1
|
Zhou J, Chen Q, Ren R, Yang J, Liu B, Horton JR, Chang C, Li C, Maksoud L, Yang Y, Rotili D, Jain AK, Zhang X, Blumenthal RM, Chen T, Gao Y, Valente S, Mai A, Cheng X. Quinoline-based compounds can inhibit diverse enzymes that act on DNA. Cell Chem Biol 2024; 31:2112-2127.e6. [PMID: 39437789 DOI: 10.1016/j.chembiol.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/07/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
DNA methylation, as exemplified by cytosine-C5 methylation in mammals and adenine-N6 methylation in bacteria, is a key epigenetic process. Developing non-nucleoside inhibitors to cause DNA hypomethylation is crucial for treating various conditions without the toxicities associated with existing cytidine-based hypomethylating agents. This study characterized fifteen quinoline-based analogs, particularly compounds with additions like a methylamine (9) or methylpiperazine (11), which demonstrate similar low micromolar inhibitory potency against human DNMT1 and Clostridioides difficile CamA. These compounds (9 and 11) intercalate into CamA-bound DNA via the minor groove, causing a conformational shift that moves the catalytic domain away from the DNA. This study adds to the limited examples of DNA methyltransferases being inhibited by non-nucleotide compounds through DNA intercalation. Additionally, some quinoline-based analogs inhibit other DNA-interacting enzymes, such as polymerases and base excision repair glycosylases. Finally, compound 11 elicits DNA damage response via p53 activation in cancer cells.
Collapse
Affiliation(s)
- Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qin Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Caleb Chang
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Chuxuan Li
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Leora Maksoud
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Yifei Yang
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Abhinav K Jain
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yang Gao
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Wojciechowski M, Czapinska H, Krwawicz J, Rafalski D, Bochtler M. Cytosine analogues as DNA methyltransferase substrates. Nucleic Acids Res 2024; 52:9267-9281. [PMID: 38966999 PMCID: PMC11347137 DOI: 10.1093/nar/gkae568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/23/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
DNA methyltransferases are drug targets for myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia (CMML), acute myelogenous leukemia (AML) and possibly β-hemoglobinopathies. We characterize the interaction of nucleoside analogues in DNA with a prokaryotic CpG-specific DNA methyltransferase (M.MpeI) as a model for mammalian DNMT1 methyltransferases. We tested DNA containing 5-hydroxymethylcytosine (5hmC), 5-hydroxycytosine (5OHC), 5-methyl-2-pyrimidinone (in the ribosylated form known as 5-methylzebularine, 5mZ), 5,6-dihydro-5-azacytosine (dhaC), 5-fluorocytosine (5FC), 5-chlorocytosine (5ClC), 5-bromocytosine (5BrC) and 5-iodocytosine (5IC). Covalent complex formation was by far most efficient for 5FC. Non-covalent complexes were most abundant for dhaC and 5mZ. Surprisingly, we observed methylation of 5IC and 5BrC, and to a lesser extent 5ClC and 5FC, in the presence, but not the absence of small molecule thiol nucleophiles. For 5IC and 5BrC, we demonstrated by mass spectrometry that the reactions were due to methyltransferase driven dehalogenation, followed by methylation. Crystal structures of M.MpeI-DNA complexes capture the 'in' conformation of the active site loop for analogues with small or rotatable (5mZ) 5-substituents and its 'out' form for bulky 5-substituents. Since very similar 'in' and 'out' loop conformations were also observed for DNMT1, it is likely that our conclusions generalize to other DNA methyltransferases.
Collapse
Affiliation(s)
- Marek Wojciechowski
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Plant Breeding and Acclimatization Institute - National Research Institute, 05-870 Radzikow, Poland
| | - Honorata Czapinska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Joanna Krwawicz
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Dominik Rafalski
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
3
|
Huang G, Cai X, Li D. Significance of targeting DNMT3A mutations in AML. Ann Hematol 2024:10.1007/s00277-024-05885-8. [PMID: 39078434 DOI: 10.1007/s00277-024-05885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/05/2024] [Indexed: 07/31/2024]
Abstract
Acute myeloid leukemia (AML) is the most prevalent form of leukemia among adults, characterized by aggressive behavior and significant genetic diversity. Despite decades of reliance on conventional chemotherapy as the mainstay treatment, patients often struggle with achieving remission, experience rapid relapses, and have limited survival prospects. While intensified induction chemotherapy and allogeneic stem cell transplantation have enhanced patient outcomes, these benefits are largely confined to younger AML patients capable of tolerating intensive treatments. DNMT3A, a crucial enzyme responsible for establishing de novo DNA methylation, plays a pivotal role in maintaining the delicate balance between hematopoietic stem cell differentiation and self-renewal, thereby influencing gene expression programs through epigenetic regulation. DNMT3A mutations are the most frequently observed genetic abnormalities in AML, predominantly in older patients, occurring in approximately 20-30% of adult AML cases and over 30% of AML with a normal karyotype. Consequently, the molecular underpinnings and potential therapeutic targets of DNMT3A mutations in AML are currently being thoroughly investigated. This article provides a comprehensive summary and the latest insights into the structure and function of DNMT3A, examines the impact of DNMT3A mutations on the progression and prognosis of AML, and explores potential therapeutic approaches for AML patients harboring DNMT3A mutations.
Collapse
Affiliation(s)
- Guiqin Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoya Cai
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dengju Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Cristalli C, Scotlandi K. Targeting DNA Methylation Machinery in Pediatric Solid Tumors. Cells 2024; 13:1209. [PMID: 39056791 PMCID: PMC11275080 DOI: 10.3390/cells13141209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
DNA methylation is a key epigenetic regulatory mechanism that plays a critical role in a variety of cellular processes, including the regulation of cell fate during development, maintenance of cell identity, and genome stability. DNA methylation is tightly regulated by enzymatic reactions and its deregulation plays an important role in the development of cancer. Specific DNA methylation alterations have been found in pediatric solid tumors, providing new insights into the development of these tumors. In addition, DNA methylation profiles have greatly contributed to tune the diagnosis of pediatric solid tumors and to define subgroups of patients with different risks of progression, leading to the reduction in unwanted toxicity and the improvement of treatment efficacy. This review highlights the dysregulated DNA methylome in pediatric solid tumors and how this information provides promising targets for epigenetic therapies, particularly inhibitors of DNMT enzymes (DNMTis). Opportunities and limitations are considered, including the ability of DNMTis to induce viral mimicry and immune signaling by tumors. Besides intrinsic action against cancer cells, DNMTis have the potential to sensitize immune-cold tumors to immunotherapies and may represent a remarkable option to improve the treatment of challenging pediatric solid tumors.
Collapse
Affiliation(s)
- Camilla Cristalli
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| |
Collapse
|
5
|
Zhou J, Chen Q, Ren R, Yang J, Liu B, Horton JR, Chang C, Li C, Maksoud L, Yang Y, Rotili D, Zhang X, Blumenthal RM, Chen T, Gao Y, Valente S, Mai A, Cheng X. Quinoline-based compounds can inhibit diverse enzymes that act on DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587980. [PMID: 38617249 PMCID: PMC11014617 DOI: 10.1101/2024.04.03.587980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
DNA methylation, as exemplified by cytosine-C5 methylation in mammals and adenine-N6 methylation in bacteria, is a crucial epigenetic mechanism driving numerous vital biological processes. Developing non-nucleoside inhibitors to cause DNA hypomethylation is a high priority, in order to treat a variety of significant medical conditions without the toxicities associated with existing cytidine-based hypomethylating agents. In this study, we have characterized fifteen quinoline-based analogs. Notably, compounds with additions like a methylamine ( 9 ) or methylpiperazine ( 11 ) demonstrate similar low micromolar inhibitory potency against both human DNMT1 (which generates C5-methylcytosine) and Clostridioides difficile CamA (which generates N6-methyladenine). Structurally, compounds 9 and 11 specifically intercalate into CamA-bound DNA via the minor groove, adjacent to the target adenine, leading to a substantial conformational shift that moves the catalytic domain away from the DNA. This study adds to the limited examples of DNA methyltransferases being inhibited by non-nucleotide compounds through DNA intercalation, following the discovery of dicyanopyridine-based inhibitors for DNMT1. Furthermore, our study shows that some of these quinoline-based analogs inhibit other enzymes that act on DNA, such as polymerases and base excision repair glycosylases. Finally, in cancer cells compound 11 elicits DNA damage response via p53 activation. Abstract Figure Highlights Six of fifteen quinoline-based derivatives demonstrated comparable low micromolar inhibitory effects on human cytosine methyltransferase DNMT1, and the bacterial adenine methyltransferases Clostridioides difficile CamA and Caulobacter crescentus CcrM. Compounds 9 and 11 were found to intercalate into a DNA substrate bound by CamA. These quinoline-based derivatives also showed inhibitory activity against various base excision repair DNA glycosylases, and DNA and RNA polymerases. Compound 11 provokes DNA damage response via p53 activation in cancer cells.
Collapse
|
6
|
Liu R, Zhao E, Yu H, Yuan C, Abbas MN, Cui H. Methylation across the central dogma in health and diseases: new therapeutic strategies. Signal Transduct Target Ther 2023; 8:310. [PMID: 37620312 PMCID: PMC10449936 DOI: 10.1038/s41392-023-01528-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 08/26/2023] Open
Abstract
The proper transfer of genetic information from DNA to RNA to protein is essential for cell-fate control, development, and health. Methylation of DNA, RNAs, histones, and non-histone proteins is a reversible post-synthesis modification that finetunes gene expression and function in diverse physiological processes. Aberrant methylation caused by genetic mutations or environmental stimuli promotes various diseases and accelerates aging, necessitating the development of therapies to correct the disease-driver methylation imbalance. In this Review, we summarize the operating system of methylation across the central dogma, which includes writers, erasers, readers, and reader-independent outputs. We then discuss how dysregulation of the system contributes to neurological disorders, cancer, and aging. Current small-molecule compounds that target the modifiers show modest success in certain cancers. The methylome-wide action and lack of specificity lead to undesirable biological effects and cytotoxicity, limiting their therapeutic application, especially for diseases with a monogenic cause or different directions of methylation changes. Emerging tools capable of site-specific methylation manipulation hold great promise to solve this dilemma. With the refinement of delivery vehicles, these new tools are well positioned to advance the basic research and clinical translation of the methylation field.
Collapse
Affiliation(s)
- Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Huijuan Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Chaoyu Yuan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
7
|
Chen Q, Liu B, Zeng Y, Hwang JW, Dai N, Corrêa I, Estecio M, Zhang X, Santos MA, Chen T, Cheng X. GSK-3484862 targets DNMT1 for degradation in cells. NAR Cancer 2023; 5:zcad022. [PMID: 37206360 PMCID: PMC10189803 DOI: 10.1093/narcan/zcad022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
Maintenance of genomic methylation patterns at DNA replication forks by DNMT1 is the key to faithful mitotic inheritance. DNMT1 is often overexpressed in cancer cells and the DNA hypomethylating agents azacytidine and decitabine are currently used in the treatment of hematologic malignancies. However, the toxicity of these cytidine analogs and their ineffectiveness in treating solid tumors have limited wider clinical use. GSK-3484862 is a newly-developed, dicyanopyridine containing, non-nucleoside DNMT1-selective inhibitor with low cellular toxicity. Here, we show that GSK-3484862 targets DNMT1 for protein degradation in both cancer cell lines and murine embryonic stem cells (mESCs). DNMT1 depletion was rapid, taking effect within hours following GSK-3484862 treatment, leading to global hypomethylation. Inhibitor-induced DNMT1 degradation was proteasome-dependent, with no discernible loss of DNMT1 mRNA. In mESCs, GSK-3484862-induced Dnmt1 degradation requires the Dnmt1 accessory factor Uhrf1 and its E3 ubiquitin ligase activity. We also show that Dnmt1 depletion and DNA hypomethylation induced by the compound are reversible after its removal. Together, these results indicate that this DNMT1-selective degrader/inhibitor will be a valuable tool for dissecting coordinated events linking DNA methylation to gene expression and identifying downstream effectors that ultimately regulate cellular response to altered DNA methylation patterns in a tissue/cell-specific manner.
Collapse
Affiliation(s)
- Qin Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Yang Zeng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030, USA
| | - Jee Won Hwang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Nan Dai
- New England Biolabs, Inc, Ipswich, MA 01938, USA
| | | | - Marcos R Estecio
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Margarida A Santos
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030, USA
| |
Collapse
|
8
|
Du X, Wei H, Zhang B, Wang B, Li Z, Pang LK, Zhao R, Yao W. Molecular mechanisms of osteosarcoma metastasis and possible treatment opportunities. Front Oncol 2023; 13:1117867. [PMID: 37197432 PMCID: PMC10183593 DOI: 10.3389/fonc.2023.1117867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
In osteosarcoma patients, metastasis of the primary cancer is the leading cause of death. At present, management options to prevent metastasis are limited and non-curative. In this study, we review the current state of knowledge on the molecular mechanisms of metastasis and discuss promising new therapies to combat osteosarcoma metastasis. Genomic and epigenomic changes, metabolic reprogramming, transcription factors, dysregulation of physiologic pathways, and alterations to the tumor microenvironment are some of the changes reportedly involved in the regulation of osteosarcoma metastasis. Key factors within the tumor microenvironment include infiltrating lymphocytes, macrophages, cancer-associated fibroblasts, platelets, and extracellular components such as vesicles, proteins, and other secreted molecules. We conclude by discussing potential osteosarcoma-limiting agents and their clinical studies.
Collapse
Affiliation(s)
- Xinhui Du
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
- *Correspondence: Xinhui Du,
| | - Hua Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Boya Zhang
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| | - Bangmin Wang
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| | - Zhehuang Li
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| | - Lon Kai Pang
- Baylor College of Medicine, Houston, TX, United States
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Weitao Yao
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| |
Collapse
|
9
|
Targeting emerging cancer hallmarks by transition metal complexes: Epigenetic reprogramming and epitherapies. Part II. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Liu Y, Chen C, Wang X, Sun Y, Zhang J, Chen J, Shi Y. An Epigenetic Role of Mitochondria in Cancer. Cells 2022; 11:cells11162518. [PMID: 36010594 PMCID: PMC9406960 DOI: 10.3390/cells11162518] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are not only the main energy supplier but are also the cell metabolic center regulating multiple key metaborates that play pivotal roles in epigenetics regulation. These metabolites include acetyl-CoA, α-ketoglutarate (α-KG), S-adenosyl methionine (SAM), NAD+, and O-linked beta-N-acetylglucosamine (O-GlcNAc), which are the main substrates for DNA methylation and histone post-translation modifications, essential for gene transcriptional regulation and cell fate determination. Tumorigenesis is attributed to many factors, including gene mutations and tumor microenvironment. Mitochondria and epigenetics play essential roles in tumor initiation, evolution, metastasis, and recurrence. Targeting mitochondrial metabolism and epigenetics are promising therapeutic strategies for tumor treatment. In this review, we summarize the roles of mitochondria in key metabolites required for epigenetics modification and in cell fate regulation and discuss the current strategy in cancer therapies via targeting epigenetic modifiers and related enzymes in metabolic regulation. This review is an important contribution to the understanding of the current metabolic-epigenetic-tumorigenesis concept.
Collapse
Affiliation(s)
- Yu’e Liu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chao Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Xinye Wang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yihong Sun
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
- Correspondence: (J.C.); (Y.S.)
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China
- Correspondence: (J.C.); (Y.S.)
| |
Collapse
|
11
|
Horton JR, Pathuri S, Wong K, Ren R, Rueda L, Fosbenner DT, Heerding DA, McCabe MT, Pappalardi MB, Zhang X, King BW, Cheng X. Structural characterization of dicyanopyridine containing DNMT1-selective, non-nucleoside inhibitors. Structure 2022; 30:793-802.e5. [PMID: 35395178 PMCID: PMC9177618 DOI: 10.1016/j.str.2022.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 12/21/2022]
Abstract
DNMT1 maintains the parental DNA methylation pattern on newly replicated hemimethylated DNA. The failure of this maintenance process causes aberrant DNA methylation that affects transcription and contributes to the development and progression of cancers such as acute myeloid leukemia. Here, we structurally characterized a set of newly discovered DNMT1-selective, reversible, non-nucleoside inhibitors that bear a core 3,5-dicyanopyridine moiety, as exemplified by GSK3735967, to better understand their mechanism of inhibition. All of the dicyanopydridine-containing inhibitors examined intercalate into the hemimethylated DNA between two CpG base pairs through the DNA minor groove, resulting in conformational movement of the DNMT1 active-site loop. In addition, GSK3735967 introduces two new binding sites, where it interacts with and stabilizes the displaced DNMT1 active-site loop and it occupies an open aromatic cage in which trimethylated histone H4 lysine 20 is expected to bind. Our work represents a substantial step in generating potent, selective, and non-nucleoside inhibitors of DNMT1.
Collapse
Affiliation(s)
- John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sarath Pathuri
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kristen Wong
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lourdes Rueda
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - David T Fosbenner
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Dirk A Heerding
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Michael T McCabe
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Melissa B Pappalardi
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bryan W King
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA 19426, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Beck J, Ren L, Huang S, Berger E, Bardales K, Mannheimer J, Mazcko C, LeBlanc A. Canine and murine models of osteosarcoma. Vet Pathol 2022; 59:399-414. [PMID: 35341404 PMCID: PMC9290378 DOI: 10.1177/03009858221083038] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in children. Despite efforts to develop and implement new therapies, patient outcomes have not measurably improved since the 1980s. Metastasis continues to be the main source of patient mortality, with 30% of cases developing metastatic disease within 5 years of diagnosis. Research models are critical in the advancement of cancer research and include a variety of species. For example, xenograft and patient-derived xenograft (PDX) mouse models provide opportunities to study human tumor cells in vivo while transgenic models have offered significant insight into the molecular mechanisms underlying OS development. A growing recognition of naturally occurring cancers in companion species has led to new insights into how veterinary patients can contribute to studies of cancer biology and drug development. The study of canine cases, including the use of diagnostic tissue archives and clinical trials, offers a potential mechanism to further canine and human cancer research. Advancement in the field of OS research requires continued development and appropriate use of animal models. In this review, animal models of OS are described with a focus on the mouse and tumor-bearing pet dog as parallel and complementary models of human OS.
Collapse
Affiliation(s)
| | - Ling Ren
- National Cancer Institute, Bethesda, MD
| | | | | | - Kathleen Bardales
- National Cancer Institute, Bethesda, MD
- University of Pennsylvania, Philadelphia, PA
| | | | | | | |
Collapse
|
13
|
Genome-wide DNA methylation patterns reveal clinically relevant predictive and prognostic subtypes in human osteosarcoma. Commun Biol 2022; 5:213. [PMID: 35260776 PMCID: PMC8904843 DOI: 10.1038/s42003-022-03117-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Aberrant methylation of genomic DNA has been reported in many cancers. Specific DNA methylation patterns have been shown to provide clinically useful prognostic information and define molecular disease subtypes with different response to therapy and long-term outcome. Osteosarcoma is an aggressive malignancy for which approximately half of tumors recur following standard combined surgical resection and chemotherapy. No accepted prognostic factor save tumor necrosis in response to adjuvant therapy currently exists, and traditional genomic studies have thus far failed to identify meaningful clinical associations. We studied the genome-wide methylation state of primary tumors and tested how they predict patient outcomes. We discovered relative genomic hypomethylation to be strongly predictive of response to standard chemotherapy. Recurrence and survival were also associated with genomic methylation, but through more site-specific patterns. Furthermore, the methylation patterns were reproducible in three small independent clinical datasets. Downstream transcriptional, in vitro, and pharmacogenomic analysis provides insight into the clinical translation of the methylation patterns. Our findings suggest the assessment of genomic methylation may represent a strategy for stratifying patients for the application of alternative therapies.
Collapse
|
14
|
Cristalli C, Manara MC, Valente S, Pellegrini E, Bavelloni A, De Feo A, Blalock W, Di Bello E, Piñeyro D, Merkel A, Esteller M, Tirado OM, Mai A, Scotlandi K. Novel Targeting of DNA Methyltransferase Activity Inhibits Ewing Sarcoma Cell Proliferation and Enhances Tumor Cell Sensitivity to DNA Damaging Drugs by Activating the DNA Damage Response. Front Endocrinol (Lausanne) 2022; 13:876602. [PMID: 35712255 PMCID: PMC9197596 DOI: 10.3389/fendo.2022.876602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/19/2022] [Indexed: 12/02/2022] Open
Abstract
DNA methylation is an important component of the epigenetic machinery that regulates the malignancy of Ewing sarcoma (EWS), the second most common primary bone tumor in children and adolescents. Coordination of DNA methylation and DNA replication is critical for maintaining epigenetic programming and the DNMT1 enzyme has been demonstrated to have an important role in both maintaining the epigenome and controlling cell cycle. Here, we showed that the novel nonnucleoside DNMT inhibitor (DNMTi) MC3343 induces a specific depletion of DNMT1 and affects EWS tumor proliferation through a mechanism that is independent on DNA methylation. Depletion of DNMT1 causes perturbation of the cell cycle, with an accumulation of cells in the G1 phase, and DNA damage, as revealed by the induction of γH2AX foci. These effects elicited activation of p53-dependent signaling and apoptosis in p53wt cells, while in p53 mutated cells, persistent micronuclei and increased DNA instability was observed. Treatment with MC3343 potentiates the efficacy of DNA damaging agents such as doxorubicin and PARP-inhibitors (PARPi). This effect correlates with increased DNA damage and synergistic tumor cytotoxicity, supporting the use of the DNMTi MC3343 as an adjuvant agent in treating EWS.
Collapse
Affiliation(s)
- Camilla Cristalli
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- *Correspondence: Camilla Cristalli, ; Katia Scotlandi,
| | - Maria Cristina Manara
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - Evelin Pellegrini
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandra De Feo
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - William Blalock
- Istituto di Genetica Molecolare-Luigi Luca Cavalli Sforza, UOS Bologna, Consiglio Nazionale delle Ricerche (IGM-CNR), Bologna, Italy
| | - Elisabetta Di Bello
- Department of Drug Chemistry and Technologies, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - David Piñeyro
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Angelika Merkel
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
- Centro de Investigación Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Oscar M. Tirado
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Centro de Investigación Biomedica en Red Cancer (CIBERONC), Barcelona, Spain
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- *Correspondence: Camilla Cristalli, ; Katia Scotlandi,
| |
Collapse
|
15
|
Pappalardi MB, Keenan K, Cockerill M, Kellner WA, Stowell A, Sherk C, Wong K, Pathuri S, Briand J, Steidel M, Chapman P, Groy A, Wiseman AK, McHugh CF, Campobasso N, Graves AP, Fairweather E, Werner T, Raoof A, Butlin RJ, Rueda L, Horton JR, Fosbenner DT, Zhang C, Handler JL, Muliaditan M, Mebrahtu M, Jaworski JP, McNulty DE, Burt C, Eberl HC, Taylor AN, Ho T, Merrihew S, Foley SW, Rutkowska A, Li M, Romeril SP, Goldberg K, Zhang X, Kershaw CS, Bantscheff M, Jurewicz AJ, Minthorn E, Grandi P, Patel M, Benowitz AB, Mohammad HP, Gilmartin AG, Prinjha RK, Ogilvie D, Carpenter C, Heerding D, Baylin SB, Jones PA, Cheng X, King BW, Luengo JI, Jordan AM, Waddell I, Kruger RG, McCabe MT. Discovery of a first-in-class reversible DNMT1-selective inhibitor with improved tolerability and efficacy in acute myeloid leukemia. NATURE CANCER 2021; 2:1002-1017. [PMID: 34790902 DOI: 10.1038/s43018-021-00249-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/27/2021] [Indexed: 05/22/2023]
Abstract
DNA methylation, a key epigenetic driver of transcriptional silencing, is universally dysregulated in cancer. Reversal of DNA methylation by hypomethylating agents, such as the cytidine analogs decitabine or azacytidine, has demonstrated clinical benefit in hematologic malignancies. These nucleoside analogs are incorporated into replicating DNA where they inhibit DNA cytosine methyltransferases DNMT1, DNMT3A and DNMT3B through irreversible covalent interactions. These agents induce notable toxicity to normal blood cells thus limiting their clinical doses. Herein we report the discovery of GSK3685032, a potent first-in-class DNMT1-selective inhibitor that was shown via crystallographic studies to compete with the active-site loop of DNMT1 for penetration into hemi-methylated DNA between two CpG base pairs. GSK3685032 induces robust loss of DNA methylation, transcriptional activation and cancer cell growth inhibition in vitro. Due to improved in vivo tolerability compared with decitabine, GSK3685032 yields superior tumor regression and survival mouse models of acute myeloid leukemia.
Collapse
Affiliation(s)
- Melissa B Pappalardi
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Kathryn Keenan
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Mark Cockerill
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
- These authors contributed equally: Mark Cockerill, Wendy A. Kellner
| | - Wendy A Kellner
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
- These authors contributed equally: Mark Cockerill, Wendy A. Kellner
| | - Alexandra Stowell
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Christian Sherk
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Kristen Wong
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Sarath Pathuri
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jacques Briand
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Michael Steidel
- Cellzome GmbH, Functional Genomics, GlaxoSmithKline, Heidelberg, Germany
| | - Philip Chapman
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Arthur Groy
- Future Pipeline Discovery, GlaxoSmithKline, Collegeville, PA, USA
| | - Ashley K Wiseman
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Charles F McHugh
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Nino Campobasso
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Alan P Graves
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Emma Fairweather
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Thilo Werner
- Cellzome GmbH, Functional Genomics, GlaxoSmithKline, Heidelberg, Germany
| | - Ali Raoof
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Roger J Butlin
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Lourdes Rueda
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David T Fosbenner
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Cunyu Zhang
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Jessica L Handler
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Morris Muliaditan
- Drug Metabolism and Pharmacokinetics Modelling, GlaxoSmithKline, Stevenage, UK
| | - Makda Mebrahtu
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Jon-Paul Jaworski
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Dean E McNulty
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Charlotte Burt
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - H Christian Eberl
- Cellzome GmbH, Functional Genomics, GlaxoSmithKline, Heidelberg, Germany
| | - Amy N Taylor
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Thau Ho
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Susan Merrihew
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Shawn W Foley
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Anna Rutkowska
- Cellzome GmbH, Functional Genomics, GlaxoSmithKline, Heidelberg, Germany
| | - Mei Li
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Stuart P Romeril
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Kristin Goldberg
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher S Kershaw
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Marcus Bantscheff
- Cellzome GmbH, Functional Genomics, GlaxoSmithKline, Heidelberg, Germany
| | | | - Elisabeth Minthorn
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Paola Grandi
- Cellzome GmbH, Functional Genomics, GlaxoSmithKline, Heidelberg, Germany
| | - Mehul Patel
- Medicinal Science & Technology, GlaxoSmithKline, Collegeville, PA, USA
| | | | - Helai P Mohammad
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | | | - Rab K Prinjha
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Donald Ogilvie
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | | | - Dirk Heerding
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Stephen B Baylin
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Peter A Jones
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bryan W King
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Juan I Luengo
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Allan M Jordan
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Ian Waddell
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield, UK
| | - Ryan G Kruger
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| | - Michael T McCabe
- Cancer Epigenetics Research Unit, Oncology, GlaxoSmithKline, Collegeville, PA, USA
| |
Collapse
|
16
|
Hu C, Liu X, Zeng Y, Liu J, Wu F. DNA methyltransferase inhibitors combination therapy for the treatment of solid tumor: mechanism and clinical application. Clin Epigenetics 2021; 13:166. [PMID: 34452630 PMCID: PMC8394595 DOI: 10.1186/s13148-021-01154-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
DNA methylation, an epigenetic modification, regulates gene transcription and maintains genome stability. DNA methyltransferase (DNMT) inhibitors can activate silenced genes at low doses and cause cytotoxicity at high doses. The ability of DNMT inhibitors to reverse epimutations is the basis of their use in novel strategies for cancer therapy. In this review, we examined the literature on DNA methyltransferase inhibitors. We summarized the mechanisms underlying combination therapy using DNMT inhibitors and clinical trials based on combining hypomethylation agents with other chemotherapeutic drugs. We also discussed the efficacy of such compounds as antitumor agents, the need to optimize treatment schedules and the regimens for maximal biologic effectiveness. Notably, the combination of DNMT inhibitors and chemotherapy and/or immune checkpoint inhibitors may provide helpful insights into the development of efficient therapeutic approaches.
Collapse
Affiliation(s)
- Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, 410011, Hunan, China
| | - Xiaohan Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yue Zeng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Junqi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, 410011, Hunan, China.
| |
Collapse
|
17
|
Wang Y, Xie Q, Tan H, Liao M, Zhu S, Zheng LL, Huang H, Liu B. Targeting cancer epigenetic pathways with small-molecule compounds: Therapeutic efficacy and combination therapies. Pharmacol Res 2021; 173:105702. [PMID: 34102228 DOI: 10.1016/j.phrs.2021.105702] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/07/2021] [Accepted: 05/29/2021] [Indexed: 02/08/2023]
Abstract
Epigenetics mainly refers to covalent modifications to DNA or histones without affecting genomes, which ultimately lead to phenotypic changes in cells or organisms. Given the abundance of regulatory targets in epigenetic pathways and their pivotal roles in tumorigenesis and drug resistance, the development of epigenetic drugs holds a great promise for the current cancer therapy. However, lack of potent, selective, and clinically tractable small-molecule compounds makes the strategy to target cancer epigenetic pathways still challenging. Therefore, this review focuses on epigenetic pathways, small molecule inhibitors targeting DNA methyltransferase (DNMT) and small molecule inhibitors targeting histone modification (the main regulatory targets are histone acetyltransferases (HAT), histone deacetylases (HDACs) and histone methyltransferases (HMTS)), as well as the combination strategies of the existing epigenetic therapeutic drugs and more new therapies to improve the efficacy, which will shed light on a new clue on discovery of more small-molecule drugs targeting cancer epigenetic pathways as promising strategies in the future.
Collapse
Affiliation(s)
- Yi Wang
- Health Management Center, Sichuan Provincial People' Hospital, University of Electronic Science and Technology of China, Chengdu 610072, PR China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, PR China
| | - Qiang Xie
- Department of Stomatology, Sichuan Provincial People' Hospital, University of Electronic Science and Technology of China, Chengdu 610072, PR China
| | - Huidan Tan
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Minru Liao
- Department of Stomatology, Sichuan Provincial People' Hospital, University of Electronic Science and Technology of China, Chengdu 610072, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Shiou Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ling-Li Zheng
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Rd, Xindu Region, Chengdu 610500, PR China.
| | - Haixia Huang
- Oral & Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, 646000, PR China; Department of Prosthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, 646000, PR China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
18
|
Lauria A, La Monica G, Bono A, Martorana A. Quinoline anticancer agents active on DNA and DNA-interacting proteins: From classical to emerging therapeutic targets. Eur J Med Chem 2021; 220:113555. [PMID: 34052677 DOI: 10.1016/j.ejmech.2021.113555] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/25/2022]
Abstract
Quinoline is one of the most important and versatile nitrogen heterocycles embodied in several biologically active molecules. Within the numerous quinolines developed as antiproliferative agents, this review is focused on compounds interfering with DNA structure or with proteins/enzymes involved in the regulation of double helix functional processes. In this light, a special focus is given to the quinoline compounds, acting with classical/well-known mechanisms of action (DNA intercalators or Topoisomerase inhibitors). In particular, the quinoline drugs amsacrine and camptothecin (CPT) have been studied as key lead compounds for the development of new agents with improved PK and tolerability properties. Moreover, notable attention has been paid to the quinoline molecules, which are able to interfere with emerging targets involved in cancer progression, as G-quadruplexes or the epigenetic ones (e.g.: histone deacetylase, DNA and histones methyltransferase). The antiproliferative and the enzymatic inhibition data of the reviewed compounds have been analyzed. Furthermore, concerning the SAR (structure-activity relationship) aspects, the most recurrent ligand-protein interactions are summarized, underling the structural requirements for each kind of mechanism of action.
Collapse
Affiliation(s)
- Antonino Lauria
- Dipartimento di Scienze e Technologie Biologiche Chimiche e Farmaceutiche "STEBICEF" - University of Palermo, Via Archirafi - 32, 90123, Palermo, Italy
| | - Gabriele La Monica
- Dipartimento di Scienze e Technologie Biologiche Chimiche e Farmaceutiche "STEBICEF" - University of Palermo, Via Archirafi - 32, 90123, Palermo, Italy
| | - Alessia Bono
- Dipartimento di Scienze e Technologie Biologiche Chimiche e Farmaceutiche "STEBICEF" - University of Palermo, Via Archirafi - 32, 90123, Palermo, Italy
| | - Annamaria Martorana
- Dipartimento di Scienze e Technologie Biologiche Chimiche e Farmaceutiche "STEBICEF" - University of Palermo, Via Archirafi - 32, 90123, Palermo, Italy.
| |
Collapse
|
19
|
Patient Derived Xenografts for Genome-Driven Therapy of Osteosarcoma. Cells 2021; 10:cells10020416. [PMID: 33671173 PMCID: PMC7922432 DOI: 10.3390/cells10020416] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is a rare malignant primary tumor of mesenchymal origin affecting bone. It is characterized by a complex genotype, mainly due to the high frequency of chromothripsis, which leads to multiple somatic copy number alterations and structural rearrangements. Any effort to design genome-driven therapies must therefore consider such high inter- and intra-tumor heterogeneity. Therefore, many laboratories and international networks are developing and sharing OS patient-derived xenografts (OS PDX) to broaden the availability of models that reproduce OS complex clinical heterogeneity. OS PDXs, and new cell lines derived from PDXs, faithfully preserve tumor heterogeneity, genetic, and epigenetic features and are thus valuable tools for predicting drug responses. Here, we review recent achievements concerning OS PDXs, summarizing the methods used to obtain ectopic and orthotopic xenografts and to fully characterize these models. The availability of OS PDXs across the many international PDX platforms and their possible use in PDX clinical trials are also described. We recommend the coupling of next-generation sequencing (NGS) data analysis with functional studies in OS PDXs, as well as the setup of OS PDX clinical trials and co-clinical trials, to enhance the predictive power of experimental evidence and to accelerate the clinical translation of effective genome-guided therapies for this aggressive disease.
Collapse
|
20
|
Zhang X, Zheng Y, Li G, Yu C, Ji T, Miao S. Identifying four DNA methylation gene sites signature for predicting prognosis of osteosarcoma. Transl Cancer Res 2020; 9:7299-7309. [PMID: 35117331 PMCID: PMC8798623 DOI: 10.21037/tcr-20-3204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/18/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Osteosarcoma (OS) is a common malignant bone tumor in children and adolescents. DNA methylation plays a crucial role in the prognosis prediction of cancer. Identification of novel DNA methylation sites biomarkers could be beneficial for the prognosis of OS patients. In this study, we aim to find an efficient methylated site model for predicting survival in OS. METHODS DNA methylation data were downloaded from the Cancer Genome Atlas database (TCGA) and the GEO database. Cox proportional hazard regression and random survival forest algorithm (RSFVH) were applied to identify DNA methylated site signature in the samples randomly assigned to the training subset and the other samples as the test subset. By randomizing 71 clinical samples into two individual groups and a series of statistical analyses between the two groups, a DNA methylation signature is verified. RESULTS This signature comprises four methylation sites (cg04533248, cg12401425, cg13997435, and cg15075357) associated with the patient training group from the univariate Cox proportional hazards regression analysis, RSFVH, and multivariate Cox regression analysis. Kaplan-Meier survival curves showed the OS patients in the high-risk group have a poor 5-year overall survival compared with the low-risk group, and this finding was identified in the test data set. A ROC analysis was performed in the current research. The results revealed that this signature was an independent predictor of patient survival by investigating the AUC of the four methylation sites signature in the training data set (AUC =0.861) and test data set, respectively (AUC =0.920). The nomogram described in the current study placed a great guiding value for predicting 1-, 2-, 3-year survival of the OS by combining age, gender, grade, and TNM stage as covariates with the RS of patients' methylation related signatures. CONCLUSIONS Our study proved that this signature might be a powerful prognostic tool for survival rate evaluation and guide tailored therapy for OS patients.
Collapse
Affiliation(s)
- Xijun Zhang
- Department of Laboratory of Jiayuguan City First People’s Hospital, Jiayuguan, China
| | - Yongjun Zheng
- The 984th Hospital of the People’s Liberation Army, Shangzhuang Township, Beijing, China
| | - Gaoshan Li
- Department of Orthopaedics, 968 Hospital of Joint Service Support Force of Chinese People’s Liberation Army, Jinzhou, China
| | - Changying Yu
- Department of Laboratory Medicine, the 965 Hospital of the PLA, Jilin, China
| | - Ting Ji
- Shenzhen Mindray Bio-Medical Electronics Co., Ltd, Shenzhen, China
| | - Shenghu Miao
- Department of Laboratory Medicine, Wuwei People’s Hospital, Wuwei, China
| |
Collapse
|
21
|
Hattinger CM, Patrizio MP, Luppi S, Serra M. Pharmacogenomics and Pharmacogenetics in Osteosarcoma: Translational Studies and Clinical Impact. Int J Mol Sci 2020; 21:E4659. [PMID: 32629971 PMCID: PMC7369799 DOI: 10.3390/ijms21134659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
High-grade osteosarcoma (HGOS) is a very aggressive bone tumor which primarily affects adolescents and young adults. Although not advanced as is the case for other cancers, pharmacogenetic and pharmacogenomic studies applied to HGOS have been providing hope for an improved understanding of the biology and the identification of genetic biomarkers, which may impact on clinical care management. Recent developments of pharmacogenetics and pharmacogenomics in HGOS are expected to: i) highlight genetic events that trigger oncogenesis or which may act as drivers of disease; ii) validate research models that best predict clinical behavior; and iii) indicate genetic biomarkers associated with clinical outcome (in terms of treatment response, survival probability and susceptibility to chemotherapy-related toxicities). The generated body of information may be translated to clinical settings, in order to improve both effectiveness and safety of conventional chemotherapy trials as well as to indicate new tailored treatment strategies. Here, we review and summarize the current scientific evidence for each of the aforementioned issues in view of possible clinical applications.
Collapse
Affiliation(s)
| | | | | | - Massimo Serra
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, 40136 Bologna, Italy; (C.M.H.); (M.P.P.); (S.L.)
| |
Collapse
|
22
|
Genomics and Therapeutic Vulnerabilities of Primary Bone Tumors. Cells 2020; 9:cells9040968. [PMID: 32295254 PMCID: PMC7227002 DOI: 10.3390/cells9040968] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma, Ewing sarcoma and chondrosarcoma are rare diseases but the most common primary tumors of bone. The genes directly involved in the sarcomagenesis, tumor progression and treatment responsiveness are not completely defined for these tumors, and the powerful discovery of genetic analysis is highly warranted in the view of improving the therapy and cure of patients. The review summarizes recent advances concerning the molecular and genetic background of these three neoplasms and, of their most common variants, highlights the putative therapeutic targets and the clinical trials that are presently active, and notes the fundamental issues that remain unanswered. In the era of personalized medicine, the rarity of sarcomas may not be the major obstacle, provided that each patient is studied extensively according to a road map that combines emerging genomic and functional approaches toward the selection of novel therapeutic strategies.
Collapse
|
23
|
Lamin A and Prelamin A Counteract Migration of Osteosarcoma Cells. Cells 2020; 9:cells9030774. [PMID: 32235738 PMCID: PMC7140691 DOI: 10.3390/cells9030774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
A type lamins are fundamental components of the nuclear lamina. Changes in lamin A expression correlate with malignant transformation in several cancers. However, the role of lamin A has not been explored in osteosarcoma (OS). Here, we wanted to investigate the role of lamin A in normal osteoblasts (OBs) and OS cells. Thus, we studied the expression of lamin A/C in OS cells compared to OBs and evaluated the effects of lamin A overexpression in OS cell lines. We show that, while lamin A expression increases during osteoblast differentiation, all examined OS cell lines express lower lamin A levels relative to differentiated OBs. The condition of low LMNA expression confers to OS cells a significant increase in migration potential, while overexpression of lamin A reduces migration ability of OS cells. Moreover, overexpression of unprocessable prelamin A also reduces cell migration. In agreement with the latter finding, OS cells which accumulate the highest prelamin A levels upon inhibition of lamin A maturation by statins, had significantly reduced migration ability. Importantly, OS cells subjected to statin treatment underwent apoptotic cell death in a RAS-independent, lamin A-dependent manner. Our results show that pro-apoptotic effects of statins and statin inhibitory effect on OS cell migration are comparable to those obtained by prelamin A accumulation and further suggest that modulation of lamin A expression and post-translational processing can be a tool to decrease migration potential in OS cells.
Collapse
|
24
|
Zwergel C, Fioravanti R, Stazi G, Sarno F, Battistelli C, Romanelli A, Nebbioso A, Mendes E, Paulo A, Strippoli R, Tripodi M, Pechalrieu D, Arimondo PB, De Luca T, Del Bufalo D, Trisciuoglio D, Altucci L, Valente S, Mai A. Novel Quinoline Compounds Active in Cancer Cells through Coupled DNA Methyltransferase Inhibition and Degradation. Cancers (Basel) 2020; 12:E447. [PMID: 32075099 PMCID: PMC7073229 DOI: 10.3390/cancers12020447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/31/2020] [Accepted: 02/12/2020] [Indexed: 01/20/2023] Open
Abstract
DNA methyltransferases (DNMTs) play a relevant role in epigenetic control of cancer cell survival and proliferation. Since only two DNMT inhibitors (azacitidine and decitabine) have been approved to date for the treatment of hematological malignancies, the development of novel potent and specific inhibitors is urgent. Here we describe the design, synthesis, and biological evaluation of a new series of compounds acting at the same time as DNMTs (mainly DNMT3A) inhibitors and degraders. Tested against leukemic and solid cancer cell lines, 2a-c and 4a-c (the last only for leukemias) displayed up to submicromolar antiproliferative activities. In HCT116 cells, such compounds induced EGFP gene expression in a promoter demethylation assay, confirming their demethylating activity in cells. In the same cell line, 2b and 4c chosen as representative samples induced DNMT1 and -3A protein degradation, suggesting for these compounds a double mechanism of DNMT3A inhibition and DNMT protein degradation.
Collapse
Affiliation(s)
- Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy; (C.Z.); (R.F.); (G.S.); (A.R.)
- Department of Precision Medicine, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138 Naples, Italy; (F.S.); (A.N.); (L.A.)
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy; (C.Z.); (R.F.); (G.S.); (A.R.)
| | - Giulia Stazi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy; (C.Z.); (R.F.); (G.S.); (A.R.)
| | - Federica Sarno
- Department of Precision Medicine, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138 Naples, Italy; (F.S.); (A.N.); (L.A.)
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy (R.S.); (M.T.)
| | - Annalisa Romanelli
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy; (C.Z.); (R.F.); (G.S.); (A.R.)
| | - Angela Nebbioso
- Department of Precision Medicine, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138 Naples, Italy; (F.S.); (A.N.); (L.A.)
| | - Eduarda Mendes
- Research Institute for Medicines, Medicinal Chemistry Group, Faculty of Pharmacy, Universidade de Lisboa, 1649 003 Lisbon, Portugal; (E.M.); (A.P.)
| | - Alexandra Paulo
- Research Institute for Medicines, Medicinal Chemistry Group, Faculty of Pharmacy, Universidade de Lisboa, 1649 003 Lisbon, Portugal; (E.M.); (A.P.)
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy (R.S.); (M.T.)
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy (R.S.); (M.T.)
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
- Istituto Pasteur- Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza Università di Roma, 00185 Rome, Italy
| | - Dany Pechalrieu
- ETaC CNRS FRE3600, LMBE, 118 route de Narbonne, 31062 Toulouse, France; (D.P.); (P.B.A.)
| | - Paola B. Arimondo
- ETaC CNRS FRE3600, LMBE, 118 route de Narbonne, 31062 Toulouse, France; (D.P.); (P.B.A.)
- Epigenetic Chemical Biology, Institute Pasteur, CNRS UMR3523, 28 rue du Docteur Roux, 75724 Paris, France
| | - Teresa De Luca
- Preclinical Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy; (T.D.L.); (D.D.B.)
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy; (T.D.L.); (D.D.B.)
| | - Daniela Trisciuoglio
- Preclinical Models and New Therapeutic Agents Unit, IRCCS-Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy; (T.D.L.); (D.D.B.)
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Via Degli Apuli 4, 00185 Rome, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138 Naples, Italy; (F.S.); (A.N.); (L.A.)
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy; (C.Z.); (R.F.); (G.S.); (A.R.)
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy; (C.Z.); (R.F.); (G.S.); (A.R.)
| |
Collapse
|
25
|
Tomaselli D, Lucidi A, Rotili D, Mai A. Epigenetic polypharmacology: A new frontier for epi-drug discovery. Med Res Rev 2020; 40:190-244. [PMID: 31218726 PMCID: PMC6917854 DOI: 10.1002/med.21600] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022]
Abstract
Recently, despite the great success achieved by the so-called "magic bullets" in the treatment of different diseases through a marked and specific interaction with the target of interest, the pharmacological research is moving toward the development of "molecular network active compounds," embracing the related polypharmacology approach. This strategy was born to overcome the main limitations of the single target therapy leading to a superior therapeutic effect, a decrease of adverse reactions, and a reduction of potential mechanism(s) of drug resistance caused by robustness and redundancy of biological pathways. It has become clear that multifactorial diseases such as cancer, neurological, and inflammatory disorders, may require more complex therapeutic approaches hitting a certain biological system as a whole. Concerning epigenetics, the goal of the multi-epi-target approach consists in the development of small molecules able to simultaneously and (often) reversibly bind different specific epi-targets. To date, two dual histone deacetylase/kinase inhibitors (CUDC-101 and CUDC-907) are in an advanced stage of clinical trials. In the last years, the growing interest in polypharmacology encouraged the publication of high-quality reviews on combination therapy and hybrid molecules. Hence, to update the state-of-the-art of these therapeutic approaches avoiding redundancy, herein we focused only on multiple medication therapies and multitargeting compounds exploiting epigenetic plus nonepigenetic drugs reported in the literature in 2018. In addition, all the multi-epi-target inhibitors known in literature so far, hitting two or more epigenetic targets, have been included.
Collapse
Affiliation(s)
- Daniela Tomaselli
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Alessia Lucidi
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Dante Rotili
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
- Pasteur Institute - Cenci Bolognetti Foundation, Viale
Regina Elena 291, 00161 Roma, Italy
| |
Collapse
|
26
|
Targeting the Cancer Epigenome with Histone Deacetylase Inhibitors in Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:55-75. [PMID: 32767234 DOI: 10.1007/978-3-030-43085-6_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epigenetic deregulation is an emerging hallmark of cancer that enables tumor cells to escape surveillance by tumor suppressors and ultimately progress. The structure of the epigenome consists of covalent modifications of chromatin components, including acetylation by histone acetyltransferases (HATs) and deacetylation by histone deacetylases (HDACs). Targeting these enzymes with inhibitors to restore epigenetic homeostasis has been explored for many cancers. Osteosarcoma, an aggressive bone malignancy that primarily affects children and young adults, is notable for widespread genetic and epigenetic instability. This may explain why therapy directed at unique molecular pathways has failed to substantially improve outcomes in osteosarcoma over the past four decades. In this review, we discuss the potential of targeting the cancer epigenome, with a focus on histone deacetylase inhibitors (HDACi) for osteosarcoma. We additionally highlight the safety and tolerance of HDACi, combination chemotherapy with HDACi, and the ongoing challenges in the development of these agents.
Collapse
|
27
|
Guo W, Wei B, Cheng T, Xu X, Ruan F, Xiang M. The Na+/K+ ATPase Inhibitor Ouabain Attenuates Stemness and Chemoresistance of Osteosarcoma Cells. Med Sci Monit 2019; 25:9426-9434. [PMID: 31822650 PMCID: PMC6918806 DOI: 10.12659/msm.919266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background The purpose of this study was to explore the effects of the Na+/K+ ATPase inhibitor ouabain in regulating osteosarcoma (OS) cell stemness. Material/Methods Western blot, qPCR, sphere-forming analysis, DNA methylation analysis, and Ca2+ concentration detection were performed to evaluate the stem-like traits of cells and ouabain-induced effects and related mechanisms on OS cell stemness. Cell viability assessment was performed to evaluate the effect of ouabain on OS cell chemosensitivity. Results Ouabain reduced the ALDH1 activity, the expression of critical stemness regulators, sphere size and number, and migration, invasion, and adhesion ability, but had little effects on cell viability. Additionally, the intracellular Ca2+ concentration and methylation level of the critical stemness regulators were higher in OS cells than in spheres formed by OS cells. Mechanistic studies revealed that ouabain leads to DNA methylation of stemness markers through increasing intracellular Ca2+ concentration. Notably, inhibition of Ca2+ channel or DNA methylation rescued the inhibition of ouabain on OS cell stemness. Additionally, ouabain enhances cisplatin sensitivity of OS cells, which is involved in Ca2+ channel and DNA methylation. Conclusions This work provides a potential compound for treating OS patients, especially OS patients with chemoresistance.
Collapse
Affiliation(s)
- Weixiong Guo
- Department of Orthopedics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Bo Wei
- Department of Orthopedics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Tingting Cheng
- Department of Cardiovascular, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Xiaotao Xu
- Department of Operation Room, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Feiling Ruan
- Department of Operation Room, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China (mainland)
| | - Min Xiang
- Department of Orthopedics, Third Affiliated Hospital of Guangdong Medical University, Zhanjiang, China (mainland)
| |
Collapse
|
28
|
Ganesan A, Arimondo PB, Rots MG, Jeronimo C, Berdasco M. The timeline of epigenetic drug discovery: from reality to dreams. Clin Epigenetics 2019; 11:174. [PMID: 31791394 PMCID: PMC6888921 DOI: 10.1186/s13148-019-0776-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
The flexibility of the epigenome has generated an enticing argument to explore its reversion through pharmacological treatments as a strategy to ameliorate disease phenotypes. All three families of epigenetic proteins—readers, writers, and erasers—are druggable targets that can be addressed through small-molecule inhibitors. At present, a few drugs targeting epigenetic enzymes as well as analogues of epigenetic modifications have been introduced into the clinic use (e.g. to treat haematological malignancies), and a wide range of epigenetic-based drugs are undergoing clinical trials. Here, we describe the timeline of epigenetic drug discovery and development beginning with the early design based solely on phenotypic observations to the state-of-the-art rational epigenetic drug discovery using validated targets. Finally, we will highlight some of the major aspects that need further research and discuss the challenges that need to be overcome to implement epigenetic drug discovery into clinical management of human disorders. To turn into reality, researchers from various disciplines (chemists, biologists, clinicians) need to work together to optimise the drug engineering, read-out assays, and clinical trial design.
Collapse
Affiliation(s)
- A Ganesan
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Paola B Arimondo
- Epigenetic Chemical Biology, Institut Pasteur, CNRS UMR3523, 28 rue du Docteur Roux, 75724, Paris, France
| | - Marianne G Rots
- Epigenetic Editing, Dept. Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, The Netherlands
| | - Carmen Jeronimo
- Cancer Biology & Epigenetics Group, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - María Berdasco
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain. .,Epigenetic Therapies, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Campus ICO-Germans Trias i Pujol, Ctra de Can Ruti, Camí de les Escoles s/n 08916 Badalona, Barcelona, Catalonia, Spain.
| |
Collapse
|
29
|
Cancer Stem Cells: Powerful Targets to Improve Current Anticancer Therapeutics. Stem Cells Int 2019; 2019:9618065. [PMID: 31781251 PMCID: PMC6874936 DOI: 10.1155/2019/9618065] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/25/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023] Open
Abstract
A frequent observation in several malignancies is the development of resistance to therapy that results in frequent tumor relapse and metastasis. Much of the tumor resistance phenotype comes from its heterogeneity that halts the ability of therapeutic agents to eliminate all cancer cells effectively. Tumor heterogeneity is, in part, controlled by cancer stem cells (CSC). CSC may be considered the reservoir of cancer cells as they exhibit properties of self-renewal and plasticity and the capability of reestablishing a heterogeneous tumor cell population. The endowed resistance mechanisms of CSC are mainly attributed to several factors including cellular quiescence, accumulation of ABC transporters, disruption of apoptosis, epigenetic reprogramming, and metabolism. There is a current need to develop new therapeutic drugs capable of targeting CSC to overcome tumor resistance. Emerging in vitro and in vivo studies strongly support the potential benefits of combination therapies capable of targeting cancer stem cell-targeting agents. Clinical trials are still underway to address the pharmacokinetics, safety, and efficacy of combination treatment. This review will address the main characteristics, therapeutic implications, and perspectives of targeting CSC to improve current anticancer therapeutics.
Collapse
|
30
|
Nanni P, Landuzzi L, Manara MC, Righi A, Nicoletti G, Cristalli C, Pasello M, Parra A, Carrabotta M, Ferracin M, Palladini A, Ianzano ML, Giusti V, Ruzzi F, Magnani M, Donati DM, Picci P, Lollini PL, Scotlandi K. Bone sarcoma patient-derived xenografts are faithful and stable preclinical models for molecular and therapeutic investigations. Sci Rep 2019; 9:12174. [PMID: 31434953 PMCID: PMC6704066 DOI: 10.1038/s41598-019-48634-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Standard therapy of osteosarcoma (OS) and Ewing sarcoma (EW) rests on cytotoxic regimes, which are largely unsuccessful in advanced patients. Preclinical models are needed to break this impasse. A panel of patient-derived xenografts (PDX) was established by implantation of fresh, surgically resected osteosarcoma (OS) and Ewing sarcoma (EW) in NSG mice. Engraftment was obtained in 22 of 61 OS (36%) and 7 of 29 EW (24%). The success rate in establishing primary cell cultures from OS was lower than the percentage of PDX engraftment in mice, whereas the reverse was observed for EW; the implementation of both in vivo and in vitro seeding increased the proportion of patients yielding at least one workable model. The establishment of in vitro cultures from PDX was highly efficient in both tumor types, reaching 100% for EW. Morphological and immunohistochemical (SATB2, P-glycoprotein 1, CD99, caveolin 1) studies and gene expression profiling showed a remarkable similarity between patient’s tumor and PDX, which was maintained over several passages in mice, whereas cell cultures displayed a lower correlation with human samples. Genes differentially expressed between OS original tumor and PDX mostly belonged to leuykocyte-specific pathways, as human infiltrate is gradually replaced by murine leukocytes during growth in mice. In EW, which contained scant infiltrates, no gene was differentially expressed between the original tumor and the PDX. A novel therapeutic combination of anti-CD99 diabody C7 and irinotecan was tested against two EW PDX; both drugs inhibited PDX growth, the addition of anti-CD99 was beneficial when chemotherapy alone was less effective. The panel of OS and EW PDX faithfully mirrored morphologic and genetic features of bone sarcomas, representing reliable models to test therapeutic approaches.
Collapse
Affiliation(s)
- Patrizia Nanni
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Maria Cristina Manara
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Righi
- Service of Pathology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giordano Nicoletti
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Camilla Cristalli
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Michela Pasello
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandro Parra
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marianna Carrabotta
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Arianna Palladini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Marianna L Ianzano
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Veronica Giusti
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | | | - Davide Maria Donati
- Third Orthopedic Clinic and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Piero Picci
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| | - Katia Scotlandi
- CRS Development of Biomolecular Therapies, Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
31
|
Zwergel C, Schnekenburger M, Sarno F, Battistelli C, Manara MC, Stazi G, Mazzone R, Fioravanti R, Gros C, Ausseil F, Florean C, Nebbioso A, Strippoli R, Ushijima T, Scotlandi K, Tripodi M, Arimondo PB, Altucci L, Diederich M, Mai A, Valente S. Identification of a novel quinoline-based DNA demethylating compound highly potent in cancer cells. Clin Epigenetics 2019; 11:68. [PMID: 31060628 PMCID: PMC6501426 DOI: 10.1186/s13148-019-0663-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/09/2019] [Indexed: 12/16/2022] Open
Abstract
Background DNA methyltransferases (DNMTs) are epigenetic enzymes involved in embryonic development, cell differentiation, epithelial to mesenchymal transition, and control of gene expression, whose overexpression or enhanced catalytic activity has been widely reported in cancer initiation and progression. To date, two DNMT inhibitors (DNMTi), 5-azacytidine (5-AZA) and 5-aza-2′-deoxycytidine (DAC), are approved for the treatment of myelodysplastic syndromes and acute myeloid leukemia. Nevertheless, they are chemically instable and quite toxic for healthy cells; thus, the discovery of novel DNMTi is urgent. Results Here, we report the identification of a new quinoline-based molecule, MC3353, as a non-nucleoside inhibitor and downregulator of DNMT. This compound was able, in promoter demethylating assays, to induce enhanced green fluorescence protein (EGFP) gene expression in HCT116 cells and transcription in a cytomegalovirus (CMV) promoter-driven luciferase reporter system in KG-1 cells. Moreover, MC3353 displayed a strong antiproliferative activity when tested on HCT116 colon cancer cells after 48 h of treatment at 0.5 μM. At higher doses, this compound provided a cytotoxic effect in double DNMT knockout HCT116 cells. MC3353 was also screened on a different panel of cancer cells (KG-1 and U-937 acute myeloid leukemia, RAJI Burkitt’s lymphoma, PC-3 prostate cancer, and MDA-MB-231 breast cancer), where it arrested cell proliferation and reduced viability after 48 h of treatment with IC50 values ranging from 0.3 to 0.9 μM. Compared to healthy cell models, MC3353 induced apoptosis (e.g., U-937 and KG-1 cells) or necrosis (e.g., RAJI cells) at lower concentrations. Importantly, together with the main DNMT3A enzyme inhibition, MC3353 was also able to downregulate the DNMT3A protein level in selected HCT116 and PC-3 cell lines. Additionally, this compound provided impairment of the epithelial-to-mesenchymal transition (EMT) by inducing E-cadherin while reducing matrix metalloproteinase (MMP2) mRNA and protein levels in PC-3 and HCT116 cells. Last, tested on a panel of primary osteosarcoma cell lines, MC3353 markedly inhibited cell growth with low single-digit micromolar IC50 ranging from 1.1 to 2.4 μM. Interestingly, in Saos-2 osteosarcoma cells, MC3353 induced both expression of genes and mineralized the matrix as evidence of osteosarcoma to osteoblast differentiation. Conclusions The present work describes MC3353 as a novel DNMTi displaying a stronger in cell demethylating ability than both 5-AZA and DAC, providing re-activation of the silenced ubiquitin C-terminal hydrolase L1 (UCHL1) gene. MC3353 displayed dose- and time-dependent antiproliferative activity in several cancer cell types, inducing cell death and affecting EMT through E-cadherin and MMP2 modulation. In addition, this compound proved efficacy even in primary osteosarcoma cell models, through the modulation of genes involved in osteoblast differentiation. Electronic supplementary material The online version of this article (10.1186/s13148-019-0663-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clemens Zwergel
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9 rue Edward Steichen, L-2540, Luxembourg City, Luxembourg
| | - Federica Sarno
- Department of Medicine of Precision, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Maria Cristina Manara
- Laboratory of Experimental Oncology, IRCCS - Istituto Ortopedico Rizzoli, via di Barbiano, 1/10, Bologna, 40136, Italy
| | - Giulia Stazi
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Roberta Mazzone
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Rossella Fioravanti
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Christina Gros
- Center for High-Throughput Chemical Biology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Frédéric Ausseil
- Pierre Fabre Laboratories, 3 Avenue Hubert Curien, Toulouse, 31100, France
| | - Cristina Florean
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9 rue Edward Steichen, L-2540, Luxembourg City, Luxembourg
| | - Angela Nebbioso
- Department of Medicine of Precision, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.,National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, Rome, 00149, Italy
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS - Istituto Ortopedico Rizzoli, via di Barbiano, 1/10, Bologna, 40136, Italy
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.,National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, Rome, 00149, Italy.,Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Paola B Arimondo
- Epigenetic Chemical Biology, Institut Pasteur, CNRS UMR3523, 28 rue du Docteur Roux, Paris, 75724, France
| | - Lucia Altucci
- Department of Medicine of Precision, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Marc Diederich
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Korea
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy. .,Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| | - Sergio Valente
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
32
|
Yang Q, Ali M, El Andaloussi A, Al-Hendy A. The emerging spectrum of early life exposure-related inflammation and epigenetic therapy. CANCER STUDIES AND MOLECULAR MEDICINE : OPEN JOURNAL 2018; 4:13-23. [PMID: 30474062 PMCID: PMC6247815 DOI: 10.17140/csmmoj-4-125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Early life exposure to a variety of insults during sensitive windows of development can reprogram normal physiological responses and alter disease susceptibility later in life. During this process, Inflammation triggered by a variety of adverse exposures plays an important role in the initiation and development of many types of diseases including tumorigenesis. This review article summaries the current knowledge about the role and mechanism of inflammation in development of diseases. In addition, epigenome alteration related to inflammation and treatment options using epigenetic modifiers are highlighted and discussed.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of
Illinois at Chicago, Chicago, IL, USA
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of
Illinois at Chicago, Chicago, IL, USA
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain
Shams University, Cairo, Egypt
| | | | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of
Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|