1
|
Schlaepfer DD, Ojalill M, Stupack DG. Focal adhesion kinase signaling - tumor vulnerabilities and clinical opportunities. J Cell Sci 2024; 137:jcs261723. [PMID: 39034922 PMCID: PMC11298715 DOI: 10.1242/jcs.261723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Focal adhesion kinase (FAK; encoded by PTK2) was discovered over 30 years ago as a cytoplasmic protein tyrosine kinase that is localized to cell adhesion sites, where it is activated by integrin receptor binding to extracellular matrix proteins. FAK is ubiquitously expressed and functions as a signaling scaffold for a variety of proteins at adhesions and in the cell cytoplasm, and with transcription factors in the nucleus. FAK expression and intrinsic activity are essential for mouse development, with molecular connections to cell motility, cell survival and gene expression. Notably, elevated FAK tyrosine phosphorylation is common in tumors, including pancreatic and ovarian cancers, where it is associated with decreased survival. Small molecule and orally available FAK inhibitors show on-target inhibition in tumor and stromal cells with effects on chemotherapy resistance, stromal fibrosis and tumor microenvironment immune function. Herein, we discuss recent insights regarding mechanisms of FAK activation and signaling, its roles as a cytoplasmic and nuclear scaffold, and the tumor-intrinsic and -extrinsic effects of FAK inhibitors. We also discuss results from ongoing and advanced clinical trials targeting FAK in low- and high-grade serous ovarian cancers, where FAK acts as a master regulator of drug resistance. Although FAK is not known to be mutationally activated, preventing FAK activity has revealed multiple tumor vulnerabilities that support expanding clinical combinatorial targeting possibilities.
Collapse
Affiliation(s)
- David D. Schlaepfer
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, Division of Gynecologic Oncology, 3855 Health Sciences Dr., La Jolla, CA 92098, USA
| | - Marjaana Ojalill
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, Division of Gynecologic Oncology, 3855 Health Sciences Dr., La Jolla, CA 92098, USA
| | - Dwayne G. Stupack
- University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Moores Cancer Center, Division of Gynecologic Oncology, 3855 Health Sciences Dr., La Jolla, CA 92098, USA
| |
Collapse
|
2
|
Deng H, Jia Q, Ming X, Sun Y, Lu Y, Liu L, Zhou J. Hippo pathway in intestinal diseases: focusing on ferroptosis. Front Cell Dev Biol 2023; 11:1291686. [PMID: 38130953 PMCID: PMC10734691 DOI: 10.3389/fcell.2023.1291686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The incidence of intestinal diseases, such as inflammatory bowel disease, gastric cancer, and colorectal cancer, has steadily increased over the past decades. The Hippo pathway is involved in cell proliferation, tissue and organ damage, energy metabolism, tumor formation, and other physiologic processes. Ferroptosis is a form of programmed cell death characterized by the accumulation of iron and lipid peroxides. The Hippo pathway and ferroptosis are associated with various intestinal diseases; however, the crosstalk between them is unclear. This review elaborates on the current research on the Hippo pathway and ferroptosis in the context of intestinal diseases. We summarized the connection between the Hippo pathway and ferroptosis to elucidate the underlying mechanism by which these pathways influence intestinal diseases. We speculate that a mutual regulatory mechanism exists between the Hippo pathway and ferroptosis and these two pathways interact in several ways to regulate intestinal diseases.
Collapse
Affiliation(s)
- Hongwei Deng
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Qiuting Jia
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Xin Ming
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yuxin Sun
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Yuxuan Lu
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Li Liu
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jun Zhou
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Tan X, Yan Y, Song B, Zhu S, Mei Q, Wu K. Focal adhesion kinase: from biological functions to therapeutic strategies. Exp Hematol Oncol 2023; 12:83. [PMID: 37749625 PMCID: PMC10519103 DOI: 10.1186/s40164-023-00446-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
Focal adhesion kinase (FAK), a nonreceptor cytoplasmic tyrosine kinase, is a vital participant in primary cellular functions, such as proliferation, survival, migration, and invasion. In addition, FAK regulates cancer stem cell activities and contributes to the formation of the tumor microenvironment (TME). Importantly, increased FAK expression and activity are strongly associated with unfavorable clinical outcomes and metastatic characteristics in numerous tumors. In vitro and in vivo studies have demonstrated that modulating FAK activity by application of FAK inhibitors alone or in combination treatment regimens could be effective for cancer therapy. Based on these findings, several agents targeting FAK have been exploited in diverse preclinical tumor models. This article briefly describes the structure and function of FAK, as well as research progress on FAK inhibitors in combination therapies. We also discuss the challenges and future directions regarding anti-FAK combination therapies.
Collapse
Affiliation(s)
- Ximin Tan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuheng Yan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Zwimpfer TA, Tal O, Geissler F, Coelho R, Rimmer N, Jacob F, Heinzelmann-Schwarz V. Low grade serous ovarian cancer - A rare disease with increasing therapeutic options. Cancer Treat Rev 2023; 112:102497. [PMID: 36525716 DOI: 10.1016/j.ctrv.2022.102497] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
High-grade serous ovarian cancers (HGSOCs) most commonly arise from the fimbrial end of the fallopian tube and harbor TP53 gene mutations. In contrast, low-grade serous ovarian cancers (LGSOCs) appear to have different pathological, epidemiological, and clinical features and should be seen as a distinct serous epithelial ovarian cancer subtype. Our current understanding of LGSOC is limited, and treatment has generally been derived from the more common HGSOCs due to a lack of separate trial data. LGSOCs are characterized by slow tumor growth and are assumed to develop from serous borderline ovarian tumors as precursors. These cancers are often estrogen-receptor positive and show an activated mitogen-activated protein kinase pathway together with KRAS and BRAF mutations and, rarely, TP53 mutations. These characteristics are now commonly used to guide therapeutical decision making and, consequently, a substantial part of treatment consists of maintenance with endocrine treatment, thus balancing disease stabilization and mild toxicity. Additionally, new trials are ongoing that examine the role of targeted therapies such as MEK inhibitors in combination with endocrine treatments. The purpose of this work is to summarize current knowledge and present ongoing trial efforts for LGSOCs.
Collapse
Affiliation(s)
- Tibor A Zwimpfer
- Peter MacCallum Cancer Center, East Melbourne, Victoria 3002, Australia; Department of Gynecological Oncology, University Hospital Basel, 4031 Basel, Switzerland.
| | - Ori Tal
- Department of Obstetrics and Gynecology, Edith Wolfson Medical Center, Holon, Israel
| | - Franziska Geissler
- Department of Gynecological Oncology, University Hospital Basel, 4031 Basel, Switzerland
| | - Ricardo Coelho
- Ovarian Cancer Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Natalie Rimmer
- Ovarian Cancer Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Francis Jacob
- Ovarian Cancer Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Viola Heinzelmann-Schwarz
- Peter MacCallum Cancer Center, East Melbourne, Victoria 3002, Australia; Ovarian Cancer Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
5
|
Capuozzo M, Santorsola M, Landi L, Granata V, Perri F, Celotto V, Gualillo O, Nasti G, Ottaiano A. Evolution of Treatment in Advanced Cholangiocarcinoma: Old and New towards Precision Oncology. Int J Mol Sci 2022; 23:15124. [PMID: 36499450 PMCID: PMC9740631 DOI: 10.3390/ijms232315124] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant neoplasm arising in the epithelium of the biliary tract. It represents the second most common primary liver cancer in the world, after hepatocellular carcinoma, and it constitutes 10-15% of hepatobiliary neoplasms and 3% of all gastrointestinal tumors. As in other types of cancers, recent studies have revealed genetic alterations underlying the establishment and progression of CCA. The most frequently involved genes are APC, ARID1A, AXIN1, BAP1, EGFR, FGFRs, IDH1/2, RAS, SMAD4, and TP53. Actionable targets include alterations of FGFRs, IDH1/2, BRAF, NTRK, and HER2. "Precision oncology" is emerging as a promising approach for CCA, and it is possible to inhibit the altered function of these genes with molecularly oriented drugs (pemigatinib, ivosidenib, vemurafenib, larotrectinib, and trastuzumab). In this review, we provide an overview of new biologic drugs (their structures, mechanisms of action, and toxicities) to treat metastatic CCA, providing readers with panoramic information on the trajectory from "old" chemotherapies to "new" target-oriented drugs.
Collapse
Affiliation(s)
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Loris Landi
- Sanitary District, Ds. 58 ASL-Naples-3, 80056 Ercolano, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Venere Celotto
- Coordinamento Farmaceutico, ASL-Naples-3, 80056 Ercolano, Italy
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| |
Collapse
|
6
|
Yan G, Luna A, Wang H, Bozorgui B, Li X, Sanchez M, Dereli Z, Kahraman N, Kara G, Chen X, Zheng C, McGrail D, Sahni N, Lu Y, Babur O, Cokol M, Lim B, Ozpolat B, Sander C, Mills GB, Korkut A. BET inhibition induces vulnerability to MCL1 targeting through upregulation of fatty acid synthesis pathway in breast cancer. Cell Rep 2022; 40:111304. [PMID: 36103824 PMCID: PMC9523722 DOI: 10.1016/j.celrep.2022.111304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/06/2022] [Accepted: 08/10/2022] [Indexed: 11/12/2022] Open
Abstract
Therapeutic options for treatment of basal-like breast cancers remain limited. Here, we demonstrate that bromodomain and extra-terminal (BET) inhibition induces an adaptive response leading to MCL1 protein-driven evasion of apoptosis in breast cancer cells. Consequently, co-targeting MCL1 and BET is highly synergistic in breast cancer models. The mechanism of adaptive response to BET inhibition involves the upregulation of lipid synthesis enzymes including the rate-limiting stearoyl-coenzyme A (CoA) desaturase. Changes in lipid synthesis pathway are associated with increases in cell motility and membrane fluidity as well as re-localization and activation of HER2/EGFR. In turn, the HER2/EGFR signaling results in the accumulation of and vulnerability to the inhibition of MCL1. Drug response and genomics analyses reveal that MCL1 copy-number alterations are associated with effective BET and MCL1 co-targeting. The high frequency of MCL1 chromosomal amplifications (>30%) in basal-like breast cancers suggests that BET and MCL1 co-targeting may have therapeutic utility in this aggressive subtype of breast cancer.
Collapse
Affiliation(s)
- Gonghong Yan
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Augustin Luna
- cBio Center, Department of Data Sciences, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Heping Wang
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Behnaz Bozorgui
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xubin Li
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maga Sanchez
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zeynep Dereli
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nermin Kahraman
- Department of Experimental Therapeutics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Goknur Kara
- Department of Experimental Therapeutics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaohua Chen
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Caishang Zheng
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniel McGrail
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nidhi Sahni
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yiling Lu
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ozgun Babur
- Computer Science, College of Science and Mathematics, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Murat Cokol
- Axcella Therapeutics, Cambridge, MA 02139, USA
| | - Bora Lim
- Breast Cancer Research Program, Dan L Duncan Comprehensive Cancer Center, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chris Sander
- cBio Center, Department of Data Sciences, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Gordon B Mills
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Fang DD, Tao R, Wang G, Li Y, Zhang K, Xu C, Zhai G, Wang Q, Wang J, Tang C, Min P, Xiong D, Chen J, Wang S, Yang D, Zhai Y. Discovery of a novel ALK/ROS1/FAK inhibitor, APG-2449, in preclinical non-small cell lung cancer and ovarian cancer models. BMC Cancer 2022; 22:752. [PMID: 35820889 PMCID: PMC9277925 DOI: 10.1186/s12885-022-09799-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tyrosine kinase inhibitors (TKIs) are mainstays of cancer treatment. However, their clinical benefits are often constrained by acquired resistance. To overcome such outcomes, we have rationally engineered APG-2449 as a novel multikinase inhibitor that is highly potent against oncogenic alterations of anaplastic lymphoma kinase (ALK), ROS proto-oncogene 1 receptor tyrosine kinase (ROS1), and focal adhesion kinase (FAK). Here we present the preclinical evaluation of APG-2449, which exhibits antiproliferative activity in cells carrying ALK fusion or secondary mutations. METHODS KINOMEscan® and LANCE TR-FRET were used to characterize targets and selectivity of APG-2449. Water-soluble tetrazolium salt (WST-8) viability assay and xenograft tumorigenicity were employed to evaluate therapeutic efficacy of monotherapy or drug combination in preclinical models of solid tumors. Western blot, pharmacokinetic, and flow cytometry analyses, as well as RNA sequencing were used to explore pharmacokinetic-pharmacodynamic correlations and the mechanism of actions driving drug combination synergy. RESULTS In mice bearing wild-type or ALK/ROS1-mutant non-small-cell lung cancer (NSCLC), APG-2449 demonstrates potent antitumor activity, with correlations between pharmacokinetics and pharmacodynamics in vivo. Through FAK inhibition, APG-2449 sensitizes ovarian xenograft tumors to paclitaxel by reducing CD44+ and aldehyde dehydrogenase 1-positive (ALDH1+) cancer stem cell populations, including ovarian tumors insensitive to carboplatin. In epidermal growth factor receptor (EGFR)-mutated NSCLC xenograft models, APG-2449 enhances EGFR TKI-induced tumor growth inhibition, while the ternary combination of APG-2449 with EGFR (osimertinib) and mitogen-activated extracellular signal-regulated kinase (MEK; trametinib) inhibitors overcomes osimertinib resistance. Mechanistically, phosphorylation of ALK, ROS1, and FAK, as well as their downstream components, is effectively inhibited by APG-2449. CONCLUSIONS Taken together, our studies demonstrate that APG-2449 exerts potent and durable antitumor activity in human NSCLC and ovarian tumor models when administered alone or in combination with other therapies. A phase 1 clinical trial has been initiated to evaluate the safety and preliminary efficacy of APG-2449 in patients with advanced solid tumors, including ALK+ NSCLC refractory to earlier-generation ALK inhibitors. TRIAL REGISTRATION Clinicaltrial.gov registration: NCT03917043 (date of first registration, 16/04/2019) and Chinese clinical trial registration: CTR20190468 (date of first registration, 09/04/2019).
Collapse
Affiliation(s)
- Douglas D Fang
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Ran Tao
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Guangfeng Wang
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Yuanbao Li
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Kaixiang Zhang
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Chunhua Xu
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Guoqin Zhai
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Qixin Wang
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Jingwen Wang
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Chunyang Tang
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Ping Min
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Dengkun Xiong
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Jianyong Chen
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China
| | - Shaomeng Wang
- Pharmacology and Medicinal Chemistry, Michigan Center for Therapeutic Innovation, University of Michigan, 1600 Huron Parkway NCRC/Building 520 Room 1245, Ann Arbor, MI, 48109, USA.
| | - Dajun Yang
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China. .,Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510275, China.
| | - Yifan Zhai
- Ascentage Pharma (Suzhou) Co., Ltd, 68 Xinqing Road, Suzhou, 215214, China.
| |
Collapse
|
8
|
Ahluwalia P, Mondal AK, Ahluwalia M, Sahajpal NS, Jones K, Jilani Y, Gahlay GK, Barrett A, Kota V, Rojiani AM, Kolhe R. Clinical and molecular assessment of an onco-immune signature with prognostic significance in patients with colorectal cancer. Cancer Med 2022; 11:1573-1586. [PMID: 35137551 PMCID: PMC8921909 DOI: 10.1002/cam4.4568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 12/28/2021] [Indexed: 12/22/2022] Open
Abstract
Understanding the complex tumor microenvironment is key to the development of personalized therapies for the treatment of cancer including colorectal cancer (CRC). In the past decade, significant advances in the field of immunotherapy have changed the paradigm of cancer treatment. Despite significant improvements, tumor heterogeneity and lack of appropriate classification tools for CRC have prevented accurate risk stratification and identification of a wider patient population that may potentially benefit from targeted therapies. To identify novel signatures for accurate prognostication of CRC, we quantified gene expression of 12 immune‐related genes using a medium‐throughput NanoString quantification platform in 93 CRC patients. Multivariate prognostic analysis identified a combined four‐gene prognostic signature (TGFB1, PTK2, RORC, and SOCS1) (HR: 1.76, 95% CI: 1.05–2.95, *p < 0.02). The survival trend was captured in an independent gene expression data set: GSE17536 (177 patients; HR: 3.31, 95% CI: 1.99–5.55, *p < 0.01) and GSE14333 (226 patients; HR: 2.47, 95% CI: 1.35–4.53, *p < 0.01). Further, gene set enrichment analysis of the TCGA data set associated higher prognostic scores with epithelial–mesenchymal transition (EMT) and inflammatory pathways. Comparatively, a lower prognostic score was correlated with oxidative phosphorylation and MYC and E2F targets. Analysis of immune parameters identified infiltration of T‐reg cells, CD8+ T cells, M2 macrophages, and B cells in high‐risk patient groups along with upregulation of immune exhaustion genes. This molecular study has identified a novel prognostic gene signature with clinical utility in CRC. Therefore, along with prognostic features, characterization of immune cell infiltrates and immunosuppression provides actionable information that should be considered while employing personalized medicine.
Collapse
Affiliation(s)
- Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Ashis K Mondal
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | | | - Nikhil S Sahajpal
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Kimya Jones
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Yasmeen Jilani
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Gagandeep K Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Amanda Barrett
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Vamsi Kota
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Amyn M Rojiani
- Department of Pathology, Penn State College of Medicine, Hershey, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
9
|
Alexander RA, Lot I, Saha K, Abadie G, Lambert M, Decosta E, Kobayashi H, Beautrait A, Borrull A, Asnacios A, Bouvier M, Scott MGH, Marullo S, Enslen H. Beta-arrestins operate an on/off control switch for focal adhesion kinase activity. Cell Mol Life Sci 2020; 77:5259-5279. [PMID: 32040695 PMCID: PMC11104786 DOI: 10.1007/s00018-020-03471-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 12/20/2022]
Abstract
Focal adhesion kinase (FAK) regulates key biological processes downstream of G protein-coupled receptors (GPCRs) in normal and cancer cells, but the modes of kinase activation by these receptors remain unclear. We report that after GPCR stimulation, FAK activation is controlled by a sequence of events depending on the scaffolding proteins β-arrestins and G proteins. Depletion of β-arrestins results in a marked increase in FAK autophosphorylation and focal adhesion number. We demonstrate that β-arrestins interact directly with FAK and inhibit its autophosphorylation in resting cells. Both FAK-β-arrestin interaction and FAK inhibition require the FERM domain of FAK. Following the stimulation of the angiotensin receptor AT1AR and subsequent translocation of the FAK-β-arrestin complex to the plasma membrane, β-arrestin interaction with the adaptor AP-2 releases inactive FAK from the inhibitory complex, allowing its activation by receptor-stimulated G proteins and activation of downstream FAK effectors. Release and activation of FAK in response to angiotensin are prevented by an AP-2-binding deficient β-arrestin and by a specific inhibitor of β-arrestin/AP-2 interaction; this inhibitor also prevents FAK activation in response to vasopressin. This previously unrecognized mechanism of FAK regulation involving a dual role of β-arrestins, which inhibit FAK in resting cells while driving its activation at the plasma membrane by GPCR-stimulated G proteins, opens new potential therapeutic perspectives in cancers with up-regulated FAK.
Collapse
Affiliation(s)
- Revu Ann Alexander
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Isaure Lot
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Kusumika Saha
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Guillaume Abadie
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Mireille Lambert
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Eleonore Decosta
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Hiroyuki Kobayashi
- Department of Biochemistry and the Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Alexandre Beautrait
- Department of Biochemistry and the Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Aurélie Borrull
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Atef Asnacios
- Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, Paris, France
| | - Michel Bouvier
- Department of Biochemistry and the Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Mark G H Scott
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Stefano Marullo
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Hervé Enslen
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France.
| |
Collapse
|
10
|
Tsang M, Quesnel K, Vincent K, Hutchenreuther J, Postovit LM, Leask A. Insights into Fibroblast Plasticity: Cellular Communication Network 2 Is Required for Activation of Cancer-Associated Fibroblasts in a Murine Model of Melanoma. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:206-221. [PMID: 31610176 DOI: 10.1016/j.ajpath.2019.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
Abstract
Tumor stroma resembles a fibrotic microenvironment, being characterized by the presence of myofibroblast-like cancer-associated fibroblasts (CAFs). In wild-type mice injected with melanoma cells, we show that the stem cell transcription factor Sox2 is expressed by tumor cells and induced in CAFs derived from synthetic fibroblasts. These fibroblasts were labeled postnatally with green fluorescent protein using mice expressing a tamoxifen-dependent Cre recombinase under the control of a fibroblast-specific promoter/enhancer. Conversely, fibroblast activation was impaired in mice with a fibroblast-specific deletion of cellular communication network 2 (Ccn2), associated with reduced expression of α-smooth muscle actin and Sox2. Multipotent Sox2-expressing skin-derived precursor (SKP) spheroids were cultured from murine back skin. Using lineage tracing and flow cytometry, approximately 40% of SKPs were found to be derived from type I collagen-lineage cells and acquired multipotency in culture. Inhibition of mechanotransduction pathways prevented myofibroblast differentiation of SKPs and expression of Ccn2. In SKPs deleted for Ccn2, differentiation into a myofibroblast, but not an adipocyte or neuronal phenotype, was also impaired. In human melanoma, CCN2 expression was associated with a profibrotic integrin alpha (ITGA) 11-expressing subset of CAFs that negatively associated with survival. These results suggest that synthetic dermal fibroblasts are plastic, and that CCN2 is required for the differentiation of dermal progenitor cells into a myofibroblast/CAF phenotype and is, therefore, a therapeutic target in melanoma.
Collapse
Affiliation(s)
- Matthew Tsang
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Katherine Quesnel
- Department of Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Krista Vincent
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada; Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - James Hutchenreuther
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | | | - Andrew Leask
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada; Department of Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
11
|
Ovarian Cancer Stem Cells: Role in Metastasis and Opportunity for Therapeutic Targeting. Cancers (Basel) 2019; 11:cancers11070934. [PMID: 31277278 PMCID: PMC6678643 DOI: 10.3390/cancers11070934] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/29/2019] [Accepted: 06/30/2019] [Indexed: 02/08/2023] Open
Abstract
Ovarian cancer (OC) is a heterogeneous disease usually diagnosed at a late stage. Cancer stem cells (CSCs) that exist within the bulk tumor survive first-line chemotherapy and contribute to resistant disease with metastasis. Understanding the key features of CSC biology provides valuable opportunities to develop OCSC-directed therapeutics, which will eventually improve the clinical outcomes of patients. Although significant developments have occurred since OCSCs were first described, the involvement of CSCs in ovarian tumor metastasis is not fully understood. Here, we discuss putative CSC markers and the fundamental role of CSCs in facilitating tumor dissemination in OC. Additionally, we focus on promising CSC-targeting strategies in preclinical and clinical studies of OC and discuss potential challenges in CSC research.
Collapse
|
12
|
Kessler BE, Mishall KM, Kellett MD, Clark EG, Pugazhenthi U, Pozdeyev N, Kim J, Tan AC, Schweppe RE. Resistance to Src inhibition alters the BRAF-mutant tumor secretome to promote an invasive phenotype and therapeutic escape through a FAK>p130Cas>c-Jun signaling axis. Oncogene 2019; 38:2565-2579. [PMID: 30531837 PMCID: PMC6450711 DOI: 10.1038/s41388-018-0617-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 11/20/2018] [Accepted: 11/23/2018] [Indexed: 01/09/2023]
Abstract
Few therapy options exist for patients with advanced papillary and anaplastic thyroid cancer. We and others have previously identified c-Src as a key mediator of thyroid cancer pro-tumorigenic processes and a promising therapeutic target for thyroid cancer. To increase the efficacy of targeting Src in the clinic, we sought to define mechanisms of resistance to the Src inhibitor, dasatinib, to identify key pathways to target in combination. Using a panel of thyroid cancer cell lines expressing clinically relevant mutations in BRAF or RAS, which were previously developed to be resistant to dasatinib, we identified a switch to a more invasive phenotype in the BRAF-mutant cells as a potential therapy escape mechanism. This phenotype switch is driven by FAK kinase activity, and signaling through the p130Cas>c-Jun signaling axis. We have further shown this more invasive phenotype is accompanied by alterations in the secretome through the increased expression of pro-inflammatory cytokines, including IL-1β, and the pro-invasive metalloprotease, MMP-9. Furthermore, IL-1β signals via a feedforward autocrine loop to promote invasion through a FAK>p130Cas>c-Jun>MMP-9 signaling axis. We further demonstrate that upfront combined inhibition of FAK and Src synergistically inhibits growth and invasion, and induces apoptosis in a panel of BRAF- and RAS-mutant thyroid cancer cell lines. Together our data demonstrate that acquired resistance to single-agent Src inhibition promotes a more invasive phenotype through an IL-1β>FAK>p130Cas>c-Jun >MMP signaling axis, and that combined inhibition of FAK and Src has the potential to block this inhibitor-induced phenotype switch.
Collapse
Affiliation(s)
- Brittelle E Kessler
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Katie M Mishall
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Meghan D Kellett
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Erin G Clark
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Umarani Pugazhenthi
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Nikita Pozdeyev
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Division of Bioinformatics and Personalized Medicine, Aurora, CO, 80045, USA
| | - Jihye Kim
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Aik Choon Tan
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Rebecca E Schweppe
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
13
|
Naser R, Aldehaiman A, Díaz-Galicia E, Arold ST. Endogenous Control Mechanisms of FAK and PYK2 and Their Relevance to Cancer Development. Cancers (Basel) 2018; 10:E196. [PMID: 29891810 PMCID: PMC6025627 DOI: 10.3390/cancers10060196] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023] Open
Abstract
Focal adhesion kinase (FAK) and its close paralogue, proline-rich tyrosine kinase 2 (PYK2), are key regulators of aggressive spreading and metastasis of cancer cells. While targeted small-molecule inhibitors of FAK and PYK2 have been found to have promising antitumor activity, their clinical long-term efficacy may be undermined by the strong capacity of cancer cells to evade anti-kinase drugs. In healthy cells, the expression and/or function of FAK and PYK2 is tightly controlled via modulation of gene expression, competing alternatively spliced forms, non-coding RNAs, and proteins that directly or indirectly affect kinase activation or protein stability. The molecular factors involved in this control are frequently deregulated in cancer cells. Here, we review the endogenous mechanisms controlling FAK and PYK2, and with particular focus on how these mechanisms could inspire or improve anticancer therapies.
Collapse
Affiliation(s)
- Rayan Naser
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Abdullah Aldehaiman
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Escarlet Díaz-Galicia
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|