1
|
O'Connor C, Schneider M, Katinas JM, Nayeen MJ, Shah K, Magdum T, Sharma A, Kim S, Bao X, Li J, Dann CE, Gangjee A, Matherly LH, Hou Z. Role of Mitochondrial and Cytosolic Folylpolyglutamate Synthetase in One-Carbon Metabolism and Antitumor Efficacy of Mitochondrial-Targeted Antifolates. Mol Pharmacol 2024; 106:173-187. [PMID: 39048308 PMCID: PMC11413923 DOI: 10.1124/molpharm.124.000912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Folate-dependent one-carbon (C1) metabolism encompasses distinct cytosolic and mitochondrial pathways connected by an interchange among serine, glycine, and formate. In both the cytosol and mitochondria, folates exist as polyglutamates, with polyglutamylation catalyzed by folylpolyglutamate synthetase (FPGS), including cytosolic and mitochondrial isoforms. Serine is metabolized by serine hydroxymethyltransferase (SHMT)2 in the mitochondria and generates glycine and C1 units for cellular biosynthesis in the cytosol. AGF347 is a novel pyrrolo[3,2-day]pyrimidine antifolate that targets SHMT2 in the mitochondria and SHMT1 and de novo purine biosynthesis in the cytosol. FPGS is expressed in primary pancreatic cancer specimens, and FPGS levels correlate with in vitro efficacies of AGF347 toward human pancreatic cancer cells. MIA PaCa-2 pancreatic cancer cells with CRISPR knockout of FPGS were engineered to express doxycycline-inducible FPGS exclusively in the cytosol (cFPGS) or in both the cytosol and mitochondria (mFPGS). Folate and AGF347 accumulations increased in both the cytosol and mitochondria with increased mFPGS but were restricted to the cytosol with cFPGS. AGF347-Glu5 inhibited SHMT2 ∼19-fold greater than AGF347 By metabolomics analysis, mFPGS stimulated the C1 flux from serine in the mitochondria and de novo purine and dTTP synthesis far greater than cFPGS. mFPGS enhanced in vitro inhibition of MIA PaCa-2 cell proliferation by AGF347 (∼30-fold) more than cFPGS (∼4.9-fold). Similar results were seen with other pyrrolo[3,2-d]pyrimidine antifolates (AGF291, AGF320); however, elevated mFPGS adversely impacted inhibition by the nonclassical SHMT2/SHMT1 inhibitor SHIN1. These results suggest a critical role of mFPGS levels in determining antitumor efficacies of mitochondrial-targeted pyrrolo[3,2-d]pyrimidine antifolates for pancreatic cancer. SIGNIFICANCE STATEMENT: AGF347 is a novel pyrrolo[3,2-d]pyrimidine antifolate that targets serine hydroxymethyltransferase (SHMT)2 in the mitochondria and SHMT1 and de novo purine biosynthesis in the cytosol. AGF347 accumulation increases with folylpolyglutamate synthetase (FPGS) levels in both the cytosol and mitochondria. Increased mitochondrial FPGS stimulated one-carbon metabolic fluxes in the cytosol and mitochondria and substantially enhanced in vitro inhibition of pancreatic cancer cells by AGF347. Mitochondrial FPGS levels play important roles in determining the antitumor efficacies of pyrrolo[3,2-d]pyrimidine antifolates for pancreatic cancer.
Collapse
Affiliation(s)
- Carrie O'Connor
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| | - Mathew Schneider
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| | - Jade M Katinas
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| | - Md Junayed Nayeen
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| | - Khushbu Shah
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| | - Tejashree Magdum
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| | - Abhishekh Sharma
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| | - Seongho Kim
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| | - Xun Bao
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| | - Jing Li
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| | - Charles E Dann
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| | - Aleem Gangjee
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| | - Larry H Matherly
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| | - Zhanjun Hou
- Department of Oncology (C.O., M.S., S.K., X.B., J.L., L.H.M., Z.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., T.M., A.S., A.G.); Department of Chemistry, Indiana University, Bloomington, Indiana (J.M.K., C.E.D.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (S.K., X.B., J.L., L.H.M., Z.H.)
| |
Collapse
|
2
|
Wallace-Povirk A, O'Connor C, Dekhne AS, Bao X, Nayeen MJ, Schneider M, Katinas JM, Wong-Roushar J, Kim S, Polin L, Li J, Back JB, Dann CE, Gangjee A, Hou Z, Matherly LH. Mitochondrial and Cytosolic One-Carbon Metabolism Is a Targetable Metabolic Vulnerability in Cisplatin-Resistant Ovarian Cancer. Mol Cancer Ther 2024; 23:809-822. [PMID: 38377173 PMCID: PMC11150100 DOI: 10.1158/1535-7163.mct-23-0550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
One-carbon (C1) metabolism is compartmentalized between the cytosol and mitochondria with the mitochondrial C1 pathway as the major source of glycine and C1 units for cellular biosynthesis. Expression of mitochondrial C1 genes including SLC25A32, serine hydroxymethyl transferase (SHMT) 2, 5,10-methylene tetrahydrofolate dehydrogenase 2, and 5,10-methylene tetrahydrofolate dehydrogenase 1-like was significantly elevated in primary epithelial ovarian cancer (EOC) specimens compared with normal ovaries. 5-Substituted pyrrolo[3,2-d]pyrimidine antifolates (AGF347, AGF359, AGF362) inhibited proliferation of cisplatin-sensitive (A2780, CaOV3, IGROV1) and cisplatin-resistant (A2780-E80, SKOV3) EOC cells. In SKOV3 and A2780-E80 cells, colony formation was inhibited. AGF347 induced apoptosis in SKOV3 cells. In IGROV1 cells, AGF347 was transported by folate receptor (FR) α. AGF347 was also transported into IGROV1 and SKOV3 cells by the proton-coupled folate transporter (SLC46A1) and the reduced folate carrier (SLC19A1). AGF347 accumulated to high levels in the cytosol and mitochondria of SKOV3 cells. By targeted metabolomics with [2,3,3-2H]L-serine, AGF347, AGF359, and AGF362 inhibited SHMT2 in the mitochondria. In the cytosol, SHMT1 and de novo purine biosynthesis (i.e., glycinamide ribonucleotide formyltransferase, 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase) were targeted; AGF359 also inhibited thymidylate synthase. Antifolate treatments of SKOV3 cells depleted cellular glycine, mitochondrial NADH and glutathione, and showed synergistic in vitro inhibition toward SKOV3 and A2780-E80 cells when combined with cisplatin. In vivo studies with subcutaneous SKOV3 EOC xenografts in SCID mice confirmed significant antitumor efficacy of AGF347. Collectively, our studies demonstrate a unique metabolic vulnerability in EOC involving mitochondrial and cytosolic C1 metabolism, which offers a promising new platform for therapy.
Collapse
Affiliation(s)
- Adrianne Wallace-Povirk
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Carrie O'Connor
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Aamod S. Dekhne
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Xun Bao
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Md. Junayed Nayeen
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282
| | - Mathew Schneider
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Jade M. Katinas
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | | | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Jing Li
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Jessica B. Back
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Charles E. Dann
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282
| | - Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Larry H. Matherly
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| |
Collapse
|
3
|
Lee Y, Vousden KH, Hennequart M. Cycling back to folate metabolism in cancer. NATURE CANCER 2024; 5:701-715. [PMID: 38698089 PMCID: PMC7616045 DOI: 10.1038/s43018-024-00739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/30/2024] [Indexed: 05/05/2024]
Abstract
Metabolic changes contribute to cancer initiation and progression through effects on cancer cells, the tumor microenvironment and whole-body metabolism. Alterations in serine metabolism and the control of one-carbon cycles have emerged as critical for the development of many tumor types. In this Review, we focus on the mitochondrial folate cycle. We discuss recent evidence that, in addition to supporting nucleotide synthesis, mitochondrial folate metabolism also contributes to metastasis through support of antioxidant defense, mitochondrial protein synthesis and the overflow of excess formate. These observations offer potential therapeutic opportunities, including the modulation of formate metabolism through dietary interventions and the use of circulating folate cycle metabolites as biomarkers for cancer detection.
Collapse
Affiliation(s)
| | | | - Marc Hennequart
- The Francis Crick Institute, London, UK
- Namur Research Institute for Life Sciences (NARILIS), Molecular Physiology Unit (URPHYM), University of Namur, Namur, Belgium
| |
Collapse
|
4
|
Zhang S, Qin O, Wu S, Xu H, Huang W, Hailiang S. A pyrimidine metabolism-related signature for prognostic and immunotherapeutic response prediction in hepatocellular carcinoma by integrating analyses. Aging (Albany NY) 2024; 16:5545-5566. [PMID: 38517376 PMCID: PMC11006494 DOI: 10.18632/aging.205663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/02/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), with discouraging morbidity and mortality, ranks as one of the most prevalent tumors worldwide. Pyrimidine metabolism is a critical process that regulates DNA and RNA synthesis in cells. It is imperative to investigate the significance of pyrimidine metabolism in liver cancer. METHODS Transcriptome and clinical data were downloaded from the TCGA database and the GEO database. The genes related to pyrimidine metabolism were sourced from the MSigDB. The pyrimidine metabolism-related signature (PMRS) was constructed through Cox regression and Lasso regression and then verified in the external validation set from the ICGC database. Functional enrichment, immune infiltration analysis, drug sensitivity, and Immunophenoscore (IPS) were further implemented to predict the response to immunotherapy. The role of PMRS in the malignant phenotype of hepatocellular carcinoma was explored by conducting a series of in vitro experiments. RESULTS Our study developed a four-genes PMRS which demonstrates a substantial correlation with the prognosis of HCC patients, serving as an independent predictor in clinical practice. The result of risk-stratified analysis yielded evidence that low-risk patients experienced more favorable clinical outcomes. The nomogram exhibited remarkable prognostic predictive value. The subsequent results revealed that low-risk patients manifested a more promising response to immunotherapy. Moreover, the results of cell experiments demonstrated that the downregulation of DCK markedly inhibited the malignant phenotype of hepatocellular carcinoma. CONCLUSIONS Our pyrimidine metabolism-centered prognostic signature accurately predicts overall survival, immune status, and treatment response in hepatocellular carcinoma (HCC) patients, offering innovative insights for precise diagnosis, personalized treatment, and improved prognosis.
Collapse
Affiliation(s)
- Shihang Zhang
- Department of General Surgery, Dalang Hospital, Dongguan, Guangdong, P.R. China
| | - Ouyang Qin
- Department of General Surgery, Dalang Hospital, Dongguan, Guangdong, P.R. China
| | - Shu Wu
- Affiliated Dongguan Hospital Southern Medical University (Dongguan People’s Hospital) Dongguan Guangdong, Guangdong, P.R. China
| | - Huanming Xu
- Department of General Surgery, Dalang Hospital, Dongguan, Guangdong, P.R. China
| | - Wei Huang
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
| | - Song Hailiang
- Department of General Surgery, Dalang Hospital, Dongguan, Guangdong, P.R. China
| |
Collapse
|
5
|
Katinas JM, Nayeen MJ, Schneider M, Shah K, Fifer AN, Klapper LM, Sharma A, Thalluri K, Van Nieuwenhze MS, Hou Z, Gangjee A, Matherly LH, Dann CE. Structural Characterization of 5-Substituted Pyrrolo[3,2- d]pyrimidine Antifolate Inhibitors in Complex with Human Serine Hydroxymethyl Transferase 2. Biochemistry 2024:10.1021/acs.biochem.3c00613. [PMID: 38324671 PMCID: PMC11303599 DOI: 10.1021/acs.biochem.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
We previously discovered first-in-class multitargeted 5-substituted pyrrolo[3,2-d]pyrimidine antifolates that inhibit serine hydroxymethyltransferase 2 (SHMT2), resulting in potent in vitro and in vivo antitumor efficacies. In this report, we present crystallographic structures for SHMT2 in complex with an expanded series of pyrrolo[3,2-d]pyrimidine compounds with variations in bridge length (3-5 carbons) and the side chain aromatic ring (phenyl, thiophene, fluorine-substituted phenyl, and thiophene). We evaluated structural features of the inhibitor-SHMT2 complexes and correlations to inhibitor potencies (i.e., Kis), highlighting conserved polar contacts and identifying 5-carbon bridge lengths as key determinants of inhibitor potency. Based on the analysis of SHMT2 structural data, we investigated the impact of mutation of Tyr105 in SHMT2 kinetic analysis and studies with HCT116 cells with inducible expression of wild-type and Y105F SHMT2. Increased enzyme inhibition potency by the pyrrolo[3,2-d]pyrimidine inhibitors with Phe105 SHMT2 accompanied an increased growth inhibition of Phe105-expressing HCT116 cells compared to wild-type SHMT2. Pyrrolo[3,2-d]pyrimidine inhibitors with polyglutamate modifications were evaluated for potencies against SHMT2. We determined the crystal structures of SHMT2 in complex with our lead antifolate AGF347 lacking L-glutamate, or as a diglutamate and triglutamate, for comparison with parent AGF347. These data provide the first insights into the influence of antifolate polyglutamylation on SHMT2:inhibitor interactions. Collectively, our results provide new insights into the critical structural determinants of SHMT2 binding by pyrrolo[3,2-d]pyrimidine inhibitors as novel antitumor agents, as well as the first structural characterization of human SHMT2 in complex with polyglutamates of an SHMT2-targeted antifolate.
Collapse
Affiliation(s)
- Jade M Katinas
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Md Junayed Nayeen
- School of Pharmacy & Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Mathew Schneider
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University, 4100 John R, Detroit, Michigan 48201, United States
| | - Khushbu Shah
- School of Pharmacy & Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Alexandra N Fifer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Lily M Klapper
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Abhishekh Sharma
- School of Pharmacy & Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Kishore Thalluri
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | | | - Zhanjun Hou
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University, 4100 John R, Detroit, Michigan 48201, United States
| | - Aleem Gangjee
- School of Pharmacy & Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Larry H Matherly
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University, 4100 John R, Detroit, Michigan 48201, United States
| | - Charles E Dann
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
6
|
Ramos L, Henriksson M, Helleday T, Green AC. Targeting MTHFD2 to Exploit Cancer-Specific Metabolism and the DNA Damage Response. Cancer Res 2024; 84:9-16. [PMID: 37922465 DOI: 10.1158/0008-5472.can-23-1290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/06/2023] [Accepted: 10/31/2023] [Indexed: 11/05/2023]
Abstract
The one-carbon folate enzyme methylenetetrahydrofolate dehydrogenase/cyclohydrolase 2 (MTHFD2) is a promising therapeutic target in cancer. MTHFD2 is upregulated across numerous cancer types, promotes growth and metastasis of cancer, and correlates with poorer survival. Recent studies have developed small-molecule inhibitors to the isozymes MTHFD2 and MTHFD1 that show promise as anticancer agents through different mechanisms. This review discusses the current understanding of the function of MTHFD2 in cancer and the status of inhibitors for treating MTHFD2-overexpressing cancers.
Collapse
Affiliation(s)
- Louise Ramos
- Weston Park Cancer Centre and Division of Clinical Medicine, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, United Kingdom
- Vancouver Prostate Centre and Department of Experimental Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Henriksson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Thomas Helleday
- Weston Park Cancer Centre and Division of Clinical Medicine, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, United Kingdom
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Alanna C Green
- Weston Park Cancer Centre and Division of Clinical Medicine, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, United Kingdom
- Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
7
|
Kaku K, Ravindra MP, Tong N, Choudhary S, Li X, Yu J, Karim M, Brzezinski M, O’Connor C, Hou Z, Matherly LH, Gangjee A. Discovery of Tumor-Targeted 6-Methyl Substituted Pemetrexed and Related Antifolates with Selective Loss of RFC Transport. ACS Med Chem Lett 2023; 14:1682-1691. [PMID: 38116433 PMCID: PMC10726441 DOI: 10.1021/acsmedchemlett.3c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023] Open
Abstract
Pemetrexed and related 5-substituted pyrrolo[2,3-d]pyrimidine antifolates are substrates for the ubiquitously expressed reduced folate carrier (RFC), and the proton-coupled folate transporter (PCFT) and folate receptors (FRs) which are more tumor-selective. A long-standing goal has been to discover tumor-targeted therapeutics that draw from one-carbon metabolic vulnerabilities of cancer cells and are selective for transport by FRs and PCFT over RFC. We discovered that a methyl group at the 6-position of the pyrrole ring in the bicyclic scaffold of 5-substituted 2-amino-4-oxo-pyrrolo[2,3-d]pyrimidine antifolates 1-4 (including pemetrexed) abolished transport by RFC with modest impacts on FRs or PCFT. From molecular modeling, loss of RFC transport involves steric repulsion in the scaffold binding site due to the 6-methyl moiety. 6-Methyl substitution preserved antiproliferative activities toward human tumor cells (KB, IGROV3) with selectivity over IOSE 7576 normal ovary cells and inhibition of de novo purine biosynthesis. Thus, adding a 6-methyl moiety to 5-substituted pyrrolo[2,3-d]pyrimidine antifolates affords tumor transport selectivity while preserving antitumor efficacy.
Collapse
Affiliation(s)
- Krishna Kaku
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Manasa P. Ravindra
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Nian Tong
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Shruti Choudhary
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Xinxin Li
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Jianming Yu
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Mohammad Karim
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Madelyn Brzezinski
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Carrie O’Connor
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Zhanjun Hou
- Molecular
Therapeutics Program, Barbara Ann Karmanos
Cancer Institute, 4100 John R, Detroit, Michigan 48201, United States
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Larry H. Matherly
- Molecular
Therapeutics Program, Barbara Ann Karmanos
Cancer Institute, 4100 John R, Detroit, Michigan 48201, United States
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Department
of Pharmacology, Wayne State University
School of Medicine, Detroit, Michigan 48201, United States
| | - Aleem Gangjee
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
8
|
Prabhu SS, Nair AS, Nirmala SV. Multifaceted roles of mitochondrial dysfunction in diseases: from powerhouses to saboteurs. Arch Pharm Res 2023; 46:723-743. [PMID: 37751031 DOI: 10.1007/s12272-023-01465-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
The fact that mitochondria play a crucial part in energy generation has led to the nickname "powerhouses" of the cell being applied to them. They also play a significant role in many other cellular functions, including calcium signalling, apoptosis, and the creation of vital biomolecules. As a result, cellular function and health as a whole can be significantly impacted by mitochondrial malfunction. Indeed, malignancies frequently have increased levels of mitochondrial biogenesis and quality control. Adverse selection exists for harmful mitochondrial genome mutations, even though certain malignancies include modifications in the nuclear-encoded tricarboxylic acid cycle enzymes that generate carcinogenic metabolites. Since rare human cancers with mutated mitochondrial genomes are often benign, removing mitochondrial DNA reduces carcinogenesis. Therefore, targeting mitochondria offers therapeutic options since they serve several functions and are crucial to developing malignant tumors. Here, we discuss the various steps involved in the mechanism of cancer for which mitochondria plays a significant role, as well as the role of mitochondria in diseases other than cancer. It is crucial to understand mitochondrial malfunction to target these organelles for therapeutic reasons. This highlights the significance of investigating mitochondrial dysfunction in cancer and other disease research.
Collapse
Affiliation(s)
- Surapriya Surendranath Prabhu
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Aathira Sujathan Nair
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Saiprabha Vijayakumar Nirmala
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India.
| |
Collapse
|
9
|
Nayeen MJ, Katinas JM, Magdum T, Shah K, Wong JE, O’Connor CE, Fifer AN, Wallace-Povirk A, Hou Z, Matherly LH, Dann CE, Gangjee A. Structure-Based Design of Transport-Specific Multitargeted One-Carbon Metabolism Inhibitors in Cytosol and Mitochondria. J Med Chem 2023; 66:11294-11323. [PMID: 37582241 PMCID: PMC10461232 DOI: 10.1021/acs.jmedchem.3c00763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 08/17/2023]
Abstract
Multitargeted agents provide tumor selectivity with reduced drug resistance and dose-limiting toxicities. We previously described the multitargeted 6-substituted pyrrolo[3,2-d]pyrimidine antifolate 1 with activity against early- and late-stage pancreatic tumors with limited tumor selectivity. Structure-based design with our human serine hydroxymethyl transferase (SHMT) 2 and glycinamide ribonucleotide formyltransferase (GARFTase) structures, and published X-ray crystal structures of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC), SHMT1, and folate receptor (FR) α and β afforded 11 analogues. Multitargeted inhibition and selective tumor transport were designed by providing promiscuous conformational flexibility in the molecules. Metabolite rescue identified mitochondrial C1 metabolism along with de novo purine biosynthesis as the targeted pathways. We identified analogues with tumor-selective transport via FRs and increased SHMT2, SHMT1, and GARFTase inhibition (28-, 21-, and 11-fold, respectively) compared to 1. These multitargeted agents represent an exciting new structural motif for targeted cancer therapy with substantial advantages of selectivity and potency over clinically used antifolates.
Collapse
Affiliation(s)
- Md. Junayed Nayeen
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jade M. Katinas
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Tejashree Magdum
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Khushbu Shah
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jennifer E. Wong
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Carrie E. O’Connor
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Alexandra N. Fifer
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Adrianne Wallace-Povirk
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Zhanjun Hou
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Molecular
Therapeutics Program, Barbara Ann Karmanos
Cancer Institute, 4100 John R, Detroit, Michigan 48201, United States
| | - Larry H. Matherly
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Molecular
Therapeutics Program, Barbara Ann Karmanos
Cancer Institute, 4100 John R, Detroit, Michigan 48201, United States
| | - Charles E. Dann
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Aleem Gangjee
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
10
|
Zhang J, Bai J, Gong C, Wang J, Cheng Y, Zhao J, Xiong H. Serine-associated one-carbon metabolic reprogramming: a new anti-cancer therapeutic strategy. Front Oncol 2023; 13:1184626. [PMID: 37664062 PMCID: PMC10471886 DOI: 10.3389/fonc.2023.1184626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Tumour metabolism is a major focus of cancer research, and metabolic reprogramming is an important feature of malignant tumours. Serine is an important non-essential amino acid, which is a main resource of one-carbon units in tumours. Cancer cells proliferate more than normal cells and require more serine for proliferation. The cancer-related genes that are involved in serine metabolism also show changes corresponding to metabolic alterations. Here, we reviewed the serine-associated one-carbon metabolism and its potential as a target for anti-tumour therapeutic strategies.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Bai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Gong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianhua Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Cheng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Ma W, Liu R, Zhao K, Zhong J. Vital role of SHMT2 in diverse disease. Biochem Biophys Res Commun 2023; 671:160-165. [PMID: 37302290 DOI: 10.1016/j.bbrc.2023.05.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023]
Abstract
One-carbon metabolism is essential for our human cells to carry out nucleotide synthesis, methylation, and reductive metabolism through one-carbon units, and these pathways ensure the high proliferation rate of cancer cells. Serine hydroxymethyltransferase 2 (SHMT2) is a key enzyme in one-carbon metabolism. This enzyme can convert serine into a one-carbon unit bound to tetrahydrofolate and glycine, ultimately supporting the synthesis of thymidine and purines and promoting the growth of cancer cells. Due to SHMT2's crucial role in the one-carbon cycle, it is ubiquitous in human cells and even in all organisms and highly conserved. Here, we summarize the impact of SHMT2 on the progression of various cancers to highlight its potential use in the development of cancer treatments.
Collapse
Affiliation(s)
- Wenqi Ma
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250013, China
| | - Ronghan Liu
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250013, China
| | - Kai Zhao
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250013, China
| | - Jiangbo Zhong
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250013, China.
| |
Collapse
|
12
|
Tong N, Wong-Roushar J, Wallace-Povirk A, Shah Y, Nyman MC, Katinas JM, Schneider M, O’Connor C, Bao X, Kim S, Li J, Hou Z, Matherly LH, Dann CE, Gangjee A. Multitargeted 6-Substituted Thieno[2,3- d]pyrimidines as Folate Receptor-Selective Anticancer Agents that Inhibit Cytosolic and Mitochondrial One-Carbon Metabolism. ACS Pharmacol Transl Sci 2023; 6:748-770. [PMID: 37200803 PMCID: PMC10186366 DOI: 10.1021/acsptsci.3c00020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Indexed: 05/20/2023]
Abstract
Multitargeted agents with tumor selectivity result in reduced drug resistance and dose-limiting toxicities. We report 6-substituted thieno[2,3-d]pyrimidine compounds (3-9) with pyridine (3, 4), fluorine-substituted pyridine (5), phenyl (6, 7), and thiophene side chains (8, 9), for comparison with unsubstituted phenyl (1, 2) and thiophene side chain (10, 11) containing thieno[2,3-d]pyrimidine compounds. Compounds 3-9 inhibited proliferation of Chinese hamster ovary cells (CHO) expressing folate receptors (FRs) α or β but not the reduced folate carrier (RFC); modest inhibition of CHO cells expressing the proton-coupled folate transporter (PCFT) by 4, 5, 6, and 9 was observed. Replacement of the side-chain 1',4'-phenyl ring with 2',5'-pyridyl, or 2',5'-pyridyl with a fluorine insertion ortho to l-glutamate resulted in increased potency toward FR-expressing CHO cells. Toward KB tumor cells, 4-9 were highly active (IC50's from 2.11 to 7.19 nM). By metabolite rescue in KB cells and in vitro enzyme assays, de novo purine biosynthesis was identified as a targeted pathway (at 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase (AICARFTase) and glycinamide ribonucleotide formyltransferase (GARFTase)). Compound 9 was 17- to 882-fold more potent than previously reported compounds 2, 10, and 11 against GARFTase. By targeted metabolomics and metabolite rescue, 1, 2, and 6 also inhibited mitochondrial serine hydroxymethyl transferase 2 (SHMT2); enzyme assays confirmed inhibition of SHMT2. X-ray crystallographic structures were obtained for 4, 5, 9, and 10 with human GARFTase. This series affords an exciting new structural platform for potent multitargeted antitumor agents with FR transport selectivity.
Collapse
Affiliation(s)
- Nian Tong
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jennifer Wong-Roushar
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Adrianne Wallace-Povirk
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Yesha Shah
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Morgan C. Nyman
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jade M. Katinas
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Mathew Schneider
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Carrie O’Connor
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Xun Bao
- Barbara
Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Seongho Kim
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Barbara
Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Jing Li
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Barbara
Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Zhanjun Hou
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Barbara
Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Larry H. Matherly
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Department
of Pharmacology, Wayne State University
School of Medicine, Detroit, Michigan 48201, United States
| | - Charles E. Dann
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Aleem Gangjee
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
13
|
Sun W, Liu R, Gao X, Lin Z, Tang H, Cui H, Zhao E. Targeting serine-glycine-one-carbon metabolism as a vulnerability in cancers. Biomark Res 2023; 11:48. [PMID: 37147729 PMCID: PMC10161514 DOI: 10.1186/s40364-023-00487-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/15/2023] [Indexed: 05/07/2023] Open
Abstract
The serine-glycine-one-carbon (SGOC) metabolic pathway is critical for DNA methylation, histone methylation, and redox homeostasis, in addition to protein, lipid, and nucleotide biosynthesis. The SGOC pathway is a crucial metabolic network in tumorigenesis, wherein the outputs are required for cell survival and proliferation and are particularly likely to be co-opted by aggressive cancers. SGOC metabolism provides an integration point in cell metabolism and is of crucial clinical significance. The mechanism of how this network is regulated is the key to understanding tumor heterogeneity and overcoming the potential mechanism of tumor recurrence. Herein, we review the role of SGOC metabolism in cancer by focusing on key enzymes with tumor-promoting functions and important products with physiological significance in tumorigenesis. In addition, we introduce the ways in which cancer cells acquire and use one-carbon unit, and discuss the recently clarified role of SGOC metabolic enzymes in tumorigenesis and development, as well as their relationship with cancer immunotherapy and ferroptosis. The targeting of SGOC metabolism may be a potential therapeutic strategy to improve clinical outcomes in cancers.
Collapse
Affiliation(s)
- Wei Sun
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xinyue Gao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
| | - Zini Lin
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
| | - Hongao Tang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, No.2 Tiansheng Road, Beibei District, 400716, Chongqing, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
14
|
Nong S, Han X, Xiang Y, Qian Y, Wei Y, Zhang T, Tian K, Shen K, Yang J, Ma X. Metabolic reprogramming in cancer: Mechanisms and therapeutics. MedComm (Beijing) 2023; 4:e218. [PMID: 36994237 PMCID: PMC10041388 DOI: 10.1002/mco2.218] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer cells characterized by uncontrolled growth and proliferation require altered metabolic processes to maintain this characteristic. Metabolic reprogramming is a process mediated by various factors, including oncogenes, tumor suppressor genes, changes in growth factors, and tumor-host cell interactions, which help to meet the needs of cancer cell anabolism and promote tumor development. Metabolic reprogramming in tumor cells is dynamically variable, depending on the tumor type and microenvironment, and reprogramming involves multiple metabolic pathways. These metabolic pathways have complex mechanisms and involve the coordination of various signaling molecules, proteins, and enzymes, which increases the resistance of tumor cells to traditional antitumor therapies. With the development of cancer therapies, metabolic reprogramming has been recognized as a new therapeutic target for metabolic changes in tumor cells. Therefore, understanding how multiple metabolic pathways in cancer cells change can provide a reference for the development of new therapies for tumor treatment. Here, we systemically reviewed the metabolic changes and their alteration factors, together with the current tumor regulation treatments and other possible treatments that are still under investigation. Continuous efforts are needed to further explore the mechanism of cancer metabolism reprogramming and corresponding metabolic treatments.
Collapse
Affiliation(s)
- Shiqi Nong
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Xiaoyue Han
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Yu Xiang
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Yuran Qian
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Yuhao Wei
- Department of Clinical MedicineWest China School of MedicineWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tingyue Zhang
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Keyue Tian
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Kai Shen
- Department of OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jing Yang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xuelei Ma
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyWest China School of StomatologyNational Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
- Department of Biotherapy and Cancer CenterState Key Laboratory of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
15
|
Kim J, Lee H, Choi HK, Min H. Discovery of Myeloid-Derived Suppressor Cell-Specific Metabolism by Metabolomic and Lipidomic Profiling. Metabolites 2023; 13:metabo13040477. [PMID: 37110136 PMCID: PMC10147080 DOI: 10.3390/metabo13040477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The endogenous factors that control the differentiation of myeloid-derived suppressor cells (MDSCs) are not yet fully understood. The purpose of this study was to find MDSC-specific biomolecules through comprehensive metabolomic and lipidomic profiling of MDSCs from tumor-bearing mice and to discover potential therapeutic targets for MDSCs. Partial least squares discriminant analysis was performed on the metabolomic and lipidomic profiles. The results showed that inputs for the serine, glycine, and one-carbon pathway and putrescine are increased in bone marrow (BM) MDSC compared to normal BM cells. Splenic MDSC showed an increased phosphatidylcholine to phosphatidylethanolamine ratio and less de novo lipogenesis products, despite increased glucose concentration. Furthermore, tryptophan was found to be at the lowest concentration in splenic MDSC. In particular, it was found that the concentration of glucose in splenic MDSC was significantly increased, while that of glucose 6-phosphate was not changed. Among the proteins involved in glucose metabolism, GLUT1 was overexpressed during MDSC differentiation but decreased through the normal maturation process. In conclusion, high glucose concentration was found to be an MDSC-specific feature, and it was attributed to GLUT1 overexpression. These results will help to develop new therapeutic targets for MDSCs.
Collapse
Affiliation(s)
| | | | - Hyung-Kyoon Choi
- Correspondence: (H.-K.C.); (H.M.); Tel.: +82-2-820-5605 (H.-K.C.); +82-2-820-5618 (H.M.)
| | - Hyeyoung Min
- Correspondence: (H.-K.C.); (H.M.); Tel.: +82-2-820-5605 (H.-K.C.); +82-2-820-5618 (H.M.)
| |
Collapse
|
16
|
Dekhne AS, Shah K, Ducker GS, Katinas JM, Wong-Roushar J, Nayeen MJ, Doshi A, Ning C, Bao X, Frühauf J, Liu J, Wallace-Povirk A, O'Connor C, Dzinic SH, White K, Kushner J, Kim S, Hüttemann M, Polin L, Rabinowitz JD, Li J, Hou Z, Dann CE, Gangjee A, Matherly LH. Correction: Novel Pyrrolo[3,2-d]Pyrimidine Compounds Target Mitochondrial and Cytosolic One-Carbon Metabolism with Broad-spectrum Antitumor Efficacy. Mol Cancer Ther 2023; 22:287. [PMID: 36602953 DOI: 10.1158/1535-7163.mct-22-0766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Zhou X, Tian C, Cao Y, Zhao M, Wang K. The role of serine metabolism in lung cancer: From oncogenesis to tumor treatment. Front Genet 2023; 13:1084609. [PMID: 36699468 PMCID: PMC9868472 DOI: 10.3389/fgene.2022.1084609] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Metabolic reprogramming is an important hallmark of malignant tumors. Serine is a non-essential amino acid involved in cell proliferation. Serine metabolism, especially the de novo serine synthesis pathway, forms a metabolic network with glycolysis, folate cycle, and one-carbon metabolism, which is essential for rapidly proliferating cells. Owing to the rapid development in metabolomics, abnormal serine metabolism may serve as a biomarker for the early diagnosis and pathological typing of tumors. Targeting serine metabolism also plays an essential role in precision and personalized cancer therapy. This article is a systematic review of de novo serine biosynthesis and the link between serine and folate metabolism in tumorigenesis, particularly in lung cancer. In addition, we discuss the potential of serine metabolism to improve tumor treatment.
Collapse
|
18
|
Dong M, Cao L, Cui R, Xie Y. The connection between innervation and metabolic rearrangements in pancreatic cancer through serine. Front Oncol 2022; 12:992927. [PMID: 36582785 PMCID: PMC9793709 DOI: 10.3389/fonc.2022.992927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/31/2022] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is a kind of aggressive tumor famous for its lethality and intractability, and pancreatic ductal adenocarcinoma is the most common type. Patients with pancreatic cancer often suffer a rapid loss of weight and abdominal neuropathic pain in their early stages and then go through cachexia in the advanced stage. These features of patients are considered to be related to metabolic reprogramming of pancreatic cancer and abundant nerve innervation responsible for the pain. With increasing literature certifying the relationship between nerves and pancreatic ductal adenocarcinoma (PDAC), more evidence point out that innervation's role is not limited to neuropathic pain but explore its anti/pro-tumor functions in PDAC, especially the neural-metabolic crosstalks. This review aims to unite pancreatic cancer's innervation and metabolic rearrangements with terminated published articles. Hopefully, this article could explore the pathogenesis of PDAC and further promote promising detecting or therapeutic measurements for PDAC according to the lavish innervation in PDAC.
Collapse
Affiliation(s)
- Mengmeng Dong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Lidong Cao
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Second Hospital of Jilin University, Changchun, China,Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Peoples Hospital, Hangzhou, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China,*Correspondence: Ranji Cui, ; Yingjun Xie,
| | - Yingjun Xie
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Second Hospital of Jilin University, Changchun, China,*Correspondence: Ranji Cui, ; Yingjun Xie,
| |
Collapse
|
19
|
MYCN and Metabolic Reprogramming in Neuroblastoma. Cancers (Basel) 2022; 14:cancers14174113. [PMID: 36077650 PMCID: PMC9455056 DOI: 10.3390/cancers14174113] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Neuroblastoma is a pediatric cancer responsible for approximately 15% of all childhood cancer deaths. Aberrant MYCN activation, as a result of genomic MYCN amplification, is a major driver of high-risk neuroblastoma, which has an overall survival rate of less than 50%, despite the best treatments currently available. Metabolic reprogramming is an integral part of the growth-promoting program driven by MYCN, which fuels cell growth and proliferation by increasing the uptake and catabolism of nutrients, biosynthesis of macromolecules, and production of energy. This reprogramming process also generates metabolic vulnerabilities that can be exploited for therapy. In this review, we present our current understanding of metabolic reprogramming in neuroblastoma, focusing on transcriptional regulation as a key mechanism in driving the reprogramming process. We also highlight some important areas that need to be explored for the successful development of metabolism-based therapy against high-risk neuroblastoma.
Collapse
|
20
|
Jin P, Jiang J, Zhou L, Huang Z, Nice EC, Huang C, Fu L. Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. J Hematol Oncol 2022; 15:97. [PMID: 35851420 PMCID: PMC9290242 DOI: 10.1186/s13045-022-01313-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Drug resistance represents a major obstacle in cancer management, and the mechanisms underlying stress adaptation of cancer cells in response to therapy-induced hostile environment are largely unknown. As the central organelle for cellular energy supply, mitochondria can rapidly undergo dynamic changes and integrate cellular signaling pathways to provide bioenergetic and biosynthetic flexibility for cancer cells, which contributes to multiple aspects of tumor characteristics, including drug resistance. Therefore, targeting mitochondria for cancer therapy and overcoming drug resistance has attracted increasing attention for various types of cancer. Multiple mitochondrial adaptation processes, including mitochondrial dynamics, mitochondrial metabolism, and mitochondrial apoptotic regulatory machinery, have been demonstrated to be potential targets. However, recent increasing insights into mitochondria have revealed the complexity of mitochondrial structure and functions, the elusive functions of mitochondria in tumor biology, and the targeting inaccessibility of mitochondria, which have posed challenges for the clinical application of mitochondrial-based cancer therapeutic strategies. Therefore, discovery of both novel mitochondria-targeting agents and innovative mitochondria-targeting approaches is urgently required. Here, we review the most recent literature to summarize the molecular mechanisms underlying mitochondrial stress adaptation and their intricate connection with cancer drug resistance. In addition, an overview of the emerging strategies to target mitochondria for effectively overcoming chemoresistance is highlighted, with an emphasis on drug repositioning and mitochondrial drug delivery approaches, which may accelerate the application of mitochondria-targeting compounds for cancer therapy.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|
21
|
Huo FC, Xie M, Zhu ZM, Zheng JN, Pei DS. SHMT2 promotes the tumorigenesis of renal cell carcinoma by regulating the m6A modification of PPAT. Genomics 2022; 114:110424. [DOI: 10.1016/j.ygeno.2022.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 11/04/2022]
|
22
|
Sainero-Alcolado L, Liaño-Pons J, Ruiz-Pérez MV, Arsenian-Henriksson M. Targeting mitochondrial metabolism for precision medicine in cancer. Cell Death Differ 2022; 29:1304-1317. [PMID: 35831624 PMCID: PMC9287557 DOI: 10.1038/s41418-022-01022-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
During decades, the research field of cancer metabolism was based on the Warburg effect, described almost one century ago. Lately, the key role of mitochondria in cancer development has been demonstrated. Many mitochondrial pathways including oxidative phosphorylation, fatty acid, glutamine, and one carbon metabolism are altered in tumors, due to mutations in oncogenes and tumor suppressor genes, as well as in metabolic enzymes. This results in metabolic reprogramming that sustains rapid cell proliferation and can lead to an increase in reactive oxygen species used by cancer cells to maintain pro-tumorigenic signaling pathways while avoiding cellular death. The knowledge acquired on the importance of mitochondrial cancer metabolism is now being translated into clinical practice. Detailed genomic, transcriptomic, and metabolomic analysis of tumors are necessary to develop more precise treatments. The successful use of drugs targeting metabolic mitochondrial enzymes has highlighted the potential for their use in precision medicine and many therapeutic candidates are in clinical trials. However, development of efficient personalized drugs has proved challenging and the combination with other strategies such as chemocytotoxic drugs, immunotherapy, and ketogenic or calorie restriction diets is likely necessary to boost their potential. In this review, we summarize the main mitochondrial features, metabolic pathways, and their alterations in different cancer types. We also present an overview of current inhibitors, highlight enzymes that are attractive targets, and discuss challenges with translation of these approaches into clinical practice. The role of mitochondria in cancer is indisputable and presents several attractive targets for both tailored and personalized cancer therapy. ![]()
Collapse
Affiliation(s)
- Lourdes Sainero-Alcolado
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Judit Liaño-Pons
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - María Victoria Ruiz-Pérez
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
| |
Collapse
|
23
|
Chen Z, Zhou H, Hu H, Chen L. Blocking the Metabolic Switch Toward Cytosolic 1C Flux: A Novel Therapeutic Approach for Tumors With Low SLC19A1 Expression. Pathol Oncol Res 2022; 28:1610337. [PMID: 35531073 PMCID: PMC9072622 DOI: 10.3389/pore.2022.1610337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Zhe Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Hong Zhou
- Radiology Department, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Haoliang Hu
- Changde Research Centre for Artificial Intelligence and Biomedicine, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
24
|
SHMT2 inhibition disrupts the TCF3 transcriptional survival program in Burkitt lymphoma. Blood 2022; 139:538-553. [PMID: 34624079 PMCID: PMC8938936 DOI: 10.1182/blood.2021012081] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/11/2021] [Indexed: 01/29/2023] Open
Abstract
Burkitt lymphoma (BL) is an aggressive lymphoma type that is currently treated by intensive chemoimmunotherapy. Despite the favorable clinical outcome for most patients with BL, chemotherapy-related toxicity and disease relapse remain major clinical challenges, emphasizing the need for innovative therapies. Using genome-scale CRISPR-Cas9 screens, we identified B-cell receptor (BCR) signaling, specific transcriptional regulators, and one-carbon metabolism as vulnerabilities in BL. We focused on serine hydroxymethyltransferase 2 (SHMT2), a key enzyme in one-carbon metabolism. Inhibition of SHMT2 by either knockdown or pharmacological compounds induced anti-BL effects in vitro and in vivo. Mechanistically, SHMT2 inhibition led to a significant reduction of intracellular glycine and formate levels, which inhibited the mTOR pathway and thereby triggered autophagic degradation of the oncogenic transcription factor TCF3. Consequently, this led to a collapse of tonic BCR signaling, which is controlled by TCF3 and is essential for BL cell survival. In terms of clinical translation, we also identified drugs such as methotrexate that synergized with SHMT inhibitors. Overall, our study has uncovered the dependency landscape in BL, identified and validated SHMT2 as a drug target, and revealed a mechanistic link between SHMT2 and the transcriptional master regulator TCF3, opening up new perspectives for innovative therapies.
Collapse
|
25
|
Folate Transport and One-Carbon Metabolism in Targeted Therapies of Epithelial Ovarian Cancer. Cancers (Basel) 2021; 14:cancers14010191. [PMID: 35008360 PMCID: PMC8750473 DOI: 10.3390/cancers14010191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022] Open
Abstract
New therapies are urgently needed for epithelial ovarian cancer (EOC), the most lethal gynecologic malignancy. To identify new approaches for targeting EOC, metabolic vulnerabilities must be discovered and strategies for the selective delivery of therapeutic agents must be established. Folate receptor (FR) α and the proton-coupled folate transporter (PCFT) are expressed in the majority of EOCs. FRβ is expressed on tumor-associated macrophages, a major infiltrating immune population in EOC. One-carbon (C1) metabolism is partitioned between the cytosol and mitochondria and is important for the synthesis of nucleotides, amino acids, glutathione, and other critical metabolites. Novel inhibitors are being developed with the potential for therapeutic targeting of tumors via FRs and the PCFT, as well as for inhibiting C1 metabolism. In this review, we summarize these exciting new developments in targeted therapies for both tumors and the tumor microenvironment in EOC.
Collapse
|
26
|
Stine ZE, Schug ZT, Salvino JM, Dang CV. Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov 2021; 21:141-162. [PMID: 34862480 PMCID: PMC8641543 DOI: 10.1038/s41573-021-00339-6] [Citation(s) in RCA: 534] [Impact Index Per Article: 133.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 12/23/2022]
Abstract
One hundred years have passed since Warburg discovered alterations in cancer metabolism, more than 70 years since Sidney Farber introduced anti-folates that transformed the treatment of childhood leukaemia, and 20 years since metabolism was linked to oncogenes. However, progress in targeting cancer metabolism therapeutically in the past decade has been limited. Only a few metabolism-based drugs for cancer have been successfully developed, some of which are in - or en route to - clinical trials. Strategies for targeting the intrinsic metabolism of cancer cells often did not account for the metabolism of non-cancer stromal and immune cells, which have pivotal roles in tumour progression and maintenance. By considering immune cell metabolism and the clinical manifestations of inborn errors of metabolism, it may be possible to isolate undesirable off-tumour, on-target effects of metabolic drugs during their development. Hence, the conceptual framework for drug design must consider the metabolic vulnerabilities of non-cancer cells in the tumour immune microenvironment, as well as those of cancer cells. In this Review, we cover the recent developments, notable milestones and setbacks in targeting cancer metabolism, and discuss the way forward for the field.
Collapse
Affiliation(s)
| | | | | | - Chi V Dang
- The Wistar Institute Philadelphia, Philadelphia, PA, USA. .,Ludwig Institute for Cancer Research New York, New York, NY, USA.
| |
Collapse
|
27
|
Cao J, Lian G, Qi X, Jin G. Design synthesis and photophysical properties of a novel antitumor fluorescence agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Zeng Y, Zhang J, Xu M, Chen F, Zi R, Yue J, Zhang Y, Chen N, Chin YE. Roles of Mitochondrial Serine Hydroxymethyltransferase 2 (SHMT2) in Human Carcinogenesis. J Cancer 2021; 12:5888-5894. [PMID: 34476002 PMCID: PMC8408114 DOI: 10.7150/jca.60170] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/26/2021] [Indexed: 11/09/2022] Open
Abstract
In the last few years, cellular metabolic reprogramming has been acknowledged as a hallmark of human cancer and evaluated for its crucial role in supporting the proliferation and survival of human cancer cells. In a variety of human tumours, including hepatocellular carcinoma (HCC), breast cancer and non-small-cell lung cancer (NSCLC), a large amount of carbon is reused in serine/glycine biosynthesis, accompanied by higher expression of the key glycine synthetic enzyme mitochondrial serine hydroxymethyltransferase 2 (SHMT2). This enzyme can convert serine into glycine and a tetrahydrofolate-bound one-carbon unit, ultimately supporting thymidine synthesis and purine synthesis and promoting tumour growth. In tumour samples, elevated expression of SHMT2 was found to be associated with poor prognosis. In this review, the pivotal roles of SHMT2 in human carcinogenesis are described, highlighting the underlying regulatory mechanisms through promotion of tumour progression. In conclusion, SHMT2 may serve as a prognostic marker and a target for anticancer therapies.
Collapse
Affiliation(s)
- Yuanyuan Zeng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China.,Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Jie Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Mengmeng Xu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Fuxian Chen
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Ruidong Zi
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jicheng Yue
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yanan Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Nannan Chen
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Y Eugene Chin
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
29
|
Fultang L, Gneo L, De Santo C, Mussai FJ. Targeting Amino Acid Metabolic Vulnerabilities in Myeloid Malignancies. Front Oncol 2021; 11:674720. [PMID: 34094976 PMCID: PMC8174708 DOI: 10.3389/fonc.2021.674720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/26/2021] [Indexed: 01/02/2023] Open
Abstract
Tumor cells require a higher supply of nutrients for growth and proliferation than normal cells. It is well established that metabolic reprograming in cancers for increased nutrient supply exposes a host of targetable vulnerabilities. In this article we review the documented changes in expression patterns of amino acid metabolic enzymes and transporters in myeloid malignancies and the growing list of small molecules and therapeutic strategies used to disrupt amino acid metabolic circuits within the cell. Pharmacological inhibition of amino acid metabolism is effective in inducing cell death in leukemic stem cells and primary blasts, as well as in reducing tumor burden in in vivo murine models of human disease. Thus targeting amino acid metabolism provides a host of potential translational opportunities for exploitation to improve the outcomes for patients with myeloid malignancies.
Collapse
Affiliation(s)
- Livingstone Fultang
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Luciana Gneo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Carmela De Santo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Francis J Mussai
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
30
|
Wallace-Povirk A, Tong N, Wong-Roushar J, O'Connor C, Zhou X, Hou Z, Bao X, Garcia GE, Li J, Kim S, Dann CE, Matherly LH, Gangjee A. Discovery of 6-substituted thieno[2,3-d]pyrimidine analogs as dual inhibitors of glycinamide ribonucleotide formyltransferase and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase in de novo purine nucleotide biosynthesis in folate receptor expressing human tumors. Bioorg Med Chem 2021; 37:116093. [PMID: 33773393 PMCID: PMC8058616 DOI: 10.1016/j.bmc.2021.116093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 11/28/2022]
Abstract
We discovered 6-substituted thieno[2,3-d]pyrimidine compounds (3-9) with 3-4 bridge carbons and side-chain thiophene or furan rings for dual targeting one-carbon (C1) metabolism in folate receptor- (FR) expressing cancers. Synthesis involved nine steps starting from the bromo-aryl carboxylate. From patterns of growth inhibition toward Chinese hamster ovary cells expressing FRα or FRβ, the proton-coupled folate transporter or reduced folate carrier, specificity for uptake by FRs was confirmed. Anti-proliferative activities were demonstrated toward FRα-expressing KB tumor cells and NCI-IGROV1 ovarian cancer cells. Inhibition of de novo purine biosynthesis at both 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase and glycinamide ribonucleotide formyltransferase (GARFTase) was confirmed by metabolite rescue, metabolomics and enzyme assays. X-ray crystallographic structures were obtained with compounds 3-5 and human GARFTase. Our studies identify first-in-class C1 inhibitors with selective uptake by FRs and dual inhibition of enzyme targets in de novo purine biosynthesis, resulting in anti-tumor activity. This series affords an exciting new platform for selective multi-targeted anti-tumor agents.
Collapse
Affiliation(s)
- Adrianne Wallace-Povirk
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Nian Tong
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | | | - Carrie O'Connor
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Xilin Zhou
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, United States
| | - Xun Bao
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Gloria E Garcia
- Department of Chemistry, Indiana University, Bloomington, IN 47405, United States
| | - Jing Li
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, United States
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, United States
| | - Charles E Dann
- Department of Chemistry, Indiana University, Bloomington, IN 47405, United States.
| | - Larry H Matherly
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, United States.
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States.
| |
Collapse
|
31
|
Schiliro C, Firestein BL. Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation. Cells 2021; 10:cells10051056. [PMID: 33946927 PMCID: PMC8146072 DOI: 10.3390/cells10051056] [Citation(s) in RCA: 258] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer cells alter metabolic processes to sustain their characteristic uncontrolled growth and proliferation. These metabolic alterations include (1) a shift from oxidative phosphorylation to aerobic glycolysis to support the increased need for ATP, (2) increased glutaminolysis for NADPH regeneration, (3) altered flux through the pentose phosphate pathway and the tricarboxylic acid cycle for macromolecule generation, (4) increased lipid uptake, lipogenesis, and cholesterol synthesis, (5) upregulation of one-carbon metabolism for the production of ATP, NADH/NADPH, nucleotides, and glutathione, (6) altered amino acid metabolism, (7) metabolism-based regulation of apoptosis, and (8) the utilization of alternative substrates, such as lactate and acetate. Altered metabolic flux in cancer is controlled by tumor-host cell interactions, key oncogenes, tumor suppressors, and other regulatory molecules, including non-coding RNAs. Changes to metabolic pathways in cancer are dynamic, exhibit plasticity, and are often dependent on the type of tumor and the tumor microenvironment, leading in a shift of thought from the Warburg Effect and the “reverse Warburg Effect” to metabolic plasticity. Understanding the complex nature of altered flux through these multiple pathways in cancer cells can support the development of new therapies.
Collapse
Affiliation(s)
- Chelsea Schiliro
- Cell and Developmental Biology Graduate Program and Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA;
| | - Bonnie L. Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
- Correspondence: ; Tel.: +1-848-445-8045
| |
Collapse
|
32
|
Cuthbertson CR, Arabzada Z, Bankhead A, Kyani A, Neamati N. A Review of Small-Molecule Inhibitors of One-Carbon Enzymes: SHMT2 and MTHFD2 in the Spotlight. ACS Pharmacol Transl Sci 2021; 4:624-646. [PMID: 33860190 DOI: 10.1021/acsptsci.0c00223] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Metabolic reprogramming is a key hallmark of cancer and shifts cellular metabolism to meet the demands of biomass production necessary for abnormal cell reproduction. One-carbon metabolism (1CM) contributes to many biosynthetic pathways that fuel growth and is comprised of a complex network of enzymes. Methotrexate and 5-fluorouracil were pioneering drugs in this field and are still widely used today as anticancer agents as well as for other diseases such as arthritis. Besides dihydrofolate reductase and thymidylate synthase, two other enzymes of the folate cycle arm of 1CM have not been targeted clinically: serine hydroxymethyltransferase (SHMT) and methylenetetrahydrofolate dehydrogenase (MTHFD). An increasing body of literature suggests that the mitochondrial isoforms of these enzymes (SHMT2 and MTHFD2) are clinically relevant in the context of cancer. In this review, we focused on the 1CM pathway as a target for cancer therapy and, in particular, SHMT2 and MTHFD2. The function, regulation, and clinical relevance of SHMT2 and MTHFD2 are all discussed. We expand on previous clinical studies and evaluate the prognostic significance of these critical enzymes by performing a pan-cancer analysis of patient data from the The Cancer Genome Atlas and a transcriptional coexpression network enrichment analysis. We also provide an overview of preclinical and clinical inhibitors targeting the folate pathway, the methionine cycle, and folate-dependent purine biosynthesis enzymes.
Collapse
Affiliation(s)
- Christine R Cuthbertson
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Zahra Arabzada
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Armand Bankhead
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan 48109, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Armita Kyani
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
33
|
Ota T, Senoo A, Shirakawa M, Nonaka H, Saito Y, Ito S, Ueno G, Nagatoishi S, Tsumoto K, Sando S. Structural basis for selective inhibition of human serine hydroxymethyltransferase by secondary bile acid conjugate. iScience 2021; 24:102036. [PMID: 33521601 PMCID: PMC7820547 DOI: 10.1016/j.isci.2021.102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/08/2020] [Accepted: 12/31/2020] [Indexed: 11/25/2022] Open
Abstract
Bile acids are metabolites of cholesterol that facilitate lipid digestion and absorption in the small bowel. Bile acids work as agonists of receptors to regulate their own metabolism. Bile acids also regulate other biological systems such as sugar metabolism, intestinal multidrug resistance, and adaptive immunity. However, numerous physiological roles of bile acids remain undetermined. In this study, we solved the crystal structure of human serine hydroxymethyltransferase (hSHMT) in complex with an endogenous secondary bile acid glycine conjugate. The specific interaction between hSHMT and the ligand was demonstrated using mutational analyses, biophysical measurements, and structure-activity relationship studies, suggesting that secondary bile acid conjugates may act as modulators of SHMT activity. The crystal structures of hSHMT in complex with secondary bile acid glycine conjugate Specific interactions between hSHMT and secondary bile acid conjugate were validated Biological role of bile acids as modulators for one-carbon metabolism is suggested
Collapse
Affiliation(s)
- Tomoki Ota
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Akinobu Senoo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Masumi Shirakawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroshi Nonaka
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yutaro Saito
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Sho Ito
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
- ROD (Single Crystal Analysis) Group, Application Laboratories, Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo, 196-8666, Japan
| | - Go Ueno
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Satoru Nagatoishi
- Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Corresponding author
| |
Collapse
|
34
|
Yang C, Zhang J, Liao M, Yang Y, Wang Y, Yuan Y, Ouyang L. Folate-mediated one-carbon metabolism: a targeting strategy in cancer therapy. Drug Discov Today 2020; 26:817-825. [PMID: 33316375 DOI: 10.1016/j.drudis.2020.12.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/22/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023]
Abstract
Folate-mediated one-carbon metabolism (FOCM) supports vital events for the growth and survival of proliferating cells. Nucleotide synthesis and DNA methylation are the biochemical bases of cancers that are highly dependent on FOCM. Recent studies revealed that FOCM is connected with redox homeostasis and epigenetics in cancer. Furthermore, folate-metabolizing enzymes, such as serine hydroxymethyltransferase 2 (SHMT2) and methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), are associated with the development of cancers, including breast cancer, highlighting their potential application in tumor-targeted therapy. Therefore, targeting metabolizing enzymes, especially SHMT2 and MTHFD2, provides a novel strategy for cancer treatment. In this review, we outline current understanding of the functions of SHMT2 and MTHFD2, discussing their expression, potential functions, and regulatory mechanism in cancers. Furthermore, we discuss examples of inhibitors of SHMT2 and MTHFD2.
Collapse
Affiliation(s)
- Chengcan Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, China
| | - Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, China
| | - Yushang Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, China; Department of Thoracic Surgery, West China Hospital, Sichuan University, China
| | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, China; Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, China.
| | - Yong Yuan
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, China; Department of Thoracic Surgery, West China Hospital, Sichuan University, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, China; The Research Units of West China, Chinese Academy of Medical Sciences, China.
| |
Collapse
|
35
|
In Silico Prediction of Metabolic Fluxes in Cancer Cells with Altered S-adenosylmethionine Decarboxylase Activity. Cell Biochem Biophys 2020; 79:37-48. [PMID: 33040301 DOI: 10.1007/s12013-020-00949-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
This paper investigates the redistribution of metabolic fluxes in the cell with altered activity of S-adenosylmethionine decarboxylase (SAMdc, EC: 4.1.1.50), the key enzyme of the polyamine cycle and the common target for antitumor therapy. To address these goals, a stoichiometric metabolic model was developed that includes five metabolic pathways: polyamine, methionine, methionine salvage cycles, folic acid cycle, and the pathway of glutathione and taurine synthesis. The model is based on 51 reactions involving 57 metabolites, 31 of which are internal metabolites. All calculations were performed using the method of Flux Balance Analysis. The outcome indicates that the inactivation of SAMdc results in a significant increase in fluxes through the methionine, the taurine and glutathione synthesis, and the folate cycles. Therefore, when using therapeutic agents inactivating SAMdc, it is necessary to consider the possibility of cellular tumor metabolism reprogramming. S-adenosylmethionine affects serine methylation and activates serine-dependent de novo ATP synthesis. Methionine-depleted cell becomes methionine-dependent, searching for new sources of methionine. Inactivation of SAMdc enhances the transformation of S-adenosylmethionine to homocysteine and then to methionine. It also intensifies the transsulfuration process activating the synthesis of glutathione and taurine.
Collapse
|
36
|
Dekhne AS, Hou Z, Gangjee A, Matherly LH. Therapeutic Targeting of Mitochondrial One-Carbon Metabolism in Cancer. Mol Cancer Ther 2020; 19:2245-2255. [PMID: 32879053 DOI: 10.1158/1535-7163.mct-20-0423] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/06/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
One-carbon (1C) metabolism encompasses folate-mediated 1C transfer reactions and related processes, including nucleotide and amino acid biosynthesis, antioxidant regeneration, and epigenetic regulation. 1C pathways are compartmentalized in the cytosol, mitochondria, and nucleus. 1C metabolism in the cytosol has been an important therapeutic target for cancer since the inception of modern chemotherapy, and "antifolates" targeting cytosolic 1C pathways continue to be a mainstay of the chemotherapy armamentarium for cancer. Recent insights into the complexities of 1C metabolism in cancer cells, including the critical role of the mitochondrial 1C pathway as a source of 1C units, glycine, reducing equivalents, and ATP, have spurred the discovery of novel compounds that target these reactions, with particular focus on 5,10-methylene tetrahydrofolate dehydrogenase 2 and serine hydroxymethyltransferase 2. In this review, we discuss key aspects of 1C metabolism, with emphasis on the importance of mitochondrial 1C metabolism to metabolic homeostasis, its relationship with the oncogenic phenotype, and its therapeutic potential for cancer.
Collapse
Affiliation(s)
- Aamod S Dekhne
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | - Larry H Matherly
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.
| |
Collapse
|
37
|
Li AM, Ye J. Reprogramming of serine, glycine and one-carbon metabolism in cancer. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165841. [PMID: 32439610 DOI: 10.1016/j.bbadis.2020.165841] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023]
Abstract
Metabolic pathways leading to the synthesis, uptake, and usage of the nonessential amino acid serine are frequently amplified in cancer. Serine encounters diverse fates in cancer cells, including being charged onto tRNAs for protein synthesis, providing head groups for sphingolipid and phospholipid synthesis, and serving as a precursor for cellular glycine and one-carbon units, which are necessary for nucleotide synthesis and methionine cycle reloading. This review will focus on the participation of serine and glycine in the mitochondrial one-carbon (SGOC) pathway during cancer progression, with an emphasis on the genetic and epigenetic determinants that drive SGOC gene expression. We will discuss recently elucidated roles for SGOC metabolism in nucleotide synthesis, redox balance, mitochondrial function, and epigenetic modifications. Finally, therapeutic considerations for targeting SGOC metabolism in the clinic will be discussed.
Collapse
Affiliation(s)
- Albert M Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
38
|
Golani LK, Islam F, O'Connor C, Dekhne AS, Hou Z, Matherly LH, Gangjee A. Design, synthesis and biological evaluation of novel pyrrolo[2,3-d]pyrimidine as tumor-targeting agents with selectivity for tumor uptake by high affinity folate receptors over the reduced folate carrier. Bioorg Med Chem 2020; 28:115544. [PMID: 32503687 DOI: 10.1016/j.bmc.2020.115544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/26/2022]
Abstract
Tumor-targeted 6-substituted pyrrolo[2,3-d]pyrimidine benzoyl compounds based on 2 were isosterically modified at the 4-carbon bridge by replacing the vicinal (C11) carbon by heteroatoms N (4), O (5) or S (6), or with an N-substituted formyl (7), trifluoroacetyl (8) or acetyl (9). Replacement with sulfur (6) afforded the most potent KB tumor cell inhibitor, ~6-fold better than the parent 2. In addition, 6 retained tumor transport selectivity via folate receptor (FR) α and -β over the ubiquitous reduced folate carrier (RFC). FRα-mediated cell inhibition for 6 was generally equivalent to 2, while the FRβ-mediated activity was improved by 16-fold over 2. N (4) and O (5) substitutions afforded similar tumor cell inhibitions as 2, with selectivity for FRα and -β over RFC. The N-substituted analogs 7-9 also preserved transport selectivity for FRα and -β over RFC. For FRα-expressing CHO cells, potencies were in the order of 8 > 7 > 9. Whereas 8 and 9 showed similar results with FRβ-expressing CHO cells, 7 was ~16-fold more active than 2. By nucleoside rescue experiments, all the compounds inhibited de novo purine biosynthesis, likely at the step catalyzed by glycinamide ribonucleotide formyltransferase. Thus, heteroatom replacements of the CH2 in the bridge of 2 afford analogs with increased tumor cell inhibition that could provide advantages over 2, as well as tumor transport selectivity over clinically used antifolates including methotrexate and pemetrexed.
Collapse
Affiliation(s)
- Lalit K Golani
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States.
| | - Farhana Islam
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States
| | - Carrie O'Connor
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Aamod S Dekhne
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 421 East Canfield, Detroit, MI 48201, United States
| | - Larry H Matherly
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 421 East Canfield, Detroit, MI 48201, United States.
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States.
| |
Collapse
|
39
|
Dekhne AS, Ning C, Nayeen MJ, Shah K, Kalpage H, Frühauf J, Wallace-Povirk A, O'Connor C, Hou Z, Kim S, Hüttemann M, Gangjee A, Matherly LH. Cellular Pharmacodynamics of a Novel Pyrrolo[3,2- d]pyrimidine Inhibitor Targeting Mitochondrial and Cytosolic One-Carbon Metabolism. Mol Pharmacol 2020; 97:9-22. [PMID: 31707355 PMCID: PMC6877291 DOI: 10.1124/mol.119.117937] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/23/2019] [Indexed: 12/29/2022] Open
Abstract
Folate-dependent one-carbon (C1) metabolism is compartmentalized in the mitochondria and cytosol and is a source of critical metabolites for proliferating tumors. Mitochondrial C1 metabolism including serine hydroxymethyltransferase 2 (SHMT2) generates glycine for de novo purine nucleotide and glutathione biosynthesis and is an important source of NADPH, ATP, and formate, which affords C1 units as 10-formyl-tetrahydrofolate and 5,10-methylene-tetrahydrofolate for nucleotide biosynthesis in the cytosol. We previously discovered novel first-in-class multitargeted pyrrolo[3,2-d]pyrimidine inhibitors of SHMT2 and de novo purine biosynthesis at glycinamide ribonucleotide formyltransferase and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase with potent in vitro and in vivo antitumor efficacy toward pancreatic adenocarcinoma cells. In this report, we extend our findings to an expanded panel of pancreatic cancer models. We used our lead analog AGF347 [(4-(4-(2-amino-4-oxo-3,4-dihydro-5H-pyrrolo[3,2-d]pyrimidin-5-yl)butyl)-2-fluorobenzoyl)-l-glutamic acid] to characterize pharmacodynamic determinants of antitumor efficacy for this series and demonstrated plasma membrane transport into the cytosol, uptake from cytosol into mitochondria, and metabolism to AGF347 polyglutamates in both cytosol and mitochondria. Antitumor effects of AGF347 downstream of SHMT2 and purine biosynthesis included suppression of mammalian target of rapamycin signaling, and glutathione depletion with increased levels of reactive oxygen species. Our results provide important insights into the cellular pharmacology of novel pyrrolo[3,2-d]pyrimidine inhibitors as antitumor compounds and establish AGF347 as a unique agent for potential clinical application for pancreatic cancer, as well as other malignancies. SIGNIFICANCE STATEMENT: This study establishes the antitumor efficacies of novel inhibitors of serine hydroxymethyltransferase 2 and of cytosolic targets toward a panel of clinically relevant pancreatic cancer cells and demonstrates the important roles of plasma membrane transport, mitochondrial accumulation, and metabolism to polyglutamates of the lead compound AGF347 to drug activity. We also establish that loss of serine catabolism and purine biosynthesis resulting from AGF347 treatment impacts mammalian target of rapamycin signaling, glutathione pools, and reactive oxygen species, contributing to antitumor efficacy.
Collapse
Affiliation(s)
- Aamod S Dekhne
- Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.)
| | - Changwen Ning
- Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.)
| | - Md Junayed Nayeen
- Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.)
| | - Khushbu Shah
- Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.)
| | - Hasini Kalpage
- Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.)
| | - Josephine Frühauf
- Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.)
| | - Adrianne Wallace-Povirk
- Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.)
| | - Carrie O'Connor
- Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.)
| | - Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.)
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.)
| | - Maik Hüttemann
- Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.)
| | - Aleem Gangjee
- Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.)
| | - Larry H Matherly
- Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.)
| |
Collapse
|