1
|
Liu S, Ma J, Xue EY, Wang S, Zheng Y, Ng DKP, Wang A, Zheng N. Polymeric Phthalocyanine-Based Nanosensitizers for Enhanced Photodynamic and Sonodynamic Therapies. Adv Healthc Mater 2023; 12:e2300481. [PMID: 37019442 DOI: 10.1002/adhm.202300481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Indexed: 04/07/2023]
Abstract
Photodynamic therapy and sonodynamic therapy are two highly promising modalities for cancer treatment. The latter holds an additional advantage in deep-tumor therapy owing to the deep penetration of the ultrasonic radiation. The therapeutic efficacy depends highly on the photo/ultrasound-responsive properties of the sensitizers as well as their tumor-localization property and pharmacokinetics. A novel nanosensitizer system based on a polymeric phthalocyanine (pPC-TK) is reported herein in which the phthalocyanine units are connected with cleavable thioketal linkers. Such polymer could self-assemble in water forming nanoparticles with a hydrodynamic diameter of 48 nm. The degradable and flexible thioketal linkers could effectively inhibit the π-π stacking of the phthalocyanine units, rendering the resulting nanoparticles an efficient generator of reactive oxygen species upon light or ultrasonic irradiation. The nanosensitizer could be internalized into cancer cells readily, inducing cell death by efficient photodynamic and sonodynamic effects. The potency is significantly higher than that of the monomeric phthalocyanine (PC-4COOH). The nanosensitizer could also effectively inhibit the growth of tumor in liver tumor-bearing mice by these two therapies without causing noticeable side effects. More importantly, it could also retard the growth of a deep-located orthotopic liver tumor in vivo by sonodynamic therapy.
Collapse
Affiliation(s)
- Shuxin Liu
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jinjuan Ma
- Department of Comparative Medicine Laboratory Animal Center, Dalian Medical University, Dalian, 116000, China
| | - Evelyn Y Xue
- Department of Chemistry, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, 999077, China
| | - Shaolei Wang
- Department of Radiology Intervention, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110801, China
| | - Yubin Zheng
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Dalian University of Technology Corporation of Changshu Research Institution, Suzhou, 215500, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, 999077, China
| | - Aiguo Wang
- Department of Comparative Medicine Laboratory Animal Center, Dalian Medical University, Dalian, 116000, China
| | - Nan Zheng
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Dalian University of Technology Corporation of Changshu Research Institution, Suzhou, 215500, China
| |
Collapse
|
2
|
Sarkar M, Wang Y, Ekpenyong O, Liang D, Xie H. Pharmacokinetic behaviors of soft nanoparticulate formulations of chemotherapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1846. [PMID: 35979879 PMCID: PMC9938089 DOI: 10.1002/wnan.1846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/17/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022]
Abstract
Chemotherapeutic treatment with conventional drug formulations pose numerous challenges, such as poor solubility, high cytotoxicity and serious off-target side effects, low bioavailability, and ultimately subtherapeutic tumoral concentration leading to poor therapeutic outcomes. In the field of Nanomedicine, advances in nanotechnology have been applied with great success to design and develop novel nanoparticle-based formulations for the treatment of various types of cancer. The approval of the first nanomedicine, Doxil® (liposomal doxorubicin) in 1995, paved the path for further development for various types of novel delivery platforms. Several different types of nanoparticles, especially organic (soft) nanoparticles (liposomes, polymeric micelles, and albumin-bound nanoparticles), have been developed and approved for several anticancer drugs. Nanoparticulate drug delivery platform have facilitated to overcome of these challenges and offered key advantages of improved bioavailability, higher intra-tumoral concentration of the drug, reduced toxicity, and improved efficacy. This review introduces various commonly used nanoparticulate systems in biomedical research and their pharmacokinetic (PK) attributes, then focuses on the various physicochemical and physiological factors affecting the in vivo disposition of chemotherapeutic agents encapsulated in nanoparticles in recent years. Further, it provides a review of the current landscape of soft nanoparticulate formulations for the two most widely investigated anticancer drugs, paclitaxel, and doxorubicin, that are either approved or under investigation. Formulation details, PK profiles, and therapeutic outcomes of these novel strategies have been discussed individually and in comparison, to traditional formulations. This article is categorized under: Nanotechnology Approaches to Biology > Cells at the Nanoscale Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Mahua Sarkar
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| | - Yang Wang
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| | | | - Dong Liang
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| | - Huan Xie
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| |
Collapse
|
3
|
Ghosh S, Chitgupi U, Sunar U, Lovell JF. Chemophototherapeutic Ablation of Doxorubicin-Resistant Human Ovarian Tumor Cells. Photochem Photobiol 2023; 99:844-849. [PMID: 35842741 PMCID: PMC9841062 DOI: 10.1111/php.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/14/2022] [Indexed: 01/18/2023]
Abstract
Porphyrin-phospholipid (PoP) liposomes loaded with Doxorubicin (Dox) have been demonstrated to be an efficient vehicle for chemophototherapy (CPT). Multidrug resistance (MDR) of cancer cells is a problematic phenomenon in which tumor cells develop resistance to chemotherapy. Herein, we report that Dox-resistant tumor cells can be ablated using our previously described formulation termed long-circulating Dox loaded in PoP liposomes (LC-Dox-PoP), which is a PEGylated formulation containing 2 mol. % of the PoP photosensitizer. In vitro studies using free Dox and LC-Dox-PoP showed that human ovarian carcinoma A2780 cells were more susceptible to Dox compared to the corresponding Dox-resistant A2780-R cells. When CPT was applied with LC-Dox-PoP liposomes, effective killing of both nonresistant and resistant A2780 cell lines was observed. An in vivo study to assess the efficiency of LC-Dox-PoP showed effective tumor shrinkage and prolonged survival of athymic nude mice bearing subcutaneous Dox-resistant A2780-R tumor xenografts when they were irradiated with a red laser. Biodistribution analysis demonstrated enhanced tumoral drug uptake in Dox-resistant tumors with CPT, suggesting that increased drug delivery was sufficient to induce ablation of resistant tumor cells.
Collapse
Affiliation(s)
- Sanjana Ghosh
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| | - Upendra Chitgupi
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
- Nektar Therapeutics, Formulations Group, 455 Mission Bay Boulevard South, San Francisco, California, 94158, USA
| | - Ulas Sunar
- Department of Biomedical, Industrial & Human Factors Engineering, Wright State University, Dayton, OH 45435, USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| |
Collapse
|
4
|
Ghosh S, He X, Huang WC, Lovell JF. Immune checkpoint blockade enhances chemophototherapy in a syngeneic pancreatic tumor model. APL Bioeng 2022; 6:036105. [PMID: 36164594 PMCID: PMC9509203 DOI: 10.1063/5.0099811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/29/2022] [Indexed: 11/14/2022] Open
Abstract
Pancreatic cancer (PaCa) suffers from poor treatment options for locally advanced cases. Chemophototherapy (CPT) is an emerging anti-tumor modality, and porphyrin–phospholipid liposomes have been shown to be versatile drug carriers for CPT in preclinical rodent models. Here we show that in the syngeneic subcutaneous KPC PaCa tumor model, exhausted CD8+ T cells are localized in the tumor, and that CPT is enhanced in combination with immune checkpoint blockade (ICB). Addition of ICB using anti-programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) antibodies resulted in ablation of medium-sized, established KPC tumors (∼200 mm3) without recurrence for over 100 days. Mice rejected subsequent tumor re-challenge. Flow cytometry and tumor slice analysis following injection of a fluorescently labeled anti-PD-1 antibody showed that CPT improved antibody delivery to the tumor microenvironment. Treatment of large established tumors (∼400 mm3) using with CPT and ICB induced appreciable tumor regression and delay in regrowth. Taken together, these data demonstrate the utility of combining CPT with immunotherapies.
Collapse
Affiliation(s)
- Sanjana Ghosh
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Xuedan He
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| |
Collapse
|
5
|
Ghosh S, Sun B, Jahagirdar D, Luo D, Ortega J, Straubinger RM, Lovell JF. Single-treatment tumor ablation with photodynamic liposomal irinotecan sucrosulfate. Transl Oncol 2022; 19:101390. [PMID: 35290919 PMCID: PMC8918863 DOI: 10.1016/j.tranon.2022.101390] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 12/28/2022] Open
Abstract
Irinotecan (IRI) loaded actively into PEGylated liposomes via a sucrosulfate gradient has been approved recently to treat advanced pancreatic cancer. In this study, a similar liposomal composition was developed that includes a low mole fraction (1 mol.%) of porphyrin-phospholipid (PoP), a photosensitizer that stably incorporates into liposomes, to confer light-triggered IRI release. IRI-loaded PoP liposomes containing ammonium sucrosulfate (ASOS) as a complexing agent were more stable in serum compared to liposomes employing the more conventional ammonium sulfate. Without irradiation, PoP IRI liposomes released less than 5% IRI during 8 h of incubation in bovine serum at 37 °C, but released over 90% of the drug within minutes of exposure to red light (665 nm) irradiation. A single treatment with IRI-PoP liposomes and light exposure (15 mg/kg IRI with 250 J/cm2) resulted in tumor eradication in mice bearing either MIA PaCa-2 tumors or low-passage patient-derived tumor xenografts that recapitulate characteristics of the clinical disease. Analogous monotherapies of IRI or photodynamic therapy were ineffective in controlling tumor growth. Enhanced drug uptake could be visualized within laser-treated tumors by direct in situ imaging of irinotecan. Biodistribution analysis of IRI, its active metabolite (SN-38), and major metabolite (SN-38 G) showed that laser treatment significantly increased tumor accumulation of all IRI-derived molecular species. A pharmacokinetic model that hypothesized tumor vasculature permeabilization as the primary reason underlying the increased drug deposition accounted for the enhanced drug influx into tumors.
Collapse
Affiliation(s)
- Sanjana Ghosh
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, United States of America
| | - Boyang Sun
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, United States of America
| | - Dushyant Jahagirdar
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Dandan Luo
- CSL Behring LLC, 1020 1st Avenue, King of Prussia, PA, 19406, United States of America
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY United States of America
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, United States of America.
| |
Collapse
|
6
|
Wang X, Wu M, Li H, Jiang J, Zhou S, Chen W, Xie C, Zhen X, Jiang X. Enhancing Penetration Ability of Semiconducting Polymer Nanoparticles for Sonodynamic Therapy of Large Solid Tumor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104125. [PMID: 34989170 PMCID: PMC8867194 DOI: 10.1002/advs.202104125] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/20/2021] [Indexed: 05/19/2023]
Abstract
Sonodynamic therapy (SDT) holds growing promise in deep-seated or large solid tumor treatment owing to its high tissue penetration depth ability; however, its therapeutic efficacy is often compromised due to the hypopermeable and hypoxic characteristics in the tumor milieu. Herein, a semiconducting polymer nanoparticle (SPNC) that synergistically enhances tumor penetration and alleviates tumor hypoxia is reported for sonodynamic therapy of large solid tumors. SPNC comprises a semiconducting polymer nanoparticle core as a sonodynamic converter coated with a poly (ethylene glycol) corona. An oxygen-modulating enzyme, catalase, is efficiently conjugated to the surface of nanoparticles via the coupling reaction. Superior to its counterpart SPNCs (SPNC2 (84 nm) and SPNC3 (134 nm)), SPNC with the smallest size (SPNC1 (35 nm)) can efficiently penetrate throughout the tumor interstitium to alleviate whole tumor hypoxia in a large solid tumor model. Upon ultrasound (US) irradiation, SPNC1 can remotely generate sufficient singlet oxygen to eradicate tumor cells at a deep-tissue depth. Such a single treatment of SPNC1-medicated sonodynamic therapy effectively inhibits tumor growth in a large solid tumor mouse model. Therefore, this study provides a generalized strategy to synergistically overcome both poor penetration and hypoxia of large tumors for enhanced cancer treatment.
Collapse
Affiliation(s)
- Xin Wang
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Min Wu
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Haoze Li
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Jianli Jiang
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Sensen Zhou
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Weizhi Chen
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Chen Xie
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts & TelecommunicationsNanjing210023P. R. China
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| |
Collapse
|
7
|
Ghosh S, Lovell JF. Two Laser Treatments Can Improve Tumor Ablation Efficiency of Chemophototherapy. Pharmaceutics 2021; 13:pharmaceutics13122183. [PMID: 34959464 PMCID: PMC8704214 DOI: 10.3390/pharmaceutics13122183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Chemophototherapy is an emerging tumor ablation modality that can improve local delivery of chemotherapeutic agents. Long circulating doxorubicin (Dox) in porphyrin-phospholipid (PoP) liposomes (LC-Dox-PoP) has previously been developed as an effective chemophototherapy agent. In the present study, we observed that in mice, LC-Dox-PoP showed enhanced accumulation in human pancreatic tumor xenografts even with suboptimal light doses, as assessed by fluorometric analysis of tissue homogenates and microscopic imaging of Dox and PoP in tumor slices. A second laser treatment, at a time point in which tumors had greater drug accumulation as a result of the first laser treatment, induced potent tumor ablation. Efficacy studies were carried out in two human pancreatic cancer subcutaneous mouse tumor models; MIA PaCa-2 or low-passage patient derived pancreatic cancer xenografts. A single treatment of 3 mg/kg LC-Dox-PoP and an initial 150 J/cm2 laser treatment 1 h after drug administration, followed by second laser treatment of 50 J/cm2 8 h after drug administration, was more effective than a single laser treatment of 200 J/cm2 at either of those time points. Thus, this study presents proof-of-principle and rationale for using two discrete laser treatments to enhance the efficacy of chemophototherapy.
Collapse
|
8
|
Injectable drug delivery systems of doxorubicin revisited: In vitro-in vivo relationships using human clinical data. Int J Pharm 2021; 608:121073. [PMID: 34481887 DOI: 10.1016/j.ijpharm.2021.121073] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022]
Abstract
A growing number of nanomedicines entered the clinical trials and improved our understanding of the in vivo responses expected in humans. The in vitro drug release represents an important critical quality attribute involved in pharmacokinetics. Establishing in vitro-in vivo relationships for nanomedicines requires a careful analysis of the clinical data with respect to the unique differences between drugs and nanomedicines. Also, the biorelevant assay must reflect the release mechanism of the carrier. Four drug delivery systems of doxorubicin were evaluated for their in vitro release behavior under biorelevant conditions using the dispersion releaser. The pharmacokinetics observed during the first-in-men clinical trials were analyzed using a custom-made physiologically-based nanocarrier biopharmaceutics model. The drug product Lipodox® and the clinical candidate NanoCore-7.4 were evaluated to validate the model. Afterward, the in vivo performances of the preclinical candidates NanoCore-6.4 and doxorubicin-loaded nano-cellular vesicle technology systems (an extracellular vesicle preparation) were predicted. In vitro and in vivo release were in good correlation as indicated by the coefficients of determination of 0.98648 (NanoCore-7.4) and 0.94107 (Lipodox®). The predictions required an estimation of the carrier half-life in blood circulation leading to considerable uncertainty. Still, the simulations narrow down the possible scenarios in the clinical evaluation of nanomedicines and provide a valuable addition to animal studies.
Collapse
|
9
|
Chander N, Morstein J, Bolten JS, Shemet A, Cullis PR, Trauner D, Witzigmann D. Optimized Photoactivatable Lipid Nanoparticles Enable Red Light Triggered Drug Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008198. [PMID: 33880882 DOI: 10.1002/smll.202008198] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Encapsulation of small molecule drugs in long-circulating lipid nanoparticles (LNPs) can reduce toxic side effects and enhance accumulation at tumor sites. A fundamental problem, however, is the slow release of encapsulated drugs from these liposomal systems at the disease site resulting in limited therapeutic benefit. Methods to trigger release at specific sites are highly warranted. Here, it is demonstrated that incorporation of ultraviolet (UV-A) or red-light photoswitchable-phosphatidylcholine analogs (AzoPC and redAzoPC) in conventional LNPs generates photoactivatable LNPs (paLNPs) having comparable structural integrity, drug loading capacity, and size distribution to the parent DSPC-cholesterol liposomes. It is shown that 65-70% drug release (doxorubicin) can be induced from these systems by irradiation with pulsed light based on trans-to-cis azobenzene isomerization. In vitro it is confirmed that paLNPs are non-toxic in the dark but convey cytotoxicity upon irradiation in a human cancer cell line. In vivo studies in zebrafish embryos demonstrate prolonged blood circulation and extravasation of paLNPs comparable to clinically approved formulations, with enhanced drug release following irradiation with pulsed light. Conclusively, paLNPs closely mimic the properties of clinically approved LNPs with the added benefit of light-induced drug release making them promising candidates for clinical development.
Collapse
Affiliation(s)
- Nisha Chander
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Johannes Morstein
- Department of Chemistry, New York University, 100 Washington Square East, Room 712, New York, NY, 10003, USA
| | - Jan S Bolten
- Department of Pharmaceutical Technology, University of Basel, Klingelbergstrasse 50, Basel, 4056, Switzerland
| | - Andrej Shemet
- Department of Chemistry, New York University, 100 Washington Square East, Room 712, New York, NY, 10003, USA
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- NanoMedicines Innovation Network (NMIN), University of British Columbia, 2350 Health Sciences Mall, Room 5451, Vancouver, BC, V6T 1Z3, Canada
| | - Dirk Trauner
- Department of Chemistry, New York University, 100 Washington Square East, Room 712, New York, NY, 10003, USA
| | - Dominik Witzigmann
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- NanoMedicines Innovation Network (NMIN), University of British Columbia, 2350 Health Sciences Mall, Room 5451, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
10
|
Lovell JF. Thinking outside the macrocycle: Potential biomedical roles for nanostructured porphyrins and phthalocyanines — a SPP/JPP Young Investigator Award paper. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620300086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Porphyrins and phthalocyanines feature strong light absorption, capacity for metal chelation, and a track record of use in human therapeutic applications. Various conjugates and formulations of these macrocycles have shown potential to forge new applications in the biomedical sciences. Our lab has explored several such approaches including porphyrin polymer hydrogels, porphyrin-lipid nanovesicles, and surfactant-stripped micelles. These all feature in common a high density of tetrapyrroles, as well as unique functional properties. Porphyrin polymer hydrogels with high porphyrin density and bright fluorescence emission were demonstrated for use as a new class of implantable biosensors. Porphyrin-lipid nanovesicles hold potential for phototherapy, imaging, and also drug and vaccine delivery. Surfactant-stripped micelles have been developed for high-contrast photoacoustic imaging. In this ICPP Young Investigator Award brief perspective, we discuss our own efforts on these fronts. Taken together, the results show that tetrapyrroles enable new approaches for tackling biomedical problems and also confirm what was already well-known to members of the Society of Porphyrins and Phthalocyanines: that these molecules are remarkably versatile and enable research to flow in unexpected directions.
Collapse
Affiliation(s)
- Jonathan F. Lovell
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, 14260 USA
| |
Collapse
|
11
|
Kumar S, Jiang D, Sun B, Seeley KV, Engle JW, Sia Z, He X, Neelamegham S, Cai W, Lovell JF. Labeling of Erythrocytes by Porphyrin-Phospholipid. ADVANCED NANOBIOMED RESEARCH 2020; 1. [PMID: 34212160 DOI: 10.1002/anbr.202000013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A method is developed for membrane labeling of erythrocytes with porphyrin-phospholipid (PoP). To generate a concentrated PoP solution for labeling human red blood cells (RBCs), various surfactants and solvents are screened to identify conditions that avoid hemolysis, while minimizing non-specific PoP co-precipitation with RBCs in the pellet during centrifugation washes. Cholate, Tween 80 and Tween 40 are identified as useful surfactants for this purpose. When labeled RBCs are mixed with unlabeled ones, substantial non-specific PoP exchange is observed. Egg-yolk lecithin is included in a washing buffer to remove loosely bound PoP and reduce PoP exchange with unlabeled erythrocytes, based on flow cytometry and photodynamic hemolysis assays. Murine RBCs that are labeled with 64Cu-chelated PoP displayed altered biodistribution with longer blood circulation relative to directly administered 64Cu-chelated PoP.
Collapse
Affiliation(s)
- Sunanda Kumar
- Department of Biomedical Engineering, State University of New York at Buffalo, NY 14260, USA
| | - Dawei Jiang
- Department of Materials Science and Engineering, Department of Radiology, Department of Medical Physics, and University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Madison, Wisconsin 53705, United States
| | - Boyang Sun
- Department of Biomedical Engineering, State University of New York at Buffalo, NY 14260, USA
| | - Kaelyn V Seeley
- Department of Materials Science and Engineering, Department of Radiology, Department of Medical Physics, and University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Madison, Wisconsin 53705, United States
| | - Jonathan W Engle
- Department of Materials Science and Engineering, Department of Radiology, Department of Medical Physics, and University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Madison, Wisconsin 53705, United States
| | - Zachary Sia
- Department of Biomedical Engineering, State University of New York at Buffalo, NY 14260, USA
| | - Xuedan He
- Department of Biomedical Engineering, State University of New York at Buffalo, NY 14260, USA
| | - Sriram Neelamegham
- Department of Chemical Engineering, State University of New York at Buffalo, NY 14260, USA
| | - Weibo Cai
- Department of Materials Science and Engineering, Department of Radiology, Department of Medical Physics, and University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Madison, Wisconsin 53705, United States
| | - Jonathan F Lovell
- Department of Biomedical Engineering, State University of New York at Buffalo, NY 14260, USA
| |
Collapse
|
12
|
Li XT, Jing M, Cai FY, Yao XM, Kong L, Wang XB. Enhanced antitumour efficiency of R 8GD-modified epirubicin plus tetrandrine liposomes in treatment of gastric cancer via inhibiting tumour metastasis. J Liposome Res 2020; 31:145-157. [PMID: 32223361 DOI: 10.1080/08982104.2020.1748647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Tumour metastasis is a major cause of cancer treatment failure and death, and chemotherapy efficiency for gastric cancer patients is usually unsatisfactory due to tumour cell metastasis, poor targeting and serious adverse reactions. In this study, a kind of R8GD-modified epirubicin plus tetrandrine liposomes was prepared to enhance the antitumor efficiency via killing tumour cells, destroying tumour metastasis and inhibiting energy supply for tumour cells. In order to investigate the antitumour efficiency of the targeting liposomes, morphology observation, intracellular uptake, cytotoxic effects, and inhibition on tumour metastasis and energy supply were carried out in vitro, and tumour-bearing mice models were established to investigate the antitumour efficiency in vivo. In vitro results showed that R8GD-modified epirubicin plus tetrandrine liposomes with ideal physicochemical properties could kill the most tumour cells, inhibit tumour metastasis and cut-off energy supply for tumour cells. In vivo results exhibited that R8GD-modified epirubicin plus tetrandrine liposomes could enhance the accumulation in tumour site and display an obvious antitumor efficiency. Therefore, R8GD-modified epirubicin plus tetrandrine liposomes could be used as a potential therapy for treatment of gastric cancer.
Collapse
Affiliation(s)
- Xue-Tao Li
- Department of Pharmacy, Chinese People's Liberation Army Logistics Support Force No. 967 Hospital, Dalian, China.,School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Ming Jing
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Fu-Yi Cai
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xue-Min Yao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xiao-Bo Wang
- Department of Pharmacy, Chinese People's Liberation Army Logistics Support Force No. 967 Hospital, Dalian, China
| |
Collapse
|
13
|
Jiang Y, Zhao X, Huang J, Li J, Upputuri PK, Sun H, Han X, Pramanik M, Miao Y, Duan H, Pu K, Zhang R. Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nat Commun 2020; 11:1857. [PMID: 32312987 PMCID: PMC7170847 DOI: 10.1038/s41467-020-15730-x] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/27/2020] [Indexed: 12/24/2022] Open
Abstract
Despite its growing promise in cancer treatment, ferrotherapy has low therapeutic efficacy due to compromised Fenton catalytic efficiency in tumor milieu. We herein report a hybrid semiconducting nanozyme (HSN) with high photothermal conversion efficiency for photoacoustic (PA) imaging-guided second near-infrared photothermal ferrotherapy. HSN comprises an amphiphilic semiconducting polymer as photothermal converter, PA emitter and iron-chelating Fenton catalyst. Upon photoirradiation, HSN generates heat not only to induce cytotoxicity but also to enhance Fenton reaction. The increased ·OH generation promotes both ferroptosis and apoptosis, oxidizes HSN (42 nm) and transforms it into tiny segments (1.7 nm) with elevated intratumoral permeability. The non-invasive seamless synergism leads to amplified therapeutic effects including a deep ablation depth (9 mm), reduced expression of metastasis-related proteins and inhibition of metastasis from primary tumor to distant organs. Thereby, our study provides a generalized nanozyme strategy to compensate both ferrotherapy and phototherapeutics for complete tumor regression. Due to tumour microenvironment, Fenton reactions have low therapeutic efficiency. Here the authors report on the application of NIR-II hybrid semiconducting nanozymes for combined photothermal therapy and enhanced ferrotherapy with photoacoustic imaging and show application in vivo in tumour models.
Collapse
Affiliation(s)
- Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Xuhui Zhao
- The Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, People's Republic of China
| | - Jiaguo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Paul Kumar Upputuri
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - He Sun
- School of Biological Science, Nanyang Technological University, Singapore, 637551, Singapore
| | - Xiao Han
- School of Biological Science, Nanyang Technological University, Singapore, 637551, Singapore
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Yansong Miao
- School of Biological Science, Nanyang Technological University, Singapore, 637551, Singapore
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
| | - Ruiping Zhang
- The Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, People's Republic of China.
| |
Collapse
|
14
|
Bio M, Rahman KMM, Lim I, Rajaputra P, Hurst RE, You Y. Singlet oxygen-activatable Paclitaxel prodrugs via intermolecular activation for combined PDT and chemotherapy. Bioorg Med Chem Lett 2019; 29:1537-1540. [DOI: 10.1016/j.bmcl.2019.03.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/24/2019] [Accepted: 03/30/2019] [Indexed: 11/16/2022]
|
15
|
Affiliation(s)
- Kinam Park
- Purdue University, Biomedical Engineering and Pharmaceutics, West Lafayette, IN 47907, USA.
| |
Collapse
|