1
|
Noncanonical roles of p53 in cancer stemness and their implications in sarcomas. Cancer Lett 2022; 525:131-145. [PMID: 34742870 DOI: 10.1016/j.canlet.2021.10.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/24/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022]
Abstract
Impairment of the prominent tumor suppressor p53, well known for its canonical role as the "guardian of the genome", is found in almost half of human cancers. More recently, p53 has been suggested to be a crucial regulator of stemness, orchestrating the differentiation of embryonal and adult stem cells, suppressing reprogramming into induced pluripotent stem cells, or inhibiting cancer stemness (i.e., cancer stem cells, CSCs), which underlies the development of therapy-resistant tumors. This review addresses these noncanonical roles of p53 and their implications in sarcoma initiation and progression. Indeed, dysregulation of p53 family proteins is a common event in sarcomas and is associated with poor survival. Additionally, emerging studies have demonstrated that loss of wild-type p53 activity hinders the terminal differentiation of mesenchymal stem cells and leads to the development of aggressive sarcomas. This review summarizes recent findings on the roles of aberrant p53 in sarcoma development and stemness and further describes therapeutic approaches to restore normal p53 activity as a promising anti-CSC strategy to treat refractory sarcomas.
Collapse
|
2
|
Wu H, Zhang B, Zhao J, Zhao Y, Ma X, Feng H. Weighted Gene Co-Expression Network Analysis Identifies Five Hub Genes Associated with Metastasis in Synovial Sarcoma. Comb Chem High Throughput Screen 2021; 25:1767-1777. [PMID: 34182903 DOI: 10.2174/1386207324666210628112429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Synovial sarcoma (SS) refers to a malignant soft tissue sarcoma (STS) which often occurs in children and adults and has a poor prognosis in elderly patients. Patients with local lesions can be treated with extensive surgical resection combined with adjuvant or radiotherapy, whereas about half of the cases have recurrent diseases and metastatic lesions, and five-year survival ratio is assessed within the range of 27% - 55% only. METHOD We downloaded a set of expression profile data (GSE40021) related to SS metastasis based on the Gene Expression Omnibus (GEO) database, and selected distinctly represented genes (DEGs) related to tumor metastasis. WGCNA was used to emphasize the DEGs related to tumor metastasis and obtain co-expression modules. Then, the module most related to SS metastasis was screened out. The genes enriched in this module were analyzed by Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway improvement analysis. Cytoscape software was used for constructing protein-protein interaction (PPI) networks, and hub genes were screened in Oncomine analysis. RESULT We selected 514 DEGs, consisting of 210 up-regulated genes and 304 down-regulated genes. Through WGCAN, we got seven co-expression modules and the module most related to SS metastasis was the turquoise module, which contained 66 genes. Finally, we screened out five hub genes (HJURP, NCAPG, TPX2, CENPA, NDC80) through CytoHubba and Oncomine analysis. CONCLUSION In this study, we screened five hub genes that may help in clinical diagnosis and serve as the latent purpose of SS treatment.
Collapse
Affiliation(s)
- Hongzeng Wu
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei 050011, China
| | - Benzheng Zhang
- Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei 050011, China
| | - Jiazheng Zhao
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei 050011, China
| | - Yi Zhao
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei 050011, China
| | - Xiaowei Ma
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei 050011, China
| | - Helin Feng
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei 050011, China
| |
Collapse
|
3
|
Kannan S, Lock I, Ozenberger BB, Jones KB. Genetic drivers and cells of origin in sarcomagenesis. J Pathol 2021; 254:474-493. [DOI: 10.1002/path.5617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/01/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Sarmishta Kannan
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Ian Lock
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Benjamin B Ozenberger
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Kevin B Jones
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| |
Collapse
|
4
|
Innis SM, Cabot B. GBAF, a small BAF sub-complex with big implications: a systematic review. Epigenetics Chromatin 2020; 13:48. [PMID: 33143733 PMCID: PMC7607862 DOI: 10.1186/s13072-020-00370-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/23/2020] [Indexed: 12/01/2022] Open
Abstract
ATP-dependent chromatin remodeling by histone-modifying enzymes and chromatin remodeling complexes is crucial for maintaining chromatin organization and facilitating gene transcription. In the SWI/SNF family of ATP-dependent chromatin remodelers, distinct complexes such as BAF, PBAF, GBAF, esBAF and npBAF/nBAF are of particular interest regarding their implications in cellular differentiation and development, as well as in various diseases. The recently identified BAF subcomplex GBAF is no exception to this, and information is emerging linking this complex and its components to crucial events in mammalian development. Furthermore, given the essential nature of many of its subunits in maintaining effective chromatin remodeling function, it comes as no surprise that aberrant expression of GBAF complex components is associated with disease development, including neurodevelopmental disorders and numerous malignancies. It becomes clear that building upon our knowledge of GBAF and BAF complex function will be essential for advancements in both mammalian reproductive applications and the development of more effective therapeutic interventions and strategies. Here, we review the roles of the SWI/SNF chromatin remodeling subcomplex GBAF and its subunits in mammalian development and disease.
Collapse
Affiliation(s)
- Sarah M Innis
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Birgit Cabot
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
5
|
Knott MML, Hölting TLB, Ohmura S, Kirchner T, Cidre-Aranaz F, Grünewald TGP. Targeting the undruggable: exploiting neomorphic features of fusion oncoproteins in childhood sarcomas for innovative therapies. Cancer Metastasis Rev 2019; 38:625-642. [PMID: 31970591 PMCID: PMC6994515 DOI: 10.1007/s10555-019-09839-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
While sarcomas account for approximately 1% of malignant tumors of adults, they are particularly more common in children and adolescents affected by cancer. In contrast to malignancies that occur in later stages of life, childhood tumors, including sarcoma, are characterized by a striking paucity of somatic mutations. However, entity-defining fusion oncogenes acting as the main oncogenic driver mutations are frequently found in pediatric bone and soft-tissue sarcomas such as Ewing sarcoma (EWSR1-FLI1), alveolar rhabdomyosarcoma (PAX3/7-FOXO1), and synovial sarcoma (SS18-SSX1/2/4). Since strong oncogene-dependency has been demonstrated in these entities, direct pharmacological targeting of these fusion oncogenes has been excessively attempted, thus far, with limited success. Despite apparent challenges, our increasing understanding of the neomorphic features of these fusion oncogenes in conjunction with rapid technological advances will likely enable the development of new strategies to therapeutically exploit these neomorphic features and to ultimately turn the "undruggable" into first-line target structures. In this review, we provide a broad overview of the current literature on targeting neomorphic features of fusion oncogenes found in Ewing sarcoma, alveolar rhabdomyosarcoma, and synovial sarcoma, and give a perspective for future developments. Graphical abstract Scheme depicting the different targeting strategies of fusion oncogenes in pediatric fusion-driven sarcomas. Fusion oncogenes can be targeted on their DNA level (1), RNA level (2), protein level (3), and by targeting downstream functions and interaction partners (4).
Collapse
Affiliation(s)
- Maximilian M L Knott
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
- Faculty of Medicine, Institute of Pathology, LMU Munich, Munich, Germany
| | - Tilman L B Hölting
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
| | - Shunya Ohmura
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
| | - Thomas Kirchner
- Faculty of Medicine, Institute of Pathology, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florencia Cidre-Aranaz
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Thalkirchner Str. 36, 80337, Munich, Germany.
- Faculty of Medicine, Institute of Pathology, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
6
|
Thoenen E, Curl A, Iwakuma T. TP53 in bone and soft tissue sarcomas. Pharmacol Ther 2019; 202:149-164. [PMID: 31276706 DOI: 10.1016/j.pharmthera.2019.06.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
Genomic and functional study of existing and emerging sarcoma targets, such as fusion proteins, chromosomal aberrations, reduced tumor suppressor activity, and oncogenic drivers, is broadening our understanding of sarcomagenesis. Among these mechanisms, the tumor suppressor p53 (TP53) plays significant roles in the suppression of bone and soft tissue sarcoma progression. Although mutations in TP53 were thought to be relatively low in sarcomas, modern techniques including whole-genome sequencing have recently illuminated unappreciated alterations in TP53 in osteosarcoma. In addition, oncogenic gain-of-function activities of missense mutant p53 (mutp53) have been reported in sarcomas. Moreover, new targeting strategies for TP53 have been discovered: restoration of wild-type p53 (wtp53) activity through inhibition of TP53 negative regulators, reactivation of the wtp53 activity from mutp53, depletion of mutp53, and targeting of vulnerabilities in cells with TP53 deletions or mutations. These discoveries enable development of novel therapeutic strategies for therapy-resistant sarcomas. We have outlined nine bone and soft tissue sarcomas for which TP53 plays a crucial tumor suppressive role. These include osteosarcoma, Ewing sarcoma, chondrosarcoma, rhabdomyosarcoma (RMS), leiomyosarcoma (LMS), synovial sarcoma, liposarcoma (LPS), angiosarcoma, and undifferentiated pleomorphic sarcoma (UPS).
Collapse
Affiliation(s)
- Elizabeth Thoenen
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66010, USA
| | - Amanda Curl
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66010, USA
| | - Tomoo Iwakuma
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66010, USA; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66010, USA; Translational Laboratory Oncology Research, Children's Mercy Research Institute, Kansas City, MO 64108, USA.
| |
Collapse
|
7
|
Laporte AN, Ji JX, Ma L, Nielsen TO, Brodin BA. Identification of cytotoxic agents disrupting synovial sarcoma oncoprotein interactions by proximity ligation assay. Oncotarget 2018; 7:34384-94. [PMID: 27120803 PMCID: PMC5085163 DOI: 10.18632/oncotarget.8882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 04/02/2016] [Indexed: 02/06/2023] Open
Abstract
Conventional cytotoxic therapies for synovial sarcoma provide limited benefit. Drugs specifically targeting the product of its driver translocation are currently unavailable, in part because the SS18-SSX oncoprotein functions via aberrant interactions within multiprotein complexes. Proximity ligation assay is a recently-developed method that assesses protein-protein interactions in situ. Here we report use of the proximity ligation assay to confirm the oncogenic association of SS18-SSX with its co-factor TLE1 in multiple human synovial sarcoma cell lines and in surgically-excised human tumor tissue. SS18-SSX/TLE1 interactions are disrupted by class I HDAC inhibitors and novel small molecule inhibitors. This assay can be applied in a high-throughput format for drug discovery in fusion-oncoprotein associated cancers where key effector partners are known.
Collapse
Affiliation(s)
- Aimée N Laporte
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Jennifer X Ji
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Limin Ma
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Torsten O Nielsen
- Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Bertha A Brodin
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Ma L, Maruwge W, Strambi A, D'Arcy P, Pellegrini P, Kis L, de Milito A, Lain S, Brodin B. SIRT1 and SIRT2 inhibition impairs pediatric soft tissue sarcoma growth. Cell Death Dis 2014; 5:e1483. [PMID: 25341037 PMCID: PMC4237232 DOI: 10.1038/cddis.2014.385] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 11/29/2022]
Abstract
Sirtuins are NAD+ dependent deacetylases and/or ADP-ribosyl transferases active on histone and non-histone substrates. The first sirtuin was discovered as a transcriptional repressor of the mating-type-loci (Silent Information Regulator sir2) in the budding yeast, where it was shown to extend yeast lifespan. Seven mammalian sirtuins (SIRT1-7) have been now identified with distinct subcellular localization, enzymatic activities and substrates. These enzymes regulate cellular processes such as metabolism, cell survival, differentiation, DNA repair and they are implicated in the pathogenesis of solid tumors and leukemias. The purpose of the present study was to investigate the role of sirtuin expression, activity and inhibition in the survival of pediatric sarcoma cell lines.We have analyzed the expression of SIRT1 and SIRT2 in a series of pediatric sarcoma tumor cell lines and normal cells, and we have evaluated the activity of the sirtuin inhibitor and p53 activator tenovin-6 (Tv6) in synovial sarcoma and rhabdomyosarcoma cell lines. We show that SIRT1 is overexpressed in synovial sarcoma biopsies and cell lines in comparison with normal mesenchymal cells. Tv6 induced apoptosis as well as impaired autophagy flux. Using siRNA to knock down SIRT1 and SIRT2, we show that the expression of both proteins is crucial for the survival of rhabdomyosarcoma cells and that the loss of SIRT1 expression results in a decreased LC3II expression. Our results show that SIRT1 and SIRT2 expressions are crucial for the survival of synovial sarcomas and rhabdomyosarcomas, and demonstrate that the pharmacological inhibition of sirtuins impairs the autophagy process and induces tumor cell death.
Collapse
Affiliation(s)
- L Ma
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - W Maruwge
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - A Strambi
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - P D'Arcy
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - P Pellegrini
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - L Kis
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - A de Milito
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - S Lain
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - B Brodin
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Carmody Soni EE, Schlottman S, Erkizan HV, Uren A, Toretsky JA. Loss of SS18-SSX1 inhibits viability and induces apoptosis in synovial sarcoma. Clin Orthop Relat Res 2014; 472:874-82. [PMID: 23716114 PMCID: PMC3916608 DOI: 10.1007/s11999-013-3065-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Most synovial sarcomas contain a chromosomal translocation t(X;18), which results in the formation of an oncoprotein SS18-SSX critical to the viability of synovial sarcoma. QUESTIONS/PURPOSES We (1) established and characterized three novel synovial sarcoma cell lines and asked (2) whether inhibition of SS18-SSX1 decreases cell viability in these cell lines; and (3) whether reduction in viability after SS18-SSX1 knockdown is caused by apoptosis. After identifying a specific posttranscriptional splice variant in our cell lines, we asked (4) whether this provides a survival benefit in synovial sarcoma. METHODS Cells lines were characterized. SS18-SSX1 knockdown was achieved using a shRNA system. Cell viability was assessed by WST-1 analysis and apoptosis examined by caspase-3 activity. RESULTS We confirmed the SS18-SSX1 translocation in all cell lines and identified a consistent splicing variant. We achieved successful knockdown of SS18-SSX1 and with this saw a significant reduction in cell viability. Decreased viability was a result of increased apoptosis. Reintroduction of the exon 8 sequence into cells reduced cell viability in all cell lines. CONCLUSIONS We confirmed the presence of the SS18-SSX1 translocation in our cell lines and its importance in the survival of synovial sarcoma. We have also demonstrated that reduction in cell viability is related to an increase in apoptosis. In addition, we have identified a potential mediator of SS18-SSX function in exon 8. CLINICAL RELEVANCE SS18-SSX represents a tumor-specific target in synovial sarcoma. Exploitation of SS18-SSX and its protein partners will allow us to develop potent tumor-specific therapeutic agents.
Collapse
Affiliation(s)
- Emily E. Carmody Soni
- MedStar Georgetown Orthopaedic Institute, 110 Irving Street, NW C-2173, Washington, DC 20010 USA ,Department of Oncology, Lombardi Comprehensive Cancer Institute, Washington, DC USA
| | - Silke Schlottman
- Department of Oncology, Lombardi Comprehensive Cancer Institute, Washington, DC USA
| | - Hayriye V. Erkizan
- Department of Oncology, Lombardi Comprehensive Cancer Institute, Washington, DC USA
| | - Aykut Uren
- Department of Oncology, Lombardi Comprehensive Cancer Institute, Washington, DC USA
| | - Jeffrey A. Toretsky
- Department of Oncology, Lombardi Comprehensive Cancer Institute, Washington, DC USA
| |
Collapse
|
10
|
Biswas S, Killick E, Jochemsen AG, Lunec J. The clinical development of p53-reactivating drugs in sarcomas - charting future therapeutic approaches and understanding the clinical molecular toxicology of Nutlins. Expert Opin Investig Drugs 2014; 23:629-45. [PMID: 24579771 DOI: 10.1517/13543784.2014.892924] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The majority of human sarcomas, particularly soft tissue sarcomas, are relatively resistant to traditional cytotoxic therapies. The proof-of-concept study by Ray-Coquard et al., using the Nutlin human double minute (HDM)2-binding antagonist RG7112, has recently opened a new chapter in the molecular targeting of human sarcomas. AREAS COVERED In this review, the authors discuss the challenges and prospective remedies for minimizing the significant haematological toxicities of the cis-imidazole Nutlin HDM2-binding antagonists. Furthermore, they also chart the future direction of the development of p53-reactivating (p53-RA) drugs in 12q13-15 amplicon sarcomas and as potential chemopreventative therapies against sarcomagenesis in germ line mutated TP53 carriers. Drawing lessons from the therapeutic use of Imatinib in gastrointestinal tumours, the authors predict the potential pitfalls, which may lie in ahead for the future clinical development of p53-RA agents, as well as discussing potential non-invasive methods to identify the development of drug resistance. EXPERT OPINION Medicinal chemistry strategies, based on structure-based drug design, are required to re-engineer cis-imidazoline Nutlin HDM2-binding antagonists into less haematologically toxic drugs. In silico modelling is also required to predict toxicities of other p53-RA drugs at a much earlier stage in drug development. Whether p53-RA drugs will be therapeutically effective as a monotherapy remains to be determined.
Collapse
Affiliation(s)
- Swethajit Biswas
- University Hospitals Southampton NHS Foundation Trust, Southampton General Hospital, Division of Medical Oncology, Sarcoma Unit , Floor D, East Wing, Southampton, Tremona Road, Southampton, SO16 6YD , UK
| | | | | | | |
Collapse
|
11
|
Caballero OL, Cohen T, Gurung S, Chua R, Lee P, Chen YT, Jat P, Simpson AJG. Effects of CT-Xp gene knock down in melanoma cell lines. Oncotarget 2013; 4:531-41. [PMID: 23625514 PMCID: PMC3720601 DOI: 10.18632/oncotarget.921] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cancer/testis (CT) genes are encoded by genes that are normally expressed only in the human germ line but which are activated in various malignancies. CT proteins are frequently immunogenic in cancer patients and their expression is highly restricted to tumors. They are thus important targets for anticancer immunotherapy. In several different tumor types, the expression of CT-X genes is associated with advanced disease and poor outcome, indicating that their expression might contribute to tumorigenesis. CT-X genes encoding members of the MAGE protein family on Xq28 have been shown to potentially influence the tumorigenic phenotype. We used small interfering RNA (siRNA) to investigate whether CT-X mapping to the short arm of the X-chromosome might also have tumorigenic properties and therefore be potentially targeted by functional inhibitors in a therapeutic setting. siRNAs specific to GAGE, SSX and XAGE1 were used in cell proliferation, migration and cell survival assays using cell lines derived from melanoma, a tumor type known to present high frequencies of expression of CT antigens. We found that of these, those specific to GAGE and XAGE1 most significantly impeded melanoma cell migration and invasion and those specific to SSX4 and XAGE1 decreased the clonogenic survival of melanoma cells. Our results suggest that GAGE, XAGE1 and SSX4 might each have a role in tumor progression and are possible therapeutic targets for the treatment of melanoma and other malignancies.
Collapse
Affiliation(s)
- Otavia L Caballero
- Ludwig Institute for Cancer Research, New York Branch at Memorial Sloan-Kettering Cancer Center, New York, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
A unique pattern of INI1 immunohistochemistry distinguishes synovial sarcoma from its histologic mimics. Hum Pathol 2013; 44:881-7. [DOI: 10.1016/j.humpath.2012.08.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 08/18/2012] [Accepted: 08/22/2012] [Indexed: 02/06/2023]
|
13
|
Bennani-Baiti IM. Epigenetic and epigenomic mechanisms shape sarcoma and other mesenchymal tumor pathogenesis. Epigenomics 2012; 3:715-32. [PMID: 22126291 DOI: 10.2217/epi.11.93] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sarcomas comprise a large number of rare, histogenetically heterogeneous, mesenchymal tumors. Cancers such as Ewing's sarcoma, liposarcoma, rhabdomyosarcoma and synovial sarcoma can be generated by the transduction of mesenchymal stem cell progenitors with sarcoma-pathognomonic oncogenic fusions, a neoplastic transformation process accompanied by profound locus-specific and pangenomic epigenetic alterations. The epigenetic activities of histone-modifying and chromatin-remodeling enzymes such as SUV39H1/KMT1A, EZH2/KMT6A and BMI1 are central to epigenetic-regulated transformation, a property we coin oncoepigenic. Sarcoma-specific oncoepigenic aberrations modulate critical signaling pathways that control cell growth and differentiation including several miRNAs, Wnt, PI3K/AKT, Sav-RASSF1-Hpo and regulators of the G1 and G2/M checkpoints of the cell cycle. Herein an overview of the current knowledge of this rapidly evolving field that will undoubtedly uncover additional oncoepigenic mechanisms and yield druggable targets in the near future is discussed.
Collapse
|
14
|
Downstream and intermediate interactions of synovial sarcoma-associated fusion oncoproteins and their implication for targeted therapy. Sarcoma 2012; 2012:249219. [PMID: 22550415 PMCID: PMC3329658 DOI: 10.1155/2012/249219] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/09/2012] [Indexed: 12/14/2022] Open
Abstract
Synovial sarcoma (SS), an aggressive type of soft tissue tumor, occurs mostly in adolescents and young adults. The origin and molecular mechanism of the development of SS remain only partially known. Over 90% of SS cases are characterized by the t(X;18)(p11.2;q11.2) translocation, which results mainly in the formation of
SS18-SSX1 or SS18-SSX2 fusion genes. In recent years, several reports describing direct and indirect interactions of SS18-SSX1/SSX2 oncoproteins have been published. These reports suggest that the fusion proteins particularly affect the cell growth, cell proliferation, TP53 pathway, and chromatin remodeling mechanisms, contributing to SS oncogenesis. Additional research efforts are required to fully explore the protein-protein interactions of SS18-SSX oncoproteins and the pathways that are regulated by these partnerships for the development of effective targeted therapy.
Collapse
|
15
|
Translocaciones cromosómicas en los sarcomas de partes blandas: de la biología molecular a la aplicación clínica. An Pediatr (Barc) 2012; 76:103.e1-7. [DOI: 10.1016/j.anpedi.2011.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 09/07/2011] [Indexed: 11/18/2022] Open
|
16
|
Li Y, Li X, Fan G, Fukushi JI, Matsumoto Y, Iwamoto Y, Zhu Y. Impairment of p53 acetylation by EWS-Fli1 chimeric protein in Ewing family tumors. Cancer Lett 2012; 320:14-22. [PMID: 22266186 DOI: 10.1016/j.canlet.2012.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/21/2011] [Accepted: 01/12/2012] [Indexed: 01/18/2023]
Abstract
The chromosomal translocation t(11;22)(q24;q12) yields the EWS-Fli1 fusion gene, which contributes to the development of Ewing Family Tumors (EFTs). Previous studies have shown the ability of EWS-Fli1 chimeric protein to silence p53 activity. Here we demonstrate that the introduction of EWS-Fli1 significantly inhibited p300-mediated acetylation of p53 at Lys-382 and depletion of EWS-Fli1 protein by small interfering RNAs (siRNA) in EFTs cells facilitated it in response to DNA damage. Furthermore, the deacetylation of p53 by EWS-Fli1 suppressed its transcriptional activity and enhanced mdm2-mediated p53 degradation. On the other hand, immunoprecipitation study shows that N-terminal region of EWS-Fli1 associated with histone deacetylase 1 (HDAC1) to forms a complex with p53. Knockdown of HDAC1, but not HDAC2 or HDAC3 protein restored the expression of p53 Lys-382 in EFTs cells. Overexpression of HDAC1 also significantly inhibited p53 transcriptional activity. Pharmacologic inhibitor of HDAC, trichostatin A (TSA) promoted p53-p300 interaction and recruitment of p53 Lys-382 to promoter regions of its target genes p21 and Puma, consequently inducing apoptosis and stabilizing the acetylation of p53 at Lys-382 together with the upregulation of p21 and Puma, which were impaired in EFTs cells after the knockdown of p53 expression. Our data indicate EWS-Fli1 might deacetylate p53 to inhibit its transcriptional function and protein stability via the recruitment of HDAC1. These results might elucidate a novel molecular mechanism about the abrogation of p53 pathway by EWS-Fli1 in EFTs pathogenesis.
Collapse
Affiliation(s)
- Yan Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The p53 tumour suppressor plays a pivotal role in the prevention of oncogenic transformation. Cancers frequently evade the potent antitumour surveillance mechanisms of p53 through mutation of the TP53 gene, with approximately 50% of all human malignancies expressing dysfunctional, mutated p53 proteins. Interestingly, genetic lesions in the TP53 gene are only observed in 10% of Ewing Sarcomas, with the majority of these sarcomas expressing a functional wild-type p53. In addition, the p53 downstream signaling pathways and DNA-damage cell cycle checkpoints remain functionally intact in these sarcomas. This paper summarizes recent insights into the functional capabilities and regulation of p53 in Ewing Sarcoma, with a particular focus on the cross-talk between p53 and the EWS-FLI1 gene rearrangement frequently associated with this disease. The development of several activators of p53 is discussed, with recent evidence demonstrating the potential of small molecule p53 activators as a promising systemic therapeutic approach for the treatment of Ewing Sarcomas with wild-type p53.
Collapse
|
18
|
Inhibition of the transcriptional function of p53 by EWS-Fli1 chimeric protein in Ewing Family Tumors. Cancer Lett 2010; 294:57-65. [PMID: 20153576 DOI: 10.1016/j.canlet.2010.01.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 01/20/2010] [Accepted: 01/20/2010] [Indexed: 11/24/2022]
Abstract
The chromosomal translocation t(11;22)(q24;q12) generates the EWS-Fli1 fusion gene, which contributes to the development of Ewing Family Tumors (EFTs). Although p53 mutations are found only in 5-20% of EFTs, the p53 pathway is thought to be abrogated in EFTs. The role of EWS-Fli1 in the p53 pathway in the tumor is still poorly understood. In this study, using immunoprecipitation and co-localization, we show that EWS-Fli1 interacts with p53 within the nucleus in vivo. The introduction of EWS-Fli1 resulted in significant reduction of promoter activities and mRNA levels of p21 and mdm2, meanwhile it canceled p53-dependent growth suppression. In contrast, knockdown of EWS-Fli1 expression mediated by small interfering RNAs (siRNA) also augmented the induction of p21 and mdm2 in response to DNA damage. Furthermore, using serial deletion constructs of the EWS-Fli1 fusion protein, we determined that EWS-Fli1 binding to p53 as well as inhibition of p21 and mdm2 promoter activities was mediated by its N-terminal domain (amino acid residues 65-109). These observations suggest that the N-terminal region of EWS-Fli1 might associate with p53 and impair its transcriptional activity, subsequently inhibiting the expression of its downstream genes. These results might provide new insight into the oncogenesis of EFTs by EWS-Fli1 via the inhibition of p53 function.
Collapse
|
19
|
Cironi L, Provero P, Riggi N, Janiszewska M, Suva D, Suva ML, Kindler V, Stamenkovic I. Epigenetic features of human mesenchymal stem cells determine their permissiveness for induction of relevant transcriptional changes by SYT-SSX1. PLoS One 2009; 4:e7904. [PMID: 19936258 PMCID: PMC2775947 DOI: 10.1371/journal.pone.0007904] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 10/17/2009] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND A characteristic SYT-SSX fusion gene resulting from the chromosomal translocation t(X;18)(p11;q11) is detectable in almost all synovial sarcomas, a malignant soft tissue tumor widely believed to originate from as yet unidentified pluripotent stem cells. The resulting fusion protein has no DNA binding motifs but possesses protein-protein interaction domains that are believed to mediate association with chromatin remodeling complexes. Despite recent advances in the identification of molecules that interact with SYT-SSX and with the corresponding wild type SYT and SSX proteins, the mechanisms whereby the SYT-SSX might contribute to neoplastic transformation remain unclear. Epigenetic deregulation has been suggested to be one possible mechanism. METHODOLOGY/PRINCIPAL FINDINGS We addressed the effect of SYT/SSX expression on the transcriptome of four independent isolates of primary human bone marrow mesenchymal stem cells (hMSC). We observed transcriptional changes similar to the gene expression signature of synovial sarcoma, principally involving genes whose regulation is linked to epigenetic factors, including imprinted genes, genes with transcription start sites within a CpG island and chromatin related genes. Single population analysis revealed hMSC isolate-specific transcriptional changes involving genes that are important for biological functions of stem cells as well as genes that are considered to be molecular markers of synovial sarcoma including IGF2, EPHRINS, and BCL2. Methylation status analysis of sequences at the H19/IGF2 imprinted locus indicated that distinct epigenetic features characterize hMSC populations and condition the transcriptional effects of SYT-SSX expression. CONCLUSIONS/SIGNIFICANCE Our observations suggest that epigenetic features may define the cellular microenvironment in which SYT-SSX displays its functional effects.
Collapse
Affiliation(s)
- Luisa Cironi
- Division of Experimental Pathology, Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Paolo Provero
- Division of Experimental Pathology, Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nicola Riggi
- Division of Experimental Pathology, Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Michalina Janiszewska
- Division of Experimental Pathology, Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Domizio Suva
- Division of Experimental Pathology, Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Mario-Luca Suva
- Division of Experimental Pathology, Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vincent Kindler
- Division of Experimental Pathology, Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ivan Stamenkovic
- Division of Experimental Pathology, Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Hiss DC, Gabriels GA. Implications of endoplasmic reticulum stress, the unfolded protein response and apoptosis for molecular cancer therapy. Part I: targeting p53, Mdm2, GADD153/CHOP, GRP78/BiP and heat shock proteins. Expert Opin Drug Discov 2009; 4:799-821. [PMID: 23496268 DOI: 10.1517/17460440903052559] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND In eukaryotes, endoplasmic reticulum stress (ERS) and the unfolded protein response (UPR) are coordinately regulated to maintain steady-state levels and activities of various cellular proteins to ensure cell survival. OBJECTIVE This review (Part I of II) focuses on specific ERS and UPR signalling regulators, their expression in the cancer phenotype and apoptosis, and proposes how their implication in these processes can be rationalised into proteasome inhibition, apoptosis induction and the development of more efficacious targeted molecular cancer therapies. METHOD In this review, we contextualise many ERS and UPR client proteins that are deregulated or mutated in cancers and show links between ERS and the UPR, their implication in oncogenic transformation, tumour progression and escape from immune surveillance, apoptosis inhibition, angiogenesis, metastasis, acquired drug resistance and poor cancer prognosis. CONCLUSION Evasion of programmed cell death or apoptosis is a hallmark of cancer that enables tumour cells to proliferate uncontrollably. Successful eradication of cancer cells through targeting ERS- and UPR-associated proteins to induce apoptosis is currently being pursued as a central tenet of anticancer drug discovery.
Collapse
Affiliation(s)
- Donavon C Hiss
- Head, Molecular Oncology Research Programme University of the Western Cape, Department of Medical BioSciences, Bellville, 7535, South Africa +27 21 959 2334 ; +27 21 959 1563 ;
| | | |
Collapse
|
21
|
Kaposi's sarcoma-associated herpesvirus viral interferon regulatory factor 4 targets MDM2 to deregulate the p53 tumor suppressor pathway. J Virol 2009; 83:6739-47. [PMID: 19369353 DOI: 10.1128/jvi.02353-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells infected by viruses utilize interferon (IFN)-mediated and p53-mediated irreversible cell cycle arrest and apoptosis as part of the overall host surveillance mechanism to ultimately block viral replication and dissemination. Viruses, in turn, have evolved elaborate mechanisms to subvert IFN- and p53-mediated host innate immune responses. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes several viral IFN regulatory factors (vIRF1 to vIRF4) within a cluster of loci, their functions being primarily to inhibit host IFN-mediated innate immunity and deregulate p53-mediated cell growth control. Despite its significant homology and similar genomic location to other vIRFs, vIRF4 is distinctive, as it does not target and antagonize host IFN-mediated signal transduction. Here, we show that KSHV vIRF4 interacts with the murine double minute 2 (MDM2) E3 ubiquitin ligase, leading to the reduction of p53, a tumor suppressor, via proteasome-mediated degradation. The central region of vIRF4 is required for its interaction with MDM2, which led to the suppression of MDM2 autoubiquitination and, thereby, a dramatic increase in MDM2 stability. Consequently, vIRF4 expression markedly enhanced p53 ubiquitination and degradation, effectively suppressing p53-mediated apoptosis. These results indicate that KSHV vIRF4 targets and stabilizes the MDM2 E3 ubiquitin ligase to facilitate the proteasome-mediated degradation of p53, perhaps to circumvent host growth surveillance and facilitate viral replication in infected cells. Taken together, the indications are that the downregulation of p53-mediated cell growth control is a common characteristic of the four KSHV vIRFs and that p53 is indeed a key factor in the host's immune surveillance program against viral infections.
Collapse
|
22
|
D’Arcy P, Ryan BA, Brodin B. Reactivation of p53 function in synovial sarcoma cells by inhibition of p53–HDM2 interaction. Cancer Lett 2009; 275:285-92. [DOI: 10.1016/j.canlet.2008.10.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 09/27/2008] [Accepted: 10/20/2008] [Indexed: 12/20/2022]
|
23
|
Ray-Coquard I, Le Cesne A, Whelan JS, Schoffski P, Bui BN, Verweij J, Marreaud S, van Glabbeke M, Hogendoorn P, Blay JY. A phase II study of gefitinib for patients with advanced HER-1 expressing synovial sarcoma refractory to doxorubicin-containing regimens. Oncologist 2008; 13:467-73. [PMID: 18448563 DOI: 10.1634/theoncologist.2008-0065] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
RATIONALE Advanced synovial sarcomas (SyS) refractory to doxorubicin and ifosfamide are highly resistant to the currently available cytotoxic agents. Based on a report showing a specific overexpression of HER-1 in SyS, we investigated an HER-1 inhibitor, gefitinib, in refractory SyS. SUBJECTS AND METHODS To establish the efficacy and safety of gefitinib in HER-1 - positive SyS refractory to one or two lines of doxorubicin- and ifosfamide-based chemotherapy, a phase II study was conducted from December 2002 to October 2005 by 12 centers of the European Organization for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group. Gefitinib was given at a 500-mg/day oral dose until progression or intolerance. RESULTS Forty-eight patients were included (46 eligible). All patients had previously received chemotherapy for metastatic disease, with a median number of two lines (range, 1-4). The most frequent metastatic sites were the lungs (n = 44, 92%), lymph nodes (n = 11, 23%), and soft tissues (n = 10, 21%). The median duration of treatment was 43 days (range, 13-315). Treatment was interrupted in five patients (10%). Treatment was halted for progression in 45 (94%) patients. The best response was stable disease in 10 patients (21%). Disease progression occurred in 32 patients (70%), with a median time to disease progression of 6 weeks. Progression-free survival at 4 and 6 months was 21% and 6%, respectively. CONCLUSION The results show that gefitinib monotherapy in advanced SyS refractory to conventional chemotherapy did not demonstrate sufficient activity to warrant further investigation in this setting. This may suggest that HER-1 is not a critical protein in tumor progression in this disease.
Collapse
|