1
|
Tredicine M, Mucci M, Recchiuti A, Mattoscio D. Immunoregulatory mechanisms of the arachidonic acid pathway in cancer. FEBS Lett 2025; 599:927-951. [PMID: 39973474 DOI: 10.1002/1873-3468.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/10/2025] [Accepted: 01/27/2025] [Indexed: 02/21/2025]
Abstract
The arachidonic acid (AA) pathway promotes tumor progression by modulating the complex interactions between cancer and immune cells within the microenvironment. In this Review, we summarize the knowledge acquired thus far concerning the intricate mechanisms through which eicosanoids either promote or suppress the antitumor immune response. In addition, we will discuss the impact of eicosanoids on immune cells and how they affect responsiveness to immunotherapy, as well as potential strategies for manipulating the AA pathway to improve anticancer immunotherapy. Understanding the molecular pathways and mechanisms underlying the role played by AA and its metabolites in tumor progression may contribute to the development of more effective anticancer immunotherapies.
Collapse
Affiliation(s)
- Maria Tredicine
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Italy
- Center for Advanced Studies and Technology, University of Chieti-Pescara, Italy
| | - Matteo Mucci
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Italy
- Center for Advanced Studies and Technology, University of Chieti-Pescara, Italy
| | - Antonio Recchiuti
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Italy
- Center for Advanced Studies and Technology, University of Chieti-Pescara, Italy
| | - Domenico Mattoscio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Italy
- Center for Advanced Studies and Technology, University of Chieti-Pescara, Italy
| |
Collapse
|
2
|
Yang WS, Liu Q, Li Y, Li GY, Lin S, Li J, Li LY, Li Y, Ge XL, Wang XZ, Wu W, Yan J, Wang GF, Zhou QT, Liu Q, Wang MW, Li ZP. Oral FPR2/ALX modulators tune myeloid cell activity to ameliorate mucosal inflammation in inflammatory bowel disease. Acta Pharmacol Sin 2025:10.1038/s41401-025-01525-7. [PMID: 40069490 DOI: 10.1038/s41401-025-01525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/25/2025] [Indexed: 03/15/2025]
Abstract
Current treatments of inflammatory bowel disease (IBD) largely depend on anti-inflammatory and immunosuppressive strategies with unacceptable efficacy and adverse events. Resolution or repair agents to treat IBD are not available but potential targets like formyl peptide receptor 2 (FPR2/ALX) may fill the gap. In this study we evaluated the therapeutic effects of two small molecule FPR2/ALX modulators (agonist Quin-C1 and antagonist Quin-C7) against IBD. We first analyzed the cryo-electron microscopy structure of the Quin-C1-FPR2 in complex with heterotrimeric Gi to reveal the structural basis for ligand recognition and FPR2 activation. We then established dextran sulfate sodium (DSS)-induced colitis model in both normal and myeloid depletion mice. We showed that oral administration of Quin-C1 for 7 days ameliorated DSS-induced colitis evidenced by alleviated disease activity indexes, reduced colonic histopathological scores, and corrected cytokine disorders. Meanwhile, we found that oral administration of FPR2/ALX antagonist Quin-C7 exerted therapeutic actions similar to those of Quin-C1. In terms of symptomatic improvements, the ED50 values of Quin-C1 and Quin-C7 were 1.3660 mg/kg and 2.2110 mg/kg, respectively. The underlying mechanisms involved ERK- or ERK/JNK-mediated myeloid cell regulation that limited the development of colitis and inflammation. This is the first demonstration of anti-colitis property caused by synthetic small molecule FPR2/ALX modulators, implying that FPR2/ALX modulation rather than agonism alone ameliorates IBD.
Collapse
Affiliation(s)
- Wen-Sheng Yang
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Qing Liu
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yang Li
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Guan-Yi Li
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shi Lin
- Research Center for Deepsea Bioresources, Sanya, 572025, China
| | - Jie Li
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Lin-Yu Li
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Yuan Li
- Research Center for Deepsea Bioresources, Sanya, 572025, China
| | - Xi-Lin Ge
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Xiao-Zhen Wang
- Research Center for Deepsea Bioresources, Sanya, 572025, China
| | - Wei Wu
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Jun Yan
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Guang-Fei Wang
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Qing-Tong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Research Center for Deepsea Bioresources, Sanya, 572025, China
- Research Center for Medicinal Structural Biology, National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiang Liu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Research Center for Deepsea Bioresources, Sanya, 572025, China.
- Research Center for Medicinal Structural Biology, National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhi-Ping Li
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
- Department of Clinical Pharmacy, Kunshan Maternity and Children's Health Care Hospital, Children's Hospital of Fudan University Kunshan Branch, Kunshan, 215300, China.
| |
Collapse
|
3
|
Gusakov K, Kalinkovich A, Ashkenazi S, Livshits G. Nature of the Association between Rheumatoid Arthritis and Cervical Cancer and Its Potential Therapeutic Implications. Nutrients 2024; 16:2569. [PMID: 39125448 PMCID: PMC11314534 DOI: 10.3390/nu16152569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
It is now established that patients with rheumatoid arthritis (RA) have an increased risk of developing cervical cancer (CC) or its precursor, cervical intraepithelial neoplasia (CIN). However, the underlying mechanisms of this association have not been elucidated. RA is characterized by unresolved chronic inflammation. It is suggested that human papillomavirus (HPV) infection in RA patients exacerbates inflammation, increasing the risk of CC. The tumor microenvironment in RA patients with CC is also marked by chronic inflammation, which aggravates the manifestations of both conditions. Gut and vaginal dysbiosis are also considered potential mechanisms that contribute to the chronic inflammation and aggravation of RA and CC manifestations. Numerous clinical and pre-clinical studies have demonstrated the beneficial effects of various nutritional approaches to attenuate chronic inflammation, including polyunsaturated fatty acids and their derivatives, specialized pro-resolving mediators (SPMs), probiotics, prebiotics, and certain diets. We believe that successful resolution of chronic inflammation and correction of dysbiosis, in combination with current anti-RA and anti-CC therapies, is a promising therapeutic approach for RA and CC. This approach could also reduce the risk of CC development in HPV-infected RA patients.
Collapse
Affiliation(s)
- Kirill Gusakov
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; (K.G.); (S.A.)
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel;
| | - Shai Ashkenazi
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; (K.G.); (S.A.)
| | - Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; (K.G.); (S.A.)
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel;
| |
Collapse
|
4
|
Zhang J, Liu S, Ding W, Wan J, Qin JJ, Wang M. Resolution of inflammation, an active process to restore the immune microenvironment balance: A novel drug target for treating arterial hypertension. Ageing Res Rev 2024; 99:102352. [PMID: 38857706 DOI: 10.1016/j.arr.2024.102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
The resolution of inflammation, the other side of the inflammatory response, is defined as an active and highly coordinated process that promotes the restoration of immune microenvironment balance and tissue repair. Inflammation resolution involves several key processes, including dampening proinflammatory signaling, specialized proresolving lipid mediator (SPM) production, nonlipid proresolving mediator production, efferocytosis and regulatory T-cell (Treg) induction. In recent years, increasing attention has been given to the effects of inflammation resolution on hypertension. Furthermore, our previous studies reported the antihypertensive effects of SPMs. Therefore, in this review, we aim to summarize and discuss the detailed association between arterial hypertension and inflammation resolution. Additional, the association between gut microbe-mediated immune and hypertension is discussed. This findings suggested that accelerating the resolution of inflammation can have beneficial effects on hypertension and its related organ damage. Exploring novel drug targets by focusing on various pathways involved in accelerating inflammation resolution will contribute to the treatment and control of hypertensive diseases in the future.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Siqi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China; Department of Radiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
5
|
Gretschel J, El Hage R, Wang R, Chen Y, Pietzner A, Loew A, Leineweber CG, Wördemann J, Rohwer N, Weylandt KH, Schmöcker C. Harnessing Oxylipins and Inflammation Modulation for Prevention and Treatment of Colorectal Cancer. Int J Mol Sci 2024; 25:5408. [PMID: 38791445 PMCID: PMC11121665 DOI: 10.3390/ijms25105408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers worldwide, ranking as the third most malignant. The incidence of CRC has been increasing with time, and it is reported that Westernized diet and lifestyle play a significant role in its higher incidence and rapid progression. The intake of high amounts of omega-6 (n - 6) PUFAs and low levels of omega-3 (n - 3) PUFAs has an important role in chronic inflammation and cancer progression, which could be associated with the increase in CRC prevalence. Oxylipins generated from PUFAs are bioactive lipid mediators and have various functions, especially in inflammation and proliferation. Carcinogenesis is often a consequence of chronic inflammation, and evidence has shown the particular involvement of n - 6 PUFA arachidonic acid-derived oxylipins in CRC, which is further described in this review. A deeper understanding of the role and metabolism of PUFAs by their modifying enzymes, their pathways, and the corresponding oxylipins may allow us to identify new approaches to employ oxylipin-associated immunomodulation to enhance immunotherapy in cancer. This paper summarizes oxylipins identified in the context of the initiation, development, and metastasis of CRC. We further explore CRC chemo-prevention strategies that involve oxylipins as potential therapeutics.
Collapse
Affiliation(s)
- Julius Gretschel
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
| | - Racha El Hage
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Department of Vascular Surgery, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Fehrbelliner Str. 38, 16816 Neuruppin, Germany
| | - Ruirui Wang
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Yifang Chen
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Anne Pietzner
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
| | - Andreas Loew
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
| | - Can G. Leineweber
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
| | - Jonas Wördemann
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
| | - Nadine Rohwer
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
- Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | - Karsten H. Weylandt
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
| | - Christoph Schmöcker
- Medical Department B, Division of Hepatology, Gastroenterology, Oncology, Hematology, Palliative Care, Endocrinology and Diabetes, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany (R.E.H.); (Y.C.); (A.P.); (A.L.); (C.G.L.); (J.W.); (N.R.); (K.H.W.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, Brandenburg Medical School and University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
6
|
Ahluwalia K, Du Z, Martinez-Camarillo JC, Naik A, Thomas BB, Pollalis D, Lee SY, Dave P, Zhou E, Li Z, Chester C, Humayun MS, Louie SG. Unveiling Drivers of Retinal Degeneration in RCS Rats: Functional, Morphological, and Molecular Insights. Int J Mol Sci 2024; 25:3749. [PMID: 38612560 PMCID: PMC11011632 DOI: 10.3390/ijms25073749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Retinal degenerative diseases, including age-related macular degeneration and retinitis pigmentosa, significantly contribute to adult blindness. The Royal College of Surgeons (RCS) rat is a well-established disease model for studying these dystrophies; however, molecular investigations remain limited. We conducted a comprehensive analysis of retinal degeneration in RCS rats, including an immunodeficient RCS (iRCS) sub-strain, using ocular coherence tomography, electroretinography, histology, and molecular dissection using transcriptomics and immunofluorescence. No significant differences in retinal degeneration progression were observed between the iRCS and immunocompetent RCS rats, suggesting a minimal role of adaptive immune responses in disease. Transcriptomic alterations were primarily in inflammatory signaling pathways, characterized by the strong upregulation of Tnfa, an inflammatory signaling molecule, and Nox1, a contributor to reactive oxygen species (ROS) generation. Additionally, a notable decrease in Alox15 expression was observed, pointing to a possible reduction in anti-inflammatory and pro-resolving lipid mediators. These findings were corroborated by immunostaining, which demonstrated increased photoreceptor lipid peroxidation (4HNE) and photoreceptor citrullination (CitH3) during retinal degeneration. Our work enhances the understanding of molecular changes associated with retinal degeneration in RCS rats and offers potential therapeutic targets within inflammatory and oxidative stress pathways for confirmatory research and development.
Collapse
Affiliation(s)
- Kabir Ahluwalia
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Zhaodong Du
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
| | - Juan Carlos Martinez-Camarillo
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Aditya Naik
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Biju B. Thomas
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Dimitrios Pollalis
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Sun Young Lee
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Priyal Dave
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Eugene Zhou
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Zeyang Li
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Catherine Chester
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
| | - Mark S. Humayun
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Stan G. Louie
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.); (P.D.); (E.Z.); (Z.L.); (C.C.)
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (Z.D.); (J.C.M.-C.); (B.B.T.); (D.P.); (S.Y.L.); (M.S.H.)
| |
Collapse
|
7
|
Mead AJ, Ahluwalia K, Ebright B, Zhang Z, Dave P, Li Z, Zhou E, Naik AA, Ngu R, Chester C, Lu A, Asante I, Pollalis D, Martinez JC, Humayun M, Louie S. Loss of 15-Lipoxygenase in Retinodegenerative RCS Rats. Int J Mol Sci 2024; 25:2309. [PMID: 38396985 PMCID: PMC10889776 DOI: 10.3390/ijms25042309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Retinitis pigmentosa (RP) is a retinal degenerative disease associated with a diversity of genetic mutations. In a natural progression study (NPS) evaluating the molecular changes in Royal College of Surgeons (RCS) rats using lipidomic profiling, RNA sequencing, and gene expression analyses, changes associated with retinal degeneration from p21 to p60 were evaluated, where reductions in retinal ALOX15 expression corresponded with disease progression. This important enzyme catalyzes the formation of specialized pro-resolving mediators (SPMs) such as lipoxins (LXs), resolvins (RvDs), and docosapentaenoic acid resolvins (DPA RvDs), where reduced ALOX15 corresponded with reduced SPMs. Retinal DPA RvD2 levels were found to correlate with retinal structural and functional decline. Retinal RNA sequencing comparing p21 with p60 showed an upregulation of microglial inflammatory pathways accompanied by impaired damage-associated molecular pattern (DAMP) clearance pathways. This analysis suggests that ALXR/FPR2 activation can ameliorate disease progression, which was supported by treatment with an LXA4 analog, NAP1051, which was able to promote the upregulation of ALOX12 and ALOX15. This study showed that retinal inflammation from activated microglia and dysregulation of lipid metabolism were central to the pathogenesis of retinal degeneration in RP, where ALXR/FPR2 activation was able to preserve retinal structure and function.
Collapse
Affiliation(s)
- Andrew James Mead
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Kabir Ahluwalia
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Brandon Ebright
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Zeyu Zhang
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Priyal Dave
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Zeyang Li
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Eugene Zhou
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Aditya Anil Naik
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Rachael Ngu
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Catherine Chester
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Angela Lu
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
| | - Isaac Asante
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
- University of Southern California Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (D.P.); (J.C.M.); (M.H.)
- University of Southern California Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Dimitrios Pollalis
- University of Southern California Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (D.P.); (J.C.M.); (M.H.)
- University of Southern California Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Juan Carlos Martinez
- University of Southern California Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (D.P.); (J.C.M.); (M.H.)
- University of Southern California Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mark Humayun
- University of Southern California Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (D.P.); (J.C.M.); (M.H.)
- University of Southern California Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Stan Louie
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.J.M.); (K.A.); (B.E.); (Z.Z.); (P.D.); (Z.L.); (E.Z.); (A.A.N.); (R.N.); (C.C.); (A.L.); (I.A.)
- University of Southern California Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (D.P.); (J.C.M.); (M.H.)
- University of Southern California Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
8
|
Lu A, Ebright B, Naik A, Tan HL, Cohen NA, Bouteiller JMC, Lazzi G, Louie SG, Humayun MS, Asante I. Hydroxypropyl-Beta Cyclodextrin Barrier Prevents Respiratory Viral Infections: A Preclinical Study. Int J Mol Sci 2024; 25:2061. [PMID: 38396738 PMCID: PMC10888609 DOI: 10.3390/ijms25042061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The emergence and mutation of pathogenic viruses have been occurring at an unprecedented rate in recent decades. The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has developed into a global public health crisis due to extensive viral transmission. In situ RNA mapping has revealed angiotensin-converting enzyme 2 (ACE2) expression to be highest in the nose and lower in the lung, pointing to nasal susceptibility as a predominant route for infection and the cause of subsequent pulmonary effects. By blocking viral attachment and entry at the nasal airway using a cyclodextrin-based formulation, a preventative therapy can be developed to reduce viral infection at the site of entry. Here, we assess the safety and antiviral efficacy of cyclodextrin-based formulations. From these studies, hydroxypropyl beta-cyclodextrin (HPBCD) and hydroxypropyl gamma-cyclodextrin (HPGCD) were then further evaluated for antiviral effects using SARS-CoV-2 pseudotypes. Efficacy findings were confirmed with SARS-CoV-2 Delta variant infection of Calu-3 cells and using a K18-hACE2 murine model. Intranasal pre-treatment with HPBCD-based formulations reduced viral load and inflammatory signaling in the lung. In vitro efficacy studies were further conducted using lentiviruses, murine hepatitis virus (MHV), and influenza A virus subtype H1N1. These findings suggest HPBCD may be used as an agnostic barrier against transmissible pathogens, including but not limited to SARS-CoV-2.
Collapse
Affiliation(s)
- Angela Lu
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
| | - Brandon Ebright
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
| | - Aditya Naik
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
| | - Hui L. Tan
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.L.T.); (N.A.C.)
| | - Noam A. Cohen
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.L.T.); (N.A.C.)
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Jean-Marie C. Bouteiller
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA; (J.-M.C.B.); (G.L.); (M.S.H.)
| | - Gianluca Lazzi
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA; (J.-M.C.B.); (G.L.); (M.S.H.)
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Stan G. Louie
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
| | - Mark S. Humayun
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA; (J.-M.C.B.); (G.L.); (M.S.H.)
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Isaac Asante
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
9
|
Chi J, Cheng J, Wang S, Li C, Chen M. Promising Anti-Inflammatory Tools: Biomedical Efficacy of Lipoxins and Their Synthetic Pathways. Int J Mol Sci 2023; 24:13282. [PMID: 37686088 PMCID: PMC10487465 DOI: 10.3390/ijms241713282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Lipoxins (LXs) have attracted widespread attention as a class of anti-inflammatory lipid mediators that are produced endogenously by the organism. LXs are arachidonic acid (ARA) derivatives that include four different structures: lipoxin A4 (LXA4), lipoxin B4 (LXB4), and the aspirin-induced differential isomers 15-epi-LXA4 and 15-epi-LXB4. Because of their unique biological activity of reducing inflammation in the body, LXs have great potential for neuroprotection, anti-inflammatory treatment of COVID-19, and other related diseases. The synthesis of LXs in vivo is achieved through the action of lipoxygenase (LO). As a kind of important enzyme, LO plays a major role in the physiological processes of living organisms in mammals and functions in some bacteria and fungi. This suggests new options for the synthesis of LXs in vitro. Meanwhile, there are other chemical and biochemical methods to synthesize LXs. In this review, the recent progress on physiological activity and synthetic pathways of LXs is summarized, and new insights into the synthesis of LXs in vitro are provided.
Collapse
Affiliation(s)
| | | | | | | | - Ming Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
10
|
Ahluwalia K, Martinez-Camarillo JC, Thomas BB, Naik A, Gonzalez-Calle A, Pollalis D, Lebkowski J, Lee SY, Mitra D, Louie SG, Humayun MS. Polarized RPE Secretome Preserves Photoreceptors in Retinal Dystrophic RCS Rats. Cells 2023; 12:1689. [PMID: 37443724 PMCID: PMC10340490 DOI: 10.3390/cells12131689] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Retinal degenerative diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa, lack effective therapies. Conventional monotherapeutic approaches fail to target the multiple affected pathways in retinal degeneration. However, the retinal pigment epithelium (RPE) secretes several neurotrophic factors addressing diverse cellular pathways, potentially preserving photoreceptors. This study explored human embryonic stem cell-derived, polarized RPE soluble factors (PRPE-SF) as a combination treatment for retinal degeneration. PRPE-SF promoted retinal progenitor cell survival, reduced oxidative stress in ARPE-19 cells, and demonstrated critical antioxidant and anti-inflammatory effects for preventing retinal degeneration in the Royal College of Surgeons (RCS) rat model. Importantly, PRPE-SF treatment preserved retinal structure and scotopic b-wave amplitudes, suggesting therapeutic potential for delaying retinal degeneration. PRPE-SF is uniquely produced using biomimetic membranes for RPE polarization and maturation, promoting a protective RPE secretome phenotype. Additionally, PRPE-SF is produced without animal serum to avoid immunogenicity in future clinical development. Lastly, PRPE-SF is a combination of neurotrophic factors, potentially ameliorating multiple dysfunctions in retinal degenerations. In conclusion, PRPE-SF offers a promising therapeutic candidate for retinal degenerative diseases, advancing the development of effective therapeutic strategies for these debilitating conditions.
Collapse
Affiliation(s)
- Kabir Ahluwalia
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.)
| | - Juan-Carlos Martinez-Camarillo
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Biju B. Thomas
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Aditya Naik
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.)
| | - Alejandra Gonzalez-Calle
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Dimitrios Pollalis
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jane Lebkowski
- Regenerative Patch Technologies LLC, Menlo Park, CA 94028, USA;
| | - Sun Young Lee
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Debbie Mitra
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
| | - Stan G. Louie
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.)
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
| | - Mark S. Humayun
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
11
|
Zhao Y, Zhang X, Wang G, Wu H, Chen R, Zhang Y, Yang S, Liu L. LXA4 inhibits TGF-β1-induced airway smooth muscle cells proliferation and migration by suppressing the Smad/YAP pathway. Int Immunopharmacol 2023; 118:110144. [PMID: 37030120 DOI: 10.1016/j.intimp.2023.110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/10/2023]
Abstract
The aims of the present study were to examine the signaling mechanisms for transforming growth factor-β1 (TGF-β1)-induced rat airway smooth muscle cells (ASMCs) proliferation and migration and to determine the effect of lipoxin A4 (LXA4) on TGF-β1-induced rat ASMCs proliferation and migration and its underlying mechanisms. TGF-β1 upregulated transcriptional coactivator Yes-associated protein (YAP) expression by activating Smad2/3 and then upregulated cyclin D1, leading to rat ASMCs proliferation and migration. This effect was reversed after treatment with the TGF-β1 receptor inhibitor SB431542. YAP is a critical mediator of TGF-β1-induced ASMCs proliferation and migration. Knockdown of YAP disrupted the pro-airway remodeling function of TGF-β1. Preincubation of rat ASMCs with LXA4 blocked TGF-β1-induced activation of Smad2/3 and changed its downstream targets, YAP and cyclin D1, resulting in the inhibition of rat ASMCs proliferation and migration. Our study suggests that LXA4 suppresses Smad/YAP signaling to inhibit rat ASMCs proliferation and migration and therefore has potential value in the prevention and treatment of asthma by negatively modulating airway remodeling.
Collapse
Affiliation(s)
- Yali Zhao
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, Shaanxi 710068, PR China
| | - Xiangli Zhang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, Shaanxi 710068, PR China
| | - Guizuo Wang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, Shaanxi 710068, PR China
| | - Hua Wu
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, Shaanxi 710068, PR China
| | - Ruilin Chen
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, Shaanxi 710068, PR China
| | - Yongqing Zhang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, Shaanxi 710068, PR China
| | - Shumei Yang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, Shaanxi 710068, PR China
| | - Lu Liu
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, Shaanxi 710068, PR China.
| |
Collapse
|
12
|
Alba MM, Ebright B, Hua B, Slarve I, Zhou Y, Jia Y, Louie SG, Stiles BL. Eicosanoids and other oxylipins in liver injury, inflammation and liver cancer development. Front Physiol 2023; 14:1098467. [PMID: 36818443 PMCID: PMC9932286 DOI: 10.3389/fphys.2023.1098467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Liver cancer is a malignancy developed from underlying liver disease that encompasses liver injury and metabolic disorders. The progression from these underlying liver disease to cancer is accompanied by chronic inflammatory conditions in which liver macrophages play important roles in orchestrating the inflammatory response. During this process, bioactive lipids produced by hepatocytes and macrophages mediate the inflammatory responses by acting as pro-inflammatory factors, as well as, playing roles in the resolution of inflammation conditions. Here, we review the literature discussing the roles of bioactive lipids in acute and chronic hepatic inflammation and progression to cancer.
Collapse
Affiliation(s)
- Mario M. Alba
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Brandon Ebright
- Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Brittney Hua
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Ielyzaveta Slarve
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Yiren Zhou
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Yunyi Jia
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Stan G. Louie
- Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Bangyan L. Stiles
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
- Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, Unites States
| |
Collapse
|
13
|
Formyl peptide receptor 2 as a potential therapeutic target for inflammatory bowel disease. Acta Pharmacol Sin 2023; 44:19-31. [PMID: 35840658 DOI: 10.1038/s41401-022-00944-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/15/2022] [Indexed: 01/18/2023]
Abstract
Inflammatory bowel disease (IBD) is a global health burden whose existing treatment is largely dependent on anti-inflammatory agents. Despite showing some therapeutic actions, their clinical efficacy and adverse events are unacceptable. Resolution as an active and orchestrated phase of inflammation involves improper inflammatory response with three key triggers, specialized pro-resolving mediators (SPMs), neutrophils and phagocyte efferocytosis. The formyl peptide receptor 2 (FPR2/ALX) is a human G protein-coupled receptor capable of binding SPMs and participates in the resolution process. This receptor has been implicated in several inflammatory diseases and its association with mouse model of IBD was established in some resolution-related studies. Here, we give an overview of three reported FPR2/ALX agonists highlighting their respective roles in pro-resolving strategies.
Collapse
|
14
|
Asante I, Louie S, Yassine HN. Uncovering mechanisms of brain inflammation in Alzheimer's disease with APOE4: Application of single cell-type lipidomics. Ann N Y Acad Sci 2022; 1518:84-105. [PMID: 36200578 PMCID: PMC10092192 DOI: 10.1111/nyas.14907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A chronic state of unresolved inflammation in Alzheimer's disease (AD) is intrinsically involved with the remodeling of brain lipids. This review highlights the effect of carrying the apolipoprotein E ε4 allele (APOE4) on various brain cell types in promoting an unresolved inflammatory state. Among its pleotropic effects on brain lipids, we focus on APOE4's activation of Ca2+ -dependent phospholipase A2 (cPLA2) and its effects on arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid signaling cascades in the brain. During the process of neurodegeneration, various brain cell types, such as astrocytes, microglia, and neurons, together with the neurovascular unit, develop distinct inflammatory phenotypes that impact their functions and have characteristic lipidomic fingerprints. We propose that lipidomic phenotyping of single cell-types harvested from brains differing by age, sex, disease severity stage, and dietary and genetic backgrounds can be employed to probe mechanisms of neurodegeneration. A better understanding of the brain cellular inflammatory/lipidomic response promises to guide the development of nutritional and drug interventions for AD dementia.
Collapse
Affiliation(s)
- Isaac Asante
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Stan Louie
- School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Hussein N Yassine
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
15
|
Liotti F, Marotta M, Sorriento D, Pagliuca C, Caturano V, Mantova G, Scaglione E, Salvatore P, Melillo RM, Prevete N. The probiotic Lactobacillus rhamnosus GG (LGG) restrains the angiogenic potential of colorectal carcinoma cells by activating a pro-resolving program via formyl peptide receptor 1. Mol Oncol 2022; 16:2959-2980. [PMID: 35808840 PMCID: PMC9394235 DOI: 10.1002/1878-0261.13280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/31/2022] [Accepted: 07/07/2022] [Indexed: 12/05/2022] Open
Abstract
Formyl peptide receptors (FPR1, FPR2 and FPR3) are innate immune sensors of pathogen and commensal bacteria and have a role in colonic mucosa homeostasis. We identified FPR1 as a tumour suppressor in gastric cancer cells due to its ability to sustain an inflammation resolution response with antiangiogenic potential. Here, we investigate whether FPR1 exerts similar functions in colorectal carcinoma (CRC) cells. Since it has been shown that the commensal bacterium Lactobacillus rhamnosus GG (LGG) can promote intestinal epithelial homeostasis through FPR1, we explored the possibility that it could induce proresolving and antiangiogenic effects in CRC cells. We demonstrated that pharmacologic inhibition or genetic deletion of FPR1 in CRC cells caused a reduction of proresolving mediators and a consequent upregulation of angiogenic factors. The activation of FPR1 mediates opposite effects. Proresolving, antiangiogenic and homeostatic functions were also observed upon treatment of CRC cells with supernatant of LGG culture, but not of other lactic acid or nonprobiotic bacteria (i.e. Bifidobacterium bifidum or Escherichia coli). These activities of LGG are dependent on FPR1 expression and on the subsequent MAPK signalling activation. Thus, the innate immune receptor FPR1 could be a regulator of the balance between microbiota, inflammation and cancer in CRC models.
Collapse
Affiliation(s)
- Federica Liotti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Naples, Italy
| | - Maria Marotta
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Daniela Sorriento
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Valeria Caturano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giuseppe Mantova
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Elena Scaglione
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE, Biotecnologie Avanzate s.c.ar.l., Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Rosa Marina Melillo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Naples, Italy
| | - Nella Prevete
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.,Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|