1
|
Praharaj M, Shen F, Lee AJ, Zhao L, Nirschl TR, Theodros D, Singh AK, Wang X, Adusei KM, Lombardo KA, Williams RA, Sena LA, Thompson EA, Tam A, Yegnasubramanian S, Pearce EJ, Leone RD, Alt J, Rais R, Slusher BS, Pardoll DM, Powell JD, Zarif JC. Metabolic Reprogramming of Tumor-Associated Macrophages Using Glutamine Antagonist JHU083 Drives Tumor Immunity in Myeloid-Rich Prostate and Bladder Cancers. Cancer Immunol Res 2024; 12:854-875. [PMID: 38701369 PMCID: PMC11217738 DOI: 10.1158/2326-6066.cir-23-1105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/10/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Glutamine metabolism in tumor microenvironments critically regulates antitumor immunity. Using the glutamine-antagonist prodrug JHU083, we report potent tumor growth inhibition in urologic tumors by JHU083-reprogrammed tumor-associated macrophages (TAMs) and tumor-infiltrating monocytes. We show JHU083-mediated glutamine antagonism in tumor microenvironments induced by TNF, proinflammatory, and mTORC1 signaling in intratumoral TAM clusters. JHU083-reprogrammed TAMs also exhibited increased tumor cell phagocytosis and diminished proangiogenic capacities. In vivo inhibition of TAM glutamine consumption resulted in increased glycolysis, a broken tricarboxylic acid (TCA) cycle, and purine metabolism disruption. Although the antitumor effect of glutamine antagonism on tumor-infiltrating T cells was moderate, JHU083 promoted a stem cell-like phenotype in CD8+ T cells and decreased the abundance of regulatory T cells. Finally, JHU083 caused a global shutdown in glutamine-utilizing metabolic pathways in tumor cells, leading to reduced HIF-1α, c-MYC phosphorylation, and induction of tumor cell apoptosis, all key antitumor features. Altogether, our findings demonstrate that targeting glutamine with JHU083 led to suppressed tumor growth as well as reprogramming of immunosuppressive TAMs within prostate and bladder tumors that promoted antitumor immune responses. JHU083 can offer an effective therapeutic benefit for tumor types that are enriched in immunosuppressive TAMs.
Collapse
Affiliation(s)
- Monali Praharaj
- Pathobiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Fan Shen
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Alex J. Lee
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Liang Zhao
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Thomas R. Nirschl
- Pathobiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Debebe Theodros
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Alok K. Singh
- Department of Medicine, Center for Tuberculosis Research, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Xiaoxu Wang
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Kenneth M. Adusei
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Graduate Program in Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Kara A. Lombardo
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Raekwon A. Williams
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Laura A. Sena
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Elizabeth A. Thompson
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Ada Tam
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Edward J. Pearce
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Robert D. Leone
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Jesse Alt
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland.
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland.
| | - Rana Rais
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland.
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland.
| | - Barbara S. Slusher
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland.
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, Maryland.
| | - Drew M. Pardoll
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Jonathan D. Powell
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Jelani C. Zarif
- Bloomberg∼Kimmel Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
2
|
Novotná K, Tenora L, Slusher BS, Rais R. Therapeutic resurgence of 6-diazo-5-oxo-l-norleucine (DON) through tissue-targeted prodrugs. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:157-180. [PMID: 39034051 DOI: 10.1016/bs.apha.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The recognition that rapidly proliferating cancer cells rely heavily on glutamine for their survival and growth has renewed interest in the development of glutamine antagonists for cancer therapy. Glutamine plays a pivotal role as a carbon source for synthesizing lipids and metabolites through the TCA cycle, as well as a nitrogen source for synthesis of amino acid and nucleotides. Numerous studies have explored the significance of glutamine metabolism in cancer, providing a robust rationale for targeting this metabolic pathway in cancer treatment. The glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) has been explored as an anticancer therapeutic for nearly six decades. Initial investigations revealed remarkable efficacy in preclinical studies and promising outcomes in early clinical trials. However, further advancement of DON was hindered due to dose-limiting gastrointestinal (GI) toxicities as the GI system is highly dependent on glutamine for regulating growth and repair. In an effort to repurpose DON and mitigate gastrointestinal (GI) toxicity concerns, prodrug strategies were utilized. These strategies aimed to enhance the delivery of DON to specific target tissues, such as tumors and the central nervous system (CNS), while sparing DON delivery to normal tissues, particularly the GI tract. When administered at low daily doses, optimized for metabolic inhibition, these prodrugs exhibit remarkable effectiveness without inducing significant toxicity to normal tissues. This approach holds promise for overcoming past challenges associated with DON, offering an avenue for its successful utilization in cancer treatment.
Collapse
Affiliation(s)
- Kateřina Novotná
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, United States; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Prague, Czech Republic; Department of Organic Chemistry, Charles University, Faculty of Science, Prague, Czech Republic
| | - Lukáš Tenora
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Organic Chemistry, Charles University, Faculty of Science, Prague, Czech Republic
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
3
|
Fan Y, Xue H, Li Z, Huo M, Gao H, Guan X. Exploiting the Achilles' heel of cancer: disrupting glutamine metabolism for effective cancer treatment. Front Pharmacol 2024; 15:1345522. [PMID: 38510646 PMCID: PMC10952006 DOI: 10.3389/fphar.2024.1345522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Cancer cells have adapted to rapid tumor growth and evade immune attack by reprogramming their metabolic pathways. Glutamine is an important nitrogen resource for synthesizing amino acids and nucleotides and an important carbon source in the tricarboxylic acid (TCA) cycle and lipid biosynthesis pathway. In this review, we summarize the significant role of glutamine metabolism in tumor development and highlight the vulnerabilities of targeting glutamine metabolism for effective therapy. In particular, we review the reported drugs targeting glutaminase and glutamine uptake for efficient cancer treatment. Moreover, we discuss the current clinical test about targeting glutamine metabolism and the prospective direction of drug development.
Collapse
Affiliation(s)
- Yuxin Fan
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Han Xue
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Zhimin Li
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Mingge Huo
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Hongxia Gao
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
| | - Xingang Guan
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| |
Collapse
|
4
|
Lemberg KM, Ali ES, Krecmerova M, Aguilar JMH, Alt J, Peters DE, Zhao L, Wu Y, Nuha N, Asara JM, Staedtke V, Pratilas CA, Majer P, Rais R, Ben-Sahra I, Slusher BS. Pro-905, a Novel Purine Antimetabolite, Combines with Glutamine Amidotransferase Inhibition to Suppress Growth of Malignant Peripheral Nerve Sheath Tumor. Mol Cancer Ther 2023; 22:1390-1403. [PMID: 37616542 PMCID: PMC10690047 DOI: 10.1158/1535-7163.mct-23-0258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are highly aggressive soft-tissue sarcomas that arise from neural tissues and carry a poor prognosis. Previously, we found that the glutamine amidotransferase inhibitor JHU395 partially impeded tumor growth in preclinical models of MPNST. JHU395 inhibits de novo purine synthesis in human MPNST cells and murine tumors with partial decreases in purine monophosphates. On the basis of prior studies showing enhanced efficacy when glutamine amidotransferase inhibition was combined with the antimetabolite 6-mercaptopurine (6-MP), we hypothesized that such a combination would be efficacious in MPNST. Given the known toxicity associated with 6-MP, we set out to develop a more efficient and well-tolerated drug that targets the purine salvage pathway. Here, we report the discovery of Pro-905, a phosphoramidate protide that delivered the active nucleotide antimetabolite thioguanosine monophosphate (TGMP) to tumors over 2.5 times better than equimolar 6-MP. Pro-905 effectively prevented the incorporation of purine salvage substrates into nucleic acids and inhibited colony formation of human MPNST cells in a dose-dependent manner. In addition, Pro-905 inhibited MPNST growth and was well-tolerated in both human patient-derived xenograft (PDX) and murine flank MPNST models. When combined with JHU395, Pro-905 enhanced the colony formation inhibitory potency of JHU395 in human MPNST cells and augmented the antitumor efficacy of JHU395 in mice. In summary, the dual inhibition of the de novo and purine salvage pathways in preclinical models may safely be used to enhance therapeutic efficacy against MPNST.
Collapse
Affiliation(s)
- Kathryn M. Lemberg
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
- Johns Hopkins Drug Discovery, Baltimore, Maryland
| | - Eunus S. Ali
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Marcela Krecmerova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Jesse Alt
- Johns Hopkins Drug Discovery, Baltimore, Maryland
| | - Diane E. Peters
- Johns Hopkins Drug Discovery, Baltimore, Maryland
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Liang Zhao
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Ying Wu
- Johns Hopkins Drug Discovery, Baltimore, Maryland
| | - Naziba Nuha
- Johns Hopkins Drug Discovery, Baltimore, Maryland
| | - John M. Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard University School of Medicine, Boston, Massachusetts
| | - Verena Staedtke
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Christine A. Pratilas
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Rana Rais
- Johns Hopkins Drug Discovery, Baltimore, Maryland
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Barbara S. Slusher
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
- Johns Hopkins Drug Discovery, Baltimore, Maryland
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
- Departments of Medicine, Neuroscience, Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
5
|
Novotná K, Tenora L, Prchalová E, Paule J, Alt J, Veeravalli V, Lam J, Wu Y, Šnajdr I, Gori S, Mettu VS, Tsukamoto T, Majer P, Slusher BS, Rais R. Discovery of tert-Butyl Ester Based 6-Diazo-5-oxo-l-norleucine Prodrugs for Enhanced Metabolic Stability and Tumor Delivery. J Med Chem 2023; 66:15493-15510. [PMID: 37949450 PMCID: PMC10683027 DOI: 10.1021/acs.jmedchem.3c01681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
The glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) exhibits remarkable anticancer efficacy; however, its therapeutic potential is hindered by its toxicity to gastrointestinal (GI) tissues. We recently reported the discovery of DRP-104, a tumor-targeted DON prodrug with excellent efficacy and tolerability, which is currently in clinical trials. However, DRP-104 exhibits limited aqueous solubility, and the instability of its isopropyl ester promoiety leads to the formation of an inactive M1-metabolite, reducing overall systemic prodrug exposure. Herein, we aimed to synthesize DON prodrugs with various ester and amide promoieties with improved solubility, GI stability, and DON tumor delivery. Twenty-one prodrugs were synthesized and characterized in stability and pharmacokinetics studies. Of these, P11, tert-butyl-(S)-6-diazo-2-((S)-2-(2-(dimethylamino)acetamido)-3-phenylpropanamido)-5-oxo-hexanoate, showed excellent metabolic stability in plasma and intestinal homogenate, high aqueous solubility, and high tumor DON exposures and preserved the ideal tumor-targeting profile of DRP-104. In conclusion, we report a new generation of glutamine antagonist prodrugs with improved physicochemical and pharmacokinetic attributes.
Collapse
Affiliation(s)
- Kateřina Novotná
- Johns
Hopkins Drug Discovery, Departments of Neurology, Psychiatry and Behavioral Sciences, Pharmacology and
Molecular Sciences, Neuroscience, Medicine, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Institute
of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences
of the Czech Republic, Prague 160 00, Czech Republic
- Department
of Organic Chemistry, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Lukáš Tenora
- Johns
Hopkins Drug Discovery, Departments of Neurology, Psychiatry and Behavioral Sciences, Pharmacology and
Molecular Sciences, Neuroscience, Medicine, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Institute
of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences
of the Czech Republic, Prague 160 00, Czech Republic
| | - Eva Prchalová
- Johns
Hopkins Drug Discovery, Departments of Neurology, Psychiatry and Behavioral Sciences, Pharmacology and
Molecular Sciences, Neuroscience, Medicine, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Institute
of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences
of the Czech Republic, Prague 160 00, Czech Republic
| | - James Paule
- Johns
Hopkins Drug Discovery, Departments of Neurology, Psychiatry and Behavioral Sciences, Pharmacology and
Molecular Sciences, Neuroscience, Medicine, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Jesse Alt
- Johns
Hopkins Drug Discovery, Departments of Neurology, Psychiatry and Behavioral Sciences, Pharmacology and
Molecular Sciences, Neuroscience, Medicine, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Vijay Veeravalli
- Johns
Hopkins Drug Discovery, Departments of Neurology, Psychiatry and Behavioral Sciences, Pharmacology and
Molecular Sciences, Neuroscience, Medicine, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Jenny Lam
- Johns
Hopkins Drug Discovery, Departments of Neurology, Psychiatry and Behavioral Sciences, Pharmacology and
Molecular Sciences, Neuroscience, Medicine, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Ying Wu
- Johns
Hopkins Drug Discovery, Departments of Neurology, Psychiatry and Behavioral Sciences, Pharmacology and
Molecular Sciences, Neuroscience, Medicine, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Ivan Šnajdr
- Institute
of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences
of the Czech Republic, Prague 160 00, Czech Republic
| | - Sadakatali Gori
- Johns
Hopkins Drug Discovery, Departments of Neurology, Psychiatry and Behavioral Sciences, Pharmacology and
Molecular Sciences, Neuroscience, Medicine, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Vijaya Saradhi Mettu
- Johns
Hopkins Drug Discovery, Departments of Neurology, Psychiatry and Behavioral Sciences, Pharmacology and
Molecular Sciences, Neuroscience, Medicine, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Takashi Tsukamoto
- Johns
Hopkins Drug Discovery, Departments of Neurology, Psychiatry and Behavioral Sciences, Pharmacology and
Molecular Sciences, Neuroscience, Medicine, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Pavel Majer
- Institute
of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences
of the Czech Republic, Prague 160 00, Czech Republic
| | - Barbara S. Slusher
- Johns
Hopkins Drug Discovery, Departments of Neurology, Psychiatry and Behavioral Sciences, Pharmacology and
Molecular Sciences, Neuroscience, Medicine, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Rana Rais
- Johns
Hopkins Drug Discovery, Departments of Neurology, Psychiatry and Behavioral Sciences, Pharmacology and
Molecular Sciences, Neuroscience, Medicine, and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
6
|
Abbott KL, Ali A, Casalena D, Do BT, Ferreira R, Cheah JH, Soule CK, Deik A, Kunchok T, Schmidt DR, Renner S, Honeder SE, Wu M, Chan SH, Tseyang T, Stoltzfus AT, Michel SLJ, Greaves D, Hsu PP, Ng CW, Zhang CJ, Farsidjani A, Kent JR, Madariaga MLL, Gramatikov IMT, Matheson NJ, Lewis CA, Clish CB, Rees MG, Roth JA, Griner LM, Muir A, Auld DS, Vander Heiden MG. Screening in serum-derived medium reveals differential response to compounds targeting metabolism. Cell Chem Biol 2023; 30:1156-1168.e7. [PMID: 37689063 PMCID: PMC10581593 DOI: 10.1016/j.chembiol.2023.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/20/2023] [Accepted: 08/16/2023] [Indexed: 09/11/2023]
Abstract
A challenge for screening new anticancer drugs is that efficacy in cell culture models is not always predictive of efficacy in patients. One limitation of standard cell culture is a reliance on non-physiological nutrient levels, which can influence cell metabolism and drug sensitivity. A general assessment of how physiological nutrients affect cancer cell response to small molecule therapies is lacking. To address this, we developed a serum-derived culture medium that supports the proliferation of diverse cancer cell lines and is amenable to high-throughput screening. We screened several small molecule libraries and found that compounds targeting metabolic enzymes were differentially effective in standard compared to serum-derived medium. We exploited the differences in nutrient levels between each medium to understand why medium conditions affected the response of cells to some compounds, illustrating how this approach can be used to screen potential therapeutics and understand how their efficacy is modified by available nutrients.
Collapse
Affiliation(s)
- Keene L Abbott
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ahmed Ali
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dominick Casalena
- Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Brian T Do
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Raphael Ferreira
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jaime H Cheah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christian K Soule
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Daniel R Schmidt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Steffen Renner
- Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Sophie E Honeder
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Michelle Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sze Ham Chan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Tenzin Tseyang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Andrew T Stoltzfus
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Daniel Greaves
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Peggy P Hsu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02113, USA
| | - Christopher W Ng
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chelsea J Zhang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Farsidjani
- Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Johnathan R Kent
- Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | | | - Iva Monique T Gramatikov
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Nicholas J Matheson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew G Rees
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Alexander Muir
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Douglas S Auld
- Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Abbott KL, Ali A, Casalena D, Do BT, Ferreira R, Cheah JH, Soule CK, Deik A, Kunchok T, Schmidt DR, Renner S, Honeder SE, Wu M, Chan SH, Tseyang T, Greaves D, Hsu PP, Ng CW, Zhang CJ, Farsidjani A, Gramatikov IMT, Matheson NJ, Lewis CA, Clish CB, Rees MG, Roth JA, Griner LM, Muir A, Auld DS, Heiden MGV. Screening in serum-derived medium reveals differential response to compounds targeting metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.529972. [PMID: 36909640 PMCID: PMC10002634 DOI: 10.1101/2023.02.25.529972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
A challenge for screening new candidate drugs to treat cancer is that efficacy in cell culture models is not always predictive of efficacy in patients. One limitation of standard cell culture is a reliance on non-physiological nutrient levels to propagate cells. Which nutrients are available can influence how cancer cells use metabolism to proliferate and impact sensitivity to some drugs, but a general assessment of how physiological nutrients affect cancer cell response to small molecule therapies is lacking. To enable screening of compounds to determine how the nutrient environment impacts drug efficacy, we developed a serum-derived culture medium that supports the proliferation of diverse cancer cell lines and is amenable to high-throughput screening. We used this system to screen several small molecule libraries and found that compounds targeting metabolic enzymes were enriched as having differential efficacy in standard compared to serum-derived medium. We exploited the differences in nutrient levels between each medium to understand why medium conditions affected the response of cells to some compounds, illustrating how this approach can be used to screen potential therapeutics and understand how their efficacy is modified by available nutrients.
Collapse
Affiliation(s)
- Keene L. Abbott
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ahmed Ali
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dominick Casalena
- Novartis Institute for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Brian T. Do
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Harvard-MIT Health Sciences and Technology, Cambridge, MA 02139, USA
| | | | - Jaime H. Cheah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christian K. Soule
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Daniel R. Schmidt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Steffen Renner
- Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Sophie E. Honeder
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Michelle Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sze Ham Chan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Tenzin Tseyang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Daniel Greaves
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Peggy P. Hsu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Massachusetts General Hospital Cancer Center, Boston, MA 02113, USA
| | - Christopher W. Ng
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chelsea J. Zhang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Farsidjani
- Novartis Institute for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Iva Monique T. Gramatikov
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nicholas J. Matheson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Caroline A. Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Clary B. Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew G. Rees
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Lesley Mathews Griner
- Novartis Institute for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Alexander Muir
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL, USA
| | - Douglas S. Auld
- Novartis Institute for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Matthew G. Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| |
Collapse
|
8
|
Rais R, Lemberg KM, Tenora L, Arwood ML, Pal A, Alt J, Wu Y, Lam J, Aguilar JMH, Zhao L, Peters DE, Tallon C, Pandey R, Thomas AG, Dash RP, Seiwert T, Majer P, Leone RD, Powell JD, Slusher BS. Discovery of DRP-104, a tumor-targeted metabolic inhibitor prodrug. SCIENCE ADVANCES 2022; 8:eabq5925. [PMID: 36383674 PMCID: PMC9668306 DOI: 10.1126/sciadv.abq5925] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/27/2022] [Indexed: 05/23/2023]
Abstract
6-Diazo-5-oxo-l-norleucine (DON) is a glutamine antagonist that suppresses cancer cell metabolism but concurrently enhances the metabolic fitness of tumor CD8+ T cells. DON showed promising efficacy in clinical trials; however, its development was halted by dose-limiting gastrointestinal (GI) toxicities. Given its clinical potential, we designed DON peptide prodrugs and found DRP-104 [isopropyl(S)-2-((S)-2-acetamido-3-(1H-indol-3-yl)-propanamido)-6-diazo-5-oxo-hexanoate] that was preferentially bioactivated to DON in tumor while bioinactivated to an inert metabolite in GI tissues. In drug distribution studies, DRP-104 delivered a prodigious 11-fold greater exposure of DON to tumor versus GI tissues. DRP-104 affected multiple metabolic pathways in tumor, including decreased glutamine flux into the TCA cycle. In efficacy studies, both DRP-104 and DON caused complete tumor regression; however, DRP-104 had a markedly improved tolerability profile. DRP-104's effect was CD8+ T cell dependent and resulted in robust immunologic memory. DRP-104 represents a first-in-class prodrug with differential metabolism in target versus toxicity tissue. DRP-104 is now in clinical trials under the FDA Fast Track designation.
Collapse
Affiliation(s)
- Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Kathryn M. Lemberg
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Lukáš Tenora
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Prague 16000, Czech Republic
| | - Matthew L. Arwood
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Arindom Pal
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jesse Alt
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ying Wu
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jenny Lam
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | - Liang Zhao
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Diane E. Peters
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Carolyn Tallon
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Rajeev Pandey
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ajit G. Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ranjeet P. Dash
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Tanguy Seiwert
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i., Prague 16000, Czech Republic
| | - Robert D. Leone
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Jonathan D. Powell
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Esperança-Martins M, F.Duarte I, Rodrigues M, Soares do Brito J, López-Presa D, Costa L, Fernandes I, Dias S. On the Relevance of Soft Tissue Sarcomas Metabolic Landscape Mapping. Int J Mol Sci 2022; 23:11430. [PMID: 36232732 PMCID: PMC9570318 DOI: 10.3390/ijms231911430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Soft tissue sarcomas (STS) prognosis is disappointing, with current treatment strategies being based on a "fit for all" principle and not taking distinct sarcoma subtypes specificities and genetic/metabolic differences into consideration. The paucity of precision therapies in STS reflects the shortage of studies that seek to decipher the sarcomagenesis mechanisms. There is an urge to improve STS diagnosis precision, refine STS classification criteria, and increase the capability of identifying STS prognostic biomarkers. Single-omics and multi-omics studies may play a key role on decodifying sarcomagenesis. Metabolomics provides a singular insight, either as a single-omics approach or as part of a multi-omics strategy, into the metabolic adaptations that support sarcomagenesis. Although STS metabolome is scarcely characterized, untargeted and targeted metabolomics approaches employing different data acquisition methods such as mass spectrometry (MS), MS imaging, and nuclear magnetic resonance (NMR) spectroscopy provided important information, warranting further studies. New chromatographic, MS, NMR-based, and flow cytometry-based methods will offer opportunities to therapeutically target metabolic pathways and to monitorize the response to such metabolic targeting therapies. Here we provide a comprehensive review of STS omics applications, comprising a detailed analysis of studies focused on the metabolic landscape of these tumors.
Collapse
Affiliation(s)
- Miguel Esperança-Martins
- Medical Oncology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal
- Vascular Biology & Cancer Microenvironment Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Translational Oncobiology Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Iola F.Duarte
- CICECO-Aveiro Institute of Materials, Department of Chemistry, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Mara Rodrigues
- Vascular Biology & Cancer Microenvironment Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Joaquim Soares do Brito
- Orthopedics Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal
| | - Dolores López-Presa
- Pathology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal
| | - Luís Costa
- Medical Oncology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal
- Translational Oncobiology Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Clínica Universitária de Oncologia Médica, 1649-028 Lisboa, Portugal
| | - Isabel Fernandes
- Medical Oncology Department, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisboa, Portugal
- Translational Oncobiology Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Clínica Universitária de Oncologia Médica, 1649-028 Lisboa, Portugal
| | - Sérgio Dias
- Vascular Biology & Cancer Microenvironment Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Clínica Universitária de Oncologia Médica, 1649-028 Lisboa, Portugal
| |
Collapse
|
10
|
Abstract
Advances in proteomic and metabolomic technologies have accelerated our understanding of multiple aspects of cancer biology across distinct tumour types. Here we review the current state-of-the-art in the use of proteomics and metabolomics in soft tissue sarcomas. We highlight the utility of these Omics-based methodologies to identify new drug targets, synthetic lethal interactions, candidate therapeutics and novel biomarkers to facilitate patient stratification. Due to the unbiased and global nature of these profiling methods to assess the levels of protein expression, post-translational modifications such as phosphorylation and glycosylation as well as key metabolites, many of these findings have broad applications not just in specific histotypes but across multiple STS subtypes. Specific examples of proteomic and metabolomic findings that have led to the development of early phase clinical trials of investigational agents will be discussed. While promising, the use of these technologies in the study of sarcoma is still limited, and there is a need for further research in this area. In particular, it would be important to integrate these approaches with other Omics strategies such as genomics and epigenomics as well as implement these tools alongside clinical trials in order to maximize the impact of these tools on our biological understanding and treatment of this group of rare diseases of unmet need.
Collapse
Affiliation(s)
- Madhumeeta Chadha
- Division of Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK
| | - Paul H Huang
- Division of Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK.
| |
Collapse
|
11
|
Furlani IL, da Cruz Nunes E, Canuto GAB, Macedo AN, Oliveira RV. Liquid Chromatography-Mass Spectrometry for Clinical Metabolomics: An Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:179-213. [PMID: 34628633 DOI: 10.1007/978-3-030-77252-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Metabolomics is a discipline that offers a comprehensive analysis of metabolites in biological samples. In the last decades, the notable evolution in liquid chromatography and mass spectrometry technologies has driven an exponential progress in LC-MS-based metabolomics. Targeted and untargeted metabolomics strategies are important tools in health and medical science, especially in the study of disease-related biomarkers, drug discovery and development, toxicology, diet, physical exercise, and precision medicine. Clinical and biological problems can now be understood in terms of metabolic phenotyping. This overview highlights the current approaches to LC-MS-based metabolomics analysis and its applications in the clinical research.
Collapse
Affiliation(s)
- Izadora L Furlani
- Núcleo de Pesquisa em Cromatografia (Separare), Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Estéfane da Cruz Nunes
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador, BA, Brazil
| | - Gisele A B Canuto
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador, BA, Brazil
| | - Adriana N Macedo
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Regina V Oliveira
- Núcleo de Pesquisa em Cromatografia (Separare), Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil.
| |
Collapse
|
12
|
Pham K, Maxwell MJ, Sweeney H, Alt J, Rais R, Eberhart CG, Slusher BS, Raabe EH. Novel Glutamine Antagonist JHU395 Suppresses MYC-Driven Medulloblastoma Growth and Induces Apoptosis. J Neuropathol Exp Neurol 2021; 80:336-344. [PMID: 33712838 PMCID: PMC7985826 DOI: 10.1093/jnen/nlab018] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Medulloblastoma is the most common malignant pediatric brain tumor. Amplification of c-MYC is a hallmark of a subset of poor-prognosis medulloblastoma. MYC upregulates glutamine metabolism across many types of cancer. We modified the naturally occurring glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) by adding 2 promoeities to increase its lipophilicity and brain penetration creating the prodrug isopropyl 6-diazo-5-oxo-2-(((phenyl (pivaloyloxy) methoxy) - carbonyl) amino) hexanoate, termed JHU395. This prodrug was shown to have a 10-fold improved CSF-to-plasma ratio and brain-to-plasma ratio relative to DON. We hypothesized that JHU395 would have superior cell penetration compared with DON and would effectively and more potently kill MYC-expressing medulloblastoma. JHU395 treatment caused decreased growth and increased apoptosis in multiple human high-MYC medulloblastoma cell lines at lower concentrations than DON. Parenteral administration of JHU395 in Nu/Nu mice led to the accumulation of micromolar concentrations of DON in brain. Treatment of mice bearing orthotopic xenografts of human MYC-amplified medulloblastoma with JHU395 increased median survival from 26 to 45 days compared with vehicle control mice (p < 0.001 by log-rank test). These data provide preclinical justification for the ongoing development and testing of brain-targeted DON prodrugs for use in medulloblastoma.
Collapse
Affiliation(s)
- Khoa Pham
- From the Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Micah J Maxwell
- Division of Pediatric Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Heather Sweeney
- Division of Pediatric Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Jesse Alt
- Johns Hopkins Drug Discovery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Charles G Eberhart
- From the Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Eric H Raabe
- From the Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Division of Pediatric Oncology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Alt J, Gori SS, Lemberg KM, Pal A, Veeravalli V, Wu Y, Aguilar JM, Dash RP, Tenora L, Majer P, Sun Q, Slusher BS, Rais R. Glutamine Antagonist GA-607 Causes a Dramatic Accumulation of FGAR which can be used to Monitor Target Engagement. Curr Drug Metab 2021; 22:735-745. [PMID: 34488583 PMCID: PMC8684803 DOI: 10.2174/1389200222666210831125041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Metabolomic analyses from our group and others have shown that tumors treated with glutamine antagonists (GA) exhibit robust accumulation of formylglycinamide ribonucleotide (FGAR), an intermediate in the de novo purine synthesis pathway. The increase in FGAR is attributed to the inhibition of the enzyme FGAR amidotransferase (FGAR-AT) that catalyzes the ATP-dependent amidation of FGAR to formylglycinamidine ribonucleotide (FGAM). While perturbation of this pathway resulting from GA therapy has long been recognized, no study has reported systematic quantitation and analyses of FGAR in plasma and tumors. OBJECTIVE Herein, we aimed to evaluate the efficacy of our recently discovered tumor-targeted GA prodrug, GA-607 (isopropyl 2-(6-acetamido-2-(adamantane-1-carboxamido)hexanamido)-6-diazo-5-oxohexanoate), and demonstrate its target engagement by quantification of FGAR in plasma and tumors. METHODS Efficacy and pharmacokinetics of GA-607 were evaluated in a murine EL4 lymphoma model followed by global tumor metabolomic analysis. Liquid chromatography-mass spectrometry (LC-MS) based methods employing the ion-pair chromatography approach were developed and utilized for quantitative FGAR analyses in plasma and tumors. RESULTS GA-607 showed preferential tumor distribution and robust single-agent efficacy in a murine EL4 lymphoma model. While several metabolic pathways were perturbed by GA-607 treatment, FGAR showed the highest increase qualitatively. Using our newly developed sensitive and selective LC-MS method, we showed a robust >80- and >10- fold increase in tumor and plasma FGAR levels, respectively, with GA-607 treatment. CONCLUSION These studies describe the importance of FGAR quantification following GA therapy in cancer and underscore its importance as a valuable pharmacodynamic marker in the preclinical and clinical development of GA therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Barbara S. Slusher
- Address correspondence to these authors at the Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, Maryland, 21205, USA; Tel: 410-614-0662; Fax: 410-614-0659; E-mail: and Tel: 410-502-0497; E-mail:
| | - Rana Rais
- Address correspondence to these authors at the Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, Maryland, 21205, USA; Tel: 410-614-0662; Fax: 410-614-0659; E-mail: and Tel: 410-502-0497; E-mail:
| |
Collapse
|
14
|
Yamashita AS, da Costa Rosa M, Stumpo V, Rais R, Slusher BS, Riggins GJ. The glutamine antagonist prodrug JHU-083 slows malignant glioma growth and disrupts mTOR signaling. Neurooncol Adv 2020; 3:vdaa149. [PMID: 33681764 PMCID: PMC7920530 DOI: 10.1093/noajnl/vdaa149] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Metabolic reprogramming is a common feature in cancer, and it is critical to facilitate cancer cell growth. Isocitrate Dehydrogenase 1/2 (IDH1 and IDH2) mutations (IDHmut) are the most common genetic alteration in glioma grade II and III and secondary glioblastoma and these mutations increase reliance on glutamine metabolism, suggesting a potential vulnerability. In this study, we tested the hypothesis that the brain penetrant glutamine antagonist prodrug JHU-083 reduces glioma cell growth. Material and Methods We performed cell growth, cell cycle, and protein expression in glutamine deprived or Glutaminase (GLS) gene silenced glioma cells. We tested the effect of JHU-083 on cell proliferation, metabolism, and mTOR signaling in cancer cell lines. An orthotopic IDH1R132H glioma model was used to test the efficacy of JHU-083 in vivo. Results Glutamine deprivation and GLS gene silencing reduced glioma cell proliferation in vitro in glioma cells. JHU-083 reduced glioma cell growth in vitro, modulated cell metabolism, and disrupted mTOR signaling and downregulated Cyclin D1 protein expression, through a mechanism independent of TSC2 modulation and glutaminolysis. IDH1R132H isogenic cells preferentially reduced cell growth and mTOR signaling downregulation. In addition, guanine supplementation partially rescued IDHmut glioma cell growth, mTOR signaling, and Cyclin D1 protein expression in vitro. Finally, JHU-083 extended survival in an intracranial IDH1 mut glioma model and reduced intracranial pS6 protein expression. Conclusion Targeting glutamine metabolism with JHU-083 showed efficacy in preclinical models of IDHmut glioma and measurably decreased mTOR signaling.
Collapse
Affiliation(s)
- Alex Shimura Yamashita
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marina da Costa Rosa
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vittorio Stumpo
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gregory J Riggins
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Neurofibromatosis type 1: New developments in genetics and treatment. J Am Acad Dermatol 2020; 84:1667-1676. [PMID: 32771543 DOI: 10.1016/j.jaad.2020.07.105] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
Neurofibromatosis type 1 is the most common neurocutaneous syndrome, with a frequency of 1 in 2500 persons. Diagnosis is paramount in the pretumor stage to provide proper anticipatory guidance for a number of neoplasms, both benign and malignant. Loss-of-function mutations in the NF1 gene result in truncated and nonfunctional production of neurofibromin, a tumor suppressor protein involved in downregulating the RAS signaling pathway. New therapeutic and preventive options include tyrosine kinase inhibitors, mTOR inhibitors, interferons, and radiofrequency therapy. This review summarizes recent updates in genetics, mutation analysis assays, and treatment options targeting aberrant genetic pathways. We also propose modified diagnostic criteria and provide an algorithm for surveillance of patients with neurofibromatosis type 1.
Collapse
|
16
|
From Genes to -Omics: The Evolving Molecular Landscape of Malignant Peripheral Nerve Sheath Tumor. Genes (Basel) 2020; 11:genes11060691. [PMID: 32599735 PMCID: PMC7349243 DOI: 10.3390/genes11060691] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are rare, aggressive soft tissue sarcomas that occur with significantly increased incidence in people with the neuro-genetic syndrome neurofibromatosis type I (NF1). These complex karyotype sarcomas are often difficult to resect completely due to the involvement of neurovascular bundles, and are relatively chemotherapy- and radiation-insensitive. The lifetime risk of developing MPNST in the NF1 population has led to great efforts to characterize the genetic changes that drive the development of these tumors and identify mutations that may be used for diagnostic or therapeutic purposes. Advancements in genetic sequencing and genomic technologies have greatly enhanced researchers’ abilities to broadly and deeply investigate aberrations in human MPNST genomes. Here, we review genetic sequencing efforts in human MPNST samples over the past three decades. Particularly for NF1-associated MPNST, these overall sequencing efforts have converged on a set of four common genetic changes that occur in most MPNST, including mutations in neurofibromin 1 (NF1), CDKN2A, TP53, and members of the polycomb repressor complex 2 (PRC2). However, broader genomic studies have also identified recurrent but less prevalent genetic variants in human MPNST that also contribute to the molecular landscape of MPNST and may inform further research. Future studies to further define the molecular landscape of human MPNST should focus on collaborative efforts across multiple institutions in order to maximize information gathered from large numbers of well-annotated MPNST patient samples, both in the NF1 and the sporadic MPNST populations.
Collapse
|