1
|
Nelemans LC, Melo VA, Buzgo M, Bremer E, Simaite A. Antibody desolvation with sodium chloride and acetonitrile generates bioactive protein nanoparticles. PLoS One 2024; 19:e0300416. [PMID: 38483950 PMCID: PMC10939210 DOI: 10.1371/journal.pone.0300416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/26/2024] [Indexed: 03/17/2024] Open
Abstract
About 30% of the FDA approved drugs in 2021 were protein-based therapeutics. However, therapeutic proteins can be unstable and rapidly eliminated from the blood, compared to conventional drugs. Furthermore, on-target but off-tumor protein binding can lead to off-tumor toxicity, lowering the maximum tolerated dose. Thus, for effective treatment therapeutic proteins often require continuous or frequent administration. To improve protein stability, delivery and release, proteins can be encapsulated inside drug delivery systems. These drug delivery systems protect the protein from degradation during (targeted) transport, prevent premature release and allow for long-term, sustained release. However, thus far achieving high protein loading in drug delivery systems remains challenging. Here, the use of protein desolvation with acetonitrile as an intermediate step to concentrate monoclonal antibodies for use in drug delivery systems is reported. Specifically, trastuzumab, daratumumab and atezolizumab were desolvated with high yield (∼90%) into protein nanoparticles below 100 nm with a low polydispersity index (<0.2). Their size could be controlled by the addition of low concentrations of sodium chloride between 0.5 and 2 mM. Protein particles could be redissolved in aqueous solutions and redissolved antibodies retained their binding activity as evaluated in cell binding assays and exemplified for trastuzumab in an ELISA.
Collapse
Affiliation(s)
- Levi Collin Nelemans
- R&D Center, InoCure s.r.o, Celákovice, Central Bohemian, Czech Republic
- Department of Hematology, University Medical Center Groningen/University of Groningen, Groningen, Groningen, The Netherlands
| | - Vinicio Alejandro Melo
- Department of Hematology, University Medical Center Groningen/University of Groningen, Groningen, Groningen, The Netherlands
| | - Matej Buzgo
- R&D Center, InoCure s.r.o, Celákovice, Central Bohemian, Czech Republic
| | - Edwin Bremer
- Department of Hematology, University Medical Center Groningen/University of Groningen, Groningen, Groningen, The Netherlands
| | - Aiva Simaite
- R&D Center, InoCure s.r.o, Celákovice, Central Bohemian, Czech Republic
| |
Collapse
|
2
|
Logghe T, van Zwol E, Immordino B, Van den Cruys K, Peeters M, Giovannetti E, Bogers J. Hyperthermia in Combination with Emerging Targeted and Immunotherapies as a New Approach in Cancer Treatment. Cancers (Basel) 2024; 16:505. [PMID: 38339258 PMCID: PMC10854776 DOI: 10.3390/cancers16030505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Despite significant advancements in the development of novel therapies, cancer continues to stand as a prominent global cause of death. In many cases, the cornerstone of standard-of-care therapy consists of chemotherapy (CT), radiotherapy (RT), or a combination of both. Notably, hyperthermia (HT), which has been in clinical use in the last four decades, has proven to enhance the effectiveness of CT and RT, owing to its recognized potency as a sensitizer. Furthermore, HT exerts effects on all steps of the cancer-immunity cycle and exerts a significant impact on key oncogenic pathways. Most recently, there has been a noticeable expansion of cancer research related to treatment options involving immunotherapy (IT) and targeted therapy (TT), a trend also visible in the research and development pipelines of pharmaceutical companies. However, the potential results arising from the combination of these innovative therapeutic approaches with HT remain largely unexplored. Therefore, this review aims to explore the oncology pipelines of major pharmaceutical companies, with the primary objective of identifying the principal targets of forthcoming therapies that have the potential to be advantageous for patients by specifically targeting molecular pathways involved in HT. The ultimate goal of this review is to pave the way for future research initiatives and clinical trials that harness the synergy between emerging IT and TT medications when used in conjunction with HT.
Collapse
Affiliation(s)
- Tine Logghe
- Elmedix NV, Dellingstraat 34/1, 2800 Mechelen, Belgium
| | - Eke van Zwol
- Elmedix NV, Dellingstraat 34/1, 2800 Mechelen, Belgium
| | - Benoît Immordino
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, 56017 Pisa, Italy
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
| | | | - Marc Peeters
- Department of Oncology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Elisa Giovannetti
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, 56017 Pisa, Italy
- Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Johannes Bogers
- Elmedix NV, Dellingstraat 34/1, 2800 Mechelen, Belgium
- Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
3
|
Ng F, Nicoulin V, Peloso C, Curia S, Richard J, Lopez-Noriega A. In Vitro and In Vivo Hydrolytic Degradation Behaviors of a Drug-Delivery System Based on the Blend of PEG and PLA Copolymers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55495-55509. [PMID: 38011651 DOI: 10.1021/acsami.2c13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
This paper presents the in vitro and in vivo degradation of BEPO, a marketed in situ forming depot technology used for the formulation of long-acting injectables. BEPO is composed of a solution of a blend of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) triblock and diblock in an organic solvent, where a therapeutic agent may be dissolved or suspended. Upon contact with an aqueous environment, the solvent diffuses and the polymers precipitate, entrapping the drug and forming a reservoir. Two representative BEPO compositions were subjected to a 3-month degradation study in vitro by immersion in phosphate-buffered saline at 37 °C and in vivo after subcutaneous injection in minipig. The material erosion rate, as a surrogate of the bioresorption, determined via the depot weight loss, changed substantially, depending on the composition and content of polymers within the test item. The swelling properties and internal morphology of depots were shown to be highly dependent on the solvent exchange rate during the precipitation step. Thermal analyses displayed an increase of the depot glass transition temperature over the degradation process, with no crystallinity observed at any stage. The chemical composition of degraded depots was determined by 1H NMR and gel permeation chromatography and demonstrated an enrichment in homopolymers, i.e., free PLA and (m)PEG, to the detriment of (m)PEG-PLA copolymers in both formulations. It was observed that the relative ratio of the degradants within the depot is driven by the initial polymer composition. Interestingly, in vitro and in vivo results showed very good qualitative consistency. Taken together, the outcomes from this study demonstrate that the different hydrolytic degradation behaviors of the BEPO compositions can be tuned by adjusting the polymer composition of the formulation.
Collapse
Affiliation(s)
- Feifei Ng
- MedinCell S.A., 3 Rue des Frères Lumière, 34830 Jacou, France
| | - Victor Nicoulin
- MedinCell S.A., 3 Rue des Frères Lumière, 34830 Jacou, France
| | | | - Silvio Curia
- MedinCell S.A., 3 Rue des Frères Lumière, 34830 Jacou, France
| | - Joël Richard
- MedinCell S.A., 3 Rue des Frères Lumière, 34830 Jacou, France
| | | |
Collapse
|
4
|
Guo X, Wu Y, Xue Y, Xie N, Shen G. Revolutionizing cancer immunotherapy: unleashing the potential of bispecific antibodies for targeted treatment. Front Immunol 2023; 14:1291836. [PMID: 38106416 PMCID: PMC10722299 DOI: 10.3389/fimmu.2023.1291836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Recent progressions in immunotherapy have transformed cancer treatment, providing a promising strategy that activates the immune system of the patient to find and eliminate cancerous cells. Bispecific antibodies, which engage two separate antigens or one antigen with two distinct epitopes, are of tremendous concern in immunotherapy. The bi-targeting idea enabled by bispecific antibodies (BsAbs) is especially attractive from a medical standpoint since most diseases are complex, involving several receptors, ligands, and signaling pathways. Several research look into the processes in which BsAbs identify different cancer targets such angiogenesis, reproduction, metastasis, and immune regulation. By rerouting cells or altering other pathways, the bispecific proteins perform effector activities in addition to those of natural antibodies. This opens up a wide range of clinical applications and helps patients with resistant tumors respond better to medication. Yet, further study is necessary to identify the best conditions where to use these medications for treating tumor, their appropriate combination partners, and methods to reduce toxicity. In this review, we provide insights into the BsAb format classification based on their composition and symmetry, as well as the delivery mode, focus on the action mechanism of the molecule, and discuss the challenges and future perspectives in BsAb development.
Collapse
Affiliation(s)
- Xiaohan Guo
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ying Xue
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
5
|
Das G, Ptacek J, Havlinova B, Nedvedova J, Barinka C, Novakova Z. Targeting Prostate Cancer Using Bispecific T-Cell Engagers against Prostate-Specific Membrane Antigen. ACS Pharmacol Transl Sci 2023; 6:1703-1714. [PMID: 37974624 PMCID: PMC10644396 DOI: 10.1021/acsptsci.3c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 11/19/2023]
Abstract
Prostate cancer (PCa) tops the list of cancer-related deaths in men worldwide. Prostate-specific membrane antigen (PSMA) is currently the most prominent PCa biomarker, as its expression levels are robustly enhanced in advanced stages of PCa. As such, PSMA targeting is highly efficient in PCa imaging as well as therapy. For the latter, PSMA-positive tumors can be targeted directly by using small molecules or macromolecules with cytotoxic payloads or indirectly by engaging the immune system of the host. Here we describe the engineering, expression, purification, and biological characterization of bispecific T-cell engagers (BiTEs) that enable targeting PSMA-positive tumor cells by host T lymphocytes. To this end, we designed the 5D3-αCD3 BiTE as a fusion of single-chain fragments of PSMA-specific 5D3 and anti-CD3 antibodies. Detailed characterization of BiTE was performed by a combination of size-exclusion chromatography, differential scanning fluorimetry, and flow cytometry. Expressed in insect cells, BiTE was purified in monodisperse form and retained thermal stability of both functional parts and nanomolar affinity to respective antigens. 5D3-αCD3's efficiency and specificity were further evaluated in vitro using PCa-derived cell lines together with peripheral blood mononuclear cells isolated from human blood. Our data revealed that T-cells engaged via 5D3-αCD3 can efficiently eliminate tumor cells already at an 8 pM BiTE concentration in a highly specific manner. Overall, the data presented here demonstrate that the 5D3-αCD3 BiTE is a candidate molecule of high potential for further development of immunotherapeutic modalities for PCa treatment.
Collapse
Affiliation(s)
- Gargi Das
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252
50 Vestec, Czech
Republic
- Department
of Cell Biology, Faculty of Science, Charles
University, 128 00 Prague, Czech Republic
| | - Jakub Ptacek
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252
50 Vestec, Czech
Republic
| | - Barbora Havlinova
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252
50 Vestec, Czech
Republic
| | - Jana Nedvedova
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252
50 Vestec, Czech
Republic
| | - Cyril Barinka
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252
50 Vestec, Czech
Republic
| | - Zora Novakova
- Laboratory
of Structural Biology, Institute of Biotechnology
of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252
50 Vestec, Czech
Republic
| |
Collapse
|
6
|
Meng L, Yang Y, Mortazavi A, Zhang J. Emerging Immunotherapy Approaches for Treating Prostate Cancer. Int J Mol Sci 2023; 24:14347. [PMID: 37762648 PMCID: PMC10531627 DOI: 10.3390/ijms241814347] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Immunotherapy has emerged as an important approach for cancer treatment, but its clinical efficacy has been limited in prostate cancer compared to other malignancies. This review summarizes key immunotherapy strategies under evaluation for prostate cancer, including immune checkpoint inhibitors, bispecific T cell-engaging antibodies, chimeric antigen receptor (CAR) T cells, therapeutic vaccines, and cytokines. For each modality, the rationale stemming from preclinical studies is discussed along with outcomes from completed clinical trials and strategies to improve clinical efficacy that are being tested in ongoing clinical trials. Imperative endeavors include biomarker discovery for patient selection, deciphering resistance mechanisms, refining cellular therapies such as CAR T cells, and early-stage intervention were reviewed. These ongoing efforts instill optimism that immunotherapy may eventually deliver significant clinical benefits and expand treatment options for patients with advanced prostate cancer.
Collapse
Affiliation(s)
- Lingbin Meng
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (L.M.); (Y.Y.); (A.M.)
| | - Yuanquan Yang
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (L.M.); (Y.Y.); (A.M.)
| | - Amir Mortazavi
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (L.M.); (Y.Y.); (A.M.)
| | - Jingsong Zhang
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center & Research Institute, University of South Florida, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
7
|
Pandya AK, Vora LK, Umeyor C, Surve D, Patel A, Biswas S, Patel K, Patravale VB. Polymeric in situ forming depots for long-acting drug delivery systems. Adv Drug Deliv Rev 2023; 200:115003. [PMID: 37422267 DOI: 10.1016/j.addr.2023.115003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Polymeric in situ forming depots have emerged as highly promising drug delivery systems for long-acting applications. Their effectiveness is attributed to essential characteristics such as biocompatibility, biodegradability, and the ability to form a stable gel or solid upon injection. Moreover, they provide added versatility by complementing existing polymeric drug delivery systems like micro- and nanoparticles. The formulation's low viscosity facilitates manufacturing unit operations and enhances delivery efficiency, as it can be easily administered via hypodermic needles. The release mechanism of drugs from these systems can be predetermined using various functional polymers. To enable unique depot design, numerous strategies involving physiological and chemical stimuli have been explored. Important assessment criteria for in situ forming depots include biocompatibility, gel strength and syringeability, texture, biodegradation, release profile, and sterility. This review focuses on the fabrication approaches, key evaluation parameters, and pharmaceutical applications of in situ forming depots, considering perspectives from academia and industry. Additionally, insights about the future prospects of this technology are discussed.
Collapse
Affiliation(s)
- Anjali K Pandya
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India; School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Chukwuebuka Umeyor
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka 422001, Anambra State, Nigeria
| | - Dhanashree Surve
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Akanksha Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad, Telangana 500078, India
| | - Ketankumar Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Vandana B Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India.
| |
Collapse
|
8
|
Chen J, Zhu T, Jiang G, Zeng Q, Li Z, Huang X. Target delivery of a PD-1-TREM2 scFv by CAR-T cells enhances anti-tumor efficacy in colorectal cancer. Mol Cancer 2023; 22:131. [PMID: 37563723 PMCID: PMC10413520 DOI: 10.1186/s12943-023-01830-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) -T cell therapy is an efficient therapeutic strategy for specific hematologic malignancies. However, positive outcomes of this novel therapy in treating solid tumors are curtailed by the immunosuppressive tumor microenvironment (TME), wherein signaling of the checkpoint programmed death-1 (PD-1)/PD-L1 directly inhibits T-cell responses. Although checkpoint-targeted immunotherapy succeeds in increasing the number of T cells produced to control tumor growth, the desired effect is mitigated by the action of myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) in the TME. Previous studies have confirmed that targeting triggering-receptor-expressed on myeloid cells 2 (TREM2) on TAMs and MDSCs enhances the outcomes of anti-PD-1 immunotherapy. METHODS We constructed carcinoembryonic antigen (CEA)-specific CAR-T cells for colorectal cancer (CRC)-specific antigens with an autocrine PD-1-TREM2 single-chain variable fragment (scFv) to target the PD-1/PD-L1 pathway, MDSCs and TAMs. RESULTS We found that the PD-1-TREM2-targeting scFv inhibited the activation of the PD-1/PD-L1 pathway. In addition, these secreted scFvs blocked the binding of ligands to TREM2 receptors present on MDSCs and TAMs, reduced the proportion of MDSCs and TAMs, and enhanced T-cell effector function, thereby mitigating immune resistance in the TME. PD-1-TREM2 scFv-secreting CAR-T cells resulted in highly effective elimination of tumors compared to that achieved with PD-1 scFv-secreting CAR-T therapy in a subcutaneous CRC mouse model. Moreover, the PD-1-TREM2 scFv secreted by CAR-T cells remained localized within tumors and exhibited an extended half-life. CONCLUSIONS Together, these results indicate that PD-1-TREM2 scFv-secreting CAR-T cells have strong potential as an effective therapy for CRC.
Collapse
Affiliation(s)
- Jian Chen
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Zhuhai, Guangdong, China
| | - Tianchuan Zhu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Zhuhai, Guangdong, China
| | - Guanmin Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Zhuhai, Guangdong, China
| | - Qi Zeng
- Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Zhuhai, Guangdong, China
| | - Zhijian Li
- The Fourth People's Hospital of Foshan, 528000, Foshan, Guangdong, China
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Zhuhai, Guangdong, China.
| |
Collapse
|
9
|
Gao P, Li T, Zhang K, Luo G. Recent advances in the molecular targeted drugs for prostate cancer. Int Urol Nephrol 2023; 55:777-789. [PMID: 36719528 DOI: 10.1007/s11255-023-03487-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
CONTEXT Prostate cancer (PCa) is the second largest male tumor in the world and one of the most common malignant tumors in the urinary system. In recent years, the incidence rate of PCa in China has been increasing year by year. Meanwhile, refractory hormone resistance and adverse drug reactions of advanced PCa cause serious harm to patients. OBJECTIVE The present study aims to systematically review the recent advances in molecularly targeted drugs for prostate cancer and to use the retrieval and analysis of the literature library to summarize the adverse effects of different drugs so as to maximize the treatment benefits of targeted therapies. EVIDENCE ACQUISITION We performed a systematic literature search of the Medline, EMBASE, PubMed, and Cochrane databases up to March 2022 in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. Medical Subject Heading (MeSH) terms and keywords such as (prostate cancer) AND (molecular target drugs) AND (side effect) were used. No language restrictions were set on the search process, and all these results were processed independently by two authors. Consensus was reached through discussion once met with any disagreements. The primary endpoint was differential features between different molecular targeted drugs. Secondary endpoints were side effects of different drugs on the body and corresponding prognostic values. EVIDENCE SYNTHESIS The Cochrane Collaboration risk of bias tool was used to assess the study quality in terms of sequence generation, allocation concealment, blinding, the completeness of outcome data, selective reporting and other biases. We retrieved 332 articles, of which 49 met the criteria for inclusion. Included studies show that prostatic tumor cells, tumor neovascularization and immune checkpoints are the main means for targeted therapy. Common drugs include 177 Lu-PSMA, Olaparib, Rucaparib, Bevacizumab, Pazopanib, Sorafenib, Cabozantinib, Aflibercept, Ipilimumab, Atezolizumab, Avelumab, Durvalumab. A series of publicly available data suitable for further analysis of side effects. An over-representation analysis of these datasets revealed reasonable dosage and usage is the key to controlling the side effects of targeted drugs. Important information such as the publication year, the first author, location and outcome observation of adverse effects was extracted from the original article. If the study data has some insufficient data, contacting the corresponding authors is necessary. All the studies included prospective nonrandomized and randomized research. Retrospective reviews were also screened according to the relevant to the purpose of this study. Meeting abstracts as well as letters to the editor and editorials were excluded. STATISTICAL ANALYSIS Data analysis was based on Cochrane's risk of bias tools to obtain the quality assessment. The included randomized studies used RoB2 and non-randomized ones corresponded to ROBINS-I. Standardized mean differences (SMD) were used to determine relative risk (RR) and side effects between groups. The eggers' test was used to check the publication bias from variable information in the included studies. All p < 0.05 were considered to be significant, and 95% was set as the confidence interval. CONCLUSIONS With the approval of a variety of targeted drugs, targeted therapy will be widely used in the treatment of advanced or metastatic prostate cancer. Despite the existence of adverse reactions related to targeted drug treatment, it is still meaningful to adjust the drug dosage or treatment cycle to reduce the occurrence of adverse reactions, improving the treatment benefits of patients.
Collapse
Affiliation(s)
- Pudong Gao
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Tao Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550002, China
| | - Kuiyuan Zhang
- Department of Urology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550002, China
| | - Guangheng Luo
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| |
Collapse
|
10
|
Sandeep, Shinde SH, Pande AH. Polyspecificity - An emerging trend in the development of clinical antibodies. Mol Immunol 2023; 155:175-183. [PMID: 36827806 DOI: 10.1016/j.molimm.2023.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
The essence of the growth and development of therapeutic conventional monoclonal antibodies (MAbs) for the treatment of various disorders is the aptitude of MAbs to precisely bind a target antigen and neutralise or promote its activity. However, the conventional antibodies are monoclonal i.e., both paratopes bind to the same epitope. But most of the pathophysiological conditions are multifaceted, hence targeting/blocking/inhibition of more than one epitope/antigen is more promising than one epitope/antigen. Polyspecific antibodies (PsAbs) have the potential to concurrently bind to more than one target and are the next-generation antibodies that augment efficacy in both clinical and non-clinical contexts. Thus, the trend of engineering and developing various formats of PsAbs is emerging. In this review, we have briefly discussed the importance of antibody polyspecificity and PsAbs approved for clinical use. Subsequently, we have discussed the role of TNF-α and IL-23 in inflammatory diseases and stressed the need for developing anti-TNF-α and anti-IL-23 bispecific antibodies.
Collapse
Affiliation(s)
- Sandeep
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Suraj H Shinde
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
11
|
Bispecific Antibodies: A Novel Approach for the Treatment of Solid Tumors. Pharmaceutics 2022; 14:pharmaceutics14112442. [PMID: 36432631 PMCID: PMC9694302 DOI: 10.3390/pharmaceutics14112442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Advancement in sequencing technologies allows for the identification of molecular pathways involved in tumor progression and treatment resistance. Implementation of novel agents targeting these pathways, defined as targeted therapy, significantly improves the prognosis of cancer patients. Targeted therapy also includes the use of monoclonal antibodies (mAbs). These drugs recognize specific oncogenic proteins expressed in cancer cells. However, as with many other types of targeting agents, mAb-based therapy usually fails in the long-term control of cancer progression due to the development of resistance. In many cases, resistance is caused by the activation of alternative pathways involved in cancer progression and the development of immune evasion mechanisms. To overcome this off-target resistance, bispecific antibodies (bsAbs) were developed to simultaneously target differential oncogenic pathway components, tumor-associated antigens (TAA) and immune regulatory molecules. As a result, in the last few years, several bsAbs have been tested or are being tested in cancer patients. A few of them are currently approved for the treatment of some hematologic malignancies but no bsAbs are approved in solid tumors. In this review, we will provide an overview of the state-of-the-art of bsAbs for the treatment of solid malignancies outlining their classification, design, main technologies utilized for production, mechanisms of action, updated clinical evidence and potential limitations.
Collapse
|
12
|
Sheehan B, Guo C, Neeb A, Paschalis A, Sandhu S, de Bono JS. Prostate-specific Membrane Antigen Biology in Lethal Prostate Cancer and its Therapeutic Implications. Eur Urol Focus 2022; 8:1157-1168. [PMID: 34167925 DOI: 10.1016/j.euf.2021.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/07/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022]
Abstract
CONTEXT Prostate-specific membrane antigen (PSMA) is a promising, novel theranostic target in advanced prostate cancer (PCa). Multiple PSMA-targeted therapies are currently in clinical development, with some agents showing impressive antitumour activity, although optimal patient selection and therapeutic resistance remain ongoing challenges. OBJECTIVE To review the biology of PSMA and recent advances in PSMA-targeted therapies in PCa, and to discuss potential strategies for patient selection and further therapeutic development. EVIDENCE ACQUISITION A comprehensive literature search was performed using PubMed and review of American Society of Clinical Oncology and European Society of Medical Oncology annual meeting abstracts up to April 2021. EVIDENCE SYNTHESIS PSMA is a largely extracellular protein that is frequently, but heterogeneously, expressed by PCa cells. PSMA expression is associated with disease progression, worse clinical outcomes and the presence of tumour defects in DNA damage repair (DDR). PSMA is also expressed by other cancer cell types and is implicated in glutamate and folate metabolism. It may confer a tumour survival advantage in conditions of cellular stress. PSMA regulation is complex, and recent studies have shed light on interactions with androgen receptor, PI3K/Akt, and DDR signalling. A phase 2 clinical trial has shown that 177Lu-PSMA-617 causes tumour shrinkage and delays disease progression in a significant subset of patients with metastatic castration-resistant PCa in comparison to second-line chemotherapy. Numerous novel PSMA-targeting immunotherapies, small molecules, and antibody therapies are currently in clinical development, including in earlier stages of PCa, with emerging evidence of antitumour activity. To date, the regulation and function of PSMA in PCa cells remain poorly understood. CONCLUSIONS There has been rapid recent progress in PSMA-targeted therapies for the management of advanced PCa. Dissection of PSMA biology will help to identify biomarkers for and resistance mechanisms to these therapies and facilitate further therapeutic development to improve PCa patient outcomes. PATIENT SUMMARY There have been major advances in the development of therapies targeting a molecule, PSMA, in PCa. Radioactive molecules targeting PSMA can cause tumour shrinkage and delay progression in some patients with lethal disease. Future studies are needed to determine which patients are most likely to respond, and how other treatments can be combined with therapies targeting PSMA so that more patients may benefit.
Collapse
Affiliation(s)
| | - Christina Guo
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| | - Antje Neeb
- The Institute of Cancer Research, London, UK
| | - Alec Paschalis
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| | - Shahneen Sandhu
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; University of Melbourne, Melbourne, Australia
| | - Johann S de Bono
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK.
| |
Collapse
|
13
|
Gonella A, Grizot S, Liu F, López Noriega A, Richard J. Long-acting injectable formulation technologies: Challenges and opportunities for the delivery of fragile molecules. Expert Opin Drug Deliv 2022; 19:927-944. [PMID: 35899474 DOI: 10.1080/17425247.2022.2105318] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The development of long acting injectables (LAIs) for protein and peptide therapeutics has been a key challenge over the last 20 years. If these molecules offer advantages due to their high specificity and selectivity, their controlled release may confer several additional benefits in terms of extended half-life, local delivery, and patient compliance. AREA COVERED This manuscript aims to give an overview of peptide and protein based LAIs from an industrial perspective, describing both approved and promising technologies (with exceptions of protein engineering strategies and devices), their advantages and potential improvements to aid their access to the market. EXPERT OPINION Many LAIs have been developed for peptides, with formulations on the market for several decades. On the contrary, LAIs for proteins are still far from the market and issues related to manufacturing and sterilization of these products still need to be overcome. In situ forming depots (ISFDs), whose simple manufacturing conditions and easy administration procedures (without reconstitution) are strong advantages, appear as one of the most promising technologies for the delivery of these molecules. In this regard, the approval of ELIGARD® in the early 2000's (which still requires a complex reconstitution process), paved the way for the development of second-generation, ready-to-use ISFD technologies like BEPO® and FluidCrystal®.
Collapse
Affiliation(s)
- Andrea Gonella
- MedinCell S.A. - 3 rue des Frères Lumiere, 34830, Jacou, France
| | | | - Fang Liu
- MedinCell S.A. - 3 rue des Frères Lumiere, 34830, Jacou, France
| | | | - Joël Richard
- MedinCell S.A. - 3 rue des Frères Lumiere, 34830, Jacou, France
| |
Collapse
|
14
|
Huynh V, Tatari N, Marple A, Savage N, McKenna D, Venugopal C, Singh SK, Wylie R. Real-time evaluation of a hydrogel delivery vehicle for cancer immunotherapeutics within embedded spheroid cultures. J Control Release 2022; 348:386-396. [PMID: 35644288 DOI: 10.1016/j.jconrel.2022.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/02/2022] [Accepted: 05/22/2022] [Indexed: 11/19/2022]
Abstract
Many protein immunotherapeutics are hindered by transport barriers that prevent the obtainment of minimum effective concentrations (MECs) in solid tumors. Local delivery vehicles with tunable release (infusion) rates for immunotherapeutics are being developed to achieve local and sustained release. To expedite their discovery and translation, in vitro models can identify promising delivery vehicles and immunotherapies that benefit from sustained release by evaluating cancer spheroid killing in real-time. Using displacement affinity release (DAR) within a hydrogel, we tuned the release of a CD133 targeting dual antigen T cell engager (DATE) without the need for further DATE or hydrogel modifications, yielding an injectable vehicle that acts as a tunable infusion pump. To quantify bioactivity benefits, a 3D embedded cancer spheroid model was developed for the evaluation of sustained protein release and combination therapies on T cell mediated spheroid killing. Using automated brightfield and fluorescent microscopy, the size of red fluorescent protein (iRFP670) expressing spheroids were tracked to quantify spheroid growth or killing over time as a function of controlled delivery. We demonstrate that sustained DATE release enhanced T cell mediated killing of embedded glioblastoma spheroids at longer timepoints, killing was further enhanced with the addition of anti-PD1 antibody (αPD1). The multi-cellular embedded spheroid model with automated microscopy demonstrated the benefit of extended bispecific release on T cell mediated killing, which will expedite the identification and translation of delivery vehicles such as DAR for immunotherapeutics.
Collapse
Affiliation(s)
- Vincent Huynh
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Nazanin Tatari
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - April Marple
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Neil Savage
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Dillon McKenna
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada; Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Chitra Venugopal
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada; Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Sheila K Singh
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Ryan Wylie
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada; School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
| |
Collapse
|
15
|
Xu G, Luo Y, Wang H, Wang Y, Liu B, Wei J. Therapeutic bispecific antibodies against intracellular tumor antigens. Cancer Lett 2022; 538:215699. [PMID: 35487312 DOI: 10.1016/j.canlet.2022.215699] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/16/2022]
Abstract
Bispecific antibodies (BsAbs)-based therapeutics have been identified to be one of the most promising immunotherapy strategies. However, their target repertoire is mainly restricted to cell surface antigens rather than intracellular antigens, resulting in a relatively limited scope of applications. Intracellular tumor antigens are identified to account for a large proportion of tumor antigen profiles. Recently, bsAbs that target intracellular oncoproteins have raised much attention, broadening the targeting scope of tumor antigens and improving the efficacy of traditional antibody-based therapeutics. Consequently, this review will focus on this emerging field and discuss related research advances. We introduce the classification, characteristics, and clinical applications of bsAbs, the theoretical basis for targeting intracellular antigens, delivery systems of bsAbs, and the latest preclinical and clinical advances of bsAbs targeting several intracellular oncotargets, including those of cancer-testis antigens, differentiation antigens, neoantigens, and other antigens. Moreover, we summarize the limitations of current bsAbs, and propose several potential strategies against immune escape and T cell exhaustion as well as some future perspectives.
Collapse
Affiliation(s)
- Guanghui Xu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Yuting Luo
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Hanbing Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Yue Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China; Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
16
|
Fayd'herbe De Maudave A, Leconet W, Toupet K, Constantinides M, Bossis G, de Toledo M, Vialaret J, Hirtz C, Lopez-Noriega A, Jorgensen C, Noël D, Louis-Plence P, Grizot S, Villalba M. Intra-articular delivery of full-length antibodies through the use of an in situ forming depot. J Control Release 2021; 341:578-590. [PMID: 34915070 DOI: 10.1016/j.jconrel.2021.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022]
Abstract
Monoclonal antibodies (mAbs) are large size molecules that have demonstrated high therapeutic potential for the treatment of cancer or autoimmune diseases. Despite some excellent results, their intravenous administration results in high plasma concentration. This triggers off-target effects and sometimes poor targeted tissue distribution. To circumvent this issue, we investigated a local controlled-delivery approach using an in situ forming depot technology. Two clinically relevant mAbs, rituximab (RTX) and daratumumab (DARA), were formulated using an injectable technology based on biodegradable PEG-PLA copolymers. The stability and controlled release features of the formulations were investigated. HPLC and mass spectrometry revealed the preservation of the protein structure. In vitro binding of formulated antibodies to their target antigens and to their cellular FcγRIIIa natural killer cell receptor was fully maintained. Furthermore, encapsulated RTX was as efficient as classical intravenous RTX treatment to inhibit the in vivo tumor growth of malignant human B cells in immunodeficient NSG mice. Finally, the intra-articular administration of the formulated mAbs yielded a sustained local release associated with a lower plasma concentration compared to the intra-articular delivery of non-encapsulated mAbs. Our results demonstrate that the utilization of this polymeric technology is a reliable alternative for the local delivery of fully functional clinically relevant mAbs.
Collapse
Affiliation(s)
| | | | | | - Michael Constantinides
- IRMB, Univ Montpellier, INSERM, Montpellier, France; IRMB, CHU Montpellier, Montpellier, France
| | | | | | | | | | | | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France; IRMB, CHU Montpellier, Montpellier, France
| | - Daniele Noël
- IRMB, Univ Montpellier, INSERM, Montpellier, France; IRMB, CHU Montpellier, Montpellier, France
| | | | | | - Martin Villalba
- IRMB, Univ Montpellier, INSERM, Montpellier, France; IRMB, CHU Montpellier, Montpellier, France; IRMB, Univ Montpellier, INSERM, CNRS, CHU Montpellier, Montpellier, France; Institut Sainte-Catherine, Avignon, France.
| |
Collapse
|
17
|
Xiong H, Luo F, Zhou P, Yi J. Development of a reporter gene method to measure the bioactivity of anti-CD38 × CD3 bispecific antibody. Antib Ther 2021; 4:212-221. [PMID: 34676357 PMCID: PMC8524643 DOI: 10.1093/abt/tbab022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 01/04/2023] Open
Abstract
Background A T cell-redirecting bispecific antibody (bsAb) consisting of a tumor-binding unit and a T cell-binding unit is a large group of antibody-based biologics against death-causing cancer diseases. The anti-CD38 × anti-CD3 bsAb (Y150) is potential for treating multiple myeloma (MM). When developing a cell-based reporter gene bioassay to assess the activities of Y150, it was found that the expression of CD38 on the human T lymphocyte cells (Jurkat) caused the nonspecific activation, which interfered with the specific T cells activation of mediated by the Y150 and CD38(+) tumor cells. Methods Here, we first knocked-out the CD38 expression on Jurkat T cell line by CRISPR-Cas9 technology, then developed a stable monoclonal CD38(−) Jurkat T cell line with an NFAT-RE driving luciferase expressing system. Further based on the CD38(−) Jurkat cell, we developed a reporter gene method to assess the bioactivity of the anti-CD38 × anti-CD3 bsAb. Results Knocking out CD38 expression abolished the nonspecific self-activation of the Jurkat cells. The selected stable monoclonal CD38(−) Jurkat T cell line assured the robustness of the report genes assay for the anti-CD38 × anti-CD3 bsAb. The relative potencies of the Y150 measured by the developed reporter gene assay were correlated with those by the flow-cytometry-based cell cytotoxicity assay and by the ELISA-based binding assay. Conclusions The developed reporter gene assay was mechanism of action-reflective for the bioactivity of anti-CD38 × anti-CD3 antibody, and suitable for the quality control for the bsAb product.
Collapse
Affiliation(s)
- Hui Xiong
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| | - Fengyan Luo
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| | - Pengfei Zhou
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| | - Jizu Yi
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| |
Collapse
|
18
|
Wei PS, Chen YJ, Lin SY, Chuang KH, Sheu MT, Ho HO. In situ subcutaneously injectable thermosensitive PEG-PLGA diblock and PLGA-PEG-PLGA triblock copolymer composite as sustained delivery of bispecific anti-CD3 scFv T-cell/anti-EGFR Fab Engager (BiTEE). Biomaterials 2021; 278:121166. [PMID: 34634663 DOI: 10.1016/j.biomaterials.2021.121166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/12/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
In this study, PEGylated poly (lactide-co-glycolide) (PLGA) thermosensitive composite hydrogels (DTgels) loaded with bispecific anti-cluster of differentiation 3 (CD3) scFv T-cell/anti-epidermal growth factor receptor (EGFR) Fab engager (BiTEE) were subcutaneously (s.c.) injected for the in situ formation of a drug deposit to resolve limitations of the clinical application of the BiTEE of a short half-life and potential side effects. Three kinds of DTgels prepared with different ratios of methoxy poly (ethylene glycol) (mPEG)-PLGA (diblock copolymer, DP) and PLGA-PEG-PLGA (triblock copolymer, TP) were designated DTgel-1, DTgel-2, and DTgel-2S. All three DTgel formulations showed thermosensitive properties with a sol-gel transition temperature at 28-34 °C, which is suitable for an injection. An in vitro release study showed that all DTgel formulations loaded with stabilized BiTEE extended the release of the BiTEE for up to 7 days. In an animal pharmacokinetics study, an s.c. injection of BiTEE/DTgel-1, BiTEE/DTgel-2, or BiTEE/DTgel-2S respectively prolonged the half-life of the BiTEE by 3.5-, 2.0-, and 2.2-fold compared to an intravenous injection of the BiTEE solution. Simultaneously, BiTEE/DTgel formulations showed almost no proinflammatory cytokine release in mice injected with T cells after s.c. administration. Results of an animal antitumor (MDA-MB-231) study indicated that an s.c. injection of the BiTEE/DTgel formulations significantly improved the antitumor efficacy compared to an intravenous (i.v.) or s.c. injection of the BiTEE solution. Moreover, BiTEE/DTgel formulations led to enhanced T-cell recruitment to solid-tumor sites. In conclusion, the in situ formation of injectable PEGylated PLGA thermosensitive hydrogels loaded with the BiTEE was successfully carried out to increase its half-life, maintain a constant blood level within therapeutic windows, and enhance T-cell recruitment to solid-tumor sites resulting in exceptional treatment efficacy.
Collapse
Affiliation(s)
- Pu-Sheng Wei
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jou Chen
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Shyr-Yi Lin
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hsiang Chuang
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei, Taiwan.
| | - Hsiu-O Ho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
19
|
Correa S, Grosskopf AK, Lopez Hernandez H, Chan D, Yu AC, Stapleton LM, Appel EA. Translational Applications of Hydrogels. Chem Rev 2021; 121:11385-11457. [PMID: 33938724 PMCID: PMC8461619 DOI: 10.1021/acs.chemrev.0c01177] [Citation(s) in RCA: 366] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Advances in hydrogel technology have unlocked unique and valuable capabilities that are being applied to a diverse set of translational applications. Hydrogels perform functions relevant to a range of biomedical purposes-they can deliver drugs or cells, regenerate hard and soft tissues, adhere to wet tissues, prevent bleeding, provide contrast during imaging, protect tissues or organs during radiotherapy, and improve the biocompatibility of medical implants. These capabilities make hydrogels useful for many distinct and pressing diseases and medical conditions and even for less conventional areas such as environmental engineering. In this review, we cover the major capabilities of hydrogels, with a focus on the novel benefits of injectable hydrogels, and how they relate to translational applications in medicine and the environment. We pay close attention to how the development of contemporary hydrogels requires extensive interdisciplinary collaboration to accomplish highly specific and complex biological tasks that range from cancer immunotherapy to tissue engineering to vaccination. We complement our discussion of preclinical and clinical development of hydrogels with mechanical design considerations needed for scaling injectable hydrogel technologies for clinical application. We anticipate that readers will gain a more complete picture of the expansive possibilities for hydrogels to make practical and impactful differences across numerous fields and biomedical applications.
Collapse
Affiliation(s)
- Santiago Correa
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Abigail K. Grosskopf
- Chemical
Engineering, Stanford University, Stanford, California 94305, United States
| | - Hector Lopez Hernandez
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Doreen Chan
- Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anthony C. Yu
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Eric A. Appel
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
- Bioengineering, Stanford University, Stanford, California 94305, United States
- Pediatric
Endocrinology, Stanford University School
of Medicine, Stanford, California 94305, United States
- ChEM-H Institute, Stanford
University, Stanford, California 94305, United States
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
20
|
Evaluation of Loco-Regional Skin Toxicity Induced by an In Situ Forming Depot after a Single Subcutaneous Injection at Different Volumes and Flow Rates in Göttingen Minipigs. Int J Mol Sci 2021; 22:ijms22179250. [PMID: 34502155 PMCID: PMC8431084 DOI: 10.3390/ijms22179250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/03/2022] Open
Abstract
The present study aims to investigate the loco-regional tolerability and injection parameters (i.e., flow rate and administration volume) of an in situ forming depot (ISFD) in Göttingen minipigs, to secure both the therapeutic procedure and compliance in chronic medical prescriptions. The ISFD BEPO® technology (MedinCell S.A.) is investigated over 10 days, after a single subcutaneous injection of test item based on a DMSO solution of diblock and triblock polyethylene glycol-polylactic acid copolymers. Injection sites are systematically observed for macroscopic loco-regional skin reactions as well as ultrasound scanning, enabling longitudinal in vivo imaging of the depot. Observations are complemented by histopathological examinations at 72 h and 240 h post-injection. Overall, no treatment-emergent adverse effects are macroscopically or microscopically observed at the subcutaneous injection sites, for the tested injection flow rates of 1 and 8 mL/min and volumes of 0.2 and 1 mL. The histopathology examination confirms an expected foreign body reaction, with an intensity depending on the injected volume. The depot morphology is similar irrespective of the administration flow rates. These results indicate that the ISFD BEPO® technology can be considered safe when administered subcutaneously in Göttingen minipigs, a human-relevant animal model for subcutaneous administrations, in the tested ranges.
Collapse
|
21
|
Molinier C, Picot-Groz M, Malval O, Le Lamer-Déchamps S, Richard J, Lopez-Noriega A, Grizot S. Impact of octreotide counterion nature on the long-term stability and release kinetics from an in situ forming depot technology. J Control Release 2021; 336:457-468. [PMID: 34214596 DOI: 10.1016/j.jconrel.2021.06.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/17/2021] [Accepted: 06/27/2021] [Indexed: 01/03/2023]
Abstract
The generation of acylated impurities has represented an important hurdle in the development of long acting injectables for therapeutic peptides using biocompatible polymers with a polyester moiety. We investigated here an in situ forming depot (ISFD) technology that uses polyethylene glycol - polyester copolymers and a solvent exchange mechanism to promote depot formation. This technology has shown promise in formulating small molecules as well as therapeutic proteins. In the present work, using the well-known somatostatin analog octreotide acetate (OctAc) as a model molecule, we evaluated this delivery platform to release therapeutic peptides. Peptide acylation was found to be pronounced in the formulation, while it was very limited once the depot was formed and during the release process. The octreotide acylation pattern was fully characterized by LC-MS/MS. Moreover, it was demonstrated that exchanging the acetate anion with more hydrophobic counterions like pamoate or lauryl sulfate allowed to greatly improve the peptide stability profile, as well as the formulation release performance. Finally, the in vivo evaluation through pharmacokinetics studies in rat of these new octreotide salts in ISFD formulations showed that octreotide was quantifiable up to four weeks post-administration with a high bioavailability and an acceptable initial burst.
Collapse
Affiliation(s)
| | | | - Océane Malval
- MedinCell, 3 Rue des Frères Lumière, 34830 Jacou, France
| | | | - Joël Richard
- MedinCell, 3 Rue des Frères Lumière, 34830 Jacou, France
| | | | | |
Collapse
|
22
|
Protease-triggered bioresponsive drug delivery for the targeted theranostics of malignancy. Acta Pharm Sin B 2021; 11:2220-2242. [PMID: 34522585 PMCID: PMC8424222 DOI: 10.1016/j.apsb.2021.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Proteases have a fundamental role in maintaining physiological homeostasis, but their dysregulation results in severe activity imbalance and pathological conditions, including cancer onset, progression, invasion, and metastasis. This striking importance plus superior biological recognition and catalytic performance of proteases, combining with the excellent physicochemical characteristics of nanomaterials, results in enzyme-activated nano-drug delivery systems (nanoDDS) that perform theranostic functions in highly specific response to the tumor phenotype stimulus. In the tutorial review, the key advances of protease-responsive nanoDDS in the specific diagnosis and targeted treatment for malignancies are emphatically classified according to the effector biomolecule types, on the premise of summarizing the structure and function of each protease. Subsequently, the incomplete matching and recognition between enzyme and substrate, structural design complexity, volume production, and toxicological issues related to the nanocomposites are highlighted to clarify the direction of efforts in nanotheranostics. This will facilitate the promotion of nanotechnology in the management of malignant tumors.
Collapse
|
23
|
Swaminathan G, Shigna A, Kumar A, Byroju VV, Durgempudi VR, Dinesh Kumar L. RNA Interference and Nanotechnology: A Promising Alliance for Next Generation Cancer Therapeutics. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.694838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cancer is a significant health hazard of the 21st century, and GLOBOCAN predicts increasing cancer incidence in the coming decades. Though several conventional treatment modalities exist, most of them end up causing off-target and debilitating effects, and drug resistance acquisition. Advances in our understanding of tumor molecular biology offer alternative strategies for precise, robust, and potentially less toxic treatment paradigms for circumventing the disease at the cellular and molecular level. Several deregulated molecules associated with tumorigenesis have been developed as targets in RNA interference (RNAi) based cancer therapeutics. RNAi, a post-transcriptional gene regulation mechanism, has significantly gained attention because of its precise multi-targeted gene silencing. Although the RNAi approach is favorable, the direct administration of small oligonucleotides has not been fruitful because of their inherent lower half-lives and instability in the biological systems. Moreover, the lack of an appropriate delivery system to the primary site of the tumor that helps determine the potency of the drug and its reach, has limited the effective medical utilization of these bio-drugs. Nanotechnology, with its unique characteristics of enhanced permeation and better tumor-targeting efficiency, offers promising solutions owing to the various possibilities and amenability for modifications of the nanoparticles to augment cancer therapeutics. Nanoparticles could be made multimodal, by designing and synthesizing multiple desired functionalities, often resulting in unique and potentially applicable biological structures. A small number of Phase I clinical trials with systemically administered siRNA molecules conjugated with nanoparticles have been completed and the results are promising, indicating that, these new combinatorial therapies can successfully and safely be used to inhibit target genes in cancer patients to alleviate some of the disease burden. In this review, we highlight different types of nano-based delivery strategies for engineering Nano-RNAi-based bio drugs. Furthermore, we have highlighted the insights gained from current research that are entering the preclinical evaluation and information about initial clinical developments, shaping the future for next generation cancer therapeutics.
Collapse
|
24
|
Westaby D, Viscuse PV, Ravilla R, de la Maza MDLDF, Hahn A, Sharp A, de Bono J, Aparicio A, Fleming MT. Beyond the Androgen Receptor: The Sequence, the Mutants, and New Avengers in the Treatment of Castrate-Resistant Metastatic Prostate Cancer. Am Soc Clin Oncol Educ Book 2021; 41:e190-e202. [PMID: 34061561 DOI: 10.1200/edbk_321209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Targeting the androgen receptor by depriving testosterone with gonadotropin-releasing hormone agonists or antagonists, or surgical castration, has been the backbone of metastatic prostate cancer treatment. Although most prostate cancers initially respond to androgen deprivation, metastatic castration-resistant prostate cancer evolves into a heterogeneous disease with diverse drivers of progression and mechanisms of therapeutic resistance. Development of castrate resistance phenotype is associated with lethality despite the recent noteworthy strides gained via increase in therapeutic options. Identification of novel therapeutics to further improve survival and achieve durable responses in metastatic castration-resistant prostate cancer is a clinical necessity. In this review, we outline the existing avengers for treatment of metastatic castration-resistant prostate cancer by clinical presentation, placing into context the clinical state of the patient, such as burden of disease and symptoms. Doing so might aid in the ability to optimize the sequence of agents and allow for maximal exposure to life-prolonging therapeutics. Realizing the limitations of the androgen signaling inhibition, we explore the androgen-indifferent prostate cancer: the mutants. Classically, these subtypes have been associated with variant histology, but androgen-indifferent prostate cancer features are now frequently observed in association with heterogeneous morphologies, including double-negative prostate cancers, lacking both androgen receptor and neuroendocrine features, or clinicopathologic criteria, such as the aggressive variant prostate cancer criteria. The framework of new avengers against metastatic castration-resistant prostate cancer based on mechanism, including DNA repair, immune checkpoint inhibition, PTEN/PI3K/AKT pathway, prostate-specific membrane antigen targets, bispecific T-cell engagers, and radionuclide therapies, is summarized in this review.
Collapse
Affiliation(s)
- Daniel Westaby
- The Institute of Cancer Research and The Royal Marsden Hospital, London, United Kingdom
| | - Paul V Viscuse
- Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Rahul Ravilla
- US Oncology Research, New York Oncology Hematology, Albany, NY
| | | | - Andrew Hahn
- Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Adam Sharp
- The Institute of Cancer Research and The Royal Marsden Hospital, London, United Kingdom
| | - Johann de Bono
- The Institute of Cancer Research and The Royal Marsden Hospital, London, United Kingdom
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mark T Fleming
- US Oncology Research, Virginia Oncology Associates, Norfolk, VA
| |
Collapse
|
25
|
Cagnon ME, Curia S, Serindoux J, Cros JM, Ng F, Lopez-Noriega A. Poly(ethylene glycol)- b-poly(1,3-trimethylene carbonate) Copolymers for the Formulation of In Situ Forming Depot Long-Acting Injectables. Pharmaceutics 2021; 13:pharmaceutics13050605. [PMID: 33922166 PMCID: PMC8146374 DOI: 10.3390/pharmaceutics13050605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/02/2021] [Accepted: 04/19/2021] [Indexed: 11/20/2022] Open
Abstract
This article describes the utilization of (methoxy)poly(ethylene glycol)-b-poly(1,3-trimethylene carbonate) ((m)PEG–PTMC) diblock and triblock copolymers for the formulation of in situ forming depot long-acting injectables by solvent exchange. The results shown in this manuscript demonstrate that it is possible to achieve long-term drug deliveries from suspension formulations prepared with these copolymers, with release durations up to several months in vitro. The utilization of copolymers with different PEG and PTMC molecular weights affords to modulate the release profile and duration. A pharmacokinetic study in rats with meloxicam confirmed the feasibility of achieving at least 28 days of sustained delivery by using this technology while showing good local tolerability in the subcutaneous environment. The characterization of the depots at the end of the in vivo study suggests that the rapid phase exchange upon administration and the surface erosion of the resulting depots are driving the delivery kinetics from suspension formulations. Due to the widely accepted utilization of meloxicam as an analgesic drug for animal care, the results shown in this article are of special interest for the development of veterinary products aiming at a very long-term sustained delivery of this therapeutic molecule.
Collapse
|
26
|
Boinapally S, Ahn HH, Cheng B, Brummet M, Nam H, Gabrielson KL, Banerjee SR, Minn I, Pomper MG. A prostate-specific membrane antigen (PSMA)-targeted prodrug with a favorable in vivo toxicity profile. Sci Rep 2021; 11:7114. [PMID: 33782486 PMCID: PMC8007718 DOI: 10.1038/s41598-021-86551-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/09/2021] [Indexed: 11/09/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA) is a promising target for the treatment of advanced prostate cancer (PC) and various solid tumors. Although PSMA-targeted radiopharmaceutical therapy (RPT) has enabled significant imaging and prostate-specific antigen (PSA) responses, accumulating clinical data are beginning to reveal certain limitations, including a subgroup of non-responders, relapse, radiation-induced toxicity, and the need for specialized facilities for its administration. To date non-radioactive attempts to leverage PSMA to treat PC with antibodies, nanomedicines or cell-based therapies have met with modest success. We developed a non-radioactive prodrug, SBPD-1, composed of a small-molecule PSMA-targeting moiety, a cancer-selective cleavable linker, and the microtubule inhibitor monomethyl auristatin E (MMAE). SBPD-1 demonstrated high binding affinity to PSMA (Ki = 8.84 nM) and selective cytotoxicity to PSMA-expressing PC cell lines (IC50 = 3.90 nM). SBPD-1 demonstrated a significant survival benefit in two murine models of human PC relative to controls. The highest dose tested did not induce toxicity in immunocompetent mice. The high specific targeting ability of SBPD-1 to PSMA-expressing tumors and its favorable toxicity profile warrant its further development.
Collapse
Affiliation(s)
- Srikanth Boinapally
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Hye-Hyun Ahn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Bei Cheng
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Mary Brummet
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Hwanhee Nam
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Kathleen L Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Sangeeta R Banerjee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Il Minn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| |
Collapse
|
27
|
Heitmann JS, Pfluegler M, Jung G, Salih HR. Bispecific Antibodies in Prostate Cancer Therapy: Current Status and Perspectives. Cancers (Basel) 2021; 13:549. [PMID: 33535627 PMCID: PMC7867165 DOI: 10.3390/cancers13030549] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/29/2022] Open
Abstract
Prostate carcinoma (PC) is the second most common cancer in men. When the disease becomes unresponsive to androgen deprivation therapy, the remaining treatment options are of limited benefit. Despite intense efforts, none of the T cell-based immunotherapeutic strategies that meanwhile have become a cornerstone for treatment of other malignancies is established in PC. This refers to immune checkpoint inhibition (CI), which generally reinforces T cell immunity as well as chimeric antigen receptor T (CAR-T) cells and bispecific antibodies (bsAbs) that stimulate the T cell receptor/CD3-complex and mobilize T cells in a targeted manner. In general, compared to CAR-T cells, bsAb would have the advantage of being an "off the shelf" reagent associated with less preparative effort, but at present, despite enormous efforts, neither CAR-T cells nor bsAbs are successful in solid tumors. Here, we focus on the various bispecific constructs that are presently in development for treatment of PC, and discuss underlying concepts and the state of clinical evaluation as well as future perspectives.
Collapse
Affiliation(s)
- Jonas S. Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (J.S.H.); (M.P.)
- DFG Cluster of Excellence 2180 “Image-Guided and Functional Instructed Tumor Therapy” (IFIT), University of Tübingen, 72076 Tübingen, Germany;
| | - Martin Pfluegler
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (J.S.H.); (M.P.)
- DFG Cluster of Excellence 2180 “Image-Guided and Functional Instructed Tumor Therapy” (IFIT), University of Tübingen, 72076 Tübingen, Germany;
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Gundram Jung
- DFG Cluster of Excellence 2180 “Image-Guided and Functional Instructed Tumor Therapy” (IFIT), University of Tübingen, 72076 Tübingen, Germany;
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK), DKFZ Partner Site Tübingen, 72076 Tübingen, Germany
| | - Helmut R. Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (J.S.H.); (M.P.)
- DFG Cluster of Excellence 2180 “Image-Guided and Functional Instructed Tumor Therapy” (IFIT), University of Tübingen, 72076 Tübingen, Germany;
| |
Collapse
|
28
|
Fucà G, Spagnoletti A, Ambrosini M, de Braud F, Di Nicola M. Immune cell engagers in solid tumors: promises and challenges of the next generation immunotherapy. ESMO Open 2021; 6:100046. [PMID: 33508733 PMCID: PMC7841318 DOI: 10.1016/j.esmoop.2020.100046] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
In the landscape of cancer immunotherapy, immune cell engagers (ICEs) are rapidly emerging as a feasible and easy-to-deliver alternative to adoptive cell therapy for the antitumor redirection of immune effector cells. Even if in hematological malignancies this class of new therapeutics already hit the clinic, the development of ICEs in solid tumors still represents a challenge. Considering that ICEs are a rapidly expanding biotechnology in cancer therapy, we designed this review as a primer for clinicians, focusing on the major obstacles for the clinical implementation and the most translatable approaches proposed to overcome the limitations in solid tumors.
Collapse
Affiliation(s)
- G Fucà
- Immunotherapy and Innovative Therapeutics Unit, Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - A Spagnoletti
- Immunotherapy and Innovative Therapeutics Unit, Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - M Ambrosini
- Immunotherapy and Innovative Therapeutics Unit, Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - F de Braud
- Immunotherapy and Innovative Therapeutics Unit, Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Oncology and Hemato-oncology Department, University of Milan, Milan, Italy
| | - M Di Nicola
- Immunotherapy and Innovative Therapeutics Unit, Medical Oncology and Hematology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
29
|
Chitadze G, Laqua A, Lettau M, Baldus CD, Brüggemann M. Bispecific antibodies in acute lymphoblastic leukemia therapy. Expert Rev Hematol 2020; 13:1211-1233. [PMID: 33000968 DOI: 10.1080/17474086.2020.1831380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Blinatumomab, first in a class of bispecific T-cell engagers, revolutionized treatment paradigm of B-cell precursor relapsed/refractory or minimal residual disease positive acute lymphoblastic leukemia (ALL) in adults and children, inducing deep remissions in a proportion of patients. However, significant numbers of patients do not respond or eventually relapse. Strategies for improvement of treatment outcomes are required. AREAS COVERED This review discusses the main structural and functional features of blinatumomab, and its place in the treatment of ALL. Furthermore, prospects to increase the efficacy of blinatumomab are addressed. The developments in the field of bispecific antibodies and their possible implications for treatment of ALL are reviewed. EXPERT OPINION Better understanding the mechanisms of response and resistance to blinatumomab might help us to identify the group of patients benefiting most from treatment and to spare potentially toxic subsequent treatment strategies. Data emerging from ongoing clinical trials might change the treatment landscape of ALL and beyond. Early use of blinatumomab in frontline protocols with more advantageous treatment sequences and in combination with other targeted therapies might reduce the failure rates. Exponentially increasing number of novel treatment options and their possible combinations might complicate treatment decision-making without data from randomized trials.
Collapse
Affiliation(s)
- Guranda Chitadze
- Department of Hematology, University Hospital Schleswig-Holstein , Campus Kiel, Kiel, Germany
| | - Anna Laqua
- Department of Hematology, University Hospital Schleswig-Holstein , Campus Kiel, Kiel, Germany
| | - Marcus Lettau
- Department of Hematology, University Hospital Schleswig-Holstein , Campus Kiel, Kiel, Germany.,Institute of Immunology, University Hospital Schleswig-Holstein , Campus Kiel, Kiel, Germany
| | - Claudia D Baldus
- Department of Hematology, University Hospital Schleswig-Holstein , Campus Kiel, Kiel, Germany
| | - Monika Brüggemann
- Department of Hematology, University Hospital Schleswig-Holstein , Campus Kiel, Kiel, Germany
| |
Collapse
|
30
|
Engineered Fragments of the PSMA-Specific 5D3 Antibody and Their Functional Characterization. Int J Mol Sci 2020; 21:ijms21186672. [PMID: 32932591 PMCID: PMC7555429 DOI: 10.3390/ijms21186672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 11/29/2022] Open
Abstract
Prostate-Specific Membrane Antigen (PSMA) is an established biomarker for the imaging and experimental therapy of prostate cancer (PCa), as it is strongly upregulated in high-grade primary, androgen-independent, and metastatic lesions. Here, we report on the development and functional characterization of recombinant single-chain Fv (scFv) and Fab fragments derived from the 5D3 PSMA-specific monoclonal antibody (mAb). These fragments were engineered, heterologously expressed in insect S2 cells, and purified to homogeneity with yields up to 20 mg/L. In vitro assays including ELISA, immunofluorescence and flow cytometry, revealed that the fragments retain the nanomolar affinity and single target specificity of the parent 5D3 antibody. Importantly, using a murine xenograft model of PCa, we verified the suitability of fluorescently labeled fragments for in vivo imaging of PSMA-positive tumors and compared their pharmacokinetics and tissue distribution to the parent mAb. Collectively, our data provide an experimental basis for the further development of 5D3 recombinant fragments for future clinical use.
Collapse
|
31
|
Brolin C, Lim EWK, Grizot S, Olsen CH, Yavari N, Krag TO, Nielsen PE. Approaches for Systemic Delivery of Dystrophin Antisense Peptide Nucleic Acid in the mdx Mouse Model. Nucleic Acid Ther 2020; 31:208-219. [PMID: 32678992 DOI: 10.1089/nat.2020.0856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Antisense-mediated exon skipping constitutes a promising new modality for treatment of Duchenne Muscular Dystrophy (DMD), which is caused by gene mutations that typically introduce a translation stop codon in the dystrophin gene, thereby abolishing production of functional dystrophin protein. The exon removal can restore translation to produce a shortened, but still partially functional dystrophin protein. Peptide nucleic acid (PNA) as a potential antisense drug has previously been shown to restore the expression of functional dystrophin by splice modulation in the mdx mouse model of DMD. In this study, we compare systemic administration of a 20-mer splice switching antisense PNA oligomer through intravenous (i.v.) and subcutaneous (s.c.) routes in the mdx mice. Furthermore, the effect of in situ forming depot technology (BEPO®) and PNA-oligonucleotide formulation was studied. In vivo fluorescence imaging analysis showed fast renal/bladder excretion of the PNA (t½ ∼ 20 min) for i.v. administration, while s.c. administration showed a two to three times slower excretion. The release from the BEPO depot exhibited biphasic kinetics with a slow release (t½ ∼ 10 days) of 50% of the dose. In all cases, some accumulation in kidneys and liver could be detected. Formulation of PNA as a duplex hybridization complex with a complementary phosphorothioate oligonucleotide increased the solubility of the PNA. However, none of these alternative administration methods resulted in significantly improved antisense activity. Therefore, either more sophisticated formulations such as designed nanoparticles or conjugation to delivery ligands must be utilized to improve both pharmacokinetics as well as tissue targeting and availability. On the other hand, the results show that s.c. and BEPO depot administration of PNA are feasible and allow easier, higher, and less frequent dosing, as well as more controlled release, which can be exploited both for animal model studies as well as eventually in the clinic in terms of dosing optimization.
Collapse
Affiliation(s)
- Camilla Brolin
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ernest Wee Kiat Lim
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Niloofar Yavari
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Thomas O Krag
- Department of Neurology, Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Abstract
A bispecific antibody (bsAb) can simultaneously bind two different epitopes or antigens, allowing for multiple mechanistic functions with synergistic effects. BsAbs have attracted significant scientific attentions and efforts towards their development as drugs for cancers. There are 21 bsAbs currently undergoing clinical trials in China. Here, we review their platform technologies, expression and production, and biological activities and bioassay of these bsAbs, and summarize their structural formats and mechanisms of actions. T-cell redirection and checkpoint inhibition are two main mechanisms of the bsAbs that we discuss in detail. Furthermore, we provide our perspective on the future of bsAb development in China, including CD3-bsAbs for solid tumors and related cytokine release syndromes, expression and chemistry, manufacturing and controls, clinical development, and immunogenicity.
Collapse
Affiliation(s)
- Jing Zhang
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| | - Jizu Yi
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| | - Pengfei Zhou
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| |
Collapse
|
33
|
Roberge C, Cros JM, Serindoux J, Cagnon ME, Samuel R, Vrlinic T, Berto P, Rech A, Richard J, Lopez-Noriega A. BEPO®: Bioresorbable diblock mPEG-PDLLA and triblock PDLLA-PEG-PDLLA based in situ forming depots with flexible drug delivery kinetics modulation. J Control Release 2020; 319:416-427. [DOI: 10.1016/j.jconrel.2020.01.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/28/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
|
34
|
Franquiz MJ, Short NJ. Blinatumomab for the Treatment of Adult B-Cell Acute Lymphoblastic Leukemia: Toward a New Era of Targeted Immunotherapy. Biologics 2020; 14:23-34. [PMID: 32103893 PMCID: PMC7027838 DOI: 10.2147/btt.s202746] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022]
Abstract
Several therapeutic advancements in the treatment of B-cell acute lymphoblastic leukemia (ALL) have surfaced in the past decade, primarily driven by an increased understanding of the immunopathobiology of this disease. The clinical use of blinatumomab, a bispecific antibody that coordinates cytotoxic CD3+ T lymphocytes and CD19+ lymphoblasts, has resulted in improved outcomes in both relapsed/refractory and minimal residual disease-positive B-cell ALL. Promising emerging data also demonstrate the efficacy of this agent in the frontline setting and in combination regimens. Uncertainty remains regarding the optimal sequencing and combination of blinatumomab with cytotoxic chemotherapy and other emerging agents. The pharmacology and clinical data on blinatumomab for adult B-cell ALL, both as monotherapy and in combinations, will be reviewed herein.
Collapse
Affiliation(s)
- Miguel J Franquiz
- Baylor College of Medicine, Houston, TX, USA
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
35
|
Biological and therapeutic advances in the pursuit of effective immunotherapy for prostate cancer. Curr Opin Urol 2019; 30:30-35. [PMID: 31609776 DOI: 10.1097/mou.0000000000000682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The successful development of effective cancer immunotherapy, in particular immune checkpoint inhibitors, has changed the treatment paradigm of many tumor types. In light of the limited efficacy of checkpoint inhibitors demonstrated in recent clinical trials in refractory prostate cancer, this review highlights important recent and ongoing studies that are shaping the pursuit of effective immunotherapy for prostate cancer. RECENT FINDINGS We review two overarching themes with respect to recent studies of prostate cancer immunotherapy: evolving therapeutic strategies and novel biological findings, including the landscape of predictive biomarkers of immunotherapy response. SUMMARY Novel and combinatorial immunotherapy strategies are being implemented across the clinical spectrum of prostate cancer. Greater understanding of complex tumor-immune interactions and the determinants of therapy response in prostate cancer is an area of intense investigation, and will inform both translational and clinical immuno-oncology research in the field.
Collapse
|
36
|
Paolini MS, Fenton OS, Bhattacharya C, Andresen JL, Langer R. Polymers for extended-release administration. Biomed Microdevices 2019; 21:45. [DOI: 10.1007/s10544-019-0386-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Huynh V, Jesmer AH, Shoaib MM, D'Angelo AD, Rullo AF, Wylie RG. Improved Efficacy of Antibody Cancer Immunotherapeutics through Local and Sustained Delivery. Chembiochem 2019; 20:747-753. [DOI: 10.1002/cbic.201800579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Vincent Huynh
- Department of Chemistry and Chemical BiologyMcMaster University Hamilton Ontario L8S 4M1 Canada
| | - Alexander H. Jesmer
- Department of Chemistry and Chemical BiologyMcMaster University Hamilton Ontario L8S 4M1 Canada
| | - Muhammad M. Shoaib
- Department of Chemistry and Chemical BiologyMcMaster University Hamilton Ontario L8S 4M1 Canada
| | - Anthony D. D'Angelo
- Department of Chemistry and Chemical BiologyMcMaster University Hamilton Ontario L8S 4M1 Canada
| | - Anthony F. Rullo
- Department of Chemistry and Chemical BiologyMcMaster University Hamilton Ontario L8S 4M1 Canada
- McMaster Immunology Research CenterDepartment of Pathology and Molecular MedicineMcMaster University Hamilton Ontario L8S 4M1 Canada
| | - Ryan G. Wylie
- Department of Chemistry and Chemical BiologyMcMaster University Hamilton Ontario L8S 4M1 Canada
| |
Collapse
|