1
|
Rocha MR, Castillo-Medina YK, de Lima Coelho BM, Rios LLL, Morgado-Diaz JA. Wnt/β-catenin pathway as a link between therapy resistance-driven epithelial-mesenchymal transition and stemness in colorectal cancer. Cell Biol Int 2025; 49:154-160. [PMID: 39707719 DOI: 10.1002/cbin.12270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
The high plasticity of cells undergoing epithelial-mesenchymal transition (EMT) promotes increased tumor heterogeneity, and its interaction with tumor-associated stromal cells appears to contribute to developing a stemness phenotype. Cells with these characteristics exhibit increased resistance to chemotherapy and radiotherapy, leading to disease relapse and metastasis. Here, we discuss the activation of the Wnt/β-catenin pathway in promoting EMT and stemness within the context of cellular resistance to these therapies. We discuss whether EMT and cancer stem cells (CSCs) function in conjunction, independently, or if a link is connecting their development. We further propose that this pathway is necessary to establish a connection between these two phenotypes. And suggest that it could hinder the rise of CSCs from treatment-induced EMT cells when inhibited. Understanding this cellular phenomenon might allow the development of new targeted therapies to improve clinical responses, particularly in colorectal cancer.
Collapse
Affiliation(s)
- Murilo Ramos Rocha
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Yuri Kelly Castillo-Medina
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | | | - Luidy Lucas Lopes Rios
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Jose Andres Morgado-Diaz
- Cellular and Molecular Oncobiology Program, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Klempner SJ, Sonbol MB, Wainberg ZA, Uronis HE, Chiu VK, Scott AJ, Iqbal S, Tejani MA, Chung V, Stilian MC, Thoma M, Zhang Y, Kagey MH, Baum J, Sirard CA, Altura RA, Ajani JA. DKN-01 in Combination With Tislelizumab and Chemotherapy as First-Line Therapy in Advanced Gastric or Gastroesophageal Junction Adenocarcinoma: DisTinGuish. J Clin Oncol 2025; 43:339-349. [PMID: 39432867 PMCID: PMC11771358 DOI: 10.1200/jco.24.00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/25/2024] [Accepted: 08/10/2024] [Indexed: 10/23/2024] Open
Abstract
PURPOSE The outcomes of anti-PD-1 agents plus fluoropyrimidine/platinum in frontline advanced gastroesophageal adenocarcinomas (aGEAs) remain poor. We investigated the safety, tolerability, and activity of fluoropyrimidine/oxaliplatin and tislelizumab with the DKK1-neutralizing antibody DKN-01 in aGEAs in a phase IIa open-label study. PATIENTS AND METHODS Patients had untreated human epidermal growth factor receptor 2-negative aGEAs, RECIST v1.1 measurable disease, Eastern Cooperative Oncology Group (ECOG) performance status 0-1, and adequate organ function. Patients received intravenous DKN-01 300 mg once every 2 weeks, tislelizumab 200 mg once every 3 weeks, oxaliplatin 130 mg/m2 once every 3 weeks, and capecitabine 1,000 mg/m2 twice daily on days 1-15 of each 21-day cycle. The primary end point was safety and tolerability. Key secondary end points included objective response rate (ORR) by RECISTv1.1, progression-free survival (PFS), and overall survival (OS). RESULTS Between September 18, 2020, and April 8, 2021, 25 patients were enrolled. All patients who received at least one dose of DKN-01 were included in the safety analysis. Most patients had gastroesophageal junction tumors, median age was 61 years, 76% were male, and 55% were ECOG of 0. All patients reported at least one treatment-emergent adverse event. The ORR was 73% (95% CI, 49.8 to 89.3), with a disease control rate of 95%. The ORR was 90% (95% CI, 55.5 to 99.7) in the DKK1-high tumor patients and 67% (95% CI, 29.9 to 92.5) in the DKK1-low tumor patients. The median PFS was 11.3 months (95% CI, 5.8 to 12.0) and the 12-month PFS rate was 33%. The median OS was 19.5 months (95% CI, 15.2 to 24.4) with a 12-month OS rate of 76% and an 18-month OS rate of 55%. CONCLUSION DKN-01 can be safely combined with frontline fluoropyrimidine/oxaliplatin and tislelizumab and demonstrates encouraging activity independent of PD-L1 expression levels. A randomized phase II trial is ongoing (ClinicalTrials.gov identifier: NCT04363801).
Collapse
Affiliation(s)
- Samuel J. Klempner
- Department of Medicine, Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA
| | | | - Zev A. Wainberg
- University of California Los Angeles Medical Center, Los Angeles, CA
| | | | - Vi K. Chiu
- The Angeles Clinic & Research Institute, a Cedars-Sinai affiliate, Los Angeles, CA
| | | | - Syma Iqbal
- University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Despotidis M, Lyros O, Driva TS, Sarantis P, Kapetanakis EI, Mylonakis A, Mamilos A, Sakellariou S, Schizas D. DKK1 and Its Receptors in Esophageal Adenocarcinoma: A Promising Molecular Target. Diagnostics (Basel) 2025; 15:85. [PMID: 39795613 PMCID: PMC11720708 DOI: 10.3390/diagnostics15010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/26/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Esophageal adenocarcinoma (EAC) is an aggressive gastrointestinal (GI) malignancy with increasing incidence. Despite the recent progress in targeted therapies and surgical approaches, the survival rates of esophageal adenocarcinoma patients remain poor. The Dickkopf (DKK) proteins are secretory proteins known mainly as antagonists of the Wnt/β-catenin signaling pathway, which is considered an oncogene. However, it has been shown that in several GI cancers, including esophageal cancer, DKK1 may act as an oncogene itself through Wnt-independent signaling pathways. LRP5\6 and Kremen1/2 (Krm1/2) are transmembrane receptors to which the DKK proteins are mainly known to bind. CKAP4 (cytoskeleton-associated protein 4) is a novel receptor of DKK1, and the DKK1-CKAP4 pathway seems to be crucial in the role of DKK1 as an oncogene. The aim of this review is to feature the essential role of DKK1 and its receptors in carcinogenesis with a focus on EAC in an era of urgent need for specific biomarkers along with improved targeted therapies.
Collapse
Affiliation(s)
- Markos Despotidis
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (A.M.); (D.S.)
| | - Orestis Lyros
- Fourth Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Tatiana S. Driva
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.S.D.); (S.S.)
| | - Panagiotis Sarantis
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Emmanouil I. Kapetanakis
- Department of Thoracic Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Adam Mylonakis
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (A.M.); (D.S.)
| | - Andreas Mamilos
- Institute of Pathology, University of Regensburg, 93053 Bavaria, Germany;
- Department of Pathology, German Oncology Center, Limassol 4108, Cyprus
| | - Stratigoula Sakellariou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.S.D.); (S.S.)
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (A.M.); (D.S.)
| |
Collapse
|
4
|
Nehmeh B, Rebehmed J, Nehmeh R, Taleb R, Akoury E. Unlocking therapeutic frontiers: harnessing artificial intelligence in drug discovery for neurodegenerative diseases. Drug Discov Today 2024; 29:104216. [PMID: 39428082 DOI: 10.1016/j.drudis.2024.104216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Neurodegenerative diseases (NDs) pose serious healthcare challenges with limited therapeutic treatments and high social burdens. The integration of artificial intelligence (AI) into drug discovery has emerged as a promising approach to address these challenges. This review explores the application of AI techniques to unravel therapeutic frontiers for NDs. We examine the current landscape of AI-driven drug discovery and discuss the potentials of AI in accelerating the identification of novel therapeutic targets on ND research and drug development, optimization of drug candidates, and expediating personalized medicine approaches. Finally, we outline future directions and challenges in harnessing AI for the advancement of therapeutics in this critical area by emphasizing the importance of interdisciplinary collaboration and ethical considerations.
Collapse
Affiliation(s)
- Bilal Nehmeh
- Department of Physical Sciences, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Joseph Rebehmed
- Department of Computer Science and Mathematics, Lebanese American University, Beirut 1102-2801, Lebanon
| | - Riham Nehmeh
- INSA Rennes, Institut d'électronique et de Télécommunications de Rennes IETR, UMR 6164, 35708 Rennes, France
| | - Robin Taleb
- Department of Physical Sciences, Lebanese American University, Byblos Campus, Blat, 4M8F+6QF, Lebanon
| | - Elias Akoury
- Department of Physical Sciences, Lebanese American University, Beirut 1102-2801, Lebanon.
| |
Collapse
|
5
|
Goyal A, Murkute SL, Bhowmik S, Prasad CP, Mohapatra P. Belling the "cat": Wnt/β-catenin signaling and its significance in future cancer therapies. Biochim Biophys Acta Rev Cancer 2024; 1879:189195. [PMID: 39413855 DOI: 10.1016/j.bbcan.2024.189195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
The WNT/β-catenin is among one of the most extensively studied cellular signaling pathways involved in the initiation and progression of several deadly cancers. It is now understood that the WNT/β-catenin signaling, during tumor progression operates in a very complex fashion beyond the earlier assumed simple WNT 'On' or 'Off' mode as it recruits numerous WNT ligands, receptors, transcriptional factors and also cross-talks with other signaling molecules including the noncanonical WNT regulators. WNT/β-catenin signaling molecules are often mutated in different cancers which makes them very challenging to inhibit and sometimes ranks them among the undruggable targets. Furthermore, due to the evolutionary conservation of this pathway, inhibiting WNT/β-catenin has caused significant toxicity in normal cells. These challenges are reflected in clinical trial data, where the use of WNT/β-catenin inhibitors as standalone treatments remains limited. In this review, we have highlighted the crucial functional associations of diverse WNT/β-catenin signaling regulators with cancer progression and the phenotypic switching of tumor cells. Next, we have shed light on the roles of WNT/β-catenin signaling in drug resistance, clonal evolution, tumor heterogeneity, and immune evasion. The present review also focuses on various classes of routine and novel WNT/β-catenin therapeutic regimes while addressing the challenges associated with targeting the regulators of this complex pathway. In the light of multiple case studies on WNT/β-catenin inhibitors, we also highlighted the challenges and opportunities for future clinical trial strategies involving these treatments. Additionally, we have proposed strategies for future WNT/β-catenin-based drug discovery trials, emphasizing the potential of combination therapies and AI/ML-driven prediction approaches. Overall, here we showcased the opportunities, possibilities, and potentialities of WNT/β-catenin signaling modulatory therapeutic regimes as promising precision cancer medicines for the future.
Collapse
Affiliation(s)
- Akansha Goyal
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India
| | - Satyajit Laxman Murkute
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India
| | - Sujoy Bhowmik
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India
| | - Chandra Prakash Prasad
- Department of Medical Oncology Lab, DR BRA-IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Purusottam Mohapatra
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India.
| |
Collapse
|
6
|
Li W, Wei J, Cheng M, Liu M. Unveiling promising targets in gastric cancer therapy: A comprehensive review. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200857. [PMID: 39280587 PMCID: PMC11396074 DOI: 10.1016/j.omton.2024.200857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Gastric cancer (GC) poses a significant global health challenge, ranking fifth in incidence and third in mortality among all malignancies worldwide. Its insidious onset, aggressive growth, proclivity for metastasis, and limited treatment options have contributed to its high fatality rate. Traditional approaches for GC treatment primarily involve surgery and chemotherapy. However, there is growing interest in targeted therapies and immunotherapies. This comprehensive review highlights recent advancements in GC targeted therapy and immunotherapy. It delves into the mechanisms of various strategies, underscoring their potential in GC treatment. Additionally, the review evaluates the efficacy and safety of relevant clinical trials. Despite the benefits observed in numerous advanced GC patients with targeted therapies and immunotherapies, challenges persist. We discuss pertinent strategies to overcome these challenges, thereby providing a solid foundation for enhancing the clinical effectiveness of targeted therapies and immunotherapies.
Collapse
Affiliation(s)
- Wenke Li
- Gastric Cancer Center/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Jing Wei
- Gastric Cancer Center/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Mo Cheng
- Gastric Cancer Center/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Ming Liu
- Gastric Cancer Center/Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| |
Collapse
|
7
|
Jin X, Wang S, Luo L, Yan F, He Q. Targeting the Wnt/β-catenin signal pathway for the treatment of gastrointestinal cancer: Potential for advancement. Biochem Pharmacol 2024; 227:116463. [PMID: 39102994 DOI: 10.1016/j.bcp.2024.116463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Gastrointestinal cancers (GICs) are highly prevalent cancers that threaten human health worldwide. The Wnt/β-catenin signaling pathway has been reported to play a pivotal role in the carcinogenesis of GICs. Numerous interventions targeting the Wnt/β-catenin signaling in GICs are currently being tested in clinical trials with promising results. Unfortunately, there are no clinically approved drugs that effectively target this pathway. This comprehensive review aims to evaluate the impact of clinical therapies targeting the Wnt/β-catenin signaling pathway in GICs. By integrating data from bioinformatics databases and recent literature from the past five years, we examine the heterogeneous expression and regulatory mechanisms of Wnt/β-catenin pathway genes and proteins in GICs. Specifically, we focus on expression patterns, mutation frequencies, and clinical prognoses to understand their implications for treatment strategies. Additionally, we discuss recent clinical trial efforts targeting this pathway. Understanding the inhibitors currently under clinical investigation may help optimize foundational research and clinical strategies. We hope that elucidating the current status of precision therapeutic stratification for patients targeting the Wnt/β-catenin pathway will guide future innovations in precision medicine for GICs.
Collapse
Affiliation(s)
- Xizhi Jin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang 310018, PR China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - Fangjie Yan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang 310018, PR China.
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
8
|
Chen J, Duan Y, Che J, Zhu J. Dysfunction of dendritic cells in tumor microenvironment and immunotherapy. Cancer Commun (Lond) 2024; 44:1047-1070. [PMID: 39051512 PMCID: PMC11492303 DOI: 10.1002/cac2.12596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/10/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024] Open
Abstract
Dendritic cells (DCs) comprise diverse cell populations that play critical roles in antigen presentation and triggering immune responses in the body. However, several factors impair the immune function of DCs and may promote immune evasion in cancer. Understanding the mechanism of DC dysfunction and the diverse functions of heterogeneous DCs in the tumor microenvironment (TME) is critical for designing effective strategies for cancer immunotherapy. Clinical applications targeting DCs summarized in this report aim to improve immune infiltration and enhance the biological function of DCs to modulate the TME to prevent cancer cells from evading the immune system. Herein, factors in the TME that induce DC dysfunction, such as cytokines, hypoxic environment, tumor exosomes and metabolites, and co-inhibitory molecules, have been described. Furthermore, several key signaling pathways involved in DC dysfunction and signal-relevant drugs evaluated in clinical trials were identified. Finally, this review provides an overview of current clinical immunotherapies targeting DCs, especially therapies with proven clinical outcomes, and explores future developments in DC immunotherapies.
Collapse
Affiliation(s)
- Jie Chen
- Jecho Institute Co., LtdShanghaiP. R. China
| | - Yuhang Duan
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of EducationBeijingP. R. China
- Shanghai Jiao Tong University, School of PharmacyShanghaiP. R. China
| | - Junye Che
- Jecho Institute Co., LtdShanghaiP. R. China
| | - Jianwei Zhu
- Jecho Institute Co., LtdShanghaiP. R. China
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of EducationBeijingP. R. China
- Shanghai Jiao Tong University, School of PharmacyShanghaiP. R. China
| |
Collapse
|
9
|
Shi HX, Tao HT, He JJ, Zhu FY, Xie CQ, Cheng YN, Hou LL, Sun H, Qin CJ, Fang D, Xie SQ. Targeting DKK1 enhances the antitumor activity of paclitaxel and alleviates chemotherapy-induced peripheral neuropathy in breast cancer. Mol Cancer 2024; 23:152. [PMID: 39085861 PMCID: PMC11290233 DOI: 10.1186/s12943-024-02067-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Chemotherapy in combination with immunotherapy has gradually shown substantial promise to increase T cell infiltration and antitumor efficacy. However, paclitaxel in combination with immune checkpoint inhibitor targeting PD-1/PD-L1 was only used to treat a small proportion of metastatic triple-negative breast cancer (TNBC), and the clinical outcomes was very limited. In addition, this regimen cannot prevent paclitaxel-induced peripheral neuropathy. Therefore, there was an urgent need for a novel target to enhance the antitumor activity of paclitaxel and alleviate chemotherapy-induced peripheral neuropathy in breast cancer. Here, we found that Dickkopf-1 (DKK1) expression was upregulated in multiply subtypes of human breast cancer specimens after paclitaxel-based chemotherapy. Mechanistic studies revealed that paclitaxel promoted DKK1 expression by inducing EGFR signaling in breast cancer cells, and the upregulation of DKK1 could hinder the therapeutic efficacy of paclitaxel by suppressing the infiltration and activity of CD8+ T cells in tumor microenvironment. Moreover, paclitaxel treatment in tumor-bearing mice also increased DKK1 expression through the activation of EGFR signaling in the primary sensory dorsal root ganglion (DRG) neurons, leading to the development of peripheral neuropathy, which is charactered by myelin damage in the sciatic nerve, neuropathic pain, and loss of cutaneous innervation in hindpaw skin. The addition of an anti-DKK1 antibody not only improved therapeutic efficacy of paclitaxel in two murine subtype models of breast cancer but also alleviated paclitaxel-induced peripheral neuropathy. Taken together, our findings providing a potential chemoimmunotherapy strategy with low neurotoxicity that can benefit multiple subtypes of breast cancer patients.
Collapse
Affiliation(s)
- Hong-Xiang Shi
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, 475004, China
| | - Hang-Tian Tao
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Jin-Jin He
- Department of Pharmacy, The First Affiliated Hospital of Henan University, Kaifeng, 475004, China
| | - Feng-Yi Zhu
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Cui-Qing Xie
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Yu-Na Cheng
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Li-Li Hou
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Hua Sun
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Chang-Jiang Qin
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, 475004, China.
| | - Dong Fang
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, 475004, China.
| | - Song-Qiang Xie
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, 475004, China.
| |
Collapse
|
10
|
Ni L, Xu J, Li Q, Ge X, Wang F, Deng X, Miao L. Focusing on the Immune Cells: Recent Advances in Immunotherapy for Biliary Tract Cancer. Cancer Manag Res 2024; 16:941-963. [PMID: 39099760 PMCID: PMC11296367 DOI: 10.2147/cmar.s474348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024] Open
Abstract
Biliary tract cancer (BTC) represents a challenging malignancy characterized by aggressive behavior, high relapse rates, and poor prognosis. In recent years, immunotherapy has revolutionized the treatment landscape for various cancers, but its efficacy in BTC remains limited. This article provides a comprehensive overview of the advances in preclinical and clinical studies of immunotherapy for BTC. We explore the potential of immune checkpoint inhibitors in reshaping the management of BTC. Despite disappointing results thus far, ongoing clinical trials are investigating the combination of immunotherapy with other treatment modalities. Furthermore, research on the tumor microenvironment has unveiled novel targets for immunotherapeutic interventions. By understanding the current state of immunotherapy in BTC and highlighting future directions, this article aims to fuel further exploration and ultimately improve patient outcomes in this challenging disease.
Collapse
Affiliation(s)
- Luohang Ni
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Jianing Xu
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Quanpeng Li
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xianxiu Ge
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Fei Wang
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xueting Deng
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Lin Miao
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
11
|
Faccio R, Lee S, Ricci B, Tran J, Ye J, Clever D, Eul E, Wang J, Wong P, Ma C, Fehniger T. Cancer-associated fibroblast-derived Dickkopf-1 suppresses NK cell cytotoxicity in breast cancer. RESEARCH SQUARE 2024:rs.3.rs-4202878. [PMID: 38659818 PMCID: PMC11042392 DOI: 10.21203/rs.3.rs-4202878/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Breast cancer is poorly immunogenic, hence able to evade T cell recognition and respond poorly to immune checkpoint blockade. Breast cancer cells can also evade NK cell-mediated immune surveillance, but the mechanism remains enigmatic. Dickkopf-1 (DKK1) is a Wnt/b-catenin inhibitor, whose levels are increased in breast cancer patients and correlate with reduced overall survival. DKK1 is expressed by cancer-associated fibroblasts (CAFs) in orthotopic breast tumors and patient samples, and at higher levels by bone cells. While bone-derived DKK1 contributes to the systemic elevation of DKK1 in tumor-bearing mice, CAFs represent the primary source of DKK1 at the tumor site. Systemic or bone-specific DKK1 targeting reduces primary tumor growth. Intriguingly, specific deletion of CAF-derived DKK1 also limits breast cancer progression, regardless of its elevated levels in circulation and in the bone. DKK1 does not support tumor proliferation directly but rather suppresses the activation and tumoricidal activity of NK cells. Importantly, increased DKK1 levels and reduced number of cytotoxic NK cells are detected in breast cancer patients with progressive bone metastases compared to those with stable disease. Our findings indicate that DKK1 creates a tumor-supporting environment through the suppression of NK cells in breast cancer.
Collapse
Affiliation(s)
| | | | | | | | - Jiayu Ye
- Washington University in St. Louis
| | | | | | | | | | | | | |
Collapse
|
12
|
Zhu Y, Zhou M, Li C, Kong W, Hu Y. Gastric cancer with brain metastasis: from molecular characteristics and treatment. Front Oncol 2024; 14:1310325. [PMID: 38577333 PMCID: PMC10991736 DOI: 10.3389/fonc.2024.1310325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Gastric cancer is one of the cancers with increasing incidence and ranks fourth globally among the most frequent causes of cancer-related mortality. Early gastric cancer is often asymptomatic or presents with atypical symptoms, and the majority of patients present with advanced disease upon diagnosis. Brain metastases are present in approximately 1% of gastric cancer patients at the time of diagnosis, which significantly contributed to the overall mortality of the disease worldwide. Conventional therapies for patients with brain metastases remain limited and the median overall survival of patients is only 8 months in advanced cases. Recent studies have improved our understanding of the molecular mechanisms underlying gastric cancer brain metastases, and immunotherapy has become an important treatment option in combination with radiotherapy, chemotherapy, targeted therapy and surgery. This review aims to provide insight into the cellular processes involved in gastric cancer brain metastases, discuss diagnostic approaches, evaluate the integration of immune checkpoint inhibitors into treatment and prognosis, and explore the predictive value of biomarkers in immunotherapy.
Collapse
Affiliation(s)
- Yingze Zhu
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Miao Zhou
- Department of Oncology, Tang Shan Central Hospital, Tangshan, China
| | - Congling Li
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Wenyue Kong
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| | - Yuning Hu
- School of Clinical Medicine, Affiliated Hospital, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
13
|
Wise DR, Pachynski RK, Denmeade SR, Aggarwal RR, Deng J, Febles VA, Balar AV, Economides MP, Loomis C, Selvaraj S, Haas M, Kagey MH, Newman W, Baum J, Troxel AB, Griglun S, Leis D, Yang N, Aranchiy V, Machado S, Waalkes E, Gargano G, Soamchand N, Puranik A, Chattopadhyay P, Fedal E, Deng FM, Ren Q, Chiriboga L, Melamed J, Sirard CA, Wong KK. A Phase 1/2 multicenter trial of DKN-01 as monotherapy or in combination with docetaxel for the treatment of metastatic castration-resistant prostate cancer (mCRPC). Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00798-z. [PMID: 38341461 DOI: 10.1038/s41391-024-00798-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Dickkopf-related protein 1 (DKK1) is a Wingless-related integrate site (Wnt) signaling modulator that is upregulated in prostate cancers (PCa) with low androgen receptor expression. DKN-01, an IgG4 that neutralizes DKK1, delays PCa growth in pre-clinical DKK1-expressing models. These data provided the rationale for a clinical trial testing DKN-01 in patients with metastatic castration-resistant PCa (mCRPC). METHODS This was an investigator-initiated parallel-arm phase 1/2 clinical trial testing DKN-01 alone (monotherapy) or in combination with docetaxel 75 mg/m2 (combination) for men with mCRPC who progressed on ≥1 AR signaling inhibitors. DKK1 status was determined by RNA in-situ expression. The primary endpoint of the phase 1 dose escalation cohorts was the determination of the recommended phase 2 dose (RP2D). The primary endpoint of the phase 2 expansion cohorts was objective response rate by iRECIST criteria in patients treated with the combination. RESULTS 18 pts were enrolled into the study-10 patients in the monotherapy cohorts and 8 patients in the combination cohorts. No DLTs were observed and DKN-01 600 mg was determined as the RP2D. A best overall response of stable disease occurred in two out of seven (29%) evaluable patients in the monotherapy cohort. In the combination cohort, five out of seven (71%) evaluable patients had a partial response (PR). A median rPFS of 5.7 months was observed in the combination cohort. In the combination cohort, the median tumoral DKK1 expression H-score was 0.75 and the rPFS observed was similar between patients with DKK1 H-score ≥1 versus H-score = 0. CONCLUSION DKN-01 600 mg was well tolerated. DKK1 blockade has modest anti-tumor activity as a monotherapy for mCRPC. Anti-tumor activity was observed in the combination cohorts, but the response duration was limited. DKK1 expression in the majority of mCRPC is low and did not clearly correlate with anti-tumor activity of DKN-01 plus docetaxel.
Collapse
Affiliation(s)
- David R Wise
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| | - Russell K Pachynski
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel R Denmeade
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Rahul R Aggarwal
- University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Jiehui Deng
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Victor Adorno Febles
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- New York Harbor Veterans Healthcare System, New York, NY, USA
| | - Arjun V Balar
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Minas P Economides
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Cynthia Loomis
- Department of Pathology and DART Experimental Pathology Research Laboratory, NYU Langone Health, New York, NY, USA
| | - Shanmugapriya Selvaraj
- Department of Pathology and DART Experimental Pathology Research Laboratory, NYU Langone Health, New York, NY, USA
| | | | | | | | - Jason Baum
- Leap Therapeutics, Inc, Cambridge, MA, USA
| | - Andrea B Troxel
- Division of Biostatistics, Department of Population Health at NYU Grossman School of Medicine, New York, NY, USA
| | - Sarah Griglun
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Dayna Leis
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Nina Yang
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Viktoriya Aranchiy
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Sabrina Machado
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Erika Waalkes
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Gabrielle Gargano
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Nadia Soamchand
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Amrutesh Puranik
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
- Precision Immunology Laboratory, Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA
| | - Pratip Chattopadhyay
- Precision Immunology Laboratory, Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA
| | - Ezeddin Fedal
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Fang-Ming Deng
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Qinghu Ren
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Luis Chiriboga
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Jonathan Melamed
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | | | - Kwok-Kin Wong
- Department of Medicine, Laura & Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| |
Collapse
|
14
|
Qian J, Wang Q, Xiao L, Xiong W, Xian M, Su P, Yang M, Zhang C, Li Y, Zhong L, Ganguly S, Zu Y, Yi Q. Development of therapeutic monoclonal antibodies against DKK1 peptide-HLA-A2 complex to treat human cancers. J Immunother Cancer 2024; 12:e008145. [PMID: 38267222 PMCID: PMC10824003 DOI: 10.1136/jitc-2023-008145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Targeted immunotherapy with monoclonal antibodies (mAbs) is an effective and safe method for the treatment of malignancies. Development of mAbs with improved cytotoxicity, targeting new and known tumor-associated antigens, therefore continues to be an active research area. We reported that Dickkopf-1 (DKK1) is a good target for immunotherapy of human cancers based on its wide expression in different cancers but not in normal tissues. As DKK1 is a secreted protein, mAbs binding directly to DKK1 have limited effects on cancer cells in vivo. METHODS The specificity and antibody-binding capacity of DKK1-A2 mAbs were determined using indirect ELISA, confocal imaging, QIFIKIT antibody-binding capacity and cell surface binding assays. The affinity of mAbs was determined using a surface plasmon resonance biosensor. A flow cytometry-based cell death was performed to detect tumor cell apoptosis. Antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) assays were used to evaluate the ability of DKK1-A2 mAbs to mediate ADCC and CDC activities against tumor cells in vitro. Flow cytometry data were collected with an FACSymphony A3 cell analyzer and analyzed with FlowJo V.10.1 software. Human cancer xenograft mouse models were used to determine the in vivo therapeutic efficacy and the potential safety and toxicity of DKK1-A2 mAbs. In situ TUNEL assay was performed to detect apoptosis in tumors and mouse organs. RESULTS We generated novel DKK1-A2 mAbs that recognize the DKK1 P20 peptide presented by human HLA-A*0201 (HLA-A2) molecules (DKK1-A2 complexes) that are naturally expressed by HLA-A2+DKK1+ cancer cells. These mAbs directly induced apoptosis in HLA-A2+DKK1+ hematologic and solid cancer cells by activating the caspase-9 cascade, effectively lysed the cancer cells in vitro by mediating CDC and ADCC and were therapeutic against established cancers in their xenograft mouse models. As DKK1 is not detected in most human tissues, DKK1-A2 mAbs neither bound to or killed HLA-A2+ blood cells in vitro nor caused tissue damage in tumor-free or tumor-bearing HLA-A2-transgenic mice. CONCLUSION Our study suggests that DKK1-A2 mAbs may be a promising therapeutic agent to treat human cancers.
Collapse
Affiliation(s)
- Jianfei Qian
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Qiang Wang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Liuling Xiao
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Wei Xiong
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Miao Xian
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Pan Su
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Maojie Yang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Chuanchao Zhang
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Yabo Li
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Ling Zhong
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Siddhartha Ganguly
- Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Institute for Academic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Qing Yi
- Center for Translational Research in Hematological Malignancies, Houston Methodist Neal Cancer Center/Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
15
|
Cao J, Zhang Z, Zhou L, Luo M, Li L, Li B, Nice EC, He W, Zheng S, Huang C. Oncofetal reprogramming in tumor development and progression: novel insights into cancer therapy. MedComm (Beijing) 2023; 4:e427. [PMID: 38045829 PMCID: PMC10693315 DOI: 10.1002/mco2.427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Emerging evidence indicates that cancer cells can mimic characteristics of embryonic development, promoting their development and progression. Cancer cells share features with embryonic development, characterized by robust proliferation and differentiation regulated by signaling pathways such as Wnt, Notch, hedgehog, and Hippo signaling. In certain phase, these cells also mimic embryonic diapause and fertilized egg implantation to evade treatments or immune elimination and promote metastasis. Additionally, the upregulation of ATP-binding cassette (ABC) transporters, including multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1 (MRP1), and breast cancer-resistant protein (BCRP), in drug-resistant cancer cells, analogous to their role in placental development, may facilitate chemotherapy efflux, further resulting in treatment resistance. In this review, we concentrate on the underlying mechanisms that contribute to tumor development and progression from the perspective of embryonic development, encompassing the dysregulation of developmental signaling pathways, the emergence of dormant cancer cells, immune microenvironment remodeling, and the hyperactivation of ABC transporters. Furthermore, we synthesize and emphasize the connections between cancer hallmarks and embryonic development, offering novel insights for the development of innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Jiangjun Cao
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Zhe Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseasethe First Affiliated HospitalSchool of MedicineZhejiang UniversityZhejiangChina
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious Diseasesthe Second Affiliated HospitalInstitute for Viral Hepatitis, Chongqing Medical UniversityChongqingChina
| | - Maochao Luo
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Lei Li
- Department of anorectal surgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Weifeng He
- State Key Laboratory of TraumaBurn and Combined InjuryInstitute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Shaojiang Zheng
- Hainan Cancer Medical Center of The First Affiliated Hospital, the Hainan Branch of National Clinical Research Center for Cancer, Hainan Engineering Research Center for Biological Sample Resources of Major DiseasesHainan Medical UniversityHaikouChina
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical Center, Key Laboratory of Emergency and Trauma of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
16
|
Forster S, Radpour R, Ochsenbein AF. Molecular and immunological mechanisms of clonal evolution in multiple myeloma. Front Immunol 2023; 14:1243997. [PMID: 37744361 PMCID: PMC10516567 DOI: 10.3389/fimmu.2023.1243997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by the proliferation of clonal plasma cells in the bone marrow (BM). It is known that early genetic mutations in post-germinal center B/plasma cells are the cause of myelomagenesis. The acquisition of additional chromosomal abnormalities and distinct mutations further promote the outgrowth of malignant plasma cell populations that are resistant to conventional treatments, finally resulting in relapsed and therapy-refractory terminal stages of MM. In addition, myeloma cells are supported by autocrine signaling pathways and the tumor microenvironment (TME), which consists of diverse cell types such as stromal cells, immune cells, and components of the extracellular matrix. The TME provides essential signals and stimuli that induce proliferation and/or prevent apoptosis. In particular, the molecular pathways by which MM cells interact with the TME are crucial for the development of MM. To generate successful therapies and prevent MM recurrence, a thorough understanding of the molecular mechanisms that drive MM progression and therapy resistance is essential. In this review, we summarize key mechanisms that promote myelomagenesis and drive the clonal expansion in the course of MM progression such as autocrine signaling cascades, as well as direct and indirect interactions between the TME and malignant plasma cells. In addition, we highlight drug-resistance mechanisms and emerging therapies that are currently tested in clinical trials to overcome therapy-refractory MM stages.
Collapse
Affiliation(s)
- Stefan Forster
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ramin Radpour
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Adrian F. Ochsenbein
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Li X, Zheng T, Zhang Y, Zhao Y, Liu F, Dai S, Liu X, Zhang M. Dickkopf-1 promotes vascular smooth muscle cell foam cell formation and atherosclerosis development through CYP4A11/SREBP2/ABCA1. FASEB J 2023; 37:e23048. [PMID: 37389895 DOI: 10.1096/fj.202300295r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/20/2023] [Accepted: 06/08/2023] [Indexed: 07/01/2023]
Abstract
Vascular smooth muscle cells (VSMCs) are considered to be a crucial source of foam cells in atherosclerosis due to their low expression level of cholesterol exporter ATP-binding cassette transporter A1 (ABCA1) intrinsically. While the definite regulatory mechanisms are complicated and have not yet been fully elucidated, we previously reported that Dickkopf-1 (DKK1) mediates endothelial cell (EC) dysfunction, thereby aggravating atherosclerosis. However, the role of smooth muscle cell (SMC) DKK1 in atherosclerosis and foam cell formation remains unknown. In this study, we established SMC-specific DKK1-knockout (DKK1SMKO ) mice by crossbreeding DKK1flox/flox mice with TAGLN-Cre mice. Then, DKK1SMKO mice were crossed with APOE-/- mice to generate DKK1SMKO /APOE-/- mice, which exhibited milder atherosclerotic burden and fewer SMC foam cells. In vitro loss- and gain-of-function studies of DKK1 in primary human aortic smooth muscle cells (HASMCs) have proven that DKK1 prevented oxidized lipid-induced ABCA1 upregulation and cholesterol efflux and promoted SMC foam cell formation. Mechanistically, RNA-sequencing (RNA-seq) analysis of HASMCs as well as chromatin immunoprecipitation (ChIP) experiments showed that DKK1 mediates the binding of transcription factor CCAAT/enhancer-binding protein delta (C/EBPδ) to the promoter of cytochrome P450 epoxygenase 4A11 (CYP4A11) to regulate its expression. In addition, CYP4A11 as well as its metabolite 20-HETE-promoted activation of transcription factor sterol regulatory element-binding protein 2 (SREBP2) mediated the DKK1 regulation of ABCA1 in SMC. Furthermore, HET0016, the antagonist of CYP4A11, has also shown an alleviating effect on atherosclerosis. In conclusion, our results demonstrate that DKK1 promotes SMC foam cell formation during atherosclerosis via a reduction in CYP4A11-20-HETE/SREBP2-mediated ABCA1 expression.
Collapse
Affiliation(s)
- Xiao Li
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Tengfei Zheng
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yachao Zhao
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fengming Liu
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Shen Dai
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaolin Liu
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Mei Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
18
|
Arend R, Dholakia J, Castro C, Matulonis U, Hamilton E, Jackson CG, LyBarger K, Goodman HM, Duska LR, Mahdi H, ElNaggar AC, Kagey MH, Liu A, Piper D, Barroilhet LM, Bradley W, Sachdev J, Sirard CA, O'Malley DM, Birrer M. DKK1 is a predictive biomarker for response to DKN-01: Results of a phase 2 basket study in women with recurrent endometrial carcinoma. Gynecol Oncol 2023; 172:82-91. [PMID: 37001446 DOI: 10.1016/j.ygyno.2023.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023]
Abstract
PURPOSE Dickkopf-1 (DKK1) is a Wnt signaling modulator promoting tumor growth, metastasis, angiogenesis, and immunosuppression by regulating innate immunity. DKK1 is over-expressed in gynecologic cancers and is associated with shortened survival. DKN-01 is a humanized monoclonal antibody with DKK1 neutralizing activity that may provide clinical benefit to patients whose tumors have overexpression of DKK1 or Wnt genetic alterations. METHODS We conducted an open-label, Phase 2 basket study with 2-stage design in patients with endometrial carcinoma (EC) and platinum-resistant/refractory epithelial ovarian cancer. DKN-01 was administered either as monotherapy or in combination with weekly paclitaxel at investigator's discretion. All patients underwent NGS testing prior to enrollment; tumor tissue was also tested for DKK1 expression by RNAscope pre-treatment and after cycle 1 if available. At least 50% of patients were required to have a Wnt signaling alteration either directly or tangentially. This publication reports results from the EC population overall and by DKK1-expression. RESULTS DKN-01 monotherapy and in combination with paclitaxel was more effective in patients with high DKK1-expressing tumors compared to low-expressing tumors. DKN-01 monotherapy demonstrated an objective response rate [ORR] of 25.0% vs. 0%; disease control rate [DCR] of 62.5% vs. 6.7%; median progression-free survival [PFS] was 4.3 vs. 1.8 months, and overall survival [OS] was 11.0 vs. 8.2 months in DKK1-high vs DKK1-low patients. Similarly, DKN-01 in combination with paclitaxel demonstrated greater clinical activity in patients with DKK1-high tumors compared to DKK1-low tumors: DCR was 55% vs. 44%; median PFS was 5.4 vs. 1.8 months; and OS was 19.1 vs. 10.1 months. Wnt activating mutations correlated with higher DKK1 expression. DKN-01 was well tolerated as a monotherapy and in combination with paclitaxel. CONCLUSIONS Collectively, data demonstrates promising clinical activity of a well-tolerated drug, DKN-01, in EC patients with high tumoral DKK1 expression which frequently corresponded to the presence of a Wnt activating mutation. Future development will focus on using DKN-01 in DKK1-high EC patients in combination with immunotherapy.
Collapse
|
19
|
Cheng SH, Chiou HYC, Wang JW, Lin MH. Reciprocal Regulation of Cancer-Associated Fibroblasts and Tumor Microenvironment in Gastrointestinal Cancer: Implications for Cancer Dormancy. Cancers (Basel) 2023; 15:2513. [PMID: 37173977 PMCID: PMC10177044 DOI: 10.3390/cancers15092513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Gastrointestinal (GI) cancers remain a major cause of cancer-related deaths worldwide. Despite the progress made in current treatments, patients with GI cancers still have high recurrence rates after initial treatment. Cancer dormancy, which involves the entry and escape of cancer cells from dormancy, is linked to treatment resistance, metastasis, and disease relapse. Recently, the role of the tumor microenvironment (TME) in disease progression and treatment has received increasing attention. The crosstalk between cancer-associated fibroblasts (CAF)-secreted cytokines/chemokines and other TME components, for example, extracellular matrix remodeling and immunomodulatory functions, play crucial roles in tumorigenesis. While there is limited direct evidence of a relationship between CAFs and cancer cell dormancy, this review explores the potential of CAF-secreted cytokines/chemokines to either promote cancer cell dormancy or awaken dormant cancer cells under different conditions, and the therapeutic strategies that may be applicable. By understanding the interactions between cytokines/chemokines released by CAFs and the TME, and their impact on the entry/escape of cancer dormancy, researchers may develop new strategies to reduce the risk of therapeutic relapse in patients with GI cancers.
Collapse
Affiliation(s)
- Shih-Hsuan Cheng
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsin-Ying Clair Chiou
- Teaching and Research Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
- Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jiunn-Wei Wang
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Hong Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
20
|
Monné Rodríguez JM, Frisk AL, Kreutzer R, Lemarchand T, Lezmi S, Saravanan C, Stierstorfer B, Thuilliez C, Vezzali E, Wieczorek G, Yun SW, Schaudien D. European Society of Toxicologic Pathology (Pathology 2.0 Molecular Pathology Special Interest Group): Review of In Situ Hybridization Techniques for Drug Research and Development. Toxicol Pathol 2023; 51:92-111. [PMID: 37449403 PMCID: PMC10467011 DOI: 10.1177/01926233231178282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
In situ hybridization (ISH) is used for the localization of specific nucleic acid sequences in cells or tissues by complementary binding of a nucleotide probe to a specific target nucleic acid sequence. In the last years, the specificity and sensitivity of ISH assays were improved by innovative techniques like synthetic nucleic acids and tandem oligonucleotide probes combined with signal amplification methods like branched DNA, hybridization chain reaction and tyramide signal amplification. These improvements increased the application spectrum for ISH on formalin-fixed paraffin-embedded tissues. ISH is a powerful tool to investigate DNA, mRNA transcripts, regulatory noncoding RNA, and therapeutic oligonucleotides. ISH can be used to obtain spatial information of a cell type, subcellular localization, or expression levels of targets. Since immunohistochemistry and ISH share similar workflows, their combination can address simultaneous transcriptomics and proteomics questions. The goal of this review paper is to revisit the current state of the scientific approaches in ISH and its application in drug research and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Seong-Wook Yun
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
21
|
Park M, Cho JH, Moon B, Kim JH, Kim JA. CDK9 inhibitors downregulate DKK1 expression to suppress the metastatic potential of HCC cells. Genes Genomics 2023; 45:285-293. [PMID: 36662391 DOI: 10.1007/s13258-022-01351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/26/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Elevated expression of Dickkopf-1 (DKK1) is frequently observed in hepatocellular carcinoma (HCC) patients with poor clinical outcomes. Several reports indicating the functional involvement of DKK1 in HCC progression have suggested DKK1 as a promising therapeutic target for HCC. OBJECTIVE In this study, to develop an efficient way to target DKK1, we assessed the effect of CDK9 inhibitors on DKK1 expression linked to metastatic movement of HCC. METHODS The expression of DKK1 in CDK9 inhibitor-treated HCC cells was measured by western blot, ELISA and quantitative real-time reverse transcription PCR. Wound healing assay, migration assay, invasion assay and western blot were examined to evaluate the functional role of DKK1 in CDK9 inhibitors-treated HCC. RESULTS Inactivation of CDK9 either by a catalytic inhibitor being clinically evaluated or by a specific CDK9 protein degrader largely downregulated DKK1 expression at the transcript and protein levels. In addition, CDK9 inhibitors suppressed the migration and invasion of HCC cells. We observed that ectopic high expression of DKK1 at least partially reversed the defects in metastatic movement of HCC cells mediated by CDK9 inhibitors. We further discovered that the DKK1-nuclear β-catenin axis associated with the metastatic potential of HCC cells was impaired by CDK9 inhibitors. CONCLUSION Taken together, our findings suggest that CDK9 inhibitors are potent tools to target DKK1, which can suppress the metastatic progression of HCC.
Collapse
Affiliation(s)
- Mijin Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Department of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jin Hwa Cho
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Byul Moon
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Department of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jeong-Hoon Kim
- Department of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea. .,Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea.
| | - Jung-Ae Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Department of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea. .,Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
22
|
Wu YX, Zhou XY, Wang JQ, Chen GM, Chen JX, Wang RC, Huang JQ, Chen JS. Application of immune checkpoint inhibitors in immunotherapy for gastric cancer. Immunotherapy 2023; 15:101-115. [PMID: 36597704 DOI: 10.2217/imt-2022-0080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Gastric cancer is the fifth most common cancer worldwide. With the development of immunotherapy, especially the application of immune checkpoint inhibitors (ICIs), the prognosis of advanced gastric cancer has improved. At present, ICIs combined with other therapies or dual ICI strategies in the treatment of advanced gastric cancer have shown clinical effectiveness and controllable safety. In addition, predictive biomarkers facilitate the precise selection of patients. Therefore, it is crucial to explore rational combinations and reliable predictive biomarkers for ICI therapy. This article reviews the recent advances in ICIs and relevant predictive biomarkers in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Yi-Xiang Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiao-Yu Zhou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jian-Qi Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Gao-Min Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jin-Xu Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Rong-Chang Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jiong-Qiang Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jing-Song Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| |
Collapse
|
23
|
Muto S, Enta A, Maruya Y, Inomata S, Yamaguchi H, Mine H, Takagi H, Ozaki Y, Watanabe M, Inoue T, Yamaura T, Fukuhara M, Okabe N, Matsumura Y, Hasegawa T, Osugi J, Hoshino M, Higuchi M, Shio Y, Hamada K, Suzuki H. Wnt/β-Catenin Signaling and Resistance to Immune Checkpoint Inhibitors: From Non-Small-Cell Lung Cancer to Other Cancers. Biomedicines 2023; 11:biomedicines11010190. [PMID: 36672698 PMCID: PMC9855612 DOI: 10.3390/biomedicines11010190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. The standard of care for advanced non-small-cell lung cancer (NSCLC) without driver-gene mutations is a combination of an anti-PD-1/PD-L1 antibody and chemotherapy, or an anti-PD-1/PD-L1 antibody and an anti-CTLA-4 antibody with or without chemotherapy. Although there were fewer cases of disease progression in the early stages of combination treatment than with anti-PD-1/PD-L1 antibodies alone, only approximately half of the patients had a long-term response. Therefore, it is necessary to elucidate the mechanisms of resistance to immune checkpoint inhibitors. Recent reports of such mechanisms include reduced cancer-cell immunogenicity, loss of major histocompatibility complex, dysfunctional tumor-intrinsic interferon-γ signaling, and oncogenic signaling leading to immunoediting. Among these, the Wnt/β-catenin pathway is a notable potential mechanism of immune escape and resistance to immune checkpoint inhibitors. In this review, we will summarize findings on these resistance mechanisms in NSCLC and other cancers, focusing on Wnt/β-catenin signaling. First, we will review the molecular biology of Wnt/β-catenin signaling, then discuss how it can induce immunoediting and resistance to immune checkpoint inhibitors. We will also describe other various mechanisms of immune-checkpoint-inhibitor resistance. Finally, we will propose therapeutic approaches to overcome these mechanisms.
Collapse
Affiliation(s)
- Satoshi Muto
- Correspondence: ; Tel.: +81-24-547-1252; Fax: +81-24-548-2735
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Manni W, Min W. Signaling pathways in the regulation of cancer stem cells and associated targeted therapy. MedComm (Beijing) 2022; 3:e176. [PMID: 36226253 PMCID: PMC9534377 DOI: 10.1002/mco2.176] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/07/2022] Open
Abstract
Cancer stem cells (CSCs) are defined as a subpopulation of malignant tumor cells with selective capacities for tumor initiation, self-renewal, metastasis, and unlimited growth into bulks, which are believed as a major cause of progressive tumor phenotypes, including recurrence, metastasis, and treatment failure. A number of signaling pathways are involved in the maintenance of stem cell properties and survival of CSCs, including well-established intrinsic pathways, such as the Notch, Wnt, and Hedgehog signaling, and extrinsic pathways, such as the vascular microenvironment and tumor-associated immune cells. There is also intricate crosstalk between these signal cascades and other oncogenic pathways. Thus, targeting pathway molecules that regulate CSCs provides a new option for the treatment of therapy-resistant or -refractory tumors. These treatments include small molecule inhibitors, monoclonal antibodies that target key signaling in CSCs, as well as CSC-directed immunotherapies that harness the immune systems to target CSCs. This review aims to provide an overview of the regulating networks and their immune interactions involved in CSC development. We also address the update on the development of CSC-directed therapeutics, with a special focus on those with application approval or under clinical evaluation.
Collapse
Affiliation(s)
- Wang Manni
- Department of Biotherapy, Cancer Center, West China HospitalSichuan UniversityChengduP. R. China
| | - Wu Min
- Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| |
Collapse
|
25
|
Liu M, Yan W, Chen D, Luo J, Dai L, Chen H, Chen KN. IGFBP1 hiWNT3A lo Subtype in Esophageal Cancer Predicts Response and Prolonged Survival with PD-(L)1 Inhibitor. BIOLOGY 2022; 11:biology11111575. [PMID: 36358276 PMCID: PMC9687176 DOI: 10.3390/biology11111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 01/25/2023]
Abstract
PD-(L)1 inhibitor could improve the survival of locally advanced esophageal cancer (ESCA) patients, but we cannot tailor the treatment to common biomarkers. WNT signaling activation was associated with primary resistance to immunotherapy. In this study, we used our two clinical cohorts (BJCH n = 95, BJIM n = 21) and three public cohorts to evaluate and verify a new immunotherapeutic biomarker based on WNT signaling in ESCA patients. Our findings showed that WNT signaling-related genes stratified TCGA patients into Cluster 1, 2, and 3, among which, Cluster 3 had the worst prognosis. The most up- and down-regulated genes in Cluster 3 were IGFBP1 and WNT3A. Further analysis validated that IGFBP1hiWNT3Alo ESCA patients had significantly poor RFS and OS in the TCGA and BJCH cohorts. Interestingly, IGFBP1hiWNT3Alo patients had a good response and prognosis with immunotherapy in three independent cohorts, exhibiting better predictive value than PD-L1 expression (signature AUC = 0.750; PD-L1 AUC = 0.571). Moreover, IGFBP1hiWNT3Alo patients may benefit more from immunotherapy than standard treatment (p = 0.026). Immune cell infiltration analysis revealed a significant increase in DC infiltration in IGFBP1hiWNT3Alo patients post-immunotherapy (p = 0.022), which may enhance immune response. The IGFBP1hiWNT3Alo signature could predict patients who benefited from PD-(L)1 inhibitor treatment and may serve as a biomarker in ESCA.
Collapse
Affiliation(s)
- Meichen Liu
- Department of Thoracic Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52, Fucheng Road, Haidian District, Beijing 100142, China
| | - Wanpu Yan
- Department of Thoracic Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52, Fucheng Road, Haidian District, Beijing 100142, China
| | - Dongbo Chen
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, No.11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Jiancheng Luo
- Aiyi Technology Co., Ltd., Room 1004, Building 3, Greenland Qihang, Biomedical Industry Base, Daxing District, Beijing 102629, China
| | - Liang Dai
- Department of Thoracic Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52, Fucheng Road, Haidian District, Beijing 100142, China
| | - Hongsong Chen
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, No.11 Xizhimen South Street, Xicheng District, Beijing 100044, China
- Correspondence: (H.C.); (K.-N.C.)
| | - Ke-Neng Chen
- Department of Thoracic Surgery I, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52, Fucheng Road, Haidian District, Beijing 100142, China
- Correspondence: (H.C.); (K.-N.C.)
| |
Collapse
|
26
|
Zhou X, Ni Y, Liang X, Lin Y, An B, He X, Zhao X. Mechanisms of tumor resistance to immune checkpoint blockade and combination strategies to overcome resistance. Front Immunol 2022; 13:915094. [PMID: 36189283 PMCID: PMC9520263 DOI: 10.3389/fimmu.2022.915094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Immune checkpoint blockade (ICB) has rapidly transformed the treatment paradigm for various cancer types. Multiple single or combinations of ICB treatments have been approved by the US Food and Drug Administration, providing more options for patients with advanced cancer. However, most patients could not benefit from these immunotherapies due to primary and acquired drug resistance. Thus, a better understanding of the mechanisms of ICB resistance is urgently needed to improve clinical outcomes. Here, we focused on the changes in the biological functions of CD8+ T cells to elucidate the underlying resistance mechanisms of ICB therapies and summarized the advanced coping strategies to increase ICB efficacy. Combinational ICB approaches and individualized immunotherapies require further in-depth investigation to facilitate longer-lasting efficacy and a more excellent safety of ICB in a broader range of patients.
Collapse
|
27
|
Wang Q, Tian J, Li X, Liu X, Zheng T, Zhao Y, Li X, Zhong H, Liu D, Zhang W, Zhang M, Li M, Zhang M. Upregulation of Endothelial DKK1 (Dickkopf 1) Promotes the Development of Pulmonary Hypertension Through the Sp1 (Specificity Protein 1)/SHMT2 (Serine Hydroxymethyltransferase 2) Pathway. Hypertension 2022; 79:960-973. [PMID: 35249365 DOI: 10.1161/hypertensionaha.121.18672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a cancer-like proliferative disease, which has no curative treatment options. The dysfunction of pulmonary artery endothelial cells plays a key role in PH. DKK1 (Dickkopf 1) is a secretory glycoprotein that exerts proproliferative effects on tumor cells. In the present study, we aimed to identify the role and underlying mechanism of DKK1 in the development of PH, which still remain unclear. METHODS AND RESULTS We found endothelial DKK1 expression was upregulated in serum and lung tissues obtained from patients with PH, mice with hypoxia-induced PH, and human pulmonary artery endothelial cells cultured under hypoxic conditions. Endothelium-specific DKK1-knockout (DKK1ECKO) mice significantly ameliorated hypoxia+Sugen5416 and hypoxia-induced PH. More importantly, neutralizing anti-DKK1 antibody treatment significantly attenuated established hypoxia+Sugen5416 PH. Results of proteome analysis of control and DKK1-knockdown human pulmonary artery endothelial cells identified a significantly differentially expressed protein, SHMT2 (serine hydroxymethyltransferase 2), a key metabolic enzyme in one-carbon metabolism, as a novel DKK1 target. DKK1 knockdown in human pulmonary artery endothelial cells cultured under hypoxic conditions decreased the cellular NADPH/NADP+ ratio, increased reactive oxygen species levels and the extent of mitochondrial DNA damage, and inhibited mitochondrial membrane hyperpolarization. In the context of this altered redox defense and mitochondrial disorder, DKK1 induced a proproliferative and antiapoptotic phenotype in endothelial cells. Furthermore, we confirmed that DKK1 regulated SHMT2 transcription through the AKT-Sp1 (specificity protein 1) signaling axis. CONCLUSIONS Our data provide robust evidence and molecular explanations for the associations between DKK1, redox defense, mitochondrial disorders, and PH and reveal a novel target for PH treatment.
Collapse
Affiliation(s)
- Qianqian Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, China
| | - Jingjing Tian
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, China
| | - Xuan Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, China
| | - Xiaolin Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, China
| | - Tengfei Zheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, China
| | - Yachao Zhao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, China
| | - Xiao Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, China
| | - Hongyu Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, China
| | - Dongdong Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, China
| | - Wencheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, China
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, China
| | - Mengmeng Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, China
| | - Mei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, China
| |
Collapse
|
28
|
ElNaggar A, Zhang N, Scalise C, Sirard C, Kagey M, Vaena D, Arend R. Response to anti-DKK1 therapy in uterine carcinosarcoma: A case report. Gynecol Oncol Rep 2022; 39:100904. [PMID: 35531363 PMCID: PMC9068954 DOI: 10.1016/j.gore.2021.100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 11/21/2022] Open
Abstract
Targeted therapies are being increasingly used in clinical practice and trials. However, tumor heterogeneity among sites of metastatic disease can occur creating a conundrum when utilizing biomarker directed therapies. Here we demonstrate a patient with recurrent uterine carcinosarcoma whose local recurrence and metastatic recurrence had a varied response to paclitaxel in combination with DKN-01, a monoclonal antibody against DKK1, a modulator of Wnt/β-catenin and PI3K/AKT signaling pathways. This may be explained by differences in mutational profile found between the two sites. Our findings highlight the importance of analyzing tissue from the primary tumor as well as metastatic lesions, especially if there is a discrepancy in their response to treatment.
Collapse
Affiliation(s)
- A. ElNaggar
- Division of Gynecologic Oncology, West Cancer Center and Research Institute, Memphis, TN, USA
| | - N. Zhang
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - C.B. Scalise
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - C. Sirard
- Leap Therapeutics, Inc., Cambridge, MA, USA
| | - M.H. Kagey
- Leap Therapeutics, Inc., Cambridge, MA, USA
| | - D. Vaena
- Division of Medical Oncology, West Cancer Center and Research Institute, Memphis, TN, USA
| | - R. Arend
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
29
|
Xu A, Qian C, Lin J, Yu W, Jin J, Liu B, Tao H. Cell Differentiation Trajectory-Associated Molecular Classification of Osteosarcoma. Genes (Basel) 2021; 12:genes12111685. [PMID: 34828292 PMCID: PMC8625454 DOI: 10.3390/genes12111685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 01/01/2023] Open
Abstract
This study aims to investigate the differentiation trajectory of osteosarcoma cells and to construct molecular subtypes with their respective characteristics and generate a multi-gene signature for predicting prognosis. Integrated single-cell RNA-sequencing (scRNA-seq) data, bulk RNA-seq data and microarray data from osteosarcoma samples were used for analysis. Via scRNA-seq data, time-related as well as differentiation-related genes were recognized as osteosarcoma tumor stem cell-related genes (OSCGs). In Gene Expression Omnibus (GEO) cohort, osteosarcoma patients were classified into two subtypes based on prognostic OSCGs and it was found that molecular typing successfully predicted overall survival, tumor microenvironment and immune infiltration status. Further, available drugs for influencing osteosarcoma via prognostic OSCGs were revealed. A 3-OSCG-based prognostic risk score signature was generated and by combining other clinic-pathological independent prognostic factor, stage at diagnosis, a nomogram was established to predict individual survival probability. In external independent TARGET cohort, the molecular types, the 3-gene signature as well as nomogram were validated. In conclusion, osteosarcoma cell differentiation occupies a crucial position in many facets, such as tumor prognosis and microenvironment, suggesting promising therapeutic targets for this disease.
Collapse
Affiliation(s)
- Ankai Xu
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou 310009, China; (A.X.); (C.Q.); (J.L.); (W.Y.); (J.J.); (B.L.)
- Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Chao Qian
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou 310009, China; (A.X.); (C.Q.); (J.L.); (W.Y.); (J.J.); (B.L.)
- Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Jinti Lin
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou 310009, China; (A.X.); (C.Q.); (J.L.); (W.Y.); (J.J.); (B.L.)
- Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Wei Yu
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou 310009, China; (A.X.); (C.Q.); (J.L.); (W.Y.); (J.J.); (B.L.)
- Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Jiakang Jin
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou 310009, China; (A.X.); (C.Q.); (J.L.); (W.Y.); (J.J.); (B.L.)
- Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Bing Liu
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou 310009, China; (A.X.); (C.Q.); (J.L.); (W.Y.); (J.J.); (B.L.)
- Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Huimin Tao
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou 310009, China; (A.X.); (C.Q.); (J.L.); (W.Y.); (J.J.); (B.L.)
- Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
- Correspondence:
| |
Collapse
|