1
|
Baldari S, Antonini A, Di Rocco G, Toietta G. Expression pattern and prognostic significance of aldehyde dehydrogenase 2 in lung adenocarcinoma as a potential predictor of immunotherapy efficacy. CANCER INNOVATION 2025; 4:e149. [PMID: 39640071 PMCID: PMC11620833 DOI: 10.1002/cai2.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 12/07/2024]
Abstract
Background The incidence of alcohol-associated cancers is higher within Asian populations having an increased prevalence of an inactivating mutation in aldehyde dehydrogenase 2 (ALDH2), a mitochondrial enzyme required for the clearance of acetaldehyde, a cytotoxic metabolite of ethanol. The role of alcohol consumption in promoting lung cancer is controversial, and little attention has been paid to the association between alcohol drinking and pulmonary ALDH2 expression. Methods We performed a comprehensive bioinformatic analysis of multi-omics data available in public databases to elucidate the role of ALDH2 in lung adenocarcinoma (LUAD). Results Transcriptional and proteomic data indicate a substantial pulmonary expression of ALDH2, which is functional for the metabolism of alcohol diffused from the bronchial circulation. ALDH2 expression is higher in healthy lung tissue than in LUAD and inhibits cell cycle, apoptosis, and epithelial-mesenchymal transition pathways. Moreover, low ALDH2 mRNA levels predict poor prognosis and low overall survival in LUAD patients. Interestingly, ALDH2 expression correlates with immune infiltration in LUAD. Conclusions A better understanding of the role of ALDH2 in lung tumor progression and immune infiltration might support its potential use as a prognostic marker and therapeutic target for improving immunotherapeutic response.
Collapse
Affiliation(s)
- Silvia Baldari
- Tumor Immunology and Immunotherapy UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Annalisa Antonini
- Tumor Immunology and Immunotherapy UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Giuliana Di Rocco
- Unit of Cellular Networks and Molecular Therapeutic TargetsIRCCS Regina Elena National Cancer InstituteRomeItaly
| | - Gabriele Toietta
- Tumor Immunology and Immunotherapy UnitIRCCS Regina Elena National Cancer InstituteRomeItaly
| |
Collapse
|
2
|
Shan G, Bian Y, Yao G, Liang J, Shi H, Hu Z, Zheng Z, Bi G, Fan H, Zhan C. Targeting ALDH2 to augment platinum-based chemosensitivity through ferroptosis in lung adenocarcinoma. Free Radic Biol Med 2024; 224:310-324. [PMID: 39216560 DOI: 10.1016/j.freeradbiomed.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Ferroptosis is a regulated cell death driven by iron-dependent lipid peroxidation and associated with drug resistance in lung adenocarcinoma (LUAD). It's found that aldehyde dehydrogenase 2 (ALDH2), which is highly mutated in East Asian populations, is correlated with response to chemotherapy in LUAD patients. The rs671 variant knock-in, downregulation, and pharmacological inhibition of ALDH2 render LUAD cells more vulnerable to ferroptosis inducers and platinum-based chemotherapy. ALDH2 inhibits ferroptosis through the detoxification of 4-hydroxynonenal and malondialdehyde, the product of lipid peroxidation, as well as the production of NADH at the same time. Besides, ALDH2 deficiency leads to elevated intracellular pH (pHi), thus inhibiting the ERK/CREB1/GPX4 axis. Interestingly, ALDH2 is also regulated by CREB1, and the ALDH2 enzyme activity was decreased with elevated pHi. What's more, the elevated pHi caused by impaired ALDH2 activity promotes the biosynthesis of lipid droplets to counteract ferroptosis. At last, the effect of ALDH2 on ferroptosis and chemosensitivity is confirmed in patient-derived organoids and xenograft models. Collectively, this study demonstrates that ALDH2 deficiency confers sensitivity to platinum through ferroptosis in LUAD, and targeting ALDH2 is a promising new strategy to enhance the sensitivity of platinum-based chemotherapy for the treatment of LUAD patients.
Collapse
Affiliation(s)
- Guangyao Shan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangyu Yao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haochun Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaolin Zheng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hong Fan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, China.
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Gupta KB, Taylor TL, Panda SS, Thangaraju M, Lokeshwar BL. Curcumin-Dichloroacetate Hybrid Molecule as an Antitumor Oral Drug against Multidrug-Resistant Advanced Bladder Cancers. Cancers (Basel) 2024; 16:3108. [PMID: 39272966 PMCID: PMC11394085 DOI: 10.3390/cancers16173108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Tumor cells produce excessive reactive oxygen species (ROS) but cannot detoxify ROS if they are due to an external agent. An agent that produces toxic levels of ROS, specifically in tumor cells, could be an effective anticancer drug. CMC-2 is a molecular hybrid of the bioactive polyphenol curcumin conjugated to dichloroacetate (DCA) via a glycine bridge. The CMC-2 was tested for its cytotoxic antitumor activities and killed both naïve and multidrug-resistant (MDR) bladder cancer (BCa) cells with equal potency (<1.0 µM); CMC-2 was about 10-15 folds more potent than curcumin or DCA. Growth of human BCa xenograft in mice was reduced by >50% by oral gavage of 50 mg/kg of CMC-2 without recognizable systemic toxicity. Doses that used curcumin or DCA showed minimum antitumor effects. In vitro, the toxicity of CMC-2 in both naïve and MDR cells depended on increased intracellular ROS in tumor cells but not in normal cells at comparable doses. Increased ROS caused the permeabilization of mitochondria and induced apoptosis. Further, adding N-Acetyl cysteine (NAC), a hydroxyl radical scavenger, abolished excessive ROS production and CMC-2's cytotoxicity. The lack of systemic toxicity, equal potency against chemotherapy -naïve and resistant tumors, and oral bioavailability establish the potential of CMC-2 as a potent drug against bladder cancers.
Collapse
Affiliation(s)
| | - Truett L Taylor
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Siva S Panda
- Department of Chemistry and Biochemistry, College of Science and Mathematics, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Bal L Lokeshwar
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
4
|
Yu X, Ge J, Xie H, Qian J, Xia W, Wang Q, Zhou X, Zhou Y. MiR-483-3p promotes dental pulp stem cells osteogenic differentiation via the MAPK signaling pathway by targeting ARRB2. In Vitro Cell Dev Biol Anim 2024; 60:879-887. [PMID: 38833209 DOI: 10.1007/s11626-024-00929-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Human dental pulp stem cells (DPSCs) have become an important component for bone tissue engineering and regenerative medicine due to their ability to differentiate into osteoblast precursors. Two miRNA chip datasets (GSE138180 and E-MTAB-3077) of DPSCs osteogenic differentiation were analyzed respectively to find the expression of miR-483-3p significantly increased in the differentiated groups. We further confirmed that miR-483-3p continued to overexpress during osteogenic differentiation of DPSCs, especially reaching its peak on the 7th day. Moreover, miR-483-3p could significantly promote the expression of osteogenic markers including RUNX2 and OSX, and activate MAPK signaling pathway by inducing phosphorylation of ERK, p38, and JNK. In addition, as a significant gene within the MAPK signaling pathway, ARRB2 was identified as the target gene of miR-483-3p by bioinformatic prediction and experimental verification. In conclusion, we identified miR-483-3p could promote osteogenic differentiation of DPSCs via the MAPK signaling pathway by targeting ARRB2.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthodontics and Periodontology, Affiliated Nantong Stomatological Hospital of Nantong University, 36 South Yuelong Road, Nantong, 226001, China
| | - Juan Ge
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Huimin Xie
- Department of Orthodontics and Periodontology, Affiliated Nantong Stomatological Hospital of Nantong University, 36 South Yuelong Road, Nantong, 226001, China
| | - Jialu Qian
- Department of Clinical Laboratory, The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Wenqian Xia
- Department of Orthodontics and Periodontology, Affiliated Nantong Stomatological Hospital of Nantong University, 36 South Yuelong Road, Nantong, 226001, China
| | - Qinghua Wang
- Laboratory Animal Center, Nantong University, Nantong, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.
| | - Yan Zhou
- Department of Orthodontics and Periodontology, Affiliated Nantong Stomatological Hospital of Nantong University, 36 South Yuelong Road, Nantong, 226001, China.
| |
Collapse
|
5
|
Seremak JR, Gupta KB, Bonigala S, Liu E, Marshall B, Zhi W, Bokhtia RM, Panda SS, Lokeshwar VB, Lokeshwar BL. Targeting Chemoresistance in Advanced Bladder Cancers with a Novel Adjuvant Strategy. Mol Cancer Ther 2024; 23:745570. [PMID: 38814440 PMCID: PMC11607184 DOI: 10.1158/1535-7163.mct-23-0806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/16/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
Advanced urinary bladder cancer (BC) is characterized by rapid progression and development of therapy resistance. About 30% of the patients are diagnosed with high-grade tumors (Grade >T2a). A typical non-surgical treatment is systemic chemotherapy using Cisplatin (C) and Gemcitabine (G). However, treatment failure and subsequent disease progression are common in treated patients, and adjuvant therapies are not significantly effective. The therapeutic potential of a molecular hybrid of Ursolic Acid (UA), a pentacyclic-triterpene conjugated to N-methyl piperazine (UA4), was tested on both naïve (WT) and Gemcitabine-resistant (GemR) variants of two human invasive BC cell lines, 5637 and T24. UA4 killed 5637 (4µM), T24 (4µM) WT, and GemR cells invitro at equal potency. Pretreatment with UA4 followed by G synergistically killed WT and GemR cells by >50% compared to G followed by UA4. Oral gavage of UA4 (100 mg/kg) inhibited WT and GemR tumor growth in athymic mice. UA4 + G was more effective against GemR tumors than either drug alone. Studies revealed cytotoxic autophagy as a mechanism of UA4 cytotoxicity. UA4 induced moderate apoptosis in T24 but not in 5637 cells. Mitochondrial integrity and function were most affected by UA4 due to high levels of reactive oxygen species (ROS), disruption of mitochondrial membrane, and cell cycle arrest. These effects were enhanced in the UA4+G combination. UA4 was well-tolerated in mice, and oral gavage led to a serum level >1µM with no systemic toxicity. These results show the potential of UA4 as a non-toxic alternative treatment for high-grade BC.
Collapse
Affiliation(s)
| | | | | | - Elise Liu
- University of Tennessee Health Science Center, Memphis, TN, United States
| | | | - Wenbo Zhi
- Augusta University, Augusta, GA, United States
| | | | | | | | | |
Collapse
|
6
|
Wang Z, Zhang J, Luo L, Zhang C, Huang X, Liu S, Chen H, Miao W. Nucleoporin 93 Regulates Cancer Cell Growth and Stemness in Bladder Cancer via Wnt/β-Catenin Signaling. Mol Biotechnol 2024:10.1007/s12033-024-01184-9. [PMID: 38744786 DOI: 10.1007/s12033-024-01184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Bladder cancer (BLCA) is a prevalent cancer type with an unmet need for new therapeutic strategies. Nucleoporin 93 (Nup93) is implicated in the pathophysiology of several cancers, but its relationship with bladder cancer remains unclear. Nup93 expression was analyzed in TCGA datasets and 88 BLCA patient samples. Survival analysis and Cox regression models evaluated the association between Nup93 levels and patient prognosis. BLCA cells were used to investigate the effects of Nup93 overexpression or knockdown on cell growth, invasion, stemness (sphere formation and ALDH2 + cancer stem cell marker), and Wnt/β-catenin signaling in vitro. The Wnt activator BML-284 was used to confirm the involvement of Wnt/β-catenin signaling pathway. A xenograft mouse model validated the in vitro findings. Nup93 was highly expressed in BLCA tissues and cell lines, and high Nup93 expression correlated with poor prognosis in BLCA patients. Nup93 silencing inhibited BLCA cell proliferation, Wnt/β-catenin activation, and cancer cell stemness. Conversely, Nup93 overexpression promoted these effects. BML-284 partially rescued the reduction in cell growth and stemness markers caused by Nup93 knockdown. Nup93 knockdown also suppressed the tumor formation of BLCA cells in vivo. Nup93 regulates BLCA cell growth and stemness via the Wnt/β-catenin pathway, suggesting its potential as a prognostic marker and therapeutic target in BLCA.
Collapse
Affiliation(s)
- Zhe Wang
- Urology Department, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Zhangjiakou, 050051, Hebei Province, China
| | - Jing Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Zhangjiakou, 050051, Hebei Province, China
| | - Lina Luo
- Urology Department, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Zhangjiakou, 050051, Hebei Province, China
| | - Chao Zhang
- Urology Department, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Zhangjiakou, 050051, Hebei Province, China
| | - Xiaomeng Huang
- Medical Department, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Zhangjiakou, 050051, Hebei Province, China
| | - Shuo Liu
- Urology Department, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Zhangjiakou, 050051, Hebei Province, China
| | - Huaian Chen
- Urology Department, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Zhangjiakou, 050051, Hebei Province, China
| | - Wenlong Miao
- Urology Department, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Zhangjiakou, 050051, Hebei Province, China.
| |
Collapse
|
7
|
Zhou Y, Li F, Zou B, Zhou X, Luo L, Dong S, He Z, Zhang Z, Liao L, Liu H, Cai C, Gu D, Duan X. β-Arrestin2 promotes docetaxel resistance of castration-resistant prostate cancer via promoting hnRNP A1-mediated PKM2 alternative splicing. Discov Oncol 2023; 14:215. [PMID: 38019357 PMCID: PMC10686933 DOI: 10.1007/s12672-023-00740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/26/2023] [Indexed: 11/30/2023] Open
Abstract
PURPOSE To investigate the influence of β-arrestin2 on the docetaxel resistance in castration-resistant prostate cancer (CRPC) and elucidate the underlying molecular mechanisms. METHODS PC3 and DU145 cells with stable β-arrestin2 overexpression and C4-2 cells with stable β-arrestin2 knockdown, were constructed via using lentivirus and puromycin selection. MTT and colony formation assays were carried out to investigate the effect of β-arrestin2 expression on the docetaxel resistance of CRPC cells. Glycolysis analysis was used to assess the glycolytic capacity modulated by β-arrestin2. GO enrichment analysis, gene set enrichment analysis and Spearman correlation test were carried out to explore the potential biological function and mechanism via using public data from GEO and TCGA. The expressions of PKM2, Phospho-PKM2, Phospho-ERK1/2 and hnRNP A1 were detected by western blot. Functional blocking experiments were carried out to confirm the roles of PKM2 and hnRNP A1 in the regulation of β-arrestin2's biological functions via silencing PKM2 or hnRNP A1 expression in cells with stable β-arrestin2 overexpression. Finally, nude mice xenograft models were established to confirm the experimental results of cell experiments. RESULTS β-Arrestin2 significantly decreased the sensitivity of CRPC cells to docetaxel stimulation, through enhancing the phosphorylation and expression of PKM2. Additionally, β-arrestin2 increased PKM2 phosphorylation via the ERK1/2 signaling pathway and induced PKM2 expression in a post-transcriptional manner through an hnRNP A1-dependent PKM alternative splicing mechanism, rather than by inhibiting its ubiquitination degradation. CONCLUSION Our findings indicate that the β-arrestin2/hnRNP A1/PKM2 pathway could be a promising target for treating docetaxel-resistant CRPC.
Collapse
Affiliation(s)
- Yuhao Zhou
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Kangda Road 1, Haizhu District, Guangzhou, 510230, Guangdong, China
| | - Fei Li
- Department of Pharmacy, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Bangyu Zou
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Kangda Road 1, Haizhu District, Guangzhou, 510230, Guangdong, China
| | - Xiaofeng Zhou
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Kangda Road 1, Haizhu District, Guangzhou, 510230, Guangdong, China
| | - Lianmin Luo
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Kangda Road 1, Haizhu District, Guangzhou, 510230, Guangdong, China
| | - Sicheng Dong
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Kangda Road 1, Haizhu District, Guangzhou, 510230, Guangdong, China
| | - Zhiqing He
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Kangda Road 1, Haizhu District, Guangzhou, 510230, Guangdong, China
| | - Zhixiong Zhang
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Kangda Road 1, Haizhu District, Guangzhou, 510230, Guangdong, China
| | - Liqiong Liao
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Kangda Road 1, Haizhu District, Guangzhou, 510230, Guangdong, China
| | - Hongxing Liu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Kangda Road 1, Haizhu District, Guangzhou, 510230, Guangdong, China
| | - Chao Cai
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Kangda Road 1, Haizhu District, Guangzhou, 510230, Guangdong, China
| | - Di Gu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Kangda Road 1, Haizhu District, Guangzhou, 510230, Guangdong, China.
| | - Xiaolu Duan
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Kangda Road 1, Haizhu District, Guangzhou, 510230, Guangdong, China.
| |
Collapse
|
8
|
Zhang W, Cao L, Yang J, Zhang S, Zhao J, Shi Z, Liao K, Wang H, Chen B, Qian Z, Xu H, Wu L, Liu H, Wang H, Ma C, Qiu Y, Ge J, Chen J, Lin Y. AEP-cleaved DDX3X induces alternative RNA splicing events to mediate cancer cell adaptation in harsh microenvironments. J Clin Invest 2023; 134:e173299. [PMID: 37988165 PMCID: PMC10849765 DOI: 10.1172/jci173299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023] Open
Abstract
Oxygen and nutrient deprivation are common features of solid tumors. Although abnormal alternative splicing (AS) has been found to be an important driving force in tumor pathogenesis and progression, the regulatory mechanisms of AS that underly the adaptation of cancer cells to harsh microenvironments remain unclear. Here, we found that hypoxia- and nutrient deprivation-induced asparagine endopeptidase (AEP) specifically cleaved DDX3X in a HIF1A-dependent manner. This cleavage yields truncated carboxyl-terminal DDX3X (tDDX3X-C), which translocates and aggregates in the nucleus. Unlike intact DDX3X, nuclear tDDX3X-C complexes with an array of splicing factors and induces AS events of many pre-mRNAs; for example, enhanced exon skipping (ES) in exon 2 of the classic tumor suppressor PRDM2 leads to a frameshift mutation of PRDM2. Intriguingly, the isoform ARRB1-Δexon 13 binds to glycolytic enzymes and regulates glycolysis. By utilizing in vitro assays, glioblastoma organoids, and animal models, we revealed that AEP/tDDX3X-C promoted tumor malignancy via these isoforms. More importantly, high AEP/tDDX3X-C/ARRB1-Δexon 13 in cancerous tissues was tightly associated with poor patient prognosis. Overall, our discovery of the effect of AEP-cleaved DDX3X switching on alternative RNA splicing events identifies a mechanism in which cancer cells adapt to oxygen and nutrient shortages and provides potential diagnostic and/or therapeutic targets.
Collapse
Affiliation(s)
- Wenrui Zhang
- Brain Injury Center, Shanghai Institute of Head Trauma and
- Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Cao
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Yang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Zhang
- Department of Neurosurgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianyi Zhao
- Brain Injury Center, Shanghai Institute of Head Trauma and
- Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhonggang Shi
- Brain Injury Center, Shanghai Institute of Head Trauma and
- Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keman Liao
- Brain Injury Center, Shanghai Institute of Head Trauma and
| | - Haiwei Wang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Binghong Chen
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Zhongrun Qian
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, China
| | - Haoping Xu
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linshi Wu
- Department of Biliary-Pancreatic Surgery and
| | - Hua Liu
- Department of General Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiang Wang
- Department of Neurosurgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chunhui Ma
- Department of Orthopedics, Shanghai General Hospital of Shanghai Jiao Tong University, Shanghai, China
| | - Yongming Qiu
- Brain Injury Center, Shanghai Institute of Head Trauma and
| | - Jianwei Ge
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Lin
- Brain Injury Center, Shanghai Institute of Head Trauma and
- Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Wang G, He X, Dai H, Lin L, Cao W, Fu Y, Diao W, Ding M, Zhang Q, Chen W, Guo H. WDR4 promotes the progression and lymphatic metastasis of bladder cancer via transcriptional down-regulation of ARRB2. Oncogenesis 2023; 12:47. [PMID: 37783676 PMCID: PMC10545698 DOI: 10.1038/s41389-023-00493-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
Lymph node (LN) metastasis is one of the key prognostic factors in bladder cancer, but its underlying mechanisms remain unclear. Here, we found that elevated expression of WD repeat domain 4 (WDR4) in bladder cancer correlated with worse prognosis. WDR4 can promote the LN metastasis and proliferation of bladder cancer cells. Mechanistic studies showed that WDR4 can promote the nuclear localization of DEAD-box helicase 20 (DDX20) and act as an adaptor to bind DDX20 and Early growth response 1 (Egr1), thereby inhibiting Egr1-promoted transcriptional expression of arrestin beta 2 (ARRB2) and ultimately contributing to the progression of bladder cancer. Immunohistochemical analysis confirmed that WDR4 expression is also an independent predictor of LN metastasis in bladder cancer. Our results reveal a novel mechanism of LN metastasis and progression in bladder cancer and identify WDR4 as a potential therapeutic target for metastatic bladder cancer.
Collapse
Affiliation(s)
- Guoli Wang
- Department of Urology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Xin He
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Huiqi Dai
- Department of Urology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Lingyi Lin
- Department of Urology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Wenmin Cao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Yao Fu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wenli Diao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Meng Ding
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, China
| | - Qing Zhang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, China.
| | - Wei Chen
- Department of Urology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China.
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, China.
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, China.
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
10
|
Wess J, Oteng AB, Rivera-Gonzalez O, Gurevich EV, Gurevich VV. β-Arrestins: Structure, Function, Physiology, and Pharmacological Perspectives. Pharmacol Rev 2023; 75:854-884. [PMID: 37028945 PMCID: PMC10441628 DOI: 10.1124/pharmrev.121.000302] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
The two β-arrestins, β-arrestin-1 and -2 (systematic names: arrestin-2 and -3, respectively), are multifunctional intracellular proteins that regulate the activity of a very large number of cellular signaling pathways and physiologic functions. The two proteins were discovered for their ability to disrupt signaling via G protein-coupled receptors (GPCRs) via binding to the activated receptors. However, it is now well recognized that both β-arrestins can also act as direct modulators of numerous cellular processes via either GPCR-dependent or -independent mechanisms. Recent structural, biophysical, and biochemical studies have provided novel insights into how β-arrestins bind to activated GPCRs and downstream effector proteins. Studies with β-arrestin mutant mice have identified numerous physiologic and pathophysiological processes regulated by β-arrestin-1 and/or -2. Following a short summary of recent structural studies, this review primarily focuses on β-arrestin-regulated physiologic functions, with particular focus on the central nervous system and the roles of β-arrestins in carcinogenesis and key metabolic processes including the maintenance of glucose and energy homeostasis. This review also highlights potential therapeutic implications of these studies and discusses strategies that could prove useful for targeting specific β-arrestin-regulated signaling pathways for therapeutic purposes. SIGNIFICANCE STATEMENT: The two β-arrestins, structurally closely related intracellular proteins that are evolutionarily highly conserved, have emerged as multifunctional proteins able to regulate a vast array of cellular and physiological functions. The outcome of studies with β-arrestin mutant mice and cultured cells, complemented by novel insights into β-arrestin structure and function, should pave the way for the development of novel classes of therapeutically useful drugs capable of regulating specific β-arrestin functions.
Collapse
Affiliation(s)
- Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Antwi-Boasiako Oteng
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Osvaldo Rivera-Gonzalez
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Eugenia V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Vsevolod V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| |
Collapse
|
11
|
Chen H, Liang W, Zheng W, Li F, Pan X, Lu Y. A novel telomere-related gene prognostic signature for survival and drug treatment efficiency prediction in lung adenocarcinoma. Aging (Albany NY) 2023; 15:7956-7973. [PMID: 37589509 PMCID: PMC10497012 DOI: 10.18632/aging.204877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/19/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVE Telomere-related genes (TRGs) play a critical role in various types of tumors. However, there is a lack of comprehensive exploration of their relevance in lung cancer. This research aimed to verify the relationship between TRGs gene expression and the prognosis of patients with lung adenocarcinoma (LUAD), as well as the prediction of drug treatment efficiency. METHODS A total of 2093 TRGs were acquired from TelNet. The clinical information including age, tumor stage, follow up and outcome (death/survival) and TRGs expression profile of LUAD were obtained from the patients in The Cancer Genome Atlas (TCGA) database and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. The two databases were used to construct and verify a prognostic model based on the expression of hubTRGs. The tumor mutation burden, immune infiltration and subtypes, as well as IC50 prediction of multiple targeted drugs were also evaluated in TRGs-divided risk groups. RESULTS A total of 335 TRGs were significantly differentially expressed in LUAD as compared with normal control. Among them, 9 TRGs (ABCC2, ABCC8, ALDH2, FOXP3, GNMT, JSRP1, MACF1, PLCD3, SULT4A1) were finally identified as hubGenes and used to construct a TRG risk score. The TRG risk score showed favorable performance in constructing a prognostic nomogram in predicting survival of LUAD, and the ROC curves at 1, 3 and 5 years were plotted and the AUROC values were 0.743, 0.754 and 0.735, respectively. Higher TRGs risk score correlated with worse immune subtypes and higher tumor mutation burden in LUAD tissues. In addition, the patients in TRG high risk group harbored a lower TIDE score which indicated potentially better response to immunotherapy. CONCLUSION This study proposed a broad molecular signature of telomere-related genes that can be used in further functional and therapeutic investigations, and also represents an integrated modality for characterizing critical molecules when exploring novel targets for lung cancer immunotherapy.
Collapse
Affiliation(s)
- Haiming Chen
- Department of Oncology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong Province 528200, China
| | - Weiquan Liang
- Department of Respiration, Foshan Second People's Hospital, Foshan, Guangdong Province 528000, China
| | - Weiqiang Zheng
- Department of Respiration, Foshan Second People's Hospital, Foshan, Guangdong Province 528000, China
| | - Feilong Li
- Department of Oncology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong Province 528200, China
| | - Xingxi Pan
- Department of Oncology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong Province 528200, China
| | - Yiyu Lu
- Department of Oncology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong Province 528200, China
| |
Collapse
|
12
|
Karmokar PF, Moniri NH. Free-fatty acid receptor-1 (FFA1/GPR40) promotes papillary RCC proliferation and tumor growth via Src/PI3K/AKT/NF-κB but suppresses migration by inhibition of EGFR, ERK1/2, STAT3 and EMT. Cancer Cell Int 2023; 23:126. [PMID: 37355607 DOI: 10.1186/s12935-023-02967-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Papillary renal cell carcinoma (pRCC) is a highly metastatic genitourinary cancer and is generally irresponsive to common treatments used for the more prevalent clear-cell (ccRCC) subtype. The goal of this study was to examine the novel role of the free fatty-acid receptor-1 (FFA1/GPR40), a cell-surface expressed G protein-coupled receptor that is activated by medium-to-long chained dietary fats, in modulation of pRCC cell migration invasion, proliferation and tumor growth. METHODS We assessed the expression of FFA1 in human pRCC and ccRCC tumor tissues compared to patient-matched non-cancerous controls, as well as in RCC cell lines. Using the selective FFA1 agonist AS2034178 and the selective FFA1 antagonist GW1100, we examined the role of FFA1 in modulating cell migration, invasion, proliferation and tumor growth and assessed the FFA1-associated intracellular signaling mechanisms via immunoblotting. RESULTS We reveal for the first time that FFA1 is upregulated in pRCC tissue compared to patient-matched non-cancerous adjacent tissue and that its expression increases with pRCC cancer pathology, while the inverse is seen in ccRCC tissue. We also show that FFA1 is expressed in the pRCC cell line ACHN, but not in ccRCC cell lines, suggesting a unique role in pRCC pathology. Our results demonstrate that FFA1 agonism promotes tumor growth and cell proliferation via c-Src/PI3K/AKT/NF-κB and COX-2 signaling. At the same time, agonism of FFA1 strongly inhibits migration and invasion, which are mechanistically mediated via inhibition of EGFR, ERK1/2 and regulators of epithelial-mesenchymal transition. CONCLUSIONS Our data suggest that FFA1 plays oppositional growth and migratory roles in pRCC and identifies this receptor as a potential target for modulation of pathogenesis of this aggressive cancer.
Collapse
Affiliation(s)
- Priyanka F Karmokar
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, 3001, Mercer University Drive, Atlanta, GA, 30341, USA
| | - Nader H Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, 3001, Mercer University Drive, Atlanta, GA, 30341, USA.
- Department of Biomedical Sciences, School of Medicine, Mercer University Health Sciences Center, Mercer University, Macon, GA, 31207, USA.
| |
Collapse
|
13
|
Hamid ARAH, Syadza YZ, Yausep OE, Christanto RBI, Muharia BHR, Mochtar CA. The expression of stem cells markers and its effects on the propensity for recurrence and metastasis in bladder cancer: A systematic review. PLoS One 2023; 18:e0269214. [PMID: 37196048 PMCID: PMC10191355 DOI: 10.1371/journal.pone.0269214] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Bladder cancer is one of the most frequent cancers of the urinary tract, associated with high recurrence rates and metastasis. Cancer stem cells (CSCs) are a subpopulation of cancer cells characterized by high self-renewal and differentiation capacities, resulting in increased cancer recurrence, larger tumor size, higher rates of metastasis, higher resistance to treatment, and overall poorer prognosis. This study aimed to evaluate the role of CSCs as a prognostic tool to predict the risks of metastasis and recurrence in bladder cancer. A literature search was conducted across seven databases from January 2000 to February 2022 for clinical studies investigating the use of CSCs to determine the prognosis of bladder cancer. The following keywords were used: ("Bladder Cancer" OR "Transitional Cell Carcinoma" OR "Urothelial Carcinoma") AND ("Stem Cell" OR "Stem Gene") AND ("Metastasis" OR "Recurrence"). A total of 12 studies were deemed eligible for inclusion. SOX2, IGF1R, SOX4, ALDH1, CD44, Cripto-1, OCT4, ARRB1, ARRB2, p-TFCP2L1, CDK1, DCLK1, and NANOG, which were all identified as CSC markers. Several of these markers have been implicated in the recurrence and metastasis of tumor in bladder cancer, which played a role as prognostic factor of bladder cancer. Given the pluripotent and highly proliferative properties of CSCs. CSCs may play a role in the complex biological behavior of bladder cancer, including, but not limited to, its high rates of recurrence, metastasis, and resistance to treatment. The detection of cancer stem cell markers offers a promising approach in determining the prognosis of bladder cancer. Further studies in this area are thus warranted and may contribute significantly to the overall management of bladder cancer.
Collapse
Affiliation(s)
| | - Yasmina Zahra Syadza
- Department of Urology, Faculty of Medicine Universitas Indonesia–Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Oliver Emmanuel Yausep
- Department of Urology, Faculty of Medicine Universitas Indonesia–Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | | | - Bayu Hernawan Rahmat Muharia
- Department of Urology, Faculty of Medicine Universitas Indonesia–Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Chaidir Arif Mochtar
- Department of Urology, Faculty of Medicine Universitas Indonesia–Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| |
Collapse
|
14
|
Xia J, Li S, Liu S, Zhang L. Aldehyde dehydrogenase in solid tumors and other diseases: Potential biomarkers and therapeutic targets. MedComm (Beijing) 2023; 4:e195. [PMID: 36694633 PMCID: PMC9842923 DOI: 10.1002/mco2.195] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 01/18/2023] Open
Abstract
The family of aldehyde dehydrogenases (ALDHs) contains 19 isozymes and is involved in the oxidation of endogenous and exogenous aldehydes to carboxylic acids, which contributes to cellular and tissue homeostasis. ALDHs play essential parts in detoxification, biosynthesis, and antioxidants, which are of important value for cell proliferation, differentiation, and survival in normal body tissues. However, ALDHs are frequently dysregulated and associated with various diseases like Alzheimer's disease, Parkinson's disease, and especially solid tumors. Notably, the involvement of the ALDHs in tumor progression is responsible for the maintenance of the stem-cell-like phenotype, triggering rapid and aggressive clinical progressions. ALDHs have captured increasing attention as biomarkers for disease diagnosis and prognosis. Nevertheless, these require further longitudinal clinical studies in large populations for broad application. This review summarizes our current knowledge regarding ALDHs as potential biomarkers in tumors and several non-tumor diseases, as well as recent advances in our understanding of the functions and underlying molecular mechanisms of ALDHs in disease development. Finally, we discuss the therapeutic potential of ALDHs in diseases, especially in tumor therapy with an emphasis on their clinical implications.
Collapse
Affiliation(s)
- Jie Xia
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Siqin Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer MedicineNanjing Medical UniversityNanjingChina
| | - Lixing Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
15
|
Dashtaki ME, Ghasemi S. CRISPR/Cas9-based Gene Therapies for Fighting Drug Resistance Mediated by Cancer Stem Cells. Curr Gene Ther 2023; 23:41-50. [PMID: 36056851 DOI: 10.2174/1566523222666220831161225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/11/2022] [Accepted: 06/11/2022] [Indexed: 02/08/2023]
Abstract
Cancer stem cells (CSCs) are cancer-initiating cells found in most tumors and hematological cancers. CSCs are involved in cells progression, recurrence of tumors, and drug resistance. Current therapies have been focused on treating the mass of tumor cells and cannot eradicate the CSCs. CSCs drug-specific targeting is considered as an approach to precisely target these cells. Clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) gene-editing systems are making progress and showing promise in the cancer research field. One of the attractive applications of CRISPR/Cas9 as one approach of gene therapy is targeting the critical genes involved in drug resistance and maintenance of CSCs. The synergistic effects of gene editing as a novel gene therapy approach and traditional therapeutic methods, including chemotherapy, can resolve drug resistance challenges and regression of the cancers. This review article considers different aspects of CRISPR/Cas9 ability in the study and targeting of CSCs with the intention to investigate their application in drug resistance.
Collapse
Affiliation(s)
- Masoumeh Eliyasi Dashtaki
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
16
|
Feng D, Zhu W, You J, Shi X, Han P, Wei W, Wei Q, Yang L. Mitochondrial Aldehyde Dehydrogenase 2 Represents a Potential Biomarker of Biochemical Recurrence in Prostate Cancer Patients. Molecules 2022; 27:6000. [PMID: 36144737 PMCID: PMC9500792 DOI: 10.3390/molecules27186000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND We aimed to explore the role of mitochondrial aldehyde dehydrogenase 2 (ALDH2) in prostate cancer (PCa) patients and provide insights into the tumor immune microenvironment (TME) for those patients undergoing radical radiotherapy. METHODS We performed all analyses using R version 3.6.3 and its suitable packages. Cytoscape 3.8.2 was used to establish network of competing endogenous RNAs (ceRNAs). RESULTS Downregulation of ADLH2 was significantly associated with higher risk of BCR-free survival (HR: 0.40, 95%CI: 0.24-0.68, p = 0.001) and metastasis-free survival (HR: 0.21, 95%CI: 0.09-0.49, p = 0.002). Additionally, ALDH2 repression contributed to significantly shorter BCR-free survival in the TCGA database (HR: 0.55, 95%CI: 0.33-0.93, p = 0.027). For immune checkpoints, patients that expressed a higher level of CD96 had a higher risk of BCR than their counterparts (HR: 1.79, 95%CI: 1.06-3.03, p = 0.032), as well as NRP1 (HR: 2.18, 95%CI: 1.29-3.69, p = 0.005). In terms of the TME parameters, the spearman analysis showed that ALDH was positively associated with B cells (r: 0.13), CD8+ T cells (r: 0.19), neutrophils (r: 0.13), and macrophages (r: 0.17). Patients with higher score of neutrophils (HR: 1.75, 95%CI: 1.03-2.95, p = 0.038), immune score (HR: 1.92, 95%CI: 1.14-3.25, p = 0.017), stromal score (HR: 2.52, 95%CI: 1.49-4.26, p = 0.001), and estimate score (HR: 1.81, 95%CI: 1.07-3.06, p = 0.028) had higher risk of BCR than their counterparts. Our ceRNA network found that PART1 might regulate the expression of ALDH via has-miR-578 and has-miR-6833-3p. Besides, PHA-793887, PI-103, and piperlongumine had better correlations with ALDH2. CONCLUSIONS We found that ALDH2 might serve as a potential biomarker predicting biochemical recurrence for PCa patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Aamna B, Kumar Dan A, Sahu R, Behera SK, Parida S. Deciphering the signaling mechanisms of β-arrestin1 and β-arrestin2 in regulation of cancer cell cycle and metastasis. J Cell Physiol 2022; 237:3717-3733. [PMID: 35908197 DOI: 10.1002/jcp.30847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/22/2022] [Accepted: 07/18/2022] [Indexed: 11/05/2022]
Abstract
β-Arrestins are ubiquitously expressed intracellular proteins with many functions which interact directly and indirectly with a wide number of cellular partners and mediate downstream signaling. Originally, β-arrestins were identified for their contribution to GPCR desensitization to agonist-mediated activation, followed by receptor endocytosis and ubiquitylation. However, current investigations have now recognized that in addition to GPCR arresting (hence the name arrestin). β-Arrestins are adaptor proteins that control the recruitment, activation, and scaffolding of numerous cytoplasmic signaling complexes and assist in G-protein receptor signaling, thus bringing them into close proximity. They have participated in various cellular processes such as cell proliferation, migration, apoptosis, and transcription via canonical and noncanonical pathways. Despite their significant recognition in several physiological processes, these activities are also involved in the onset and progression of various cancers. This review delivers a concise overview of the role of β-arrestins with a primary emphasis on the signaling processes which underlie the mechanism of β-arrestins in the onset of cancer. Understanding these processes has important implications for understanding the therapeutic intervention and treatment of cancer in the future.
Collapse
Affiliation(s)
- Bari Aamna
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed to be University), Bhubaneswar, Odisha, India
| | - Aritra Kumar Dan
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed to be University), Bhubaneswar, Odisha, India
| | - Raghaba Sahu
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Santosh Kumar Behera
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Sagarika Parida
- Department of Botany, Centurion University of Technology and Management, Odisha, India
| |
Collapse
|
18
|
Wang W, Wang J, Liu S, Ren Y, Wang J, Liu S, Cui W, Jia L, Tang X, Yang J, Wu C, Wang L. An EHMT2/NFYA-ALDH2 signaling axis modulates the RAF pathway to regulate paclitaxel resistance in lung cancer. Mol Cancer 2022; 21:106. [PMID: 35477569 PMCID: PMC9044593 DOI: 10.1186/s12943-022-01579-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
Background Lung cancer is a kind of malignancy with high morbidity and mortality worldwide. Paclitaxel (PTX) is the main treatment for non-small cell lung cancer (NSCLC), and resistance to PTX seriously affects the survival of patients. However, the underlying mechanism and potential reversing strategy need to be further explored. Methods We identified ALDH2 as a PTX resistance-related gene using gene microarray analysis. Subsequently, a series of functional analysis in cell lines, patient samples and xenograft models were performed to explore the functional role, clinical significance and the aberrant regulation mechanism of ALDH2 in PTX resistance of NSCLC. Furthermore, the pharmacological agents targeting ALDH2 and epigenetic enzyme were used to investigate the diverse reversing strategy against PTX resistance. Results Upregulation of ALDH2 expression is highly associated with resistance to PTX using in vitro and in vivo analyses of NSCLC cells along with clinicopathological analyses of NSCLC patients. ALDH2-overexpressing NSCLC cells exhibited significantly reduced PTX sensitivity and increased biological characteristics of malignancy in vitro and tumor growth and metastasis in vivo. EHMT2 (euchromatic histone lysine methyltransferase 2) inhibition and NFYA (nuclear transcription factor Y subunit alpha) overexpression had a cooperative effect on the regulation of ALDH2. Mechanistically, ALDH2 overexpression activated the RAS/RAF oncogenic pathway. NSCLC/PTX cells re-acquired sensitivity to PTX in vivo and in vitro when ALDH2 was inhibited by pharmacological agents, including the ALDH2 inhibitors Daidzin (DZN)/Disulfiram (DSF) and JIB04, which reverses the effect of EHMT2. Conclusion Our findings suggest that ALDH2 status can help predict patient response to PTX therapy and ALDH2 inhibition may be a promising strategy to overcome PTX resistance in the clinic. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01579-9.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Jianmin Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Shuai Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Yong Ren
- Department of Pathology, General Hospital of Central Theater Command of People's Liberation Army, Wuhan, People's Republic of China
| | - Jingyu Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Sen Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China. .,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China. .,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.
| |
Collapse
|
19
|
Rabelo-Fernández RJ, Santiago-Sánchez GS, Sharma RK, Roche-Lima A, Carrion KC, Rivera RAN, Quiñones-Díaz BI, Rajasekaran S, Siddiqui J, Miles W, Rivera YS, Valiyeva F, Vivas-Mejia PE. Reduced RBPMS Levels Promote Cell Proliferation and Decrease Cisplatin Sensitivity in Ovarian Cancer Cells. Int J Mol Sci 2022; 23:535. [PMID: 35008958 PMCID: PMC8745614 DOI: 10.3390/ijms23010535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
Worldwide, the number of cancer-related deaths continues to increase due to the ability of cancer cells to become chemotherapy-resistant and metastasize. For women with ovarian cancer, a staggering 70% will become resistant to the front-line therapy, cisplatin. Although many mechanisms of cisplatin resistance have been proposed, the key mechanisms of such resistance remain elusive. The RNA binding protein with multiple splicing (RBPMS) binds to nascent RNA transcripts and regulates splicing, transport, localization, and stability. Evidence indicates that RBPMS also binds to protein members of the AP-1 transcription factor complex repressing its activity. Until now, little has been known about the biological function of RBPMS in ovarian cancer. Accordingly, we interrogated available Internet databases and found that ovarian cancer patients with high RBPMS levels live longer compared to patients with low RBPMS levels. Similarly, immunohistochemical (IHC) analysis in a tissue array of ovarian cancer patient samples showed that serous ovarian cancer tissues showed weaker RBPMS staining when compared with normal ovarian tissues. We generated clustered regularly interspaced short palindromic repeats (CRISPR)-mediated RBPMS knockout vectors that were stably transfected in the high-grade serous ovarian cancer cell line, OVCAR3. The knockout of RBPMS in these cells was confirmed via bioinformatics analysis, real-time PCR, and Western blot analysis. We found that the RBPMS knockout clones grew faster and had increased invasiveness than the control CRISPR clones. RBPMS knockout also reduced the sensitivity of the OVCAR3 cells to cisplatin treatment. Moreover, β-galactosidase (β-Gal) measurements showed that RBPMS knockdown induced senescence in ovarian cancer cells. We performed RNAseq in the RBPMS knockout clones and identified several downstream-RBPMS transcripts, including non-coding RNAs (ncRNAs) and protein-coding genes associated with alteration of the tumor microenvironment as well as those with oncogenic or tumor suppressor capabilities. Moreover, proteomic studies confirmed that RBPMS regulates the expression of proteins involved in cell detoxification, RNA processing, and cytoskeleton network and cell integrity. Interrogation of the Kaplan-Meier (KM) plotter database identified multiple downstream-RBPMS effectors that could be used as prognostic and response-to-therapy biomarkers in ovarian cancer. These studies suggest that RBPMS acts as a tumor suppressor gene and that lower levels of RBPMS promote the cisplatin resistance of ovarian cancer cells.
Collapse
Affiliation(s)
- Robert J. Rabelo-Fernández
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00925, USA
| | - Ginette S. Santiago-Sánchez
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| | - Rohit K. Sharma
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
| | - Abiel Roche-Lima
- Deanship of Research, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA; (A.R.-L.); (K.C.C.)
| | - Kelvin Carrasquillo Carrion
- Deanship of Research, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA; (A.R.-L.); (K.C.C.)
| | - Ricardo A. Noriega Rivera
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| | - Blanca I. Quiñones-Díaz
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| | - Swetha Rajasekaran
- Department of Cancer Biology and Genetics, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.R.); (J.S.); (W.M.)
| | - Jalal Siddiqui
- Department of Cancer Biology and Genetics, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.R.); (J.S.); (W.M.)
| | - Wayne Miles
- Department of Cancer Biology and Genetics, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; (S.R.); (J.S.); (W.M.)
| | - Yasmarie Santana Rivera
- School of Dentistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA;
| | - Fatima Valiyeva
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
| | - Pablo E. Vivas-Mejia
- University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935, USA; (R.J.R.-F.); (G.S.S.-S.); (R.K.S.); (R.A.N.R.); (B.I.Q.-D.); (F.V.)
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, USA
| |
Collapse
|
20
|
Liu S, Chen X, Lin T. Emerging strategies for the improvement of chemotherapy in bladder cancer: Current knowledge and future perspectives. J Adv Res 2021; 39:187-202. [PMID: 35777908 PMCID: PMC9263750 DOI: 10.1016/j.jare.2021.11.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/01/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022] Open
Abstract
The response of chemotherapy and prognosis in bladder cancer is unsatisfied. Immunotherapy, targeted therapy, and ADC improve the efficacy of chemotherapy. Emerging targets in cancer cells and TME spawned novel preclinical agents. Novel drug delivery, such as nanotechnology, enhances effects of chemotherapeutics. The organoid and PDX model are promising to screen and evaluate the target therapy.
Background Chemotherapy is a first-line treatment for advanced and metastatic bladder cancer, but the unsatisfactory objective response rate to this treatment yields poor 5-year patient survival. Only PD-1/PD-L1-based immune checkpoint inhibitors, FGFR3 inhibitors and antibody-drug conjugates are approved by the FDA to be used in bladder cancer, mainly for platinum-refractory or platinum-ineligible locally advanced or metastatic urothelial carcinoma. Emerging studies indicate that the combination of targeted therapy and chemotherapy shows better efficacy than targeted therapy or chemotherapy alone. Newly identified targets in cancer cells and various functions of the tumour microenvironment have spawned novel agents and regimens, which give impetus to sensitizing chemotherapy in the bladder cancer setting. Aim of Review This review aims to present the current evidence for potentiating the efficacy of chemotherapy in bladder cancer. We focus on combining chemotherapy with other treatments as follows: targeted therapy, including immunotherapy and antibody-drug conjugates in clinic; novel targeted drugs and nanoparticles in preclinical models and potential targets that may contribute to chemosensitivity in future clinical practice. The prospect of precision therapy is also discussed in bladder cancer. Key Scientific Concepts of Review Combining chemotherapy drugs with immune checkpoint inhibitors, antibody-drug conjugates and VEGF inhibitors potentially elevates the response rate and survival. Novel targets, including cancer stem cells, DNA damage repair, antiapoptosis, drug metabolism and the tumour microenvironment, contribute to chemosensitization. Gene alteration-based drug selection and patient-derived xenograft- and organoid-based drug validation are the future for precision therapy.
Collapse
|
21
|
Zhang J, Zhu L, Shi H, Zheng H. Protective effects of miR-155-5p silencing on IFN-γ-induced apoptosis and inflammation in salivary gland epithelial cells. Exp Ther Med 2021; 22:882. [PMID: 34194560 PMCID: PMC8237265 DOI: 10.3892/etm.2021.10314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/08/2021] [Indexed: 12/28/2022] Open
Abstract
Previous studies have demonstrated that microRNAs (miRNAs/miRs) serve a vital role in the pathogenesis of Sjögren's syndrome (SS). The present study aimed to investigate the role of miR-155-5p in SS and determine its underlying molecular mechanism. An inflammatory lesion model was established by stimulating salivary gland epithelial cells (SGECs) with interferon-γ (IFN-γ). The apoptosis of SGECs was measured by using flow cytometry. Levels of proinflammatory factors were detected by reverse transcription-quantitative PCR and ELISA, respectively. Immunofluorescence was used for p65 staining. Dual-luciferase reporter assay was performed to verify the interaction between miR-155-5p and arrestin β2 (ARRB2). The protein levels in the NF-κB signaling pathway were assessed by western blotting. The results of the present study demonstrated that treatment with IFN-γ increased miR-155-5p expression, in addition to inducing apoptosis and inflammation in SGECs. Furthermore, overexpression of miR-155-5p promoted IFN-γ-induced apoptosis and inflammation in SGECs. Overexpression of miR-155-5p also increased Bax protein expression, enzyme activities of caspase 3 and caspase 9, release of inflammatory cytokines interleukin-6 and tumor necrosis factor-α, and decreased Bcl-2 protein expression in IFN-γ-treated SGECs. By contrast, all of the effects aforementioned were reversed following miR-155-5p knockdown. These results demonstrated that miR-155-5p activated the NF-κB signaling pathway, where treatment with the NF-κB inhibitor, pyrrolidine dithiocarbamate, reversed the effects of miR-155-5p overexpression on the inflammatory factors in IFN-γ-induced SGECs. miR-155-5p was demonstrated to target ARRB2 and negatively regulated its expression levels, such that overexpression of ARRB2 reversed the effects of miR-155-5p overexpression on the inflammatory response, apoptosis and the NF-κB signaling pathway in IFN-γ-treated SGECs. Collectively, results from the present study suggest that miR-155-5p may activate the NF-κB signaling pathway by negatively regulating ARRB2 to promote salivary gland damage during SS pathogenesis. This suggests that miR-155-5p may serve to be a potential target for the treatment of SS.
Collapse
Affiliation(s)
- Jingli Zhang
- Department of Rheumatology and Immunology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Lingling Zhu
- Department of Hematology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Hong Shi
- Department of Rheumatology and Immunology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Huizhe Zheng
- Department of Pathology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China.,Key Laboratory of Tumor Prevention and Treatment of Heilongjiang Province, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
22
|
The role of ALDH2 in tumorigenesis and tumor progression: Targeting ALDH2 as a potential cancer treatment. Acta Pharm Sin B 2021; 11:1400-1411. [PMID: 34221859 PMCID: PMC8245805 DOI: 10.1016/j.apsb.2021.02.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
A major mitochondrial enzyme for protecting cells from acetaldehyde toxicity is aldehyde dehydrogenase 2 (ALDH2). The correlation between ALDH2 dysfunction and tumorigenesis/growth/metastasis has been widely reported. Either low or high ALDH2 expression contributes to tumor progression and varies among different tumor types. Furthermore, the ALDH2∗2 polymorphism (rs671) is the most common single nucleotide polymorphism (SNP) in Asia. Epidemiological studies associate ALDH2∗2 with tumorigenesis and progression. This study summarizes the essential functions and potential ALDH2 mechanisms in the occurrence, progression, and treatment of tumors in various types of cancer. Our study indicates that ALDH2 is a potential therapeutic target for cancer therapy.
Collapse
Key Words
- 4-HNE, 4-hydroxy-2-nonenal
- ALD, alcoholic liver disease
- ALDH2
- ALDH2, aldehyde dehydrogenase 2
- AMPK, AMP-activated protein kinase
- Acetaldehyde
- BCa, bladder cancer
- COUP-TF, chicken ovalbumin upstream promoter-transcription factor
- CRC, colorectal cancer
- CSCs, cancer stem cells
- Cancer
- Cancer therapy
- DFS, disease-free survival
- EC, esophageal cancer
- FA, Fanconi anemia
- FANCD2, Fanconi anemia protein
- GCA, gastric cancer
- HCC, hepatocellular carcinoma
- HDACs, histone deacetylases
- HNC, head and neck cancer
- HNF-4, hepatocyte nuclear factor 4
- HR, homologous recombination
- LCSCs, liver cancer stem cells
- MDA, malondialdehyde
- MDR, multi-drug resistance
- MN, micronuclei
- Metastasis
- NAD, nicotinamide adenine dinucleotide
- NCEs, normochromic erythrocytes
- NER, nucleotide excision repair pathway
- NF-κB, nuclear factor-κB
- NHEJ, non-homologous end-joining
- NRF2, nuclear factor erythroid 2 (NF-E2)-related factor 2
- NRRE, nuclear receptor response element
- NSCLC, non-small-cell lung
- NeG, 1,N2-etheno-dGuo
- OPC, oropharyngeal cancer
- OS, overall survival
- OvCa, ovarian cancer
- PBMC, peripheral blood mononuclear cell
- PC, pancreatic cancer
- PdG, N2-propano-2′-deoxyguanosine
- Polymorphism
- Progression
- REV1, Y-family DNA polymerase
- SCC, squamous cell carcinoma
- TGF-β, transforming growth factor β
- Tumorigenesis
- VHL, von Hippel-Lindau
- ccRCC, clear-cell renal cell carcinomas
- εPKC, epsilon protein kinase C
Collapse
|
23
|
Zhang H, Xia Y, Wang F, Luo M, Yang K, Liang S, An S, Wu S, Yang C, Chen D, Xu M, Cai M, To KKW, Fu L. Aldehyde Dehydrogenase 2 Mediates Alcohol-Induced Colorectal Cancer Immune Escape through Stabilizing PD-L1 Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003404. [PMID: 34026438 PMCID: PMC8132160 DOI: 10.1002/advs.202003404] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/21/2021] [Indexed: 05/06/2023]
Abstract
Despite the great success of immunotherapy in a small subset of cancer patients, most colorectal cancer (CRC) patients do not respond to programmed cell death receptor 1 (PD-1) blockade immunotherapy. There is an urgent medical need to elucidate how cancer cells evade immune response and to develop novel means to boost the efficacy of immune checkpoint inhibitors. In this study, alcohol induces ligand programmed cell death receptor 1 (PD-L1) expression of CRC cells in vitro and in vivo. Alcohol exposure is shown to induce aldehyde dehydrogenase 2 (ALDH2) expression that is a crucial enzyme involved in alcohol metabolism, and low level of lymphocytes infiltration in the murine CRC model and patients. Intriguingly, ALDH2 and PD-L1 protein expression are positively correlated in tumor tissues from the CRC patients. Mechanistically, ALDH2 stabilizes PD-L1 protein expression by physically interacting with the intracellular segment of PD-L1 and inhibiting its proteasome-dependent degradation mediated by an E3 ubiquitin ligase Speckle Type POZ Protein (SPOP). Importantly, inhibition of ALDH2 reduces PD-L1 protein in CRC cells and promotes tumor-infiltrating T cells (TILs) infiltration, presumably leading to the significant potentiation of anti-PD-1 antibody efficacy in a mouse CT26 CRC model. The findings highlight a crucial role played by ALDH2 to facilitate alcohol-mediated tumor escape from immunity surveillance and promote tumor progression.
Collapse
Affiliation(s)
- Hong Zhang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteGuangzhou510060China
| | - Yuhui Xia
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteGuangzhou510060China
| | - Fang Wang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteGuangzhou510060China
| | - Min Luo
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteGuangzhou510060China
| | - Ke Yang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteGuangzhou510060China
| | - Shaobo Liang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteGuangzhou510060China
| | - Sainan An
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteGuangzhou510060China
| | - Shaocong Wu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteGuangzhou510060China
| | - Chuan Yang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteGuangzhou510060China
| | - Da Chen
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteGuangzhou510060China
| | - Meng Xu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteGuangzhou510060China
| | - Muyan Cai
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteGuangzhou510060China
| | - Kenneth K. W. To
- School of PharmacyFaculty of MedicineThe Chinese University of Hong KongHong KongChina
| | - Liwu Fu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangdong Esophageal Cancer InstituteGuangzhou510060China
| |
Collapse
|
24
|
Mamouni K, Kim J, Lokeshwar BL, Kallifatidis G. ARRB1 Regulates Metabolic Reprogramming to Promote Glycolysis in Stem Cell-Like Bladder Cancer Cells. Cancers (Basel) 2021; 13:cancers13081809. [PMID: 33920080 PMCID: PMC8069028 DOI: 10.3390/cancers13081809] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Bladder cancer (BC) ranks second in incidence and mortality among all genitourinary cancers. The high recurrence of BC is attributed to the presence of cancer stem cells (CSCs), which are the driving force behind tumor growth. Increasing evidence suggests that stem cells exhibit a distinct metabolic program compared to differentiated cells. Understanding their metabolic preference for maintaining stem cell properties is essential for developing novel therapeutics targeting CSCs. The current work shows for the first time that the scaffold protein β-arrestin1 (ARRB1) functions as a metabolic switch regulating the metabolic reprogramming of CSC-like cells towards glycolysis by regulating the mitochondrial pyruvate carrier MPC1 and glucose transporter GLUT1. The balance between glycolysis and oxidative phosphorylation plays a crucial role in regulating the fate of stem cells. Our findings will potentially open new therapeutic avenues for targeting bladder cancer cells and/or the CSC-like cells within aggressive bladder tumors. Abstract β-arrestin 1 (ARRB1) is a scaffold protein that regulates signaling downstream of G protein-coupled receptors (GPCRs). In the current work, we investigated the role of ARRB1 in regulating the metabolic preference of cancer stem cell (CSC)-like cells in bladder cancer (BC). We show that ARRB1 is crucial for spheroid formation and tumorigenic potential. Furthermore, we measured mitochondrial respiration, glucose uptake, glycolytic rate, mitochondrial/glycolytic ATP production and fuel oxidation in previously established ARRB1 knock out (KO) cells and corresponding controls. Our results demonstrate that depletion of ARRB1 decreased glycolytic rate and induced metabolic reprogramming towards oxidative phosphorylation. Mechanistically, the depletion of ARRB1 dramatically increased the mitochondrial pyruvate carrier MPC1 protein levels and reduced the glucose transporter GLUT1 protein levels along with glucose uptake. Overexpression of ARRB1 in ARRB1 KO cells reversed the phenotype and resulted in the upregulation of glycolysis. In conclusion, we show that ARRB1 regulates the metabolic preference of BC CSC-like cells and functions as a molecular switch that promotes reprogramming towards glycolysis by negatively regulating MPC1 and positively regulating GLUT1/ glucose uptake. These observations open new therapeutic avenues for targeting the metabolic preferences of cancer stem cell (CSC)-like BC cells.
Collapse
Affiliation(s)
- Kenza Mamouni
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (K.M.); (J.K.)
- Research Service, Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Jeongheun Kim
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (K.M.); (J.K.)
| | - Bal L. Lokeshwar
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (K.M.); (J.K.)
- Research Service, Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Correspondence: (B.L.L.); (G.K.); Tel.: +1-706-723-0033 (B.L.L.); +1-706-446 4976 (G.K.); Fax: +1-706-721-0101 (B.L.L. & G.K.)
| | - Georgios Kallifatidis
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (K.M.); (J.K.)
- Research Service, Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Department of Biological Sciences, Augusta University, Augusta, GA 30912, USA
- Correspondence: (B.L.L.); (G.K.); Tel.: +1-706-723-0033 (B.L.L.); +1-706-446 4976 (G.K.); Fax: +1-706-721-0101 (B.L.L. & G.K.)
| |
Collapse
|
25
|
Shlyapnikov YM, Malakhova EA, Vinarov AZ, Zamyatnin AA, Shlyapnikova EA. Can new immunoassay techniques improve bladder cancer diagnostics With protein biomarkers? Front Mol Biosci 2021; 7:620687. [PMID: 33659273 PMCID: PMC7917292 DOI: 10.3389/fmolb.2020.620687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
The search for new diagnostic tests for cancer or ways to improve existing tests is primarily driven by the desire to identify the disease as early as possible. In this report, we summarize the current knowledge of the most promising diagnostic protein bladder cancer (BC) markers reported over the last decade. Unfortunately, analysis of published data suggests that a reliable, highly sensitive biomarker test-system based on ELISA for detecting BC has not yet been developed. The use of more sensitive assays to detect ultra-low concentrations of biomarkers not available for ELISA, could be very beneficial. Based on the literature and pilot experimental data, we conclude that a highly sensitive immunoassay using microarrays and magnetic labels, could be an effective and cheap technique suitable for the detection of diagnostically relevant BC biomarkers.
Collapse
Affiliation(s)
- Yuri M Shlyapnikov
- Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Russia
| | | | - Andrey Z Vinarov
- Institute for Urology and Reproductive Health, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Andrey A Zamyatnin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia
| | | |
Collapse
|
26
|
Kallifatidis G, Mamouni K, Lokeshwar BL. The Role of β-Arrestins in Regulating Stem Cell Phenotypes in Normal and Tumorigenic Cells. Int J Mol Sci 2020; 21:ijms21239310. [PMID: 33297302 PMCID: PMC7729818 DOI: 10.3390/ijms21239310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 01/03/2023] Open
Abstract
β-Arrestins (ARRBs) are ubiquitously expressed scaffold proteins that mediate inactivation of G-protein-coupled receptor signaling, and in certain circumstances, G-protein independent pathways. Intriguingly, the two known ARRBs, β-arrestin1 (ARRB1) and β-Arrestin2 (ARRB2), seem to have opposing functions in regulating signaling cascades in several models in health and disease. Recent evidence suggests that ARRBs are implicated in regulating stem cell maintenance; however, their role, although crucial, is complex, and there is no universal model for ARRB-mediated regulation of stem cell characteristics. For the first time, this review compiles information on the function of ARRBs in stem cell biology and will discuss the role of ARRBs in regulating cell signaling pathways implicated in stem cell maintenance in normal and malignant stem cell populations. Although promising targets for cancer therapy, the ubiquitous nature of ARRBs and the plethora of functions in normal cell biology brings challenges for treatment selectivity. However, recent studies show promising evidence for specifically targeting ARRBs in myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Georgios Kallifatidis
- Department of Biological Sciences, Augusta University, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA;
- Research Service, Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Correspondence: (G.K.); (B.L.L.); Tel.: +1-706-446-4976 (G.K.); +1-706-723-0033 (B.L.L.); Fax: +1-305-721-0101 (B.L.L.)
| | - Kenza Mamouni
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA;
- Research Service, Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Bal L. Lokeshwar
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA;
- Research Service, Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Correspondence: (G.K.); (B.L.L.); Tel.: +1-706-446-4976 (G.K.); +1-706-723-0033 (B.L.L.); Fax: +1-305-721-0101 (B.L.L.)
| |
Collapse
|
27
|
Xu T, Shen G, Cheng M, Wu X, Xu Y, Hu S. Upregulated β-arrestin1 predicts poor prognosis and promotes metastasis via AKT/ERK signaling pathway in gastric cancer. Pathol Res Pract 2020; 216:153262. [PMID: 33129195 DOI: 10.1016/j.prp.2020.153262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND β-Arrestins have been found to regulate cell proliferation, invasion and migration; transmit anti-apoptotic survival signals; and affect other characteristics of tumours. However, their role in gastric cancer (GC) is not clear. We investigated the role and mechanism of β-arrestins in the regulation of GC. METHODS We first examined β-arrestins mRNA levels in 17 pairs of GC tissues by qRT-PCR. We also used immunohistochemistry to further examine the expression of β-arrestins in 60 paraffin-embedded primary GC tissues and 20 normal gastric tissues. Then, the function of β-arrestin1 was investigated in vitro and in vivo. RESULTS β-Arrestin1 was upregulated in GC tissue and was associated with tumour stage, lymph node metastasis, invasion depth and patient sex. High expression of β-arrestin1 expression predicted poor prognosis in GC. β-Arrestin1 promoted GC cell proliferation, migration and invasion, and it suppressed E-cadherin expression and upregulated Vimentin expression via AKT/ERK signalling pathway. The in vivo metastasis assays showed that knockdown of β-arrestin1 reduced lung metastasis and inhibited EMT. CONCLUSION The upregulation of β-arrestin1 predicts poor prognosis and promotes metastasis and epithelial-mesenchymal transition in GC through AKT/ERK signalling pathway. This study may provide therapeutic advances for the treatment and early diagnosis of patients with metastatic GC.
Collapse
Affiliation(s)
- Tingjuan Xu
- Gerontology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, People's Republic of China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui 230001, People's Republic of China
| | - Guodong Shen
- Gerontology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, People's Republic of China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui 230001, People's Republic of China
| | - Min Cheng
- Gerontology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, People's Republic of China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui 230001, People's Republic of China
| | - Xinchun Wu
- Gerontology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, People's Republic of China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui 230001, People's Republic of China
| | - Yayuan Xu
- Agro-products Processing Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Shilian Hu
- Gerontology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, People's Republic of China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui 230001, People's Republic of China.
| |
Collapse
|
28
|
Smith DK, Hasanali SL, Wang J, Kallifatidis G, Morera DS, Jordan AR, Terris MK, Klaassen Z, Bollag R, Lokeshwar VB, Lokeshwar BL. Promotion of epithelial hyperplasia by interleukin-8-CXCR axis in human prostate. Prostate 2020; 80:938-949. [PMID: 32542667 PMCID: PMC8327464 DOI: 10.1002/pros.24026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The clinical manifestation of benign prostatic hyperplasia (BPH) is causally linked to the inflammatory microenvironment and proliferation of epithelial and stromal cells in the prostate transitional zone. The CXC-chemokine interleukin-8 (IL-8) contributes to inflammation. We evaluated the expression of inflammatory cytokines in clinical specimens, primary cultures, and prostatic lineage cell lines. We investigated whether IL-8 via its receptor system (IL-8 axis) promotes BPH. METHODS The messenger RNA and protein expression of chemokines, including components of the IL-8 axis, were measured in normal prostate (NP; n = 7) and BPH (n = 21), urine (n = 24) specimens, primary cultures, prostatic lineage epithelial cell lines (NHPrE1, BHPrE1, BPH-1), and normal prostate cells (RWPE-1). The functional role of the IL-8 axis in prostate epithelial cell growth was evaluated by CRISPR/Cas9 gene editing. The effect of a combination with two natural compounds, oleanolic acid (OA) and ursolic acid (UA), was evaluated on the expression of the IL-8 axis and epithelial cell growth. RESULTS Among the 19 inflammatory chemokines and chemokine receptors we analyzed, levels of IL-8 and its receptors (CXCR1, CXCR2), as well as, of CXCR7, a receptor for CXCL12, were 5- to 25-fold elevated in BPH tissues when compared to NP tissues (P ≤ .001). Urinary IL-8 levels were threefold to sixfold elevated in BPH patients, but not in asymptomatic males and females with lower urinary tract symptoms (P ≤ .004). The expression of the IL-8 axis components was confined to the prostate luminal epithelial cells in both normal and BPH tissues. However, these components were elevated in BPH-1 and primary explant cultures as compared to RWPE-1, NHPrE1, and BHPrE1 cells. Knockout of CXCR7 reduced IL-8, and CXCR1 expression by 4- to 10-fold and caused greater than or equal to 50% growth inhibition in BPH-1 cells. Low-dose OA + UA combination synergistically inhibited the growth of BPH-1 and BPH primary cultures. In the combination, the drug reduction indices for UA and OA were 16.4 and 7852, respectively, demonstrating that the combination was effective in inhibiting BPH-1 growth at significantly reduced doses of UA or OA alone. CONCLUSION The IL-8 axis is a promotor of BPH pathogenesis. Low-dose OA + UA combination inhibits BPH cell growth by inducing autophagy and reducing IL-8 axis expression in BPH-epithelial cells.
Collapse
Affiliation(s)
- Diandra K. Smith
- Department of Medicine, Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
| | - Sarrah L. Hasanali
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Jiaojiao Wang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Georgios Kallifatidis
- Department of Medicine, Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Department of Biological Sciences, College of Science and Mathematics, Augusta University, Augusta, Georgia
- Research Service, Charlie Norwood Veterans Administration Medical Center, Augusta, Georgia
| | - Daley S. Morera
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Andre R. Jordan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Martha K. Terris
- Research Service, Charlie Norwood Veterans Administration Medical Center, Augusta, Georgia
- Division of Urology, Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Zachary Klaassen
- Division of Urology, Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Roni Bollag
- Department of Pathology, Bio-Repository Alliance of Georgia for Oncology (BRAG-Onc), Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Vinata B. Lokeshwar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia
- Division of Urology, Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Bal L. Lokeshwar
- Department of Medicine, Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
- Research Service, Charlie Norwood Veterans Administration Medical Center, Augusta, Georgia
- Division of Urology, Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
29
|
Lee HY, Chen YJ, Chang WA, Li WM, Ke HL, Wu WJ, Kuo PL. Effects of Epigallocatechin Gallate (EGCG) on Urinary Bladder Urothelial Carcinoma-Next-Generation Sequencing and Bioinformatics Approaches. ACTA ACUST UNITED AC 2019; 55:medicina55120768. [PMID: 31805718 PMCID: PMC6955913 DOI: 10.3390/medicina55120768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 11/17/2022]
Abstract
Background and objectives: Bladder urothelial carcinoma is the most common type of genitourinary cancer. Patients with bladder cancer may have limited treatment efficacy related to drug toxicity, resistance or adverse effects, and novel therapeutic strategies to enhance treatment efficacy or increase sensitivity to drugs are of high clinical importance. Epigallocatechin gallate (EGCG) is a polyphenolic compound found in green tea leaves, and a potential anti-cancer agent in various cancer types through modulating and regulating multiple signaling pathways. The current study aimed to explore the role and novel therapeutic targets of EGCG on bladder urothelial carcinoma. Materials and Methods: The BFTC-905 cells, human urinary bladder transitional cell carcinoma (TCC) cell line, were treated with EGCG or water for 24 hours, and the expression profiles of mRNAs and microRNAs were analyzed using next generation sequencing (NGS). The enriched biological functions were determined using different bioinformatics databases. Results: A total of 108 differentially expressed genes in EGCG-treated bladder TCC cells were identified, which were mainly involved in nicotinamide adenine dinucleotide (NAD) biogenesis, inflammatory response and oxidation-reduction metabolism. Moreover, several microRNA-mRNA interactions that potentially participated in the response of bladder TCC to EGCG treatment, including miR-185-3p- ARRB1 (arrestin beta 1), miR-3116- MGAT5B (alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase B), miR-31-5p-TNS1 (tensin 1), miR-642a-5p-TNS1, miR-1226-3p- DLG2 (discs large homolog 2), miR-484-DLG2, and miR-22-3p- PPM1K (protein phosphatase 1K). Conclusions: The current findings provide insights into novel therapeutic targets and underlying mechanisms of action of EGCG treatment in bladder cancer.
Collapse
Affiliation(s)
- Hsiang-Ying Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-Y.L.); (Y.-J.C.); (W.-A.C.)
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan;
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (W.-M.L.); (H.-L.K.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-Y.L.); (Y.-J.C.); (W.-A.C.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-Y.L.); (Y.-J.C.); (W.-A.C.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wei-Ming Li
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (W.-M.L.); (H.-L.K.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Urology, Ministry of Health and Welfare Pingtung Hospital, Pingtung 900, Taiwan
| | - Hung-Lung Ke
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (W.-M.L.); (H.-L.K.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Urology, Ministry of Health and Welfare Pingtung Hospital, Pingtung 900, Taiwan
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan;
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (W.-M.L.); (H.-L.K.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Urology, Ministry of Health and Welfare Pingtung Hospital, Pingtung 900, Taiwan
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-Y.L.); (Y.-J.C.); (W.-A.C.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence:
| |
Collapse
|