1
|
Tarantelli C, Wald D, Munz N, Spriano F, Bruscaggin A, Cannas E, Cascione L, Gaudio E, Arribas AJ, Manjappa S, Golino G, Scalise L, Cacciapuoti MT, Zucca E, Stathis A, Inghirami G, Van Berkel PH, Rossi D, Caimi PF, Zammarchi F, Bertoni F. Targeting CD19-positive lymphomas with the antibodydrug conjugate loncastuximab tesirine: preclinical evidence of activity as a single agent and in combination therapy. Haematologica 2024; 109:3314-3326. [PMID: 38721745 PMCID: PMC11443381 DOI: 10.3324/haematol.2023.284197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Indexed: 10/02/2024] Open
Abstract
Antibody-drug conjugates (ADC) represent one of the most successful therapeutic approaches introduced into clinical practice in the last few years. Loncastuximab tesirine (ADCT-402) is a CD19-targeting ADC in which the antibody is conjugated through a protease cleavable dipeptide linker to a pyrrolobenzodiazepine dimer warhead (SG3199). Based on the results of a phase II study, loncastuximab tesirine was recently approved for adult patients with relapsed/refractory large B-cell lymphoma. We assessed the activity of loncastuximab tesirine using in vitro and in vivo models of lymphomas, correlated its activity with levels of CD19 expression, and identified combination partners providing synergy with the ADC. Loncastuximab tesirine was tested across 60 lymphoma cell lines. It had strong cytotoxic activity in B-cell lymphoma cell lines. The in vitro activity was correlated with the level of CD19 expression and intrinsic sensitivity of cell lines to the ADC's warhead. Loncastuximab tesirine was more potent than other anti-CD19 ADC (coltuximab ravtansine, huB4-DGN462), although the pattern of activity across cell lines was correlated. The activity of loncastuximab tesirine was also largely correlated with cell line sensitivity to R-CHOP. Combinatorial in vitro and in vivo experiments identified the benefit of adding loncastuximab tesirine to other agents, especially BCL2 and PI3K inhibitors. Our data support the further development of loncastuximab tesirine for use as a single agent and in combination for patients affected by mature B-cell neoplasms. The results also highlight the importance of CD19 expression and the existence of lymphoma populations characterized by resistance to multiple therapies.
Collapse
Affiliation(s)
- Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona.
| | - David Wald
- Case Western Reserve University, Cleveland, OH
| | - Nicolas Munz
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona
| | - Filippo Spriano
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona
| | - Alessio Bruscaggin
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona
| | - Eleonora Cannas
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne
| | - Eugenio Gaudio
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona
| | - Alberto J Arribas
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne
| | | | - Gaetanina Golino
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona
| | - Lorenzo Scalise
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona
| | | | - Emanuele Zucca
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland; Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biomedical Sciences, USI, Lugano
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | | | - Davide Rossi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland; Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona
| | - Paolo F Caimi
- Cleveland Clinic/Case Comprehensive Cancer Center, Cleveland, OH
| | | | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland; Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona.
| |
Collapse
|
2
|
Feng Y, Lee J, Yang L, Hilton MB, Morris K, Seaman S, Edupuganti VVSR, Hsu KS, Dower C, Yu G, So D, Bajgain P, Zhu Z, Dimitrov DS, Patel NL, Robinson CM, Difilippantonio S, Dyba M, Corbel A, Basuli F, Swenson RE, Kalen JD, Suthe SR, Hussain M, Italia JS, Souders CA, Gao L, Schnermann MJ, St Croix B. Engineering CD276/B7-H3-targeted antibody-drug conjugates with enhanced cancer-eradicating capability. Cell Rep 2023; 42:113503. [PMID: 38019654 PMCID: PMC10872261 DOI: 10.1016/j.celrep.2023.113503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
CD276/B7-H3 represents a promising target for cancer therapy based on widespread overexpression in both cancer cells and tumor-associated stroma. In previous preclinical studies, CD276 antibody-drug conjugates (ADCs) exploiting a talirine-type pyrrolobenzodiazepine (PBD) payload showed potent activity against various solid tumors but with a narrow therapeutic index and dosing regimen higher than that tolerated in clinical trials using other antibody-talirine conjugates. Here, we describe the development of a modified talirine PBD-based fully human CD276 ADC, called m276-SL-PBD, that is cross-species (human/mouse) reactive and can eradicate large 500-1,000-mm3 triple-negative breast cancer xenografts at doses 10- to 40-fold lower than the maximum tolerated dose. By combining CD276 targeting with judicious genetic and chemical ADC engineering, improved ADC purification, and payload sensitivity screening, these studies demonstrate that the therapeutic index of ADCs can be substantially increased, providing an advanced ADC development platform for potent and selective targeting of multiple solid tumor types.
Collapse
Affiliation(s)
- Yang Feng
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Jaewon Lee
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Liping Yang
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Mary Beth Hilton
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA; Basic Research Program, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Karen Morris
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA; Basic Research Program, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Steven Seaman
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | | | - Kuo-Sheng Hsu
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Christopher Dower
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Guojun Yu
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Daeho So
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Pradip Bajgain
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Zhongyu Zhu
- Protein Interactions Section, Cancer and Inflammation Program, NCI, NIH, Frederick, MD 21702, USA
| | - Dimiter S Dimitrov
- Protein Interactions Section, Cancer and Inflammation Program, NCI, NIH, Frederick, MD 21702, USA
| | - Nimit L Patel
- Small Animal Imaging Program, FNLCR, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Christina M Robinson
- Animal Research Technical Support, FNLCR, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Simone Difilippantonio
- Animal Research Technical Support, FNLCR, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Marzena Dyba
- Biophysics Resource in the Center for Structural Biology, NCI, NIH, Frederick, MD, USA
| | - Amanda Corbel
- Invention Development Program, Technology Transfer Center, NCI, Frederick, MD 21701, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, MD 20850, USA
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, MD 20850, USA
| | - Joseph D Kalen
- Small Animal Imaging Program, FNLCR, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | | | | | | | | | - Ling Gao
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA
| | - Martin J Schnermann
- Organic Synthesis Section, Chemical Biology Laboratory, CCR, NCI, Frederick, MD 21702, USA
| | - Brad St Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA.
| |
Collapse
|
3
|
Agarwal S, Fang L, McGowen K, Yin J, Bowman J, Ku AT, Alilin AN, Corey E, Roudier MP, True LD, Dumpit R, Coleman I, Lee JK, Nelson PS, Capaldo BJ, Mariani A, Hoover C, Senatorov IS, Beshiri M, Sowalsky AG, Hurt EM, Kelly K. Tumor-derived biomarkers predict efficacy of B7H3 antibody-drug conjugate treatment in metastatic prostate cancer models. J Clin Invest 2023; 133:e162148. [PMID: 37725435 PMCID: PMC10645377 DOI: 10.1172/jci162148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/12/2023] [Indexed: 09/21/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a promising targeted cancer therapy; however, patient selection based solely on target antigen expression without consideration for cytotoxic payload vulnerabilities has plateaued clinical benefits. Biomarkers to capture patients who might benefit from specific ADCs have not been systematically determined for any cancer. We present a comprehensive therapeutic and biomarker analysis of a B7H3-ADC with pyrrolobenzodiazepine(PBD) payload in 26 treatment-resistant, metastatic prostate cancer (mPC) models. B7H3 is a tumor-specific surface protein widely expressed in mPC, and PBD is a DNA cross-linking agent. B7H3 expression was necessary but not sufficient for B7H3-PBD-ADC responsiveness. RB1 deficiency and/or replication stress, characteristics of poor prognosis, and conferred sensitivity were associated with complete tumor regression in both neuroendocrine (NEPC) and androgen receptor positive (ARPC) prostate cancer models, even with low B7H3 levels. Non-ARPC models, which are currently lacking efficacious treatment, demonstrated the highest replication stress and were most sensitive to treatment. In RB1 WT ARPC tumors, SLFN11 expression or select DNA repair mutations in SLFN11 nonexpressors governed response. Importantly, WT TP53 predicted nonresponsiveness (7 of 8 models). Overall, biomarker-focused selection of models led to high efficacy of in vivo treatment. These data enable a paradigm shift to biomarker-driven trial designs for maximizing clinical benefit of ADC therapies.
Collapse
Affiliation(s)
- Supreet Agarwal
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Lei Fang
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Kerry McGowen
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - JuanJuan Yin
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Joel Bowman
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Anson T. Ku
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Aian Neil Alilin
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | | | - Lawrence D. True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Ruth Dumpit
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ilsa Coleman
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - John K. Lee
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Peter S. Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Brian J. Capaldo
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | | | - Ilya S. Senatorov
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Michael Beshiri
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Adam G. Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Joseph AM, Nahar K, Daw S, Hasan MM, Lo R, Le TBK, Rahman KM, Badrinarayanan A. Mechanistic insight into the repair of C8-linked pyrrolobenzodiazepine monomer-mediated DNA damage. RSC Med Chem 2022; 13:1621-1633. [PMID: 36561066 PMCID: PMC9749960 DOI: 10.1039/d2md00194b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Pyrrolobenzodiazepines (PBDs) are naturally occurring DNA binding compounds that possess anti-tumor and anti-bacterial activity. Chemical modifications of PBDs can result in improved DNA binding, sequence specificity and enhanced efficacy. More recently, synthetic PBD monomers have shown promise as payloads for antibody drug conjugates and anti-bacterial agents. The precise mechanism of action of these PBD monomers and their role in causing DNA damage remains to be elucidated. Here we characterized the damage-inducing potential of two C8-linked PBD bi-aryl monomers in Caulobacter crescentus and investigated the strategies employed by cells to repair the same. We show that these compounds cause DNA damage and efficiently kill bacteria, in a manner comparable to the extensively used DNA cross-linking agent mitomycin-C (MMC). However, in stark contrast to MMC which employs a mutagenic lesion tolerance pathway, we implicate essential functions for error-free mechanisms in repairing PBD monomer-mediated damage. We find that survival is severely compromised in cells lacking nucleotide excision repair and to a lesser extent, in cells with impaired recombination-based repair. Loss of nucleotide excision repair leads to significant increase in double-strand breaks, underscoring the critical role of this pathway in mediating repair of PBD-induced DNA lesions. Together, our study provides comprehensive insights into how mono-alkylating DNA-targeting therapeutic compounds like PBD monomers challenge cell growth, and identifies the specific mechanisms employed by the cell to counter the same.
Collapse
Affiliation(s)
- Asha Mary Joseph
- National Centre for Biological Sciences (Tata Institute of Fundamental Research) Bangalore India
| | - Kazi Nahar
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London Franklin-Wilkins Building, 150 Stamford Street London SE1 9NH UK
| | - Saheli Daw
- National Centre for Biological Sciences (Tata Institute of Fundamental Research) Bangalore India
| | - Md Mahbub Hasan
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London Franklin-Wilkins Building, 150 Stamford Street London SE1 9NH UK
| | - Rebecca Lo
- John Innes Centre, Department of Molecular Microbiology Colney Lane Norwich NR4 7UH UK
| | - Tung B K Le
- John Innes Centre, Department of Molecular Microbiology Colney Lane Norwich NR4 7UH UK
| | - Khondaker Miraz Rahman
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London Franklin-Wilkins Building, 150 Stamford Street London SE1 9NH UK
| | - Anjana Badrinarayanan
- National Centre for Biological Sciences (Tata Institute of Fundamental Research) Bangalore India
| |
Collapse
|
5
|
Zammarchi F, Havenith KEG, Chivers S, Hogg P, Bertelli F, Tyrer P, Janghra N, Reinert HW, Hartley JA, van Berkel PH. Preclinical Development of ADCT-601, a Novel Pyrrolobenzodiazepine Dimer-based Antibody-drug Conjugate Targeting AXL-expressing Cancers. Mol Cancer Ther 2022; 21:582-593. [PMID: 35086955 PMCID: PMC9377743 DOI: 10.1158/1535-7163.mct-21-0715] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/13/2021] [Accepted: 01/18/2022] [Indexed: 01/07/2023]
Abstract
AXL, a tyrosine kinase receptor that is overexpressed in many solid and hematologic malignancies, facilitates cancer progression and is associated with poor clinical outcomes. Importantly, drug-induced expression of AXL results in resistance to conventional chemotherapy and targeted therapies. Together with its presence on multiple cell types in the tumor immune microenvironment, these features make it an attractive therapeutic target for AXL-expressing malignancies. ADCT-601 (mipasetamab uzoptirine) is an AXL-targeted antibody-drug conjugate (ADC) comprising a humanized anti-AXL antibody site specifically conjugated using GlycoConnect technology to PL1601, which contains HydraSpace, a Val-Ala cleavable linker and the potent pyrrolobenzodiazepine (PBD) dimer cytotoxin SG3199. This study aimed to validate the ADCT-601 mode of action and evaluate its efficacy in vitro and in vivo, as well as its tolerability and pharmacokinetics. ADCT-601 bound to both soluble and membranous AXL, and was rapidly internalized by AXL-expressing tumor cells, allowing release of PBD dimer, DNA interstrand cross-linking, and subsequent cell killing. In vivo, ADCT-601 had potent and durable antitumor activity in a wide variety of human cancer xenograft mouse models, including patient-derived xenograft models with heterogeneous AXL expression where ADCT-601 antitumor activity was markedly superior to an auristatin-based comparator ADC. Notably, ADCT-601 had antitumor activity in a monomethyl auristatin E-resistant lung-cancer model and synergized with the PARP inhibitor olaparib in a BRCA1-mutated ovarian cancer model. ADCT-601 was well tolerated at doses of up to 6 mg/kg and showed excellent stability in vivo. These preclinical results warrant further evaluation of ADCT-601 in the clinic.
Collapse
Affiliation(s)
- Francesca Zammarchi
- ADC Therapeutics (UK) Limited, London, United Kingdom.,Corresponding Author: Francesca Zammarchi, Imperial College White City Campus, ADC Therapeutics (UK) Limited, London W12 0BZ, United Kingdom. E-mail:
| | | | - Simon Chivers
- ADC Therapeutics (UK) Limited, London, United Kingdom
| | - Paul Hogg
- ADC Therapeutics (UK) Limited, London, United Kingdom
| | | | - Peter Tyrer
- AstraZeneca (MedImmune/Spirogen), Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
6
|
de Bono JS, Fleming MT, Wang JS, Cathomas R, Miralles MS, Bothos J, Hinrichs MJ, Zhang Q, He P, Williams M, Rosenbaum AI, Liang M, Vashisht K, Cho S, Martinez P, Petrylak DP. Phase I Study of MEDI3726: A Prostate-Specific Membrane Antigen-Targeted Antibody-Drug Conjugate, in Patients with mCRPC after Failure of Abiraterone or Enzalutamide. Clin Cancer Res 2021; 27:3602-3609. [PMID: 33795255 DOI: 10.1158/1078-0432.ccr-20-4528] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/04/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE MEDI3726 is an antibody-drug conjugate targeting the prostate-specific membrane antigen and carrying a pyrrolobenzodiazepine warhead. This phase I study evaluated MEDI3726 monotherapy in patients with metastatic castration-resistant prostate cancer after disease progression on abiraterone and/or enzalutamide and taxane-based chemotherapy. PATIENTS AND METHODS MEDI3726 was administered at 0.015-0.3 mg/kg intravenously every 3 weeks until disease progression/unacceptable toxicity. The primary objective was to assess safety, dose-limiting toxicities (DLT), and MTD/maximum administered dose (MAD). Secondary objectives included assessment of antitumor activity, pharmacokinetics, and immunogenicity. The main efficacy endpoint was composite response, defined as confirmed response by RECIST v1.1, and/or PSA decrease of ≥50% after ≥12 weeks, and/or decrease from ≥5 to <5 circulating tumor cells/7.5 mL blood. RESULTS Between February 1, 2017 and November 13, 2019, 33 patients received MEDI3726. By the data cutoff (January 17, 2020), treatment-related adverse events (TRAE) occurred in 30 patients (90.9%), primarily skin toxicities and effusions. Grade 3/4 TRAEs occurred in 15 patients (45.5%). Eleven patients (33.3%) discontinued because of TRAEs. There were no treatment-related deaths. One patient receiving 0.3 mg/kg had a DLT of grade 3 thrombocytopenia. The MTD was not identified; the MAD was 0.3 mg/kg. The composite response rate was 4/33 (12.1%). MEDI3726 had nonlinear pharmacokinetics with a short half-life (0.3-1.8 days). The prevalence of antidrug antibodies was 3/32 (9.4%), and the incidence was 13/32 (40.6%). CONCLUSIONS Following dose escalation, no MTD was identified. Clinical responses occurred at higher doses, but were not durable as patients had to discontinue treatment due to TRAEs.
Collapse
Affiliation(s)
| | | | - Judy S Wang
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, Florida
| | | | | | | | | | - Qu Zhang
- AstraZeneca, Gaithersburg, Maryland
| | - Peng He
- AstraZeneca, Gaithersburg, Maryland
| | | | | | - Meina Liang
- AstraZeneca, South San Francisco, California
| | | | - Song Cho
- AstraZeneca, Gaithersburg, Maryland
| | | | | |
Collapse
|
7
|
Li WQ, Guo HF, Li LY, Zhang YF, Cui JW. The promising role of antibody drug conjugate in cancer therapy: Combining targeting ability with cytotoxicity effectively. Cancer Med 2021; 10:4677-4696. [PMID: 34165267 PMCID: PMC8290258 DOI: 10.1002/cam4.4052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Traditional cancer therapy has many disadvantages such as low selectivity and high toxicity of chemotherapy, as well as insufficient efficacy of targeted therapy. To enhance the cytotoxic effect and targeting ability, while reducing the toxicity of antitumor drugs, an antibody drug conjugate (ADC) was developed to deliver small molecular cytotoxic payloads directly to tumor cells by binding to specific antibodies via linkers. Method By reviewing published literature and the current progress of ADCs, we aimed to summarize the basic characteristics, clinical progress, and challenges of ADCs to provide a reference for clinical practice and further research. Results ADC is a conjugate composed of three fundamental components, including monoclonal antibodies, cytotoxic payloads, and stable linkers. The mechanisms of ADC including the classical internalization pathway, antitumor activity of antibodies, bystander effect, and non‐internalizing mechanism. With the development of new drugs and advances in technology, various ADCs have achieved clinical efficacy. To date, nine ADCs have received US Food and Drug Administration (FDA) approval in the field of hematologic tumors and solid tumors, which have become routine clinical treatments. Conclusion ADC has changed traditional treatment patterns for cancer patients, which enable the same treatment for pancreatic cancer patients and promote individualized precision treatment. Further exploration of indications could focus on early‐stage cancer patients and combined therapy settings. Besides, the mechanisms of drug resistance, manufacturing techniques, optimized treatment regimens, and appropriate patient selection remain the major topics.
Collapse
Affiliation(s)
- Wen-Qian Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Han-Fei Guo
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ling-Yu Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yong-Fei Zhang
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiu-Wei Cui
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Anderson MG, Zhang Q, Rodriguez LE, Hecquet CM, Donawho CK, Ansell PJ, Reilly EB. ABBV-176, a PRLR antibody drug conjugate with a potent DNA-damaging PBD cytotoxin and enhanced activity with PARP inhibition. BMC Cancer 2021; 21:681. [PMID: 34107902 PMCID: PMC8191021 DOI: 10.1186/s12885-021-08403-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 05/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prolactin receptor (PRLR) is an attractive antibody therapeutic target with expression across a broad population of breast cancers. Antibody efficacy, however, may be limited to subtypes with either PRLR overexpression and/or those where estradiol no longer functions as a mitogen and are, therefore, reliant on PRLR signaling for growth. In contrast a potent PRLR antibody-drug conjugate (ADC) may provide improved therapeutic outcomes extending beyond either PRLR overexpressing or estradiol-insensitive breast cancer populations. METHODS We derived a novel ADC targeting PRLR, ABBV-176, that delivers a pyrrolobenzodiazepine (PBD) dimer cytotoxin, an emerging class of warheads with enhanced potency and broader anticancer activity than the clinically validated auristatin or maytansine derivatives. This agent was tested in vitro and in vivo cell lines and patient derived xenograft models. RESULTS In both in vitro and in vivo assays, ABBV-176 exhibits potent cytotoxicity against multiple cell line and patient-derived xenograft breast tumor models, including triple negative and low PRLR expressing models insensitive to monomethyl auristatin (MMAE) based PRLR ADCs. ABBV-176, which cross links DNA and causes DNA breaks by virtue of its PBD warhead, also demonstrates enhanced anti-tumor activity in several breast cancer models when combined with a poly-ADP ribose polymerase (PARP) inhibitor, a potentiator of DNA damage. CONCLUSIONS Collectively the efficacy and safety profile of ABBV-176 suggest it may be an effective therapy across a broad range of breast cancers and other cancer types where PRLR is expressed with the potential to combine with other therapeutics including PARP inhibitors.
Collapse
Affiliation(s)
- Mark G Anderson
- AbbVie Inc., Oncology Discovery, 1 North Waukegan Rd., North Chicago, IL, 60064-6099, USA.
| | - Qian Zhang
- AbbVie Inc., Oncology Discovery, 1 North Waukegan Rd., North Chicago, IL, 60064-6099, USA
| | - Luis E Rodriguez
- AbbVie Inc., Oncology Discovery, 1 North Waukegan Rd., North Chicago, IL, 60064-6099, USA
| | - Claudie M Hecquet
- AbbVie Inc., Oncology Discovery, 1 North Waukegan Rd., North Chicago, IL, 60064-6099, USA
| | - Cherrie K Donawho
- Formerly AbbVie, Oncology Discovery, 1 North Waukegan Rd., North Chicago, IL, 60064, USA
| | - Peter J Ansell
- AbbVie Inc., Oncology Discovery, 1 North Waukegan Rd., North Chicago, IL, 60064-6099, USA
| | - Edward B Reilly
- AbbVie Inc., Oncology Discovery, 1 North Waukegan Rd., North Chicago, IL, 60064-6099, USA
| |
Collapse
|
9
|
Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat Rev Clin Oncol 2021; 18:327-344. [PMID: 33558752 PMCID: PMC8287784 DOI: 10.1038/s41571-021-00470-8] [Citation(s) in RCA: 553] [Impact Index Per Article: 138.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Nine different antibody-drug conjugates (ADCs) are currently approved as cancer treatments, with dozens more in preclinical and clinical development. The primary goal of ADCs is to improve the therapeutic index of antineoplastic agents by restricting their systemic delivery to cells that express the target antigen of interest. Advances in synthetic biochemistry have ushered in a new generation of ADCs, which promise to improve upon the tissue specificity and cytotoxicity of their predecessors. Many of these drugs have impressive activity against treatment-refractory cancers, although hurdles impeding their broader use remain, including systemic toxicity, inadequate biomarkers for patient selection, acquired resistance and unknown benefit in combination with other cancer therapies. Emerging evidence indicates that the efficacy of a given ADC depends on the intricacies of how the antibody, linker and payload components interact with the tumour and its microenvironment, all of which have important clinical implications. In this Review, we discuss the current state of knowledge regarding the design, mechanism of action and clinical efficacy of ADCs as well as the apparent limitations of this treatment class. We then propose a path forward by highlighting several hypotheses and novel strategies to maximize the potential benefit that ADCs can provide to patients with cancer.
Collapse
Affiliation(s)
- Joshua Z Drago
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weil Cornell Medicine, New York, NY, USA
| | - Shanu Modi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weil Cornell Medicine, New York, NY, USA.
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weil Cornell Medicine, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
10
|
Golan T, Atias D, Stossel C, Raitses-Gurevich M. Patient-derived xenograft models of BRCA-associated pancreatic cancers. Adv Drug Deliv Rev 2021; 171:257-265. [PMID: 33617901 DOI: 10.1016/j.addr.2021.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a dismal disease. The majority of patients diagnosed at an advanced, metastatic stage, and poor overall survival rates. The most clinically meaningful subtype obtained from PDAC genomic classification is represented by unstable genomes, and co-segregated with inactivation of DNA damage repair genes, e.g., Breast cancer 1/2 (BRCA1/2). The FDA and EMA has recently approved olaparib, a Poly (ADP-ribose) polymerase (PARP) inhibitor, as a maintenance strategy for platinum-sensitive advanced PDAC patients with BRCA mutations. However, susceptibility to treatment varies, and resistance may develop. Resistance can be defined as innate or acquired resistance to platinum/PARP-inhibition. Patient-derived xenograft (PDX) models have been utilized in cancer research for many years. We generated a unique PDX model, obtained from BRCA-associated PDAC patients at distinct time points of the disease recapitulating the different clinical scenario. In this review we discuss the relevant PDX-derived models for investigating BRCA-associated PDAC and drug development.
Collapse
Affiliation(s)
- Talia Golan
- Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Dikla Atias
- Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Chani Stossel
- Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
11
|
Mao S, Chaerkady R, Yu W, D'Angelo G, Garcia A, Chen H, Barrett AM, Phipps S, Fleming R, Hess S, Koopmann JO, Dimasi N, Wilson S, Pugh K, Cook K, Masterson LA, Gao C, Wu H, Herbst R, Howard PW, Tice DA, Cobbold M, Harper J. Resistance to Pyrrolobenzodiazepine Dimers Is Associated with SLFN11 Downregulation and Can Be Reversed through Inhibition of ATR. Mol Cancer Ther 2021; 20:541-552. [PMID: 33653945 DOI: 10.1158/1535-7163.mct-20-0351] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/01/2020] [Accepted: 01/07/2021] [Indexed: 11/16/2022]
Abstract
Resistance to antibody-drug conjugates (ADCs) has been observed in both preclinical models and clinical studies. However, mechanisms of resistance to pyrrolobenzodiazepine (PBD)-conjugated ADCs have not been well characterized and thus, this study was designed to investigate development of resistance to PBD dimer warheads and PBD-conjugated ADCs. We established a PBD-resistant cell line, 361-PBDr, by treating human breast cancer MDA-MB-361 cells with gradually increasing concentrations of SG3199, the PBD dimer released from the PBD drug-linker tesirine. 361-PBDr cells were over 20-fold less sensitive to SG3199 compared with parental cells and were cross-resistant to other PBD warhead and ADCs conjugated with PBDs. Proteomic profiling revealed that downregulation of Schlafen family member 11 (SLFN11), a putative DNA/RNA helicase, sensitizing cancer cells to DNA-damaging agents, was associated with PBD resistance. Confirmatory studies demonstrated that siRNA knockdown of SLFN11 in multiple tumor cell lines conferred reduced sensitivity to SG3199 and PBD-conjugated ADCs. Treatment with EPZ011989, an EZH2 inhibitor, derepressed SLFN11 expression in 361-PBDr and other SLFN11-deficient tumor cells, and increased sensitivity to PBD and PBD-conjugated ADCs, indicating that the suppression of SLFN11 expression is associated with histone methylation as reported. Moreover, we demonstrated that combining an ataxia telangiectasia and Rad3-related protein (ATR) inhibitor, AZD6738, with SG3199 or PBD-based ADCs led to synergistic cytotoxicity in either resistant 361-PBDr cells or cells that SLFN11 was knocked down via siRNA. Collectively, these data provide insights into potential development of resistance to PBDs and PBD-conjugated ADCs, and more importantly, inform strategy development to overcome such resistance.
Collapse
Affiliation(s)
- Shenlan Mao
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland.
| | | | - Wen Yu
- Bioinformatics, AstraZeneca, Gaithersburg, Maryland
| | | | - Andrew Garcia
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | - Hong Chen
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | | | - Sandrina Phipps
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | - Ryan Fleming
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | - Sonja Hess
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | | | - Nazzareno Dimasi
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | - Susan Wilson
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | | | - Kimberly Cook
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | | | - Changshou Gao
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | - Herren Wu
- Antibody Discovery & Protein Engineering, AstraZeneca, Gaithersburg, Maryland
| | - Ronald Herbst
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | | | - David A Tice
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | - Mark Cobbold
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | - Jay Harper
- Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland.
| |
Collapse
|
12
|
Zoeller JJ, Vagodny A, Daniels VW, Taneja K, Tan BY, DeRose YS, Fujita M, Welm AL, Letai A, Leverson JD, Blot V, Bronson RT, Dillon DA, Brugge JS. Navitoclax enhances the effectiveness of EGFR-targeted antibody-drug conjugates in PDX models of EGFR-expressing triple-negative breast cancer. Breast Cancer Res 2020; 22:132. [PMID: 33256808 PMCID: PMC7708921 DOI: 10.1186/s13058-020-01374-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Targeted therapies for triple-negative breast cancer (TNBC) are limited; however, the epidermal growth factor receptor (EGFR) represents a potential target, as the majority of TNBC express EGFR. The purpose of these studies was to evaluate the effectiveness of two EGFR-targeted antibody-drug conjugates (ADC: ABT-414; ABBV-321) in combination with navitoclax, an antagonist of the anti-apoptotic BCL-2 and BCL-XL proteins, in order to assess the translational relevance of these combinations for TNBC. METHODS The pre-clinical efficacy of combined treatments was evaluated in multiple patient-derived xenograft (PDX) models of TNBC. Microscopy-based dynamic BH3 profiling (DBP) was used to assess mitochondrial apoptotic signaling induced by navitoclax and/or ADC treatments, and the expression of EGFR and BCL-2/XL was analyzed in 46 triple-negative patient tumors. RESULTS Treatment with navitoclax plus ABT-414 caused a significant reduction in tumor growth in five of seven PDXs and significant tumor regression in the highest EGFR-expressing PDX. Navitoclax plus ABBV-321, an EGFR-targeted ADC that displays more effective wild-type EGFR-targeting, elicited more significant tumor growth inhibition and regressions in the two highest EGFR-expressing models evaluated. The level of mitochondrial apoptotic signaling induced by single or combined drug treatments, as measured by DBP, correlated with the treatment responses observed in vivo. Lastly, the majority of triple-negative patient tumors were found to express EGFR and co-express BCL-XL and/or BCL-2. CONCLUSIONS The dramatic tumor regressions achieved using combined agents in pre-clinical TNBC models underscore the abilities of BCL-2/XL antagonists to enhance the effectiveness of EGFR-targeted ADCs and highlight the clinical potential for usage of such targeted ADCs to alleviate toxicities associated with combinations of BCL-2/XL inhibitors and systemic chemotherapies.
Collapse
Affiliation(s)
- Jason J Zoeller
- Department of Cell Biology and Ludwig Center at Harvard, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Aleksandr Vagodny
- Department of Cell Biology and Ludwig Center at Harvard, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Veerle W Daniels
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Krishan Taneja
- Department of Pathology, Brigham & Women's Hospital, Boston, MA, USA
| | - Benjamin Y Tan
- Department of Pathology, Brigham & Women's Hospital, Boston, MA, USA
| | - Yoko S DeRose
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Maihi Fujita
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Vincent Blot
- Oncology Development, AbbVie, North Chicago, IL, USA
| | | | - Deborah A Dillon
- Department of Pathology, Brigham & Women's Hospital, Boston, MA, USA
| | - Joan S Brugge
- Department of Cell Biology and Ludwig Center at Harvard, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
Manzano A, Ocaña A. Antibody-Drug Conjugates: A Promising Novel Therapy for the Treatment of Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12082223. [PMID: 32784819 PMCID: PMC7464539 DOI: 10.3390/cancers12082223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Antibody-drug conjugates (ADCs) represent a novel and promising therapeutic strategy for the treatment of cancer patients. ADCs target antigens highly expressed on the membrane surface of tumor cells to selectively deliver a cytotoxic drug. Ovarian tumors differentially express tumor-specific antigens, which can be used to guide ADCs. This strategy allows for optimizing tumor targeting while minimizing systemic toxicity compared to classical chemotherapeutic agents. ADCs can be improved by using a cleavable linker allowing the delivery of the toxic payload in surrounding cells not expressing the target protein, therefore acting on heterogeneous tumors with different cell populations. Currently, more than 15 ADCs are under preclinical investigation in ovarian cancer, and some of them have already been tested in early-phase clinical trials with promising results. In this review, we summarize the mechanism of action and the toxicity profile of ADCs and discuss the latest preclinical discoveries and forthcoming applications in ovarian cancer.
Collapse
|
14
|
Hartley JA. Antibody-drug conjugates (ADCs) delivering pyrrolobenzodiazepine (PBD) dimers for cancer therapy. Expert Opin Biol Ther 2020; 21:931-943. [PMID: 32543981 DOI: 10.1080/14712598.2020.1776255] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION The rationally designed pyrrolobenzodiazepine (PBD) dimers emerged around ten years ago as a new class of drug component for antibody-drug conjugates (ADC). They produce highly cytotoxic DNA cross-links, exploiting a completely different cellular target to the auristatin and maytansinoid tubulin inhibitor classes and a different mode of DNA damage to other DNA interacting warheads such as calicheamicin. AREAS COVERED The properties which make the PBD dimers suitable warheads for ADCs, and the development of the two main payload structures talirine and tesirine, are discussed. The clinical experience with the twenty PBD dimer-containing ADCs to enter the clinic is reviewed, with a focus on vadastuximab talirine and rovalpituzumab tesirine, both of which were discontinued following pivotal studies, and loncastuximab tesirine and camidanlumab tesirine which are progressing towards approval. EXPERT OPINION Reviewing the clinical efficacy and safety data from almost forty clinical trials of PBD dimer-containing ADCs highlights the complexities and challenges of ADC early clinical development. It enables some conclusions to be made about reasons for failure and suggests strategies to optimise the future clinical development of this promising class of ADCs in a rapidly expanding field.
Collapse
Affiliation(s)
- John A Hartley
- Professor of Cancer Studies, UCL Cancer Institute, London, UK
| |
Collapse
|
15
|
Koga Y, Ochiai A. Systematic Review of Patient-Derived Xenograft Models for Preclinical Studies of Anti-Cancer Drugs in Solid Tumors. Cells 2019; 8:cells8050418. [PMID: 31064068 PMCID: PMC6562882 DOI: 10.3390/cells8050418] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/26/2019] [Accepted: 05/04/2019] [Indexed: 01/06/2023] Open
Abstract
Patient-derived xenograft (PDX) models are used as powerful tools for understanding cancer biology in PDX clinical trials and co-clinical trials. In this systematic review, we focus on PDX clinical trials or co-clinical trials for drug development in solid tumors and summarize the utility of PDX models in the development of anti-cancer drugs, as well as the challenges involved in this approach, following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Recently, the assessment of drug efficacy by PDX clinical and co-clinical trials has become an important method. PDX clinical trials can be used for the development of anti-cancer drugs before clinical trials, with their efficacy assessed by the modified response evaluation criteria in solid tumors (mRECIST). A few dozen cases of PDX models have completed enrollment, and the efficacy of the drugs is assessed by 1 × 1 × 1 or 3 × 1 × 1 approaches in the PDX clinical trials. Furthermore, co-clinical trials can be used for personalized care or precision medicine with the evaluation of a new drug or a novel combination. Several PDX models from patients in clinical trials have been used to assess the efficacy of individual drugs or drug combinations in co-clinical trials.
Collapse
Affiliation(s)
- Yoshikatsu Koga
- Department of Strategic Programs, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan.
| | - Atsushi Ochiai
- Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan.
| |
Collapse
|
16
|
Antibody–Drug Conjugates: Future Directions in Clinical and Translational Strategies to Improve the Therapeutic Index. Clin Cancer Res 2019; 25:5441-5448. [DOI: 10.1158/1078-0432.ccr-19-0272] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/15/2019] [Accepted: 04/08/2019] [Indexed: 11/16/2022]
|