1
|
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, Li T, Jiang Y, Wei S, Na Z, Xiao X, Li D. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduct Target Ther 2024; 9:332. [PMID: 39592582 PMCID: PMC11627502 DOI: 10.1038/s41392-024-02039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetics governs a chromatin state regulatory system through five key mechanisms: DNA modification, histone modification, RNA modification, chromatin remodeling, and non-coding RNA regulation. These mechanisms and their associated enzymes convey genetic information independently of DNA base sequences, playing essential roles in organismal development and homeostasis. Conversely, disruptions in epigenetic landscapes critically influence the pathogenesis of various human diseases. This understanding has laid a robust theoretical groundwork for developing drugs that target epigenetics-modifying enzymes in pathological conditions. Over the past two decades, a growing array of small molecule drugs targeting epigenetic enzymes such as DNA methyltransferase, histone deacetylase, isocitrate dehydrogenase, and enhancer of zeste homolog 2, have been thoroughly investigated and implemented as therapeutic options, particularly in oncology. Additionally, numerous epigenetics-targeted drugs are undergoing clinical trials, offering promising prospects for clinical benefits. This review delineates the roles of epigenetics in physiological and pathological contexts and underscores pioneering studies on the discovery and clinical implementation of epigenetics-targeted drugs. These include inhibitors, agonists, degraders, and multitarget agents, aiming to identify practical challenges and promising avenues for future research. Ultimately, this review aims to deepen the understanding of epigenetics-oriented therapeutic strategies and their further application in clinical settings.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuang Liu
- Shenyang Maternity and Child Health Hospital, Shenyang, China
| | - Tingting Li
- Department of General Internal Medicine VIP Ward, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yutao Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Wei
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
2
|
Fang S, Cao H, Liu J, Cao G, Li T. Antitumor effects of IOX1 combined with bevacizumab-induced apoptosis and immunity on colorectal cancer cells. Int Immunopharmacol 2024; 141:112896. [PMID: 39146782 DOI: 10.1016/j.intimp.2024.112896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Colorectal cancer (CRC), as a fatal cancer, is one of the most common cancers worldwide. Although the standard treatment for colorectal cancer is well researched and established, long-term patient survival remains poor, and mortality remains high. Therefore, more and more effective treatment options are needed. To evaluate the efficacy of bevacizumab, the histone demethylase inhibitor IOX1, or their combination for the treatment of colorectal cancer, we examined the effects of IOX1, bevacizumab, and IOX1 combined with bevacizumab on cell activity, proliferation, and migration of colorectal cancer cell lines HCT116, RKO, and CT26 by CCK8, colony formation assay, wound healing assay, and transwell assay. The effects of the drugs alone as well as in combination on apoptosis in colorectal cancer cell lines were examined by flow cytometry and further validated by Western blotting for apoptosis-related proteins. The antitumor effects of treatment alone or in combination on colorectal cancer cells were examined in animal models. Mice were injected subcutaneously with CT26 cells and the growth and immune infiltration in tumor tissues were detected by IHC after drug treatment. We found that IOX1 could effectively inhibit the activity of CRC cells and had a significant inhibitory effect on the proliferation and migration of CRC cells. The apoptosis rate increased in a dose-dependent manner after IOX1 treatment on colorectal cancer cells, and the expression of apoptosis-related proteins changed accordingly. Further combination with bevacizumab revealed that the combination had a more significant effect on the proliferation, migration, and apoptosis of CRC cells than either IOX1 or bevacizumab alone. In vivo experiments have found that both alone and combination drugs can inhibit the growth of mouse tumors, but the effect of combination inhibition is the most obvious. Combination therapy significantly inhibited the expression of proliferative marker (Ki67) in tumor xenograft models, and increased content of antigen-specific CD4+, CD8+T cell growth, and granzymeB (GZMB), which is associated with T cell cytotoxicity, was detected in combination therapy. Immunoassays suppressed the expression of relevant PD-1 and decreased. The anticancer drug bevacizumab and the histone demethylase inhibitor IOX1 may inhibit colon cancer cell growth by regulating apoptosis. The inhibitory effect of combination therapy on tumor growth may be achieved, in part, through upregulation of infiltration-mediated tumor immunity by T lymphocytes. The combination of IOX1 and bevacizumab produced significant synergistic effects. This study aims to provide a new direction for CRC combination therapy.
Collapse
Affiliation(s)
- Shuilong Fang
- Zhengzhou University People's Hospital, Zhengzhou, Henan, China; Department of Comprehensive Intervention, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Huicun Cao
- Department of Comprehensive Intervention, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Jian Liu
- Department of Comprehensive Intervention, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Guangshao Cao
- Department of Comprehensive Intervention, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Tianxiao Li
- Zhengzhou University People's Hospital, Zhengzhou, Henan, China; Interventional Center, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Zaman SU, Pagare PP, Huang B, Rilee G, Ma Z, Zhang Y, Li J. Novel PROTAC probes targeting FOSL1 degradation to eliminate head and neck squamous cell carcinoma cancer stem cells. Bioorg Chem 2024; 151:107613. [PMID: 39002513 PMCID: PMC11365795 DOI: 10.1016/j.bioorg.2024.107613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
Previously, we identified that AP-1 transcription factor FOSL1 is required to maintain cancer stem cells (CSCs) in HNSCC, and an AP-1 inhibitor, T-5224, can eliminate HNSCC CSCs. However, its potency is relatively low, and furthermore, whether T-5224 eradicates CSCs through targeting FOSL1 and whether FOSL1 serves as an effective target for eliminating CSCs in HNSCC, require further validation. We first found that T-5224 can bind to FOSL1 directly. As a proof-of-principle, several cereblon (CRBN)-recruiting PROTACs were designed and synthesized using T-5224 as a warhead for more effective of targeting FOSL1. The top compound can potently degrade FOSL1 in HNSCC, thereby effectively eliminating CSCs to suppress HNSCC tumorigenesis, with around 30 to 100-fold improved potency over T-5224. In summary, our study further validates FOSL1 as an effective target for eliminating CSCs in HNSCC and suggests that PROTACs may provide a unique molecular tool for the development of novel molecules for targeting FOSL1.
Collapse
Affiliation(s)
- Shadid U Zaman
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, United States.
| | - Piyusha P Pagare
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, United States.
| | - Boshi Huang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, United States.
| | - Grace Rilee
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, United States.
| | - Zhikun Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, United States.
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298-0540, United States.
| | - Jiong Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298-0540, United States; Department of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0540, United States.
| |
Collapse
|
4
|
Zaman SU, Pagare PP, Ma H, Hoyle RG, Zhang Y, Li J. Novel PROTAC probes targeting KDM3 degradation to eliminate colorectal cancer stem cells through inhibition of Wnt/β-catenin signaling. RSC Med Chem 2024; 15:d4md00122b. [PMID: 39281802 PMCID: PMC11393732 DOI: 10.1039/d4md00122b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
It has been demonstrated that the KDM3 family of histone demethylases (KDM3A and KDM3B) epigenetically control the functional properties of colorectal cancer stem cells (CSCs) through Wnt/β-catenin signaling. Meanwhile, a broad-spectrum histone demethylase inhibitor, IOX1, suppresses Wnt-induced colorectal tumorigenesis predominantly through inhibiting the enzymatic activity of KDM3. In this work, several cereblon (CRBN)-recruiting PROTACs with various linker lengths were designed and synthesized using IOX1 as a warhead to target KDM3 proteins for degradation. Two of the synthesized PROTACs demonstrated favorable degradation profile and selectivity towards KDM3A and KDM3B. Compound 4 demonstrated favorable in vitro metabolic profile in liver enzymes as well as no hERG-associated cardiotoxicity. Compound 4 also showed dramatic ability in suppressing oncogenic Wnt signaling to eliminate colorectal CSCs and inhibit tumor growth, with around 10- to 35-fold increased potency over IOX1. In summary, this study suggests that PROTACs provide a unique molecular tool for the development of novel small molecules from the IOX1 skeleton for selective degradation of KDM3 to eliminate colorectal CSCs via suppressing oncogenic Wnt signaling.
Collapse
Affiliation(s)
- Shadid U Zaman
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond Virginia 23298-0540 USA
| | - Piyusha P Pagare
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond Virginia 23298-0540 USA
| | - Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond Virginia 23298-0540 USA
| | - Rosalie G Hoyle
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond Virginia 23298-0540 USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond Virginia 23298-0540 USA
| | - Jiong Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond Virginia 23298-0540 USA
- Department of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University Richmond Virginia 23298-0540 USA
- Massey Cancer Center, Virginia Commonwealth University Richmond Virginia 23298-0540 USA
| |
Collapse
|
5
|
Sun H, Gao Y, Ma X, Deng Y, Bi L, Li L. Mechanism and application of feedback loops formed by mechanotransduction and histone modifications. Genes Dis 2024; 11:101061. [PMID: 39071110 PMCID: PMC11282412 DOI: 10.1016/j.gendis.2023.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2024] Open
Abstract
Mechanical stimulation is the key physical factor in cell environment. Mechanotransduction acts as a fundamental regulator of cell behavior, regulating cell proliferation, differentiation, apoptosis, and exhibiting specific signature alterations during the pathological process. As research continues, the role of epigenetic science in mechanotransduction is attracting attention. However, the molecular mechanism of the synergistic effect between mechanotransduction and epigenetics in physiological and pathological processes has not been clarified. We focus on how histone modifications, as important components of epigenetics, are coordinated with multiple signaling pathways to control cell fate and disease progression. Specifically, we propose that histone modifications can form regulatory feedback loops with signaling pathways, that is, histone modifications can not only serve as downstream regulators of signaling pathways for target gene transcription but also provide feedback to regulate signaling pathways. Mechanotransduction and epigenetic changes could be potential markers and therapeutic targets in clinical practice.
Collapse
Affiliation(s)
- Han Sun
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Yafang Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xinyu Ma
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yizhou Deng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Lintao Bi
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
6
|
Zhang J, Huang H, Ding B, Liu Z, Chen D, Li S, Shen T, Zhu Q. Histone demethylase KDM4A mediating macrophage polarization: A potential mechanism of trichloroethylene induced liver injury. Cell Biol Int 2024; 48:1148-1159. [PMID: 38800986 DOI: 10.1002/cbin.12187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/26/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024]
Abstract
Trichloroethylene (TCE) is a commonly used organic solvent in industry. Our previous studies have found that TCE can cause liver injury accompanied by macrophage polarization, but the specific mechanism is unclear. The epigenetic regulation of macrophage polarization is mainly focused on histone modification. Histone lysine demethylase 4A (KDM4A) is involved in the activation of macrophages. In this study, we used a mouse model we investigated the role of KDM4A in the livers of TCE-drinking mice and found that the expression of KDM4A, M1-type polarization indicators, and related inflammatory factors in the livers of TCE-drinking mice. In the study, BALB/c mice were randomly divided into four groups: 2.5 mg/mL TCE dose group and 5.0 mg/mL TCE dose group, the vehicle control group, and the blank control group. We found that TCE triggered M1 polarization of mouse macrophages, characterized by the expression of CD11c and robust production of inflammatory cytokines. Notably, exposure to TCE resulted in markedly increased expression of KDM4A in macrophages. Functionally, the increased expression of KDM4A significantly impaired the expression of H3K9me3 and H3K9me2 and increased the expression of H3K9me1. In addition, KDM4A potentially represents a novel epigenetic modulator, with its upregulation connected to β-catenin activation, a signal critical for the pro-inflammatory activation of macrophages. Furthermore, KDM4A inhibitor JIB-04 treatment resulted in a decrease in β-catenin expression and prevented TCE-induced M1 polarization and the expression of the pro-inflammatory cytokines TNF-α and IL-1β. These results suggest that the association of KDM4A and Wnt/β-catenin cooperatively establishes the activation and polarization of macrophages and global changes in H3K9me3/me2/me1. Our findings identify KDM4A as an essential regulator of the polarization of macrophages and the expression of inflammatory cytokines, which might serve as a potential target for preventing and treating liver injury caused by TCE.
Collapse
Affiliation(s)
- Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China
| | - Hua Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department Of Infectious Disease Prevention and Control, Linan District Center for Disease Control and Prevention, Hangzhou City, Zhejiang Province, China
| | - Baiwang Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department Of Infectious Disease Prevention and Control, Linan District Center for Disease Control and Prevention, Hangzhou City, Zhejiang Province, China
| | - Zhibing Liu
- Institute of Dermatology, Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Daojun Chen
- Institute of Medical Technology, Anhui Medical College, Hefei, Anhui, China
| | - Shulong Li
- The Center for Scientific Research, Anhui Medical University, Hefei, Anhui, China
| | - Tong Shen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China
| | - Qixing Zhu
- Institute of Dermatology, Key Laboratory of Dermatology, Ministry of Education, Hefei, Anhui, China
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
7
|
Yang M, Chen Y, Huang X, Shen F, Meng Y. Lysine demethylase KDM3A alleviates hyperoxia-induced bronchopulmonary dysplasia in mice by promoting ETS1 expression. Exp Cell Res 2024; 435:113945. [PMID: 38286256 DOI: 10.1016/j.yexcr.2024.113945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 01/31/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is the most common chronic lung disease among neonates, with increasing morbidity and mortality. This study aims to investigate the effect and mechanism of lysine demethylase 3A (KDM3A) on hyperoxia-induced BPD. Hyperoxia-induced BPD mouse and alveolar epithelial cell models were constructed. The effects of hyperoxia on lung development were evaluated by histological and morphological analysis. The levels of KDM3A, E26 transformation specific-1 (ETS1), H3 lysine 9 dimethylation (H3K9me2), and endoplasmic reticulum (ER) stress-related indexes were quantified by RT-qPCR, Western blot, and IF staining. Cell apoptosis was assessed by flow cytometry and TUNEL staining. Transfection of oe-ETS1, oe-KDM3A, and sh-ETS1 was applied in hyperoxia-induced alveolar epithelial cells to explore the mechanism of the KDM3A/ETS1 axis in hyperoxia-induced apoptosis. KDM3A inhibitor IOX1 was applied to validate the in vivo effect of KDM3A in hyperoxia-induced BPD mice. The results displayed that hyperoxia-induced BPD mice showed reduced body weight, severe destruction of alveolar structure, decreased radial alveolar count (RAC), and increased mean linear intercept (MLI) and mean alveolar diameter (MAD). Further, hyperoxia induction down-regulated ETS1 expression, raised ER stress levels, and increased apoptosis rate in BPD mice and alveolar epithelial cells. However, transfection of oe-ETS1 improved the above changes in hyperoxia-induced alveolar epithelial cells. Moreover, transfection of oe-KDM3A up-regulated ETS1 expression, down-regulated H3K9me2 expression, inhibited ER stress, and reduced apoptosis rate in hyperoxia-induced alveolar epithelial cells. In addition, transfection of sh-ETS1 reversed the inhibitory effect of KDM3A on hyperoxia-induced apoptosis by regulating ER stress. In vivo experiments, KDM3A inhibitor IOX1 intervention further aggravated BPD in newborn mice. In a word, KDM3A alleviated hyperoxia-induced BPD in mice by promoting ETS1 expression.
Collapse
Affiliation(s)
- Min Yang
- Respiratory Department, Hunan Children's Hospital, Changsha, 410007, China.
| | - Yanping Chen
- Respiratory Department, Hunan Children's Hospital, Changsha, 410007, China
| | | | - Fang Shen
- Research Institute of Children, Hunan Children's Hospital, Changsha, 410007, China
| | - Yanni Meng
- Respiratory Department, Hunan Children's Hospital, Changsha, 410007, China
| |
Collapse
|
8
|
Kellogg GE, Cen Y, Dukat M, Ellis KC, Guo Y, Li J, May AE, Safo MK, Zhang S, Zhang Y, Desai UR. Merging cultures and disciplines to create a drug discovery ecosystem at Virginia commonwealth university: Medicinal chemistry, structural biology, molecular and behavioral pharmacology and computational chemistry. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:255-269. [PMID: 36863508 PMCID: PMC10619687 DOI: 10.1016/j.slasd.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
The Department of Medicinal Chemistry, together with the Institute for Structural Biology, Drug Discovery and Development, at Virginia Commonwealth University (VCU) has evolved, organically with quite a bit of bootstrapping, into a unique drug discovery ecosystem in response to the environment and culture of the university and the wider research enterprise. Each faculty member that joined the department and/or institute added a layer of expertise, technology and most importantly, innovation, that fertilized numerous collaborations within the University and with outside partners. Despite moderate institutional support with respect to a typical drug discovery enterprise, the VCU drug discovery ecosystem has built and maintained an impressive array of facilities and instrumentation for drug synthesis, drug characterization, biomolecular structural analysis and biophysical analysis, and pharmacological studies. Altogether, this ecosystem has had major impacts on numerous therapeutic areas, such as neurology, psychiatry, drugs of abuse, cancer, sickle cell disease, coagulopathy, inflammation, aging disorders and others. Novel tools and strategies for drug discovery, design and development have been developed at VCU in the last five decades; e.g., fundamental rational structure-activity relationship (SAR)-based drug design, structure-based drug design, orthosteric and allosteric drug design, design of multi-functional agents towards polypharmacy outcomes, principles on designing glycosaminoglycans as drugs, and computational tools and algorithms for quantitative SAR (QSAR) and understanding the roles of water and the hydrophobic effect.
Collapse
Affiliation(s)
- Glen E Kellogg
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA.
| | - Yana Cen
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Malgorzata Dukat
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Keith C Ellis
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Youzhong Guo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Jiong Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Aaron E May
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Martin K Safo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Shijun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA
| | - Umesh R Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298-0540, USA.
| |
Collapse
|
9
|
Chang SLY, Lee CW, Yang CY, Lin ZC, Peng KT, Liu SC, Wang SW, Tsai HC, Fong YC, Lai CY, Huang YL, Tsai CH, Ko CY, Liu JF, Tang CH. IOX-1 suppresses metastasis of osteosarcoma by upregulating histone H3 lysine trimethylation. Biochem Pharmacol 2023; 210:115472. [PMID: 36863615 DOI: 10.1016/j.bcp.2023.115472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
New therapeutic approaches are needed for metastatic osteosarcoma (OS), as survival rates remain low despite surgery and chemotherapy. Epigenetic changes, such as histone H3 methylation, play key roles in many cancers including OS, although the underlying mechanisms are not clear. In this study, human OS tissue and OS cell lines displayed lower levels of histone H3 lysine trimethylation compared with normal bone tissue and osteoblast cells. Treating OS cells with the histone lysine demethylase inhibitor 5-carboxy-8-hydroxyquinoline (IOX-1) dose-dependently increased histone H3 methylation and inhibited cellular migratory and invasive capabilities, suppressed matrix metalloproteinase expression, reversed epithelial-to-mesenchymal transition by increasing levels of epithelial markers E-cadherin and ZO-1 and decreasing the expression of mesenchymal markers N-cadherin, vimentin, and TWIST, and also reduced stemness properties. An analysis of cultivated MG63 cisplatin-resistant (MG63-CR) cells revealed lower histone H3 lysine trimethylation levels compared with levels in MG63 cells. Exposing MG63-CR cells to IOX-1 increased histone H3 trimethylation and ATP-binding cassette transporter expression, potentially sensitizing MG63-CR cells to cisplatin. In conclusion, our study suggests that histone H3 lysine trimethylation is associated with metastatic OS and that IOX-1 or other epigenetic modulators present promising strategies to inhibit metastatic OS progression.
Collapse
Affiliation(s)
- Sunny Li-Yun Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan
| | - Chiang-Wen Lee
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Taiwan; Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Taiwan; Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Chen-Yu Yang
- Division of Pediatric Orthopedics, Department of Orthopedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Zih-Chan Lin
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Taiwan
| | - Kuo-Ti Peng
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Taiwan
| | - Shih-Chia Liu
- Division of Pediatric Orthopedics, Department of Orthopedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Wei Wang
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung, Taiwan, Kaohsiung, Taiwan
| | - Hsiao-Chi Tsai
- School of Medicine, China Medical University, Taichung, Taiwan; Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan; Department of Orthopaedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan; Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chao-Yang Lai
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Yuan-Li Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yuan Ko
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Ju-Fang Liu
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
10
|
Zhang L, Chen Y, Li Z, Lin C, Zhang T, Wang G. Development of JmjC-domain-containing histone demethylase (KDM2-7) inhibitors for cancer therapy. Drug Discov Today 2023; 28:103519. [PMID: 36754142 DOI: 10.1016/j.drudis.2023.103519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/06/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
Histone methylation is the most common histone modification and a highly dynamic regulator of gene transcription. Methylation of lysine residues can alter the structure of chromatin, helping to regulate DNA-based nuclear activities. Lysine demethylases control and maintain epigenetic factors that affect chromatin structure and cell characteristics. A variety of diseases, including malignant tumors, are connected to their dysregulation. Advances in biochemistry and pathogenesis have prompted the discovery of small molecule inhibitors and tool compounds that disrupt lysine demethylation. In this review, we focus on JmjC-domain-containing histone lysine demethylases (KDM2-7), discussing their structures and biological roles, representative inhibitors, and therapeutic potential in cancer therapy, and aiming to provide unique insights into the development of JmjC-KDM inhibitors.
Collapse
Affiliation(s)
- Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yao Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Congcong Lin
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
| | - Tongtong Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China; Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China.
| | - Guan Wang
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
11
|
Morris A, Hoyle R, Pagare PP, Uz Zaman S, Ma Z, Li J, Zhang Y. Exploration of Naphthoquinone Analogs in Targeting the TCF-DNA Interaction to Inhibit the Wnt/β-catenin Signaling Pathway. Bioorg Chem 2022; 124:105812. [DOI: 10.1016/j.bioorg.2022.105812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/02/2022]
|
12
|
Wang K, Yang C, Li H, Liu X, Zheng M, Xuan Z, Mei Z, Wang H. Role of the Epigenetic Modifier JMJD6 in Tumor Development and Regulation of Immune Response. Front Immunol 2022; 13:859893. [PMID: 35359945 PMCID: PMC8963961 DOI: 10.3389/fimmu.2022.859893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
JMJD6 is a member of the Jumonji (JMJC) domain family of histone demethylases that contributes to catalyzing the demethylation of H3R2me2 and/or H4R3me2 and regulating the expression of specific genes. JMJD6-mediated demethylation modifications are involved in the regulation of transcription, chromatin structure, epigenetics, and genome integrity. The abnormal expression of JMJD6 is associated with the occurrence and development of a variety of tumors, including breast carcinoma, lung carcinoma, colon carcinoma, glioma, prostate carcinoma, melanoma, liver carcinoma, etc. Besides, JMJD6 regulates the innate immune response and affects many biological functions, as well as may play key roles in the regulation of immune response in tumors. Given the importance of epigenetic function in tumors, targeting JMJD6 gene by modulating the role of immune components in tumorigenesis and its development will contribute to the development of a promising strategy for cancer therapy. In this article, we introduce the structure and biological activities of JMJD6, followed by summarizing its roles in tumorigenesis and tumor development. Importantly, we highlight the potential functions of JMJD6 in the regulation of tumor immune response, as well as the development of JMJD6 targeted small-molecule inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Kai Wang
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
| | - Haibin Li
- Department of Pharmacy, 908th Hospital of Chinese PLA Joint Logistic Support Force, Yingtan, China
| | - Xiaoyan Liu
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Meiling Zheng
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Zixue Xuan
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Zixue Xuan, ; Zhiqiang Mei, ; Haiyong Wang,
| | - Zhiqiang Mei
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
- *Correspondence: Zixue Xuan, ; Zhiqiang Mei, ; Haiyong Wang,
| | - Haiyong Wang
- Department of Internal Medicine Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Zixue Xuan, ; Zhiqiang Mei, ; Haiyong Wang,
| |
Collapse
|
13
|
Morris A, Pagare PP, Li J, Zhang Y. Drug discovery efforts toward inhibitors of canonical Wnt/β-catenin signaling pathway in the treatment of cancer: A composition-of-matter review (2010-2020). Drug Discov Today 2021; 27:1115-1127. [PMID: 34800684 DOI: 10.1016/j.drudis.2021.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/18/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022]
Abstract
The Wnt/β-catenin pathway has a crucial role in the proliferation and differentiation of normal cells as well as the self-renewal and pluripotency of stem cells, including cancer stem cells (CSCs). Targeting this pathway with small-molecule chemotherapeutics, discovered via conventional efforts, has proved difficult. Recently, computer-aided drug discovery efforts have produced promising chemotherapeutics. A concerted effort to develop inhibitors of this pathway through more efficient and cost-effective drug discovery methods could lead to a significant increase in clinically relevant therapeutics. Herein, patents from 2010 to 2020 are reviewed to identify those that have disclosed composition of matter for small-molecule inhibitors of the Wnt/ β-catenin pathway for cancer. We believe that such efforts will provide insights for future therapeutic candidate discovery and development in this field.
Collapse
Affiliation(s)
- Andrew Morris
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Piyusha P Pagare
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jiong Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; The Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; The Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
14
|
Xiao W, Zhou Q, Wen X, Wang R, Liu R, Wang T, Shi J, Hu Y, Hou J. Small-Molecule Inhibitors Overcome Epigenetic Reprogramming for Cancer Therapy. Front Pharmacol 2021; 12:702360. [PMID: 34603017 PMCID: PMC8484527 DOI: 10.3389/fphar.2021.702360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer treatment is a significant challenge for the global health system, although various pharmacological and therapeutic discoveries have been made. It has been widely established that cancer is associated with epigenetic modification, which is reversible and becomes an attractive target for drug development. Adding chemical groups to the DNA backbone and modifying histone proteins impart distinct characteristics on chromatin architecture. This process is mediated by various enzymes modifying chromatin structures to achieve the diversity of epigenetic space and the intricacy in gene expression files. After decades of effort, epigenetic modification has represented the hallmarks of different cancer types, and the enzymes involved in this process have provided novel targets for antitumor therapy development. Epigenetic drugs show significant effects on both preclinical and clinical studies in which the target development and research offer a promising direction for cancer therapy. Here, we summarize the different types of epigenetic enzymes which target corresponding protein domains, emphasize DNA methylation, histone modifications, and microRNA-mediated cooperation with epigenetic modification, and highlight recent achievements in developing targets for epigenetic inhibitor therapy. This article reviews current anticancer small-molecule inhibitors targeting epigenetic modified enzymes and displays their performances in different stages of clinical trials. Future studies are further needed to address their off-target effects and cytotoxicity to improve their clinical translation.
Collapse
Affiliation(s)
- Wenjing Xiao
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.,Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu, China
| | - Qiaodan Zhou
- Department of Ultrasonic, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People's Hospital, Chengdu, China
| | - Rui Wang
- Information Department of Medical Security Center, The General Hospital of Western Theater Command of PLA, Chengdu, China
| | - Ruijie Liu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Tingting Wang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yonghe Hu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.,Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu, China
| | - Jun Hou
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.,Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu, China
| |
Collapse
|
15
|
Liu J, Zhao Z, Qiu N, Zhou Q, Wang G, Jiang H, Piao Y, Zhou Z, Tang J, Shen Y. Co-delivery of IOX1 and doxorubicin for antibody-independent cancer chemo-immunotherapy. Nat Commun 2021; 12:2425. [PMID: 33893275 PMCID: PMC8065121 DOI: 10.1038/s41467-021-22407-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Anti-programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) antibodies are currently used in the clinic to interupt the PD-1/PD-L1 immune checkpoint, which reverses T cell dysfunction/exhaustion and shows success in treating cancer. Here, we report a histone demethylase inhibitor, 5-carboxy-8-hydroxyquinoline (IOX1), which inhibits tumour histone demethylase Jumonji domain-containing 1A (JMJD1A) and thus downregulates its downstream β-catenin and subsequent PD-L1, providing an antibody-independent paradigm interrupting the PD-1/PD-L1 checkpoint. Synergistically, IOX1 inhibits cancer cells’ P-glycoproteins (P-gp) through the JMJD1A/β-catenin/P-gp pathway and greatly enhances doxorubicin (DOX)-induced immune-stimulatory immunogenic cell death. As a result, the IOX1 and DOX combination greatly promotes T cell infiltration and activity and significantly reduces tumour immunosuppressive factors. Their liposomal combination reduces the growth of various murine tumours, including subcutaneous, orthotopic, and lung metastasis tumours, and offers a long-term immunological memory function against tumour rechallenging. This work provides a small molecule-based potent cancer chemo-immunotherapy. Some chemotherapeutic drugs, such as doxorubicin, induce immunogenic cell death (ICD) and promote anti-tumor immune responses. Here the authors report that the histone demethylase inhibitor 5-carboxy-8-hydroxyquinoline (IOX1) reduces the expression of PD-L1 in cancer cells and enhances doxorubicin-induced ICD, promoting T cell infiltration and reducing tumor growth in preclinical models.
Collapse
Affiliation(s)
- Jing Liu
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Zhihao Zhao
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Nasha Qiu
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Quan Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Guowei Wang
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Haiping Jiang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China. .,Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China.
| |
Collapse
|
16
|
Hypoxia-Driven Effects in Cancer: Characterization, Mechanisms, and Therapeutic Implications. Cells 2021; 10:cells10030678. [PMID: 33808542 PMCID: PMC8003323 DOI: 10.3390/cells10030678] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Hypoxia, a common feature of solid tumors, greatly hinders the efficacy of conventional cancer treatments such as chemo-, radio-, and immunotherapy. The depletion of oxygen in proliferating and advanced tumors causes an array of genetic, transcriptional, and metabolic adaptations that promote survival, metastasis, and a clinically malignant phenotype. At the nexus of these interconnected pathways are hypoxia-inducible factors (HIFs) which orchestrate transcriptional responses under hypoxia. The following review summarizes current literature regarding effects of hypoxia on DNA repair, metastasis, epithelial-to-mesenchymal transition, the cancer stem cell phenotype, and therapy resistance. We also discuss mechanisms and pathways, such as HIF signaling, mitochondrial dynamics, exosomes, and the unfolded protein response, that contribute to hypoxia-induced phenotypic changes. Finally, novel therapeutics that target the hypoxic tumor microenvironment or interfere with hypoxia-induced pathways are reviewed.
Collapse
|