useful for future applications of Cu-Cy nanoparticles.
Collapse
Affiliation(s)
- Bindeshwar Sah
- Department of Physics, University of Rhode Island, 2 Lippitt Road, Kingston, RI 02881, USA; (B.S.); (A.V.)
| | - Jing Wu
- Department of Computer Science and Statistics, University of Rhode Island, 9 Greenhouse Road, Kingston, RI 02881, USA;
| | - Adam Vanasse
- Department of Physics, University of Rhode Island, 2 Lippitt Road, Kingston, RI 02881, USA; (B.S.); (A.V.)
| | - Nil Kanatha Pandey
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019, USA; (N.K.P.); (L.C.); (L.M.)
| | - Lalit Chudal
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019, USA; (N.K.P.); (L.C.); (L.M.)
| | - Zhenzhen Huang
- College of Chemistry and Department of Stomatology, Jilin University, Changchun 130012, China; (Z.H.); (W.S.)
| | - Wenzhi Song
- College of Chemistry and Department of Stomatology, Jilin University, Changchun 130012, China; (Z.H.); (W.S.)
| | - Hongmei Yu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China;
| | - Lun Ma
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019, USA; (N.K.P.); (L.C.); (L.M.)
| | - Wei Chen
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019, USA; (N.K.P.); (L.C.); (L.M.)
| | - Michael P. Antosh
- Department of Physics, University of Rhode Island, 2 Lippitt Road, Kingston, RI 02881, USA; (B.S.); (A.V.)
- Institute for Brain and Neural Systems, Brown University, 184 Hope Street, Providence, RI 02912, USA
| |
Collapse
|
24
|
Photo-sonodynamic antimicrobial chemotherapy via chitosan nanoparticles-indocyanine green against polymicrobial periopathogenic biofilms: Ex vivo study on dental implants. Photodiagnosis Photodyn Ther 2020; 31:101834. [PMID: 32464265 DOI: 10.1016/j.pdpdt.2020.101834] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Antimicrobial photodynamic therapy (aPDT) is a treatment to deal with microorganisms, which is limited to treating microbial biofilms due to poor light penetration. Sonodynamic antimicrobial chemotherapy (SACT) can be used for circumventing the limitations of aPDT to inhibit the polymicrobial biofilms. The objective of this study has been focused on the simultaneous use of aPDT and SACT, which is called photo-sonodynamic antimicrobial chemotherapy (P-SACT) to inhibit the biofilms of periopathogens bacteria on surfaces of the titanium dental implants. MATERIALS AND METHODS Following synthesis and confirmation of Chitosan Nanoparticles-Indocyanine green (CNPs-ICG) as photo-sonosensitizer, the mature biofilm model of the polymicrobial synergism of periopathogens was formed on the surface of the titanium dental implants. The quantitative and qualitative evaluations of periopathogens biofilms were performed using microbial viability and scanning electron microscopy analysis of the following groups of treatment modalities (n = 5): 1- Control (periopathogens biofilm without treatment), 2- ICG, 3- CNPs-ICG, 4- diode laser, 5- aPDT/ICG, 6- aPDT/CNPs-ICG, 7- ultrasound, 8- SACT/ICG, 9- SACT/CNPs-ICG, 10- PSACT/ICG, 11- PSACT/CNPs-ICG, and 12-0.2% chlorhexidine (CHX). RESULTS A significant reduction in the log10 CFU/mL of periopathogens was observed in the groups treated with aPDT/ICG, aPDT/CNPs-ICG, SACT/ICG, SACT/CNPs-ICG, PSACT/ICG, PSACT/CNPs-ICG, and 0.2% CHX up to 5.3, 6.5, 5.6, 6.6, and 8.8 log, respectively, when compared with control group (P < 0.05). PSACT/CNPs-ICG group demonstrated significantly higher capacity in eliminating the periopathogens biofilm compared with other groups (P < 0.05). However, there was no significant difference between PSACT/CNPs-ICG and 0.2% CHX (P > 0.05). Microscopic images revealed that biofilms treated with PSACT were comprised mainly of deformed and dead cells. CONCLUSIONS These results highlight the potential of PSACT/CNPs-ICG for the decontamination of the dental implant surfaces from the polymicrobial synergism of periopathogens biofilm.
Collapse
|
25
|
Morimoto Y, Mizushima T, Wu X, Okuzaki D, Yokoyama Y, Inoue A, Hata T, Hirose H, Qian Y, Wang J, Miyoshi N, Takahashi H, Haraguchi N, Matsuda C, Doki Y, Mori M, Yamamoto H. miR-4711-5p regulates cancer stemness and cell cycle progression via KLF5, MDM2 and TFDP1 in colon cancer cells. Br J Cancer 2020; 122:1037-1049. [PMID: 32066912 PMCID: PMC7109136 DOI: 10.1038/s41416-020-0758-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/31/2019] [Accepted: 01/30/2020] [Indexed: 11/11/2022] Open
Abstract
Background It is important to establish cancer stem cell (CSC)-targeted therapies to eradicate cancer. As it is a CSC marker, we focused on Kruppel-like factor 5 (KLF5) in this study. Methods We searched for candidate microRNAs (miRNAs) that inhibited KLF5 expression by in silico analyses and screened them in colon cancer cell lines. Results We identified one promising miRNA, miR-4711-5p, that downregulated KLF5 expression by direct binding. This miRNA suppressed cell proliferation, migration and invasion ability, as well as stemness, including decreased stem cell marker expression, reactive oxygen species activity and sphere formation ability. MiR-4711-5p inhibited the growth of DLD-1 xenografts in nude mice with no adverse effects. We found that miR-4711-5p provoked G1 arrest, which could be attributed to direct binding of miR-4711-5p to TFDP1 (a heterodimeric partner of the E2F family). Our findings also suggested that direct binding of miR-4711-5p to MDM2 could upregulate wild-type p53, leading to strong induction of apoptosis. Finally, we found that miR-4711-5p had a potent tumour-suppressive effect compared with a putative anti-oncomiR, miR-34a, in tumour cell cultures derived from five patients with colorectal cancer. Conclusions Our data suggest that miR-4711-5p could be a promising target for CSC therapy.
Collapse
Affiliation(s)
- Yoshihiro Morimoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita city, Osaka, 565-0871, Japan
| | - Tsunekazu Mizushima
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita city, Osaka, 565-0871, Japan
| | - Xin Wu
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita city, Osaka, 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Centre, Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita city, Osaka, 565-0871, Japan
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita city, Osaka, 565-0871, Japan
| | - Akira Inoue
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita city, Osaka, 565-0871, Japan
| | - Tsuyoshi Hata
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita city, Osaka, 565-0871, Japan
| | - Haruka Hirose
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita city, Osaka, 565-0871, Japan
| | - Yamin Qian
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita city, Osaka, 565-0871, Japan
| | - Jiaqi Wang
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita city, Osaka, 565-0871, Japan
| | - Norikatsu Miyoshi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita city, Osaka, 565-0871, Japan
| | - Hidekazu Takahashi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita city, Osaka, 565-0871, Japan
| | - Naotsugu Haraguchi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita city, Osaka, 565-0871, Japan
| | - Chu Matsuda
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita city, Osaka, 565-0871, Japan
| | - Yuichiro Doki
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita city, Osaka, 565-0871, Japan
| | - Masaki Mori
- Department of Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka city, Fukuoka, 812-8582, Japan
| | - Hirofumi Yamamoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita city, Osaka, 565-0871, Japan. .,Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita city, Osaka, 565-0871, Japan.
| |
Collapse
|
26
|
Margulis K, Honkala A, Kalashnikova I, Noll SE, Hill M, Zare RN, Smith BR. Nanoparticles decorated with granulocyte-colony stimulating factor for targeting myeloid cells. NANOSCALE 2020; 12:2752-2763. [PMID: 31956862 DOI: 10.1039/c9nr06494j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dysregulated myeloid cell activity underlies a variety of pathologies, including immunosuppression in malignant cancers. Current treatments to alter myeloid cell behavior also alter other immune cell subpopulations and nonimmune cell types with deleterious side effects. Therefore, improved selectivity of myeloid treatment is an urgent need. To meet this need, we demonstrate a novel, targeted nanoparticle system that achieves superior myeloid selectivity both in vitro and in vivo. This system comprises: (1) granulocyte-colony stimulating factor (G-CSF) as a targeting ligand to promote accumulation in myeloid cells, including immunosuppressive myeloid-derived suppressor cells (MDSCs); (2) albumin nanoparticles 100-120 nm in diameter that maintain morphology and drug payload in simulated physiological conditions; and (3) a fluorophore that enables nanoparticle tracking and models a therapeutic molecule. Here, we show that this strategy achieves high myeloid uptake in mixed primary immune cells and that nanoparticles successfully infiltrate the 4T1 triple-negative breast tumor murine microenvironment, where they preferentially accumulate in myeloid cells in a mouse model. Further development will realize diagnostic myeloid cell tracking applications and therapeutic delivery of myeloid-reprogramming drugs.
Collapse
Affiliation(s)
- Katherine Margulis
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA. and The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Alexander Honkala
- Department of Radiology and the Molecular Imaging Program, Stanford University, Stanford, CA 94305, USA.
| | - Irina Kalashnikova
- Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah E Noll
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - Meghan Hill
- Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - Bryan Ronain Smith
- Department of Radiology and the Molecular Imaging Program, Stanford University, Stanford, CA 94305, USA. and Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
27
|
Khot MI, Downey CL, Armstrong G, Svavarsdottir HS, Jarral F, Andrew H, Jayne DG. The role of ABCG2 in modulating responses to anti-cancer photodynamic therapy. Photodiagnosis Photodyn Ther 2019; 29:101579. [PMID: 31639455 DOI: 10.1016/j.pdpdt.2019.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/03/2019] [Accepted: 10/11/2019] [Indexed: 01/10/2023]
Abstract
The ATP-binding cassette (ABC) superfamily G member 2 (ABCG2) transmembrane protein transporter is known for conferring resistance to treatment in cancers. Photodynamic therapy (PDT) is a promising anti-cancer method involving the use of light-activated photosensitisers to precisely induce oxidative stress and cell death in cancers. ABCG2 can efflux photosensitisers from out of cells, reducing the capacity of PDT and limiting the efficacy of treatment. Many studies have attempted to elucidate the relationship between the expression of ABCG2 in cancers, its effect on the cellular retention of photosensitisers and its impact on PDT. This review looks at the studies which investigate the effect of ABCG2 on a range of different photosensitisers in different pre-clinical models of cancer. This work also evaluates the approaches that are being investigated to address the role of ABCG2 in PDT with an outlook on potential clinical validation.
Collapse
Affiliation(s)
- M Ibrahim Khot
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK.
| | - Candice L Downey
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| | - Gemma Armstrong
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| | | | - Fazain Jarral
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| | - Helen Andrew
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| | - David G Jayne
- School of Medicine, St James's University Hospital, University of Leeds, Leeds, UK
| |
Collapse
|
28
|
Computational study of necrotic areas in rat liver tissue treated with photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 192:40-48. [DOI: 10.1016/j.jphotobiol.2019.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 12/27/2022]
|
29
|
Ryplida B, Lee G, In I, Park SY. Zwitterionic carbon dot-encapsulating pH-responsive mesoporous silica nanoparticles for NIR light-triggered photothermal therapy through pH-controllable release. Biomater Sci 2019; 7:2600-2610. [DOI: 10.1039/c9bm00160c] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Here, we designed a pH-responsive Indocyanine Green (ICG)-loaded zwitterionic fluorescent carbon dot (CD)-encapsulating mesoporous silica nanoparticle (MSN) for pH-tunable image-guided photothermal therapy.
Collapse
Affiliation(s)
- Benny Ryplida
- Department of IT Convergence
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Gibaek Lee
- Department of Chemical and Biological Engineering
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
| | - Insik In
- Department of IT Convergence
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
- Department of Polymer Science and Engineering
| | - Sung Young Park
- Department of IT Convergence
- Korea National University of Transportation
- Chungju 380-702
- Republic of Korea
- Department of Chemical and Biological Engineering
| |
Collapse
|
30
|
Glass S, Rüdiger T, Griebel J, Abel B, Schulze A. Uptake and release of photosensitizers in a hydrogel for applications in photodynamic therapy: the impact of structural parameters on intrapolymer transport dynamics. RSC Adv 2018; 8:41624-41632. [PMID: 35559284 PMCID: PMC9092030 DOI: 10.1039/c8ra08093c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/03/2018] [Indexed: 11/21/2022] Open
Abstract
In this study a hydrogel is presented that can be used as a carrier and release system for photosensitizers. Because of the high structural variety of photosensitizers, four different substances were analysed. Two porphyrins, 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluene-sulfonate) and sodium meso-tetraphenylporphine-4,4',4'',4'''-tetrasulfonat, eosin y and methylene blue were selected. Uptake and release of these photosensitizers were studied. All photosensitizers were taken up by the hydrogel not depending significantly on the structure of the photosensitizer, and it was possible to load the hydrogels in the μmol g-1 range. Nevertheless, size and pK a value were shown to influence the release behaviour. Finally, the singlet oxygen generation of the photosensitizer after release was demonstrated. The photosensitizer was still highly active and produced a sufficient amount of singlet oxygen.
Collapse
Affiliation(s)
- Sarah Glass
- Leibniz Institute of Surface Engineering (IOM) Germany
| | - Tom Rüdiger
- Leibniz Institute of Surface Engineering (IOM) Germany
| | - Jan Griebel
- Leibniz Institute of Surface Engineering (IOM) Germany
| | - Bernd Abel
- Leibniz Institute of Surface Engineering (IOM) Germany
| | - Agnes Schulze
- Leibniz Institute of Surface Engineering (IOM) Germany
| |
Collapse
|
31
|
Mindt S, Karampinis I, John M, Neumaier M, Nowak K. Stability and degradation of indocyanine green in plasma, aqueous solution and whole blood. Photochem Photobiol Sci 2018; 17:1189-1196. [PMID: 30028469 DOI: 10.1039/c8pp00064f] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fluorescence-based imaging has evolved into an important technology during recent years. Specifically indocyanine green (ICG) has invaded most fields of diagnostic and interventional medicine. Considering the numerous advantages of the substance like the rapid degradation and rare adverse reactions, ICG is currently the most commonly used fluorescing agent. High-performance liquid chromatography (HPLC) was used for measuring absorbance and fluorescence of ICG and its potential degradation compounds. Stability and degradation were evaluated under light exposure or in darkness at various temperatures. Under these conditions, degradation of ICG was evaluated over a period of 11 days. Additional, stability measurements of ICG were performed in EDTA whole blood samples at 37 °C incubation temperature while monitoring. Furthermore, we used mass spectrometric (MS) and nuclear magnetic resonance (NMR) analyses for the identification of supposed ICG degradation compound. Potential quenching effect of ICG was examined in aqueous and plasma solutions at concentrations ranging from 0.01-100 μg ml-1. When diluted in water and stored at 4 °C in the dark, ICG is stable for three days with only 20% of fluorescence intensity lost in this time-span. ICG incubated at 37 °C in whole blood under light exposure is stable for 5 h. In our study we observed the degradation of ICG into two degradation compounds with a mass of m/z 785.32 and m/z 1501.57, respectively. Based on our observations we suggest that ICG should be used within one or two days after preparation, if the ICG solution is stored at 4 °C.
Collapse
Affiliation(s)
- Sonani Mindt
- Institut for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, University Hospital Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | | | | | | | | |
Collapse
|
32
|
Fukata T, Mizushima T, Nishimura J, Okuzaki D, Wu X, Hirose H, Yokoyama Y, Kubota Y, Nagata K, Tsujimura N, Inoue A, Miyoshi N, Haraguchi N, Takahashi H, Hata T, Matsuda C, Kayama H, Takeda K, Doki Y, Mori M, Yamamoto H. The Supercarbonate Apatite-MicroRNA Complex Inhibits Dextran Sodium Sulfate-Induced Colitis. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:658-671. [PMID: 30092402 PMCID: PMC6083010 DOI: 10.1016/j.omtn.2018.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/07/2018] [Accepted: 07/10/2018] [Indexed: 01/02/2023]
Abstract
The incidence of inflammatory bowel disease (IBD) is increasing. Nucleic acid-based medicine has potential as a next-generation treatment, but it is rarely successful with IBD. The aim of this study was to establish a microRNA-based therapy in an IBD model. For this purpose, we used microRNA-29 (miR-29) and a supercarbonate apatite (sCA) nanoparticle as a drug delivery system. Injection of sCA-miR-29a-3p or sCA-miR-29b-3p into mouse tail veins markedly prevented and restored inflammation because of dextran sulfate sodium (DSS)-induced colitis. RNA sequencing analysis revealed that miR-29a and miR-29b could inhibit the interferon-associated inflammatory cascade. Subcutaneous injection of sCA-miR-29b also potently inhibited inflammation, and it efficiently targeted CD11c+ dendritic cells (DCs) among various types of immune cells in the inflamed mucosa. RT-PCR analysis indicated that the miR-29 RNAs in CD11c+ DCs suppressed the production of interleukin-6 (IL-6), transforming growth factor β (TGF-β), and IL-23 subunits in DSS-treated mice. This may inhibit Th17 differentiation and subsequent activation, which is critical in IBD pathogenesis. In vivo experiments using a non-natural artificial microRNA sequence revealed that targeting of DCs in the inflamed colon is an exceptional feature of sCA. This study suggests that sCA-miR-29s may open a new avenue in nucleic acid-based medicine for IBD treatment.
Collapse
Affiliation(s)
- Tadafumi Fukata
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Junichi Nishimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Yamadaoka 3-1, Suita City, Osaka, Japan
| | - Xin Wu
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City, Osaka, Japan
| | - Haruka Hirose
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City, Osaka, Japan
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City, Osaka, Japan
| | - Yui Kubota
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City, Osaka, Japan
| | - Kazuya Nagata
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City, Osaka, Japan
| | - Naoto Tsujimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Akira Inoue
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Naotsugu Haraguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Taishi Hata
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Chu Matsuda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Yamadaoka 2-2, Suita City, Osaka, Japan; Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Yamadaoka3-1, Suita City, Osaka, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Yamadaoka 2-2, Suita City, Osaka, Japan; Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Yamadaoka3-1, Suita City, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan
| | - Hirofumi Yamamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita City, Osaka, Japan; Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City, Osaka, Japan.
| |
Collapse
|