1
|
Wang T, Liao X, Zhao X, Chen K, Chen Y, Wen H, Yin D, Wang Y, Lin B, Zhang S, Cui H. Rational design of 2-benzylsulfinyl-benzoxazoles as potent and selective indoleamine 2,3-dioxygenase 1 inhibitors to combat inflammation. Bioorg Chem 2024; 152:107740. [PMID: 39217780 DOI: 10.1016/j.bioorg.2024.107740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Mimicking the transition state of tryptophan (Trp) and O2 in the enzymatic reaction is an effective approach to design indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. In this study, we firstly assembled a small library of 2-substituted benzo-fused five membered heterocycles and found 2-sulfinyl-benzoxazoles with interesting IDO1 inhibitory activities. Next the inhibitory activity toward IDO1 was gradually improved. Several benzoxazoles showed potent IDO1 inhibitory activity with IC50 of 82-91 nM, and exhibited selectivity between IDO1 and tryptophan 2,3-dioxygenase (TDO2). Enzyme binding studies showed that benzoxazoles are reversible type II IDO1 inhibitors, and modeling studies suggested that the oxygen atom of the sulfoxide in benzoxazoles interacts with the iron atom of the heme group, which mimics the transition state of Fe-O-O-Trp complex. Especially, 10b can effectively inhibit the NO production in lipopolysaccharides (LPS) stimulated RAW264.7 cells, and it also shows good anti-inflammation effect on mice acute inflammation model of croton oil induced ear edema.
Collapse
Affiliation(s)
- Ting Wang
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Xiufeng Liao
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Xiaodi Zhao
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Kai Chen
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yangzhonghui Chen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Hui Wen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Dali Yin
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Yuchen Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Huaqing Cui
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| |
Collapse
|
2
|
Panfili E, Rezzi SJ, Adamo A, Mazzoletti D, Massarotti A, Miggiano R, Fallarini S, Ambrosino S, Coletti A, Molinaro P, Milella M, Paiella S, Macchiarulo A, Ugel S, Pirali T, Pallotta MT. Identification of a Compound Inhibiting Both the Enzymatic and Nonenzymatic Functions of Indoleamine 2,3-Dioxygenase 1. ACS Pharmacol Transl Sci 2024; 7:3056-3070. [PMID: 39421661 PMCID: PMC11480892 DOI: 10.1021/acsptsci.4c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 10/19/2024]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) plays a key role in tumor immune escape. Besides being a metabolic enzyme that catalyzes the first step of tryptophan catabolism, it also acts as a signal-transducing protein, whose partnering with tyrosine phosphatase Src homology 2 (SH2) domain-containing protein tyrosine phosphatase substrate (SHPs) and phosphatidylinositol-3-kinase (PI3K) regulatory subunit p85 promotes the establishment of a sustained immunosuppressive phenotype. While IDO1 inhibitors typically interfere with its enzymatic activity, we aimed to discover a more effective modulator capable of blocking not only the enzymatic but also the signaling-mediated functions of IDO1. By virtual screening, we identified the compound VS-15, which selectively binds the heme-free form of IDO1, inhibits its enzymatic activity, and reduces the IDO1-mediated signaling pathway by negatively interfering with its partnership with SHPs and PI3K regulatory subunit p85 as well as with the IDO1 anchoring to the early endosomes in tumor cells. Moreover, VS-15 counteracts the TGF-β-mediated immunosuppressive phenotype in dendritic cells and reduces the level of inhibition of T cell proliferation by suppressive monocytes isolated from patients affected by pancreatic cancer. Herein, we describe the discovery and characterization of a small molecule with an unprecedented mechanism of action, capable of inhibiting both the enzymatic and nonenzymatic activities of IDO1 by binding to its apo-form. These results pave the way for the development of next-generation IDO1 inhibitors with a unique competitive advantage over the currently available modulators, thereby opening therapeutic opportunities in cancer immunotherapy.
Collapse
Affiliation(s)
- Eleonora Panfili
- Pharmacology
Section, Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Sarah Jane Rezzi
- Department
of Pharmaceutical Sciences, University of
Piemonte Orientale, Novara 28100, Italy
| | - Annalisa Adamo
- Immunology
Section, Department of Medicine, University
and Hospital Trust of Verona, Verona 37134, Italy
| | - Daniele Mazzoletti
- Department
of Pharmaceutical Sciences, University of
Piemonte Orientale, Novara 28100, Italy
| | - Alberto Massarotti
- Department
of Pharmaceutical Sciences, University of
Piemonte Orientale, Novara 28100, Italy
| | - Riccardo Miggiano
- Department
of Pharmaceutical Sciences, University of
Piemonte Orientale, Novara 28100, Italy
| | - Silvia Fallarini
- Department
of Pharmaceutical Sciences, University of
Piemonte Orientale, Novara 28100, Italy
| | - Sara Ambrosino
- Pharmacology
Section, Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| | - Alice Coletti
- Department
of Pharmaceutical Sciences, University of
Perugia, Perugia 06132, Italy
| | - Pasquale Molinaro
- Pharmacology
Section, Department of Neuroscience, Reproductive and Dentistry Sciences,
School of Medicine, Federico II University
of Naples, Naples 80131, Italy
| | - Michele Milella
- Department
of Engineering for Innovative Medicine and Hospital of Trust of Verona, Oncology Section, Verona 37134, Italy
| | - Salvatore Paiella
- General
and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona 37134, Italy
| | - Antonio Macchiarulo
- Department
of Pharmaceutical Sciences, University of
Perugia, Perugia 06132, Italy
| | - Stefano Ugel
- Immunology
Section, Department of Medicine, University
and Hospital Trust of Verona, Verona 37134, Italy
| | - Tracey Pirali
- Department
of Pharmaceutical Sciences, University of
Piemonte Orientale, Novara 28100, Italy
| | - Maria Teresa Pallotta
- Pharmacology
Section, Department of Medicine and Surgery, University of Perugia, Perugia 06132, Italy
| |
Collapse
|
3
|
Chen HJ, Sévin DC, Griffith GR, Vappiani J, Booty LM, van Roomen CPAA, Kuiper J, Dunnen JD, de Jonge WJ, Prinjha RK, Mander PK, Grandi P, Wyspianska BS, de Winther MPJ. Integrated metabolic-transcriptomic network identifies immunometabolic modulations in human macrophages. Cell Rep 2024; 43:114741. [PMID: 39276347 DOI: 10.1016/j.celrep.2024.114741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/08/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
Macrophages exhibit diverse phenotypes and respond flexibly to environmental cues through metabolic remodeling. In this study, we present a comprehensive multi-omics dataset integrating intra- and extracellular metabolomes with transcriptomic data to investigate the metabolic impact on human macrophage function. Our analysis establishes a metabolite-gene correlation network that characterizes macrophage activation. We find that the concurrent inhibition of tryptophan catabolism by IDO1 and IL4I1 inhibitors suppresses the macrophage pro-inflammatory response, whereas single inhibition leads to pro-inflammatory activation. We find that a subset of anti-inflammatory macrophages activated by Fc receptor signaling promotes glycolysis, challenging the conventional concept of reduced glycolysis preference in anti-inflammatory macrophages. We demonstrate that cholesterol accumulation suppresses macrophage IFN-γ responses. Our integrated network enables the discovery of immunometabolic features, provides insights into macrophage functional metabolic reprogramming, and offers valuable resources for researchers exploring macrophage immunometabolic characteristics and potential therapeutic targets for immune-related disorders.
Collapse
Affiliation(s)
- Hung-Jen Chen
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | | | - Guillermo R Griffith
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | | | - Lee M Booty
- Immunology Network, Immunology Research Unit, GSK, SG1 2NY Stevenage, UK
| | - Cindy P A A van Roomen
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, 2333 CL Leiden, the Netherlands
| | - Jeroen den Dunnen
- Center for Experimental and Molecular Medicine, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 BK Amsterdam, the Netherlands
| | - Rab K Prinjha
- Immunology Research Unit, GSK Medicines Research Centre, SG1 2NY Stevenage, UK
| | - Palwinder K Mander
- Immunology Research Unit, GSK Medicines Research Centre, SG1 2NY Stevenage, UK
| | | | - Beata S Wyspianska
- Immunology Research Unit, GSK Medicines Research Centre, SG1 2NY Stevenage, UK
| | - Menno P J de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Atherosclerosis and Ischemic Syndromes, Amsterdam Cardiovascular Sciences, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Jiang K, Wang Q, Chen XL, Wang X, Gu X, Feng S, Wu J, Shang H, Ba X, Zhang Y, Tang K. Nanodelivery Optimization of IDO1 Inhibitors in Tumor Immunotherapy: Challenges and Strategies. Int J Nanomedicine 2024; 19:8847-8882. [PMID: 39220190 PMCID: PMC11366248 DOI: 10.2147/ijn.s458086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/13/2024] [Indexed: 09/04/2024] Open
Abstract
Tryptophan (Trp) metabolism plays a vital role in cancer immunity. Indoleamine 2.3-dioxygenase 1 (IDO1), is a crucial enzyme in the metabolic pathway by which Trp is degraded to kynurenine (Kyn). IDO1-mediated Trp metabolites can inhibit tumor immunity and facilitate immune evasion by cancer cells; thus, targeting IDO1 is a potential tumor immunotherapy strategy. Recently, numerous IDO1 inhibitors have been introduced into clinical trials as immunotherapeutic agents for cancer treatment. However, drawbacks such as low oral bioavailability, slow onset of action, and high toxicity are associated with these drugs. With the continuous development of nanotechnology, medicine is gradually entering an era of precision healthcare. Nanodrugs carried by inorganic, lipid, and polymer nanoparticles (NPs) have shown great potential for tumor therapy, providing new ways to overcome tumor diversity and improve therapeutic efficacy. Compared to traditional drugs, nanomedicines offer numerous significant advantages, including a prolonged half-life, low toxicity, targeted delivery, and responsive release. Moreover, based on the physicochemical properties of these nanomaterials (eg, photothermal, ultrasonic response, and chemocatalytic properties), various combination therapeutic strategies have been developed to synergize the effects of IDO1 inhibitors and enhance their anticancer efficacy. This review is an overview of the mechanism by which the Trp-IDO1-Kyn pathway acts in tumor immune escape. The classification of IDO1 inhibitors, their clinical applications, and barriers for translational development are discussed, the use of IDO1 inhibitor-based nanodrug delivery systems as combination therapy strategies is summarized, and the issues faced in their clinical application are elucidated. We expect that this review will provide guidance for the development of IDO1 inhibitor-based nanoparticle nanomedicines that can overcome the limitations of current treatments, improve the efficacy of cancer immunotherapy, and lead to new breakthroughs in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Kehua Jiang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Qing Wang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Xiao-Long Chen
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Xiaodong Wang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Xiaoya Gu
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Shuangshuang Feng
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Yanlong Zhang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, People’s Republic of China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
5
|
Müller-Durovic B, Jäger J, Engelmann C, Schuhmachers P, Altermatt S, Schlup Y, Duthaler U, Makowiec C, Unterstab G, Roffeis S, Xhafa E, Assmann N, Trulsson F, Steiner R, Edwards-Hicks J, West J, Turner L, Develioglu L, Ivanek R, Azzi T, Dehio P, Berger C, Kuzmin D, Saboz S, Mautner J, Löliger J, Geigges M, Palianina D, Khanna N, Dirnhofer S, Münz C, Bantug GR, Hess C. A metabolic dependency of EBV can be targeted to hinder B cell transformation. Science 2024; 385:eadk4898. [PMID: 38781354 DOI: 10.1126/science.adk4898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
After infection of B cells, Epstein-Barr virus (EBV) engages host pathways that mediate cell proliferation and transformation, contributing to the propensity of the virus to drive immune dysregulation and lymphomagenesis. We found that the EBV protein EBNA2 initiates nicotinamide adenine dinucleotide (NAD) de novo biosynthesis by driving expression of the metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1) in infected B cells. Virus-enforced NAD production sustained mitochondrial complex I activity, to match adenosine triphosphate (ATP) production with bioenergetic requirements of proliferation and transformation. In transplant patients, IDO1 expression in EBV-infected B cells, and a serum signature of increased IDO1 activity, preceded development of lymphoma. In humanized mice infected with EBV, IDO1 inhibition reduced both viremia and lymphomagenesis. Virus-orchestrated NAD biosynthesis is therefore a druggable metabolic vulnerability of EBV-driven B cell transformation, opening therapeutic possibilities for EBV-related diseases.
Collapse
Affiliation(s)
- Bojana Müller-Durovic
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Jessica Jäger
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Christine Engelmann
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Patrick Schuhmachers
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Sabine Altermatt
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Yannick Schlup
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Urs Duthaler
- Clinical Pharmacology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Celia Makowiec
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Gunhild Unterstab
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Sarah Roffeis
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Erta Xhafa
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Nadine Assmann
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
- Axolabs GmbH, Kulmbach, Germany
| | - Fredrik Trulsson
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Rebekah Steiner
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Joy Edwards-Hicks
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - James West
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Lorinda Turner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Leyla Develioglu
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Robert Ivanek
- Bioinformatics Facility, Department of Biomedicine, University Basel and University Hospital of Basel, Basel, Switzerland
| | - Tarik Azzi
- Experimental Infectious Diseases and Cancer Research, University Children's Hospital of Zürich, Zürich, Switzerland
- Children's Research Center, University Children's Hospital of Zürich, Zürich, Switzerland
| | - Philippe Dehio
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Christoph Berger
- Experimental Infectious Diseases and Cancer Research, University Children's Hospital of Zürich, Zürich, Switzerland
| | - Dmitry Kuzmin
- Hornet Therapeutics Ltd, London, UK
- Department of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Sophie Saboz
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Josef Mautner
- Department of Gene Vectors, Helmholtz Centre Munich, Munich, Germany
| | - Jordan Löliger
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Marco Geigges
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Darya Palianina
- Laboratory of Infection Biology, Department of Biomedicine, University Basel and University Hospital of Basel, Basel, Switzerland
| | - Nina Khanna
- Laboratory of Infection Biology, Department of Biomedicine, University Basel and University Hospital of Basel, Basel, Switzerland
| | - Stefan Dirnhofer
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Glenn R Bantug
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Christoph Hess
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Wang Y, Jia S, Chen Y, Liao X, Jie R, Jiang L, Wang T, Wen H, Gan W, Cui H. Taking advantage of the interaction between the sulfoxide and heme cofactor to develop indoleamine 2, 3-dioxygenase 1 inhibitors. Bioorg Chem 2024; 148:107426. [PMID: 38733750 DOI: 10.1016/j.bioorg.2024.107426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Taking advantage of key interactions between sulfoxide and heme cofactor, we used the sulfoxide as the anchor functional group to develop two series of indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitors: 2-benzylsulfinylbenzoxazoles (series 1) and 2-phenylsulfinylbenzoxazoles (series 2). In vitro enzymatic screening shows that both series can inhibit the activity of IDO1 in low micromolar (series 1) or nanomolar (series 2) levels. They also show inhibitory selectivity between IDO1 and tryptophan 2, 3-dioxygenase 2. Interestingly, although series 1 is less potent IDO1 inhibitors of these two series, it exhibited stronger inhibitory activity toward kynurenine production in interferon-γ stimulated BxPC-3 cells. Enzyme kinetics and binding studies demonstrated that 2-sulfinylbenzoxazoles are non-competitive inhibitors of tryptophan, and they interact with the ferrous form of heme. These results demonstrated 2-sulfinylbenzoxazoles as type II IDO1 inhibitors. Furthermore, molecular docking studies supports the sulfoxide being of the key functional group that interacts with the heme cofactor. Compound 22 (series 1) can inhibit NO production in a concentration dependent manner in lipopolysaccharides (LPS) stimulated RAW264.7 cells, and can relieve pulmonary edema and lung injury in LPS induced mouse acute lung injury models.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Shumi Jia
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Yangzhonghui Chen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Xiufeng Liao
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Ru Jie
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Lei Jiang
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Ting Wang
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Hui Wen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Wenqiang Gan
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Huaqing Cui
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| |
Collapse
|
7
|
Yu L, Xu L, Chen Y, Rong Y, Zou Y, Ge S, Wu T, Lai Y, Xu Q, Guo W, Liu W. IDO1 Inhibition Promotes Activation of Tumor-intrinsic STAT3 Pathway and Induces Adverse Tumor-protective Effects. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1232-1243. [PMID: 38391297 DOI: 10.4049/jimmunol.2300545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/02/2024] [Indexed: 02/24/2024]
Abstract
Pharmacological inhibition of IDO1 exhibits great promise as a strategy in cancer therapy. However, the failure of phase III clinical trials has raised the pressing need to understand the underlying reasons for this outcome. To gain comprehensive insights into the reasons behind the clinical failure of IDO1 inhibitors, it is essential to investigate the entire tumor microenvironment rather than focusing solely on individual cells or relying on knockout techniques. In this study, we conducted single-cell RNA sequencing to determine the overall response to apo-IDO1 inhibitor administration. Interestingly, although apo-IDO1 inhibitors were found to significantly activate intratumoral immune cells (mouse colon cancer cell CT26 transplanted in BALB/C mice), such as T cells, macrophages, and NK cells, they also stimulated the infiltration of M2 macrophages. Moreover, these inhibitors prompted monocytes and macrophages to secrete elevated levels of IL-6, which in turn activated the JAK2/STAT3 signaling pathway in tumor cells. Consequently, this activation enables tumor cells to survive even in the face of heightened immune activity. These findings underscore the unforeseen adverse effects of apo-IDO1 inhibitors on tumor cells and highlight the potential of combining IL-6/JAK2/STAT3 inhibitors with apo-IDO1 inhibitors to improve their clinical efficacy.
Collapse
Affiliation(s)
- Longbo Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, China
| | - Lingyan Xu
- Department of Oncology and Cancer Rehabilitation Centre, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunjie Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yicheng Rong
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yi Zou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Shushan Ge
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Tiancong Wu
- Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yisheng Lai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Zhang J, Yu J, Liu M, Xie Z, Lei X, Yang X, Huang S, Deng X, Wang Z, Tang G. Small-molecule modulators of tumor immune microenvironment. Bioorg Chem 2024; 145:107251. [PMID: 38442612 DOI: 10.1016/j.bioorg.2024.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
In recent years, tumor immunotherapy, aimed at increasing the activity of immune cells and reducing immunosuppressive effects, has attracted wide attention. Among them, immune checkpoint blocking (ICB) is the most commonly explored therapeutic approach. All approved immune checkpoint inhibitors (ICIs) are clinically effective monoclonal antibodies (mAbs). Compared with biological agents, small-molecule drugs have many unique advantages in tumor immunotherapy. Therefore, they also play an important role. Immunosuppressive signals such as PD-L1, IDO1, and TGF-β, etc. overexpressed in tumor cells form the tumor immunosuppressive microenvironment. In addition, the efficacy of multi-pathway combined immunotherapy has also been reported and verified. Here, we mainly reviewed the mechanism of tumor immunotherapy, analyzed the research status of small-molecule modulators, and discussed drug candidates' structure-activity relationship (SAR). It provides more opportunities for further research to design more immune small-molecule modulators with novel structures.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jia Yu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Meijing Liu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan 410007, China
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
9
|
Liu DH, Nagashima K, Liang H, Yue XL, Chu YP, Chen S, Ma J. Chemoselective Quinoline and Isoquinoline Reduction by Energy Transfer Catalysis Enabled Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2023; 62:e202312203. [PMID: 37803457 DOI: 10.1002/anie.202312203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
(Hetero)arene reduction is one of the key avenues for synthesizing related cyclic alkenes and alkanes. While catalytic hydrogenation and Birch reduction are the two broadly utilized approaches for (hetero)arene reduction across academia and industry over the last century, both methods have encountered significant chemoselectivity challenges. We hereby introduce a highly chemoselective quinoline and isoquinoline reduction protocol operating through selective energy transfer (EnT) catalysis, which enables subsequent hydrogen atom transfer (HAT). The design of this protocol bypasses the conventional metric of reduction reaction, that is, the reductive potential, and instead relies on the triplet energies of the chemical moieties and the kinetic barriers of energy and hydrogen atom transfer events. Many reducing labile functional groups, which were incompatible with previous (hetero)arene reduction reactions, are retained in this reaction. We anticipate that this protocol will trigger the further advancement of chemoselective arene reduction and enable the current arene-rich drug space to escape from flatland.
Collapse
Affiliation(s)
- De-Hai Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kyogo Nagashima
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St., Oberlin, Ohio 44074, USA
| | - Hui Liang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xue-Lin Yue
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yun-Peng Chu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St., Oberlin, Ohio 44074, USA
| | - Jiajia Ma
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
10
|
Sun H, Yang Q, Yu X, Huang M, Ding M, Li W, Tang Y, Liu G. Prediction of IDO1 Inhibitors by a Fingerprint-Based Stacking Ensemble Model Named IDO1Stack. ChemMedChem 2023; 18:e202300151. [PMID: 37340939 DOI: 10.1002/cmdc.202300151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is viewed as an extremely promising target for cancer immunotherapy. Here, we proposed a two-layer stacking ensemble model, IDO1Stack, that can efficiently predict IDO1 inhibitors. First, we constructed a series of classification models based on five machine learning algorithms and eight molecular characterization methods. Then, a stacking ensemble model was built using the top five models as the base classifier and logistic regression as the meta-classifier. The areas under the receiver operating characteristic curve (AUC) of IDO1Stack on the test set and external validation set were 0.952 and 0.918, respectively. Furthermore, we computed the applicability domain and privileged substructures of the model and interpreted the model using SHapley Additive exPlanations (SHAP). It is expected that IDO1Stack can well study the interaction between target and ligand, providing practitioners with a reliable tool for rapid screening and discovery of IDO1 inhibitors.
Collapse
Affiliation(s)
- Huimin Sun
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Xinxin Yu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Mengting Huang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Meng Ding
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
11
|
Yang P, Zhang J. Indoleamine 2,3-Dioxygenase (IDO) Activity: A Perspective Biomarker for Laboratory Determination in Tumor Immunotherapy. Biomedicines 2023; 11:1988. [PMID: 37509627 PMCID: PMC10377333 DOI: 10.3390/biomedicines11071988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a heme enzyme involved in catalyzing the conversion of tryptophan (Trp) into kynurenine (Kyn) at the first rate-limiting step in the kynurenine pathway of L-tryptophan metabolism. It has been found to be involved in several biological functions such as aging, immune microorganism, neurodegenerative and infectious diseases, and cancer. IDO1 plays an important role in immune tolerance by depleting tryptophan in the tumor microenvironment and inhibiting the proliferation of effector T cells, which makes it an important emerging biomarker for cancer immunotherapy. Therefore, the research and development of IDO1 inhibitors are of great importance for tumor therapy. Of interest, IDO activity assays are of great value in the screening and evaluation of inhibitors. Herein, we mainly review the biological functions of IDO1, immune regulation, key signaling molecules in the response pathway, and the development of IDO1 inhibitors in clinical trials. Furthermore, this review provides a comprehensive overview and, in particular, a discussion of currently available IDO activity assays for use in the evaluation of IDO inhibitors in human blood. We believe that the IDO activity is a promising biomarker for the immune escape and laboratory evaluation of tumor immunotherapy.
Collapse
Affiliation(s)
- Pengbo Yang
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Junhua Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| |
Collapse
|
12
|
Stone TW, Williams RO. Modulation of T cells by tryptophan metabolites in the kynurenine pathway. Trends Pharmacol Sci 2023; 44:442-456. [PMID: 37248103 DOI: 10.1016/j.tips.2023.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
Lymphocytes maturing in the thymus (T cells) are key factors in adaptive immunity and the regulation of inflammation. The kynurenine pathway of tryptophan metabolism includes several enzymes and compounds that can modulate T cell function, but manipulating these pharmacologically has not achieved the expected therapeutic activity for the treatment of autoimmune disorders and cancer. With increasing knowledge of other pathways interacting with kynurenines, the expansion of screening methods, and the application of virtual techniques to understanding enzyme structures and mechanisms, details of interactions between kynurenines and other pathways are being revealed. This review surveys some of these alternative approaches to influence T cell function indirectly via the kynurenine pathway and summarizes the most recent work on the development of compounds acting directly on the kynurenine pathway.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK.
| |
Collapse
|
13
|
Markwalder JA, Balog AJ, Williams DK, Nara SJ, Reddy R, Roy S, Kanyaboina Y, Li X, Johnston K, Fan Y, Lewis H, Marsilio F, Yan C, Critton D, Newitt JA, Traeger SC, Wu DR, Jure-Kunkel MN, Jayaraman L, Lin TA, Sinz MW, Hunt JT, Seitz SP. Synthesis and Biological Evaluation of Biaryl Alkyl Ethers as Inhibitors of IDO1. Bioorg Med Chem Lett 2023; 88:129280. [PMID: 37054759 DOI: 10.1016/j.bmcl.2023.129280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023]
Abstract
Starting from the dialkylaniline indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor lead 3 (IDO1 HeLa IC50 = 7.0 nM), an iterative process of synthesis and screening led to cyclized analog 21 (IDO1 HeLa IC50 = 3.6 nM) which maintained the high potency of 3 while addressing issues of lipophilicity, cytochrome P450 (CYP) inhibition, hERG (human potassium ion channel Kv11.1) inhibition, Pregnane X Receptor (PXR) transactivation, and oxidative metabolic stability. An x-ray crystal structure of a biaryl alkyl ether 11 bound to IDO1 was obtained. Consistent with our earlier results, compound 11 was shown to bind to the apo form of the enzyme.
Collapse
Affiliation(s)
- Jay A Markwalder
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, United States.
| | - Aaron J Balog
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, United States
| | - David K Williams
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, United States.
| | - Susheel J Nara
- Discovery Chemistry, Biocon Bristol Myers Squibb Research & Development Center, Bangalore, India
| | - Ratnakar Reddy
- Discovery Chemistry, Biocon Bristol Myers Squibb Research & Development Center, Bangalore, India
| | - Saumya Roy
- Former Bristol Myers Squibb Employee, USA
| | - Yadagiri Kanyaboina
- Discovery Chemistry, Biocon Bristol Myers Squibb Research & Development Center, Bangalore, India
| | - Xin Li
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, United States
| | | | - Yi Fan
- Former Bristol Myers Squibb Employee, USA
| | - Hal Lewis
- Former Bristol Myers Squibb Employee, USA
| | - Frank Marsilio
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, United States
| | - Chunhong Yan
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, United States
| | - David Critton
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, United States
| | - John A Newitt
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, United States
| | - Sarah C Traeger
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, United States
| | - Dauh-Rurng Wu
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, United States
| | | | | | - Tai-An Lin
- Former Bristol Myers Squibb Employee, USA
| | - Michael W Sinz
- Research & Development, Bristol Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, United States
| | | | | |
Collapse
|
14
|
Akter Z, Salamat N, Ali MY, Zhang L. The promise of targeting heme and mitochondrial respiration in normalizing tumor microenvironment and potentiating immunotherapy. Front Oncol 2023; 12:1072739. [PMID: 36686754 PMCID: PMC9851275 DOI: 10.3389/fonc.2022.1072739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Cancer immunotherapy shows durable treatment responses and therapeutic benefits compared to other cancer treatment modalities, but many cancer patients display primary and acquired resistance to immunotherapeutics. Immunosuppressive tumor microenvironment (TME) is a major barrier to cancer immunotherapy. Notably, cancer cells depend on high mitochondrial bioenergetics accompanied with the supply of heme for their growth, proliferation, progression, and metastasis. This excessive mitochondrial respiration increases tumor cells oxygen consumption, which triggers hypoxia and irregular blood vessels formation in various regions of TME, resulting in an immunosuppressive TME, evasion of anti-tumor immunity, and resistance to immunotherapeutic agents. In this review, we discuss the role of heme, heme catabolism, and mitochondrial respiration on mediating immunosuppressive TME by promoting hypoxia, angiogenesis, and leaky tumor vasculature. Moreover, we discuss the therapeutic prospects of targeting heme and mitochondrial respiration in alleviating tumor hypoxia, normalizing tumor vasculature, and TME to restore anti-tumor immunity and resensitize cancer cells to immunotherapy.
Collapse
|
15
|
Röhrig UF, Majjigapu SR, Vogel P, Reynaud A, Pojer F, Dilek N, Reichenbach P, Ascenção K, Irving M, Coukos G, Michielin O, Zoete V. Structure-based optimization of type III indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. J Enzyme Inhib Med Chem 2022; 37:1773-1811. [PMID: 35758198 PMCID: PMC9246256 DOI: 10.1080/14756366.2022.2089665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The haem enzyme indoleamine 2,3-dioxygenase 1 (IDO1) catalyses the rate-limiting step in the kynurenine pathway of tryptophan metabolism and plays an essential role in immunity, neuronal function, and ageing. Expression of IDO1 in cancer cells results in the suppression of an immune response, and therefore IDO1 inhibitors have been developed for use in anti-cancer immunotherapy. Here, we report an extension of our previously described highly efficient haem-binding 1,2,3-triazole and 1,2,4-triazole inhibitor series, the best compound having both enzymatic and cellular IC50 values of 34 nM. We provide enzymatic inhibition data for almost 100 new compounds and X-ray diffraction data for one compound in complex with IDO1. Structural and computational studies explain the dramatic drop in activity upon extension to pocket B, which has been observed in diverse haem-binding inhibitor scaffolds. Our data provides important insights for future IDO1 inhibitor design.
Collapse
Affiliation(s)
- Ute F Röhrig
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland
| | - Somi Reddy Majjigapu
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland.,Laboratory of Glycochemistry and Asymmetric Synthesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pierre Vogel
- Laboratory of Glycochemistry and Asymmetric Synthesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Aline Reynaud
- Protein Production and Structure Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Florence Pojer
- Protein Production and Structure Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nahzli Dilek
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland
| | - Patrick Reichenbach
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, Epalinges, Switzerland
| | - Kelly Ascenção
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, Epalinges, Switzerland
| | - George Coukos
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, Epalinges, Switzerland
| | - Olivier Michielin
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne (CHUV), Ludwig Cancer Research-Lausanne Branch, Lausanne, CH-1011, Switzerland
| | - Vincent Zoete
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland.,Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, Epalinges, Switzerland
| |
Collapse
|
16
|
Fujiwara Y, Kato S, Nesline MK, Conroy JM, DePietro P, Pabla S, Kurzrock R. Indoleamine 2,3-dioxygenase (IDO) inhibitors and cancer immunotherapy. Cancer Treat Rev 2022; 110:102461. [PMID: 36058143 DOI: 10.1016/j.ctrv.2022.102461] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
Strategies for unlocking immunosuppression in the tumor microenvironment have been investigated to overcome resistance to first-generation immune checkpoint blockade with anti- programmed cell death protein 1 (PD-1)/ programmed death-ligand 1 (PD-L1) and anti-cytotoxic T-lymphocyte associated protein 4 (CTLA-4) agents. Indoleamine 2,3-dioxygenase (IDO) 1, an enzyme catabolizing tryptophan to kynurenine, creates an immunosuppressive environment in preclinical studies. Early phase clinical trials investigating inhibition of IDO1, especially together with checkpoint blockade, provided promising results. Unfortunately, the phase 3 trial of the IDO1 inhibitor epacadostat combined with the PD-1 inhibitor pembrolizumab did not show clinical benefit when compared with pembrolizumab monotherapy in patients with advanced malignant melanoma, which dampened enthusiasm for IDO inhibitors. Even so, several molecules, such as the aryl hydrocarbon receptor and tryptophan 2,3-dioxygenase, were reported as additional potential targets for the modulation of the tryptophan pathway, which might enhance clinical effectiveness. Furthermore, the combination of IDO pathway blockade with agents inhibiting other signals, such as those generated by PIK3CA mutations that may accompany IDO1 upregulation, may be a novel way to enhance activity. Importantly, IDO1 expression level varies by tumor type and among patients with the same tumor type, suggesting that patient selection based on expression levels of IDO1 may be warranted in clinical trials.
Collapse
Affiliation(s)
- Yu Fujiwara
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel, New York, NY, United States.
| | - Shumei Kato
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, CA, United States.
| | | | | | | | | | - Razelle Kurzrock
- MCW Cancer Center and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
17
|
Choi SYC, Ribeiro CF, Wang Y, Loda M, Plymate SR, Uo T. Druggable Metabolic Vulnerabilities Are Exposed and Masked during Progression to Castration Resistant Prostate Cancer. Biomolecules 2022; 12:1590. [PMID: 36358940 PMCID: PMC9687810 DOI: 10.3390/biom12111590] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
There is an urgent need for exploring new actionable targets other than androgen receptor to improve outcome from lethal castration-resistant prostate cancer. Tumor metabolism has reemerged as a hallmark of cancer that drives and supports oncogenesis. In this regard, it is important to understand the relationship between distinctive metabolic features, androgen receptor signaling, genetic drivers in prostate cancer, and the tumor microenvironment (symbiotic and competitive metabolic interactions) to identify metabolic vulnerabilities. We explore the links between metabolism and gene regulation, and thus the unique metabolic signatures that define the malignant phenotypes at given stages of prostate tumor progression. We also provide an overview of current metabolism-based pharmacological strategies to be developed or repurposed for metabolism-based therapeutics for castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Stephen Y. C. Choi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Caroline Fidalgo Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
- New York Genome Center, New York, NY 10013, USA
| | - Stephen R. Plymate
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
- Geriatrics Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Takuma Uo
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| |
Collapse
|
18
|
Davies C, Dötsch L, Ciulla MG, Hennes E, Yoshida K, Gasper R, Scheel R, Sievers S, Strohmann C, Kumar K, Ziegler S, Waldmann H. Identification of a Novel Pseudo-Natural Product Type IV IDO1 Inhibitor Chemotype. Angew Chem Int Ed Engl 2022; 61:e202209374. [PMID: 35959923 DOI: 10.1002/anie.202209374] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 01/07/2023]
Abstract
Natural product (NP)-inspired design principles provide invaluable guidance for bioactive compound discovery. Pseudo-natural products (PNPs) are de novo combinations of NP fragments to target biologically relevant chemical space not covered by NPs. We describe the design and synthesis of apoxidoles, a novel pseudo-NP class, whereby indole- and tetrahydropyridine fragments are linked in monopodal connectivity not found in nature. Apoxidoles are efficiently accessible by an enantioselective [4+2] annulation reaction. Biological evaluation revealed that apoxidoles define a new potent type IV inhibitor chemotype of indoleamine 2,3-dioxygenase 1 (IDO1), a heme-containing enzyme considered a target for the treatment of neurodegeneration, autoimmunity and cancer. Apoxidoles target apo-IDO1, prevent heme binding and induce unique amino acid positioning as revealed by crystal structure analysis. Novel type IV apo-IDO1 inhibitors are in high demand, and apoxidoles may provide new opportunities for chemical biology and medicinal chemistry research.
Collapse
Affiliation(s)
- Caitlin Davies
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Technical University of Dortmund, Department of Chemical Biology, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Lara Dötsch
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Technical University of Dortmund, Department of Chemical Biology, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Maria Gessica Ciulla
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Current address: Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Elisabeth Hennes
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Technical University of Dortmund, Department of Chemical Biology, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Kei Yoshida
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Raphael Gasper
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Rebecca Scheel
- Technical University of Dortmund, Department of Inorganic Chemistry, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Sonja Sievers
- Compound Management and Screening Center (COMAS), Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Carsten Strohmann
- Technical University of Dortmund, Department of Inorganic Chemistry, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Kamal Kumar
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Current address: AiCuris Anti-infective Cures AG, Friedrich-Ebert-Str. 475, 42117, Wuppertal, Germany
| | - Slava Ziegler
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
- Technical University of Dortmund, Department of Chemical Biology, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| |
Collapse
|
19
|
Offringa R, Kötzner L, Huck B, Urbahns K. The expanding role for small molecules in immuno-oncology. Nat Rev Drug Discov 2022; 21:821-840. [PMID: 35982333 DOI: 10.1038/s41573-022-00538-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2022] [Indexed: 02/07/2023]
Abstract
The advent of immune checkpoint inhibition (ICI) using antibodies against PD1 and its ligand PDL1 has prompted substantial efforts to develop complementary drugs. Although many of these are antibodies directed against additional checkpoint proteins, there is an increasing interest in small-molecule immuno-oncology drugs that address intracellular pathways, some of which have recently entered clinical trials. In parallel, small molecules that target pro-tumorigenic pathways in cancer cells and the tumour microenvironment have been found to have immunostimulatory effects that synergize with the action of ICI antibodies, leading to the approval of an increasing number of regimens that combine such drugs. Combinations with small molecules targeting cancer metabolism, cytokine/chemokine and innate immune pathways, and T cell checkpoints are now under investigation. This Review discusses the recent milestones and hurdles encountered in this area of drug development, as well as our views on the best path forward.
Collapse
Affiliation(s)
- Rienk Offringa
- Department of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany. .,DKFZ-Bayer Immunotherapeutics Laboratory, German Cancer Research Center, Heidelberg, Germany. .,Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany.
| | - Lisa Kötzner
- Merck Healthcare KGaA, Healthcare R&D, Discovery and Development Technologies, Darmstadt, Germany
| | - Bayard Huck
- EMD Serono, Healthcare R&D, Discovery and Development Technologies, Billerica, MA, USA
| | - Klaus Urbahns
- EMD Serono, Healthcare R&D, Discovery and Development Technologies, Billerica, MA, USA.
| |
Collapse
|
20
|
Davies C, Dötsch L, Ciulla MG, Hennes E, Yoshida K, Gasper R, Scheel R, Sievers S, Strohmann C, Kumar K, Ziegler S, Waldmann H. Identification of a Novel Pseudo‐Natural Product Type IV IDO1 Inhibitor Chemotype. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Caitlin Davies
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Lara Dötsch
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Maria Gessica Ciulla
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Elisabeth Hennes
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Kei Yoshida
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Raphael Gasper
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Crystallography and Biophysics Facility GERMANY
| | - Rebecca Scheel
- Technische Universität Dortmund: Technische Universitat Dortmund Inorganic Chemistry GERMANY
| | - Sonja Sievers
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Compound Management and Screening Center GERMANY
| | - Carsten Strohmann
- Technische Universität Dortmund: Technische Universitat Dortmund Inorganic Chemistry GERMANY
| | - Kamal Kumar
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Slava Ziegler
- Max-Planck-Institut für molekulare Physiologie: Max-Planck-Institut fur molekulare Physiologie Chemical Biology GERMANY
| | - Herbert Waldmann
- Max-Planck-Institute of Molecular Physiology: Max-Planck-Institut fur molekulare Physiologie Chemical Biology Otto-Hahn-Str. 11 44227 Dortmund GERMANY
| |
Collapse
|
21
|
Peng X, Zhao Z, Liu L, Bai L, Tong R, Yang H, Zhong L. Targeting Indoleamine Dioxygenase and Tryptophan Dioxygenase in Cancer Immunotherapy: Clinical Progress and Challenges. Drug Des Devel Ther 2022; 16:2639-2657. [PMID: 35965963 PMCID: PMC9374094 DOI: 10.2147/dddt.s373780] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
Indoleamine 2.3-dioxygenases (IDO1/2) and tryptophan 2.3-dioxygenase (TDO) are the initial and rate-limiting enzymes in tryptophan metabolism, which play an essential role in mediating immunosuppression in tumor microenvironment. Accumulating evidence has indicated that both IDO1 and TDO are highly expressed in many malignant tumors, and their expression is generally associated with reduced tumor-infiltrating immune cells, increased regulatory T-cell infiltration, as well as cancer progression and poor prognosis for malignancies. A large number of IDO1 and TDO inhibitors have been screened or synthesized in the last two decades. Thus far, at least 12 antagonists targeting IDO1 and TDO have advanced to clinical trials. In this account, we conducted a comprehensive review of the development of IDO1 and TDO inhibitors in cancer immunotherapy, particularly their clinical research progress, and presented the current challenges and corresponding solutions.
Collapse
Affiliation(s)
- Xuerun Peng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, People’s Republic of China
| | - Zhipeng Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, People’s Republic of China
| | - Liwen Liu
- Department of Obstetrics and Gynecology, Fengrun District People’s Hospital, Tangshan, Hebei, 063000, People’s Republic of China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, People’s Republic of China
| | - Rongsheng Tong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, People’s Republic of China
| | - Hao Yang
- POWERCHINA Chengdu Engineering Corporation Limited, Chengdu, Sichuan, 610072, People’s Republic of China
| | - Lei Zhong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, People’s Republic of China
| |
Collapse
|
22
|
Lemberg KM, Gori SS, Tsukamoto T, Rais R, Slusher BS. Clinical development of metabolic inhibitors for oncology. J Clin Invest 2022; 132:e148550. [PMID: 34981784 PMCID: PMC8718137 DOI: 10.1172/jci148550] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Metabolic inhibitors have been used in oncology for decades, dating back to antimetabolites developed in the 1940s. In the past 25 years, there has been increased recognition of metabolic derangements in tumor cells leading to a resurgence of interest in targeting metabolism. More recently there has been recognition that drugs targeting tumor metabolism also affect the often acidic, hypoxic, immunosuppressive tumor microenvironment (TME) and non-tumor cell populations within it, including immune cells. Here we review small-molecule metabolic inhibitors currently in clinical development for oncology applications. For each agent, we evaluate the preclinical studies demonstrating antitumor and TME effects and review ongoing clinical trials. The goal of this Review is to provide an overview of the landscape of metabolic inhibitors in clinical development for oncology.
Collapse
Affiliation(s)
- Kathryn M. Lemberg
- Johns Hopkins Drug Discovery
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center
| | | | - Takashi Tsukamoto
- Johns Hopkins Drug Discovery
- Department of Neurology
- Department of Pharmacology and Molecular Sciences
| | - Rana Rais
- Johns Hopkins Drug Discovery
- Department of Neurology
- Department of Pharmacology and Molecular Sciences
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center
- Department of Neurology
- Department of Pharmacology and Molecular Sciences
- Department of Medicine, and
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Röhrig UF, Michielin O, Zoete V. Structure and Plasticity of Indoleamine 2,3-Dioxygenase 1 (IDO1). J Med Chem 2021; 64:17690-17705. [PMID: 34907770 DOI: 10.1021/acs.jmedchem.1c01665] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since the discovery of the implication of indoleamine 2,3-dioxygenase 1 (IDO1) in tumoral immune resistance in 2003, the search for inhibitors has been intensely pursued both in academia and in pharmaceutical companies, supported by the publication of the first crystal structure of IDO1 in 2006. More recently, it has become clear that IDO1 is an important player in various biological pathways and diseases ranging from neurodegenerative diseases to infection and autoimmunity. Its inhibition may lead to clinical benefit in different therapeutic settings. At present, over 50 experimental structures of IDO1 in complex with different ligands are available in the Protein Data Bank. Our analysis of this wealth of structural data sheds new light on several open issues regarding IDO1's structure and function.
Collapse
Affiliation(s)
- Ute F Röhrig
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Olivier Michielin
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne (CHUV), Ludwig Cancer Research─Lausanne Branch, 1011 Lausanne, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland.,Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, 1066 Epalinges, Switzerland
| |
Collapse
|
24
|
Recent advances in clinical trials targeting the kynurenine pathway. Pharmacol Ther 2021; 236:108055. [PMID: 34929198 DOI: 10.1016/j.pharmthera.2021.108055] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
The kynurenine pathway (KP) is the major catabolic pathway for the essential amino acid tryptophan leading to the production of nicotinamide adenine dinucleotide. In inflammatory conditions, the activation of the KP leads to the production of several bioactive metabolites including kynurenine, 3-hydroxykynurenine, 3-hydroxyanthranilic acid, kynurenic acid and quinolinic acid. These metabolites can have redox and immune suppressive activity, be neurotoxic or neuroprotective. While the activity of the pathway is tightly regulated under normal physiological condition, it can be upregulated by immunological activation and inflammation. The dysregulation of the KP has been implicated in wide range of neurological diseases and psychiatric disorders. In this review, we discuss the mechanisms involved in KP-mediated neurotoxicity and immune suppression, and its role in diseases of our expertise including cancer, chronic pain and multiple sclerosis. We also provide updates on the clinical trials evaluating the efficacy of KP inhibitors and/or analogues in each respective disease.
Collapse
|
25
|
Kim JH, Lee WS, Lee HJ, Yang H, Lee SJ, Kong SJ, Je S, Yang HJ, Jung J, Cheon J, Kang B, Chon HJ, Kim C. Deep learning model enables the discovery of a novel immunotherapeutic agent regulating the kynurenine pathway. Oncoimmunology 2021; 10:2005280. [PMID: 34858729 PMCID: PMC8632076 DOI: 10.1080/2162402x.2021.2005280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Kynurenine (Kyn) is a key inducer of an immunosuppressive tumor microenvironment (TME). Although indoleamine 2,3-dioxygenase (IDO)-selective inhibitors have been developed to suppress the Kyn pathway, the results were not satisfactory due to the presence of various opposing mechanisms. Here, we employed an orally administered novel Kyn pathway regulator to overcome the limitation of anti-tumor immune response. We identified a novel core structure that inhibited both IDO and TDO. An orally available lead compound, STB-C017 (designated hereafter as STB), effectively inhibited the enzymatic and cellular activity of IDO and TDO in vitro. Moreover, it potently suppressed Kyn levels in both the plasma and tumor in vivo. STB monotherapy increased the infiltration of CD8+ T cells into TME. In addition, STB reprogrammed the TME with widespread changes in immune-mediated gene signatures. Notably, STB-based combination immunotherapy elicited the most potent anti-tumor efficacy through concurrent treatment with immune checkpoint inhibitors, leading to complete tumor regression and long-term overall survival. Our study demonstrated that a novel Kyn pathway regulator derived using deep learning technology can activate T cell immunity and potentiate immune checkpoint blockade by overcoming an immunosuppressive TME.
Collapse
Affiliation(s)
- Jeong Hun Kim
- Laboratory of Translational Immuno-Oncology, Seongnam, Korea.,Medical Oncology, Department of Internal Medicine,CHA Bundang Medical Center, Cha University, Seongnam, Korea.,Graduate School of Department of Biomedical Science, Cha University, Seongnam, Korea
| | - Won Suk Lee
- Laboratory of Translational Immuno-Oncology, Seongnam, Korea.,Medical Oncology, Department of Internal Medicine,CHA Bundang Medical Center, Cha University, Seongnam, Korea
| | - Hye Jin Lee
- Laboratory of Translational Immuno-Oncology, Seongnam, Korea.,Medical Oncology, Department of Internal Medicine,CHA Bundang Medical Center, Cha University, Seongnam, Korea.,Graduate School of Department of Biomedical Science, Cha University, Seongnam, Korea
| | - Hannah Yang
- Laboratory of Translational Immuno-Oncology, Seongnam, Korea.,Medical Oncology, Department of Internal Medicine,CHA Bundang Medical Center, Cha University, Seongnam, Korea
| | - Seung Joon Lee
- Laboratory of Translational Immuno-Oncology, Seongnam, Korea.,Graduate School of Department of Biomedical Science, Cha University, Seongnam, Korea
| | - So Jung Kong
- Laboratory of Translational Immuno-Oncology, Seongnam, Korea.,Medical Oncology, Department of Internal Medicine,CHA Bundang Medical Center, Cha University, Seongnam, Korea
| | - Soyeon Je
- Medical Science Study Centre, Syntekabio Inc, Seoul, South Korea
| | - Hyun-Jin Yang
- Medical Science Study Centre, Syntekabio Inc, Seoul, South Korea
| | - Jongsun Jung
- Insilico Clinical Trial Research Center, Syntekabio Inc, Daejeon, South Korea
| | - Jaekyung Cheon
- Laboratory of Translational Immuno-Oncology, Seongnam, Korea.,Medical Oncology, Department of Internal Medicine,CHA Bundang Medical Center, Cha University, Seongnam, Korea.,Graduate School of Department of Biomedical Science, Cha University, Seongnam, Korea
| | - Beodeul Kang
- Laboratory of Translational Immuno-Oncology, Seongnam, Korea.,Medical Oncology, Department of Internal Medicine,CHA Bundang Medical Center, Cha University, Seongnam, Korea.,Graduate School of Department of Biomedical Science, Cha University, Seongnam, Korea
| | - Hong Jae Chon
- Laboratory of Translational Immuno-Oncology, Seongnam, Korea.,Medical Oncology, Department of Internal Medicine,CHA Bundang Medical Center, Cha University, Seongnam, Korea.,Graduate School of Department of Biomedical Science, Cha University, Seongnam, Korea
| | - Chan Kim
- Laboratory of Translational Immuno-Oncology, Seongnam, Korea.,Medical Oncology, Department of Internal Medicine,CHA Bundang Medical Center, Cha University, Seongnam, Korea.,Graduate School of Department of Biomedical Science, Cha University, Seongnam, Korea
| |
Collapse
|
26
|
Fallarini S, Bhela IP, Aprile S, Torre E, Ranza A, Orecchini E, Panfili E, Pallotta MT, Massarotti A, Serafini M, Pirali T. The [1,2,4]Triazolo[4,3-a]pyridine as a New Player in the Field of IDO1 Catalytic Holo-Inhibitors. ChemMedChem 2021; 16:3439-3450. [PMID: 34355531 PMCID: PMC9291769 DOI: 10.1002/cmdc.202100446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/03/2021] [Indexed: 01/22/2023]
Abstract
Inhibitors of indoleamine 2,3-dioxygenase 1 (IDO1) are considered a promising strategy in cancer immunotherapy as they are able to boost the immune response and to work in synergy with other immunotherapeutic agents. Despite the fact that no IDO1 inhibitor has been approved so far, recent studies have shed light on the additional roles that IDO1 mediates beyond its catalytic activity, conferring new life to the field. Here we present a novel class of compounds originated from a structure-based virtual screening made on IDO1 active site. The starting hit compound is a novel chemotype based on a [1,2,4]triazolo[4,3-a]pyridine scaffold, so far underexploited among the heme binding moieties. Thanks to the rational and in silico-guided design of analogues, an improvement of the potency to sub-micromolar levels has been achieved, with excellent in vitro metabolic stability and exquisite selectivity with respect to other heme-containing enzymes.
Collapse
Affiliation(s)
- Silvia Fallarini
- Department of Pharmaceutical SciencesUniversità degli Studi del Piemonte OrientaleLargo Donegani 228100NovaraItaly
| | - Irene P. Bhela
- Department of Pharmaceutical SciencesUniversità degli Studi del Piemonte OrientaleLargo Donegani 228100NovaraItaly
| | - Silvio Aprile
- Department of Pharmaceutical SciencesUniversità degli Studi del Piemonte OrientaleLargo Donegani 228100NovaraItaly
| | - Enza Torre
- Department of Pharmaceutical SciencesUniversità degli Studi del Piemonte OrientaleLargo Donegani 228100NovaraItaly
| | - Alice Ranza
- Department of Pharmaceutical SciencesUniversità degli Studi del Piemonte OrientaleLargo Donegani 228100NovaraItaly
| | - Elena Orecchini
- Department of Medicine and SurgeryUniversity of PerugiaPerugia06132Italy
| | - Eleonora Panfili
- Department of Medicine and SurgeryUniversity of PerugiaPerugia06132Italy
| | - Maria T. Pallotta
- Department of Medicine and SurgeryUniversity of PerugiaPerugia06132Italy
| | - Alberto Massarotti
- Department of Pharmaceutical SciencesUniversità degli Studi del Piemonte OrientaleLargo Donegani 228100NovaraItaly
| | - Marta Serafini
- Department of Pharmaceutical SciencesUniversità degli Studi del Piemonte OrientaleLargo Donegani 228100NovaraItaly
- Current address: Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Tracey Pirali
- Department of Pharmaceutical SciencesUniversità degli Studi del Piemonte OrientaleLargo Donegani 228100NovaraItaly
| |
Collapse
|
27
|
Abramson HN. Immunotherapy of Multiple Myeloma: Promise and Challenges. Immunotargets Ther 2021; 10:343-371. [PMID: 34527606 PMCID: PMC8437262 DOI: 10.2147/itt.s306103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Whereas the treatment of MM was dependent solely on alkylating agents and corticosteroids during the prior three decades, the landscape of therapeutic measures to treat the disease began to expand enormously early in the current century. The introduction of new classes of small-molecule drugs, such as proteasome blockers (bortezomib and carfilzomib), immunomodulators (lenalidomide and pomalidomide), nuclear export inhibitors (selinexor), and histone deacetylase blockers (panobinostat), as well as the application of autologous stem cell transplantation (ASCT), resulted in a seismic shift in how the disease is treated. The picture changed dramatically once again starting with the 2015 FDA approval of two monoclonal antibodies (mAbs) - the anti-CD38 daratumumab and the anti-SLAMF7 elotuzumab. Daratumumab, in particular, has had a great impact on MM therapy and today is often included in various regimens to treat the disease, both in newly diagnosed cases and in the relapse/refractory setting. Recently, other immunotherapies have been added to the arsenal of drugs available to fight this malignancy. These include isatuximab (also anti-CD38) and, in the past year, the antibody-drug conjugate (ADC) belantamab mafodotin and the chimeric antigen receptor (CAR) T-cell product idecabtagene vicleucel (ide-cel). While the accumulated benefits of these newer agents have resulted in a doubling of the disease's five-year survival rate to more than 5 years and improved quality of life, the disease remains incurable. Almost without exception patients experience relapse and/or become refractory to the drugs used, making the search for innovative therapies all the more essential. This review covers the current scope of anti-myeloma immunotherapeutic agents, both those in clinical use and on the horizon, including naked mAbs, ADCs, bi- and multi-targeted mAbs, and CAR T-cells. Emphasis is placed on the benefits of each along with the challenges that need to be overcome if MM is to be considered curable in the future.
Collapse
Affiliation(s)
- Hanley N Abramson
- Wayne State University, Department of Pharmaceutical Sciences, Detroit, MI, 48201, USA
| |
Collapse
|
28
|
Hamilton MM, Mseeh F, McAfoos TJ, Leonard PG, Reyna NJ, Harris AL, Xu A, Han M, Soth MJ, Czako B, Theroff JP, Mandal PK, Burke JP, Virgin-Downey B, Petrocchi A, Pfaffinger D, Rogers NE, Parker CA, Yu SS, Jiang Y, Krapp S, Lammens A, Trevitt G, Tremblay MR, Mikule K, Wilcoxen K, Cross JB, Jones P, Marszalek JR, Lewis RT. Discovery of IACS-9779 and IACS-70465 as Potent Inhibitors Targeting Indoleamine 2,3-Dioxygenase 1 (IDO1) Apoenzyme. J Med Chem 2021; 64:11302-11329. [PMID: 34292726 DOI: 10.1021/acs.jmedchem.1c00679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1), a heme-containing enzyme that mediates the rate-limiting step in the metabolism of l-tryptophan to kynurenine, has been widely explored as a potential immunotherapeutic target in oncology. We developed a class of inhibitors with a conformationally constrained bicyclo[3.1.0]hexane core. These potently inhibited IDO1 in a cellular context by binding to the apoenzyme, as elucidated by biochemical characterization and X-ray crystallography. A SKOV3 tumor model was instrumental in differentiating compounds, leading to the identification of IACS-9779 (62) and IACS-70465 (71). IACS-70465 has excellent cellular potency, a robust pharmacodynamic response, and in a human whole blood assay was more potent than linrodostat (BMS-986205). IACS-9779 with a predicted human efficacious once daily dose below 1 mg/kg to sustain >90% inhibition of IDO1 displayed an acceptable safety margin in rodent toxicology and dog cardiovascular studies to support advancement into preclinical safety evaluation for human development.
Collapse
Affiliation(s)
- Matthew M Hamilton
- IACS (Institute for Applied Cancer Science), University of Texas, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Faika Mseeh
- IACS (Institute for Applied Cancer Science), University of Texas, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Timothy J McAfoos
- IACS (Institute for Applied Cancer Science), University of Texas, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Paul G Leonard
- IACS (Institute for Applied Cancer Science), University of Texas, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Naphtali J Reyna
- IACS (Institute for Applied Cancer Science), University of Texas, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Angela L Harris
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), University of Texas, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Alan Xu
- IACS (Institute for Applied Cancer Science), University of Texas, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Michelle Han
- IACS (Institute for Applied Cancer Science), University of Texas, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Michael J Soth
- IACS (Institute for Applied Cancer Science), University of Texas, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Barbara Czako
- IACS (Institute for Applied Cancer Science), University of Texas, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Jay P Theroff
- IACS (Institute for Applied Cancer Science), University of Texas, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Pijus K Mandal
- IACS (Institute for Applied Cancer Science), University of Texas, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Jason P Burke
- IACS (Institute for Applied Cancer Science), University of Texas, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Brett Virgin-Downey
- IACS (Institute for Applied Cancer Science), University of Texas, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Alessia Petrocchi
- IACS (Institute for Applied Cancer Science), University of Texas, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Dana Pfaffinger
- IACS (Institute for Applied Cancer Science), University of Texas, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Norma E Rogers
- IACS (Institute for Applied Cancer Science), University of Texas, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Connor A Parker
- IACS (Institute for Applied Cancer Science), University of Texas, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Simon S Yu
- IACS (Institute for Applied Cancer Science), University of Texas, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Yongying Jiang
- IACS (Institute for Applied Cancer Science), University of Texas, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Stephan Krapp
- Proteros Biostructures GmbH, Bunsenstr. 7a, D-82152 Martinsried, Germany
| | - Alfred Lammens
- Proteros Biostructures GmbH, Bunsenstr. 7a, D-82152 Martinsried, Germany
| | - Graham Trevitt
- XenoGesis Ltd, BioCity Nottingham, Pennyfoot Street, Nottingham, Nottinghamshire NG1 1GF, U.K
| | - Martin R Tremblay
- Tesaro Inc., 1000 Winter Street, Waltham, Massachusetts 02451 United States
| | - Keith Mikule
- Tesaro Inc., 1000 Winter Street, Waltham, Massachusetts 02451 United States
| | - Keith Wilcoxen
- Tesaro Inc., 1000 Winter Street, Waltham, Massachusetts 02451 United States
| | - Jason B Cross
- IACS (Institute for Applied Cancer Science), University of Texas, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Philip Jones
- IACS (Institute for Applied Cancer Science), University of Texas, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Joseph R Marszalek
- TRACTION (Translational Research to Advance Therapeutics and Innovation in Oncology), University of Texas, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| | - Richard T Lewis
- IACS (Institute for Applied Cancer Science), University of Texas, MD Anderson Cancer Center, 1881 East Road, Houston, Texas 77054, United States
| |
Collapse
|
29
|
Cherney EC, Zhang L, Guo W, Huang A, Williams D, Seitz S, Shan W, Zhu X, Gullo-Brown J, Maley D, Lin TA, Hunt JT, Huang C, Yang Z, D’Arienzo CJ, Discenza LN, Ranasinghe A, Grubb MF, Traeger SC, Li X, Johnston KA, Kopcho L, Fereshteh M, Foster KA, Stefanski K, Delpy D, Dhar G, Anandam A, Mahankali S, Padmanabhan S, Rajanna P, Murali V, Mariappan TT, Pattasseri S, Nimje RY, Hong Z, Kempson J, Rampulla R, Mathur A, Gupta A, Borzilleri R, Vite G, Balog A. Conformational-Analysis-Guided Discovery of 2,3-Disubstituted Pyridine IDO1 Inhibitors. ACS Med Chem Lett 2021; 12:1143-1150. [PMID: 34267885 DOI: 10.1021/acsmedchemlett.1c00236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/11/2021] [Indexed: 12/21/2022] Open
Abstract
IDO1 inhibitors have shown promise as immunotherapies for the treatment of a variety of cancers, including metastatic melanoma and renal cell carcinoma. We recently reported the identification of several novel heme-displacing IDO1 inhibitors, including the clinical molecules linrodostat (BMS-986205) and BMS-986242. Both molecules contain quinolines that, while being present in successful medicines, are known to be potentially susceptible to oxidative metabolism. Efforts to swap this quinoline with an alternative aromatic system led to the discovery of 2,3-disubstituted pyridines as suitable replacements. Further optimization, which included lowering ClogP in combination with strategic fluorine incorporation, led to the discovery of compound 29, a potent, selective IDO1 inhibitor with robust pharmacodynamic activity in a mouse xenograft model.
Collapse
Affiliation(s)
- Emily C. Cherney
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Liping Zhang
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Weiwei Guo
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Audris Huang
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - David Williams
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Steven Seitz
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Weifang Shan
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Xiao Zhu
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Johnni Gullo-Brown
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Derrick Maley
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Tai-an Lin
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - John T. Hunt
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Christine Huang
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Zheng Yang
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Celia J. D’Arienzo
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Lorell N. Discenza
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Asoka Ranasinghe
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Mary F. Grubb
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Sarah C. Traeger
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Xin Li
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Kathy A. Johnston
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Lisa Kopcho
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Mark Fereshteh
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Kimberly A. Foster
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Kevin Stefanski
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Diane Delpy
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Gopal Dhar
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra−Jigani Road, Bangalore 560099, India
| | - Aravind Anandam
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra−Jigani Road, Bangalore 560099, India
| | - Sandeep Mahankali
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra−Jigani Road, Bangalore 560099, India
| | - Shweta Padmanabhan
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra−Jigani Road, Bangalore 560099, India
| | - Prabhakar Rajanna
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra−Jigani Road, Bangalore 560099, India
| | - Venkata Murali
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra−Jigani Road, Bangalore 560099, India
| | - T. Thanga Mariappan
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra−Jigani Road, Bangalore 560099, India
| | - Shabeerali Pattasseri
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra−Jigani Road, Bangalore 560099, India
| | - Roshan Y. Nimje
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra−Jigani Road, Bangalore 560099, India
| | - Zhenqiu Hong
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - James Kempson
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Richard Rampulla
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Arvind Mathur
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Anuradha Gupta
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra−Jigani Road, Bangalore 560099, India
| | - Robert Borzilleri
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Gregory Vite
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| | - Aaron Balog
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Road, Lawrence Township, New Jersey 08648, United States
| |
Collapse
|
30
|
García-Cañaveras JC, Lahoz A. Tumor Microenvironment-Derived Metabolites: A Guide to Find New Metabolic Therapeutic Targets and Biomarkers. Cancers (Basel) 2021; 13:3230. [PMID: 34203535 PMCID: PMC8268968 DOI: 10.3390/cancers13133230] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic reprogramming is a hallmark of cancer that enables cancer cells to grow, proliferate and survive. This metabolic rewiring is intrinsically regulated by mutations in oncogenes and tumor suppressors, but also extrinsically by tumor microenvironment factors (nutrient and oxygen availability, cell-to-cell interactions, cytokines, hormones, etc.). Intriguingly, only a few cancers are driven by mutations in metabolic genes, which lead metabolites with oncogenic properties (i.e., oncometabolites) to accumulate. In the last decade, there has been rekindled interest in understanding how dysregulated metabolism and its crosstalk with various cell types in the tumor microenvironment not only sustains biosynthesis and energy production for cancer cells, but also contributes to immune escape. An assessment of dysregulated intratumor metabolism has long since been exploited for cancer diagnosis, monitoring and therapy, as exemplified by 18F-2-deoxyglucose positron emission tomography imaging. However, the efficient delivery of precision medicine demands less invasive, cheaper and faster technologies to precisely predict and monitor therapy response. The metabolomic analysis of tumor and/or microenvironment-derived metabolites in readily accessible biological samples is likely to play an important role in this sense. Here, we review altered cancer metabolism and its crosstalk with the tumor microenvironment to focus on energy and biomass sources, oncometabolites and the production of immunosuppressive metabolites. We provide an overview of current pharmacological approaches targeting such dysregulated metabolic landscapes and noninvasive approaches to characterize cancer metabolism for diagnosis, therapy and efficacy assessment.
Collapse
Affiliation(s)
- Juan C. García-Cañaveras
- Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Agustín Lahoz
- Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
- Analytical Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain
| |
Collapse
|
31
|
Lin DJ, Ng JCK, Huang L, Robinson M, O'Hara J, Wilson JA, Mellor AL. The immunotherapeutic role of indoleamine 2,3-dioxygenase in head and neck squamous cell carcinoma: A systematic review. Clin Otolaryngol 2021; 46:919-934. [PMID: 34053179 PMCID: PMC8600953 DOI: 10.1111/coa.13794] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/31/2021] [Accepted: 04/24/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Novel cancer immunotherapy seeks to harness the body's own immune system and tip the balance in favour of antitumour activity. The intracellular enzyme indoleamine 2,3-dioxygenase (IDO) is a critical regulator of the tumour microenvironment (TME) via tryptophan metabolism. The potential immunotherapeutic role of IDO in head and neck squamous cell carcinoma (HNSCC) requires further exploration. We aim to assess the evidence on IDO in HNSCC. METHODS A systematic review of literature and clinical trials databases. RESULTS We included 40 studies: seven involved cell lines: eight assessed tumour immunohistochemistry: ten measured IDO gene transcription: 15 reported on clinical trials. Increased cell line IDO expression was postulated to adversely affect tumour metabolism and apoptosis. Immunohistochemical IDO expression correlated with worse survival. Gene transcription studies associated IDO with positive PD-L1 and human papillomavirus (HPV) status. Phase I/II clinical trials showed (a) overall response (34%-55%) and disease control rates (62%-70%) for IDO1 inhibitor in combination with a PD-1 inhibitor, (b) similar safety profiles when both are used in combination therapy compared to each as monotherapies and (c) IDO gene expression as a predictive biomarker for response to PD-L1 therapy. CONCLUSIONS IDO expression is increased in the TME of HNSCC, which correlates with poor prognosis. However, the exact mechanism of IDO-driven immune modulation in the TME is an enigma. Future translational studies should map IDO activity during HNSCC treatment and elucidate its precise role in the TME, such research will underpin the development of clinical trials establishing the efficacy of IDO inhibitors in HNSCC.
Collapse
Affiliation(s)
- Daniel J Lin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,ENT Department, Freeman Hospital, High Heaton, Newcastle upon Tyne, UK
| | - James C K Ng
- ENT Department, Freeman Hospital, High Heaton, Newcastle upon Tyne, UK
| | - Lei Huang
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Max Robinson
- Centre for Oral Health Research, Newcastle University, Newcastle upon Tyne, UK
| | - James O'Hara
- ENT Department, Freeman Hospital, High Heaton, Newcastle upon Tyne, UK.,Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Janet A Wilson
- ENT Department, Freeman Hospital, High Heaton, Newcastle upon Tyne, UK.,Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew L Mellor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
32
|
Zhang L, Cherney EC, Zhu X, Lin TA, Gullo-Brown J, Maley D, Johnston-Allegretto K, Kopcho L, Fereshteh M, Huang C, Li X, Traeger SC, Dhar G, Anandam A, Mahankali S, Padmanabhan S, Rajanna P, Murali V, Mariappan T, Borzilleri R, Vite G, Hunt JT, Balog A. Discovery of Imidazopyridines as Potent Inhibitors of Indoleamine 2,3-Dioxygenase 1 for Cancer Immunotherapy. ACS Med Chem Lett 2021; 12:494-501. [PMID: 33738077 DOI: 10.1021/acsmedchemlett.1c00014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/26/2021] [Indexed: 11/30/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) has been identified as a target for small-molecule immunotherapy for the treatment of a variety of cancers including renal cell carcinoma and metastatic melanoma. This work focuses on the identification of IDO1 inhibitors containing replacements or isosteres for the amide found in BMS-986205, an amide-containing, IDO1-selective inhibitor currently in phase III clinical trials. Detailed subsequently are efforts to identify a structurally differentiated IDO1 inhibitor via the pursuit of a variety of heterocyclic isosteres, leading to the discovery of highly potent, imidazopyridine-containing IDO1 inhibitors.
Collapse
Affiliation(s)
- Liping Zhang
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | - Emily C. Cherney
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | - Xiao Zhu
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | - Tai-an Lin
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | - Johnni Gullo-Brown
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | - Derrick Maley
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | | | - Lisa Kopcho
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | - Mark Fereshteh
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | - Christine Huang
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | - Xin Li
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | - Sarah C. Traeger
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | - Gopal Dhar
- Biocon Bristol Myers Squibb R&D Center, Biocon Park, Jigani Link Road, Bengaluru, Karnataka 560099, India
| | - Aravind Anandam
- Biocon Bristol Myers Squibb R&D Center, Biocon Park, Jigani Link Road, Bengaluru, Karnataka 560099, India
| | - Sandeep Mahankali
- Biocon Bristol Myers Squibb R&D Center, Biocon Park, Jigani Link Road, Bengaluru, Karnataka 560099, India
| | - Shweta Padmanabhan
- Biocon Bristol Myers Squibb R&D Center, Biocon Park, Jigani Link Road, Bengaluru, Karnataka 560099, India
| | - Prabhakar Rajanna
- Biocon Bristol Myers Squibb R&D Center, Biocon Park, Jigani Link Road, Bengaluru, Karnataka 560099, India
| | - Venkata Murali
- Biocon Bristol Myers Squibb R&D Center, Biocon Park, Jigani Link Road, Bengaluru, Karnataka 560099, India
| | - Thanga Mariappan
- Biocon Bristol Myers Squibb R&D Center, Biocon Park, Jigani Link Road, Bengaluru, Karnataka 560099, India
| | - Robert Borzilleri
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | - Gregory Vite
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | - John T. Hunt
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| | - Aaron Balog
- Bristol Myers Squibb Research and Development, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
33
|
Cherney EC, Zhang L, Nara S, Zhu X, Gullo-Brown J, Maley D, Lin TA, Hunt JT, Huang C, Yang Z, Darienzo C, Discenza L, Ranasinghe A, Grubb M, Ziemba T, Traeger SC, Li X, Johnston K, Kopcho L, Fereshteh M, Foster K, Stefanski K, Fargnoli J, Swanson J, Brown J, Delpy D, Seitz SP, Borzilleri R, Vite G, Balog A. Discovery and Preclinical Evaluation of BMS-986242, a Potent, Selective Inhibitor of Indoleamine-2,3-dioxygenase 1. ACS Med Chem Lett 2021; 12:288-294. [PMID: 33603977 DOI: 10.1021/acsmedchemlett.0c00668] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/22/2021] [Indexed: 01/14/2023] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a heme-containing dioxygenase enzyme implicated in cancer immune response. This account details the discovery of BMS-986242, a novel IDO1 inhibitor designed for the treatment of a variety of cancers including metastatic melanoma and renal cell carcinoma. Given the substantial interest around this target for cancer immunotherapy, we sought to identify a structurally differentiated clinical candidate that performs comparably to linrodostat (BMS-986205) in terms of both in vitro potency and in vivo pharmacodynamic effect in a mouse xenograft model. On the basis of its preclinical profile, BMS-986242 was selected as a candidate for clinical development.
Collapse
Affiliation(s)
- Emily C. Cherney
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Liping Zhang
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Susheel Nara
- Biocon BMS R&D Center, Bommasandra Jigani Link Rd, Bommasandra Industrial Area, Bengaluru, Karnataka 560099, India
| | - Xiao Zhu
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Johnni Gullo-Brown
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Derrick Maley
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Tai-An Lin
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - John T. Hunt
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Christine Huang
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Zheng Yang
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Celia Darienzo
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Lorell Discenza
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Asoka Ranasinghe
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Mary Grubb
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Theresa Ziemba
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Sarah C. Traeger
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Xin Li
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Kathy Johnston
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Lisa Kopcho
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Mark Fereshteh
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Kimberly Foster
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Kevin Stefanski
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Joseph Fargnoli
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Jesse Swanson
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Jennifer Brown
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Diane Delpy
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Steven P. Seitz
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Robert Borzilleri
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Gregory Vite
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| | - Aaron Balog
- Bristol Myers Squibb Research and Development, 3551 Lawrenceville, Princeton Rd, Lawrence Township, New Jersey 08648, United States
| |
Collapse
|