1
|
Sun M, Angelillo J, Hugues S. Lymphatic transport in anti-tumor immunity and metastasis. J Exp Med 2025; 222:e20231954. [PMID: 39969537 DOI: 10.1084/jem.20231954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/18/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Although lymphatic vessels (LVs) are present in many tumors, their importance in cancer has long been underestimated. In contrast to the well-studied tumor-associated blood vessels, LVs were previously considered to function as passive conduits for tumor metastasis. However, emerging evidence over the last two decades has shed light on their critical role in locally shaping the tumor microenvironment (TME). Here we review the involvement of LVs in tumor progression, metastasis, and modulation of anti-tumor immune response.
Collapse
Affiliation(s)
- Mengzhu Sun
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Julien Angelillo
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Stéphanie Hugues
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
2
|
Abdelazeem KNM, Nguyen D, Corbo S, Darragh LB, Matsumoto MW, Van Court B, Neupert B, Yu J, Olimpo NA, Osborne DG, Gadwa J, Ross RB, Nguyen A, Bhatia S, Kapoor M, Friedman RS, Jacobelli J, Saviola AJ, Knitz MW, Pasquale EB, Karam SD. Manipulating the EphB4-ephrinB2 axis to reduce metastasis in HNSCC. Oncogene 2025; 44:130-146. [PMID: 39489818 PMCID: PMC11725500 DOI: 10.1038/s41388-024-03208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The EphB4-ephrinB2 signaling axis has been heavily implicated in metastasis across numerous cancer types. Our emerging understanding of the dichotomous roles that EphB4 and ephrinB2 play in head and neck squamous cell carcinoma (HNSCC) poses a significant challenge to rational drug design. We find that EphB4 knockdown in cancer cells enhances metastasis in preclinical HNSCC models by augmenting immunosuppressive cells like T regulatory cells (Tregs) within the tumor microenvironment. EphB4 inhibition in cancer cells also amplifies their ability to metastasize through increased expression of genes associated with hallmark pathways of metastasis along with classical and non-classical epithelial-mesenchymal transition. In contrast, vascular ephrinB2 knockout coupled with radiation therapy (RT) enhances anti-tumor immunity, reduces Treg accumulation into the tumor, and decreases metastasis. Notably, targeting the EphB4-ephrinB2 signaling axis with the engineered ligands ephrinB2-Fc-His and Fc-TNYL-RAW-GS reduces local tumor growth and distant metastasis in a preclinical model of HNSCC. Our data suggests that targeted inhibition of vascular ephrinB2 while avoiding inhibition of EphB4 in cancer cells could be a promising strategy to mitigate HNSCC metastasis.
Collapse
Affiliation(s)
- Khalid N M Abdelazeem
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Radiation Biology Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Sophia Corbo
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Laurel B Darragh
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mike W Matsumoto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Brooke Neupert
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Justin Yu
- Department of Otolaryngology - Head and Neck Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas A Olimpo
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Douglas Grant Osborne
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard B Ross
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Alexander Nguyen
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Mohit Kapoor
- Krembil Research Institute, University Health Network, and University of Toronto, Toronto, ON, Canada
| | - Rachel S Friedman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Michael W Knitz
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Abdelazeem KN, Nguyen D, Corbo S, Darragh LB, Matsumoto MW, Court BV, Neupert B, Yu J, Olimpo NA, Osborne DG, Gadwa J, Ross RB, Nguyen A, Bhatia S, Kapoor M, Friedman RS, Jacobelli J, Saviola AJ, Knitz MW, Pasquale EB, Karam SD. Manipulating the EphB4-ephrinB2 axis to reduce metastasis in HNSCC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.21.604518. [PMID: 39091728 PMCID: PMC11291065 DOI: 10.1101/2024.07.21.604518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The EphB4-ephrinB2 signaling axis has been heavily implicated in metastasis across numerous cancer types. Our emerging understanding of the dichotomous roles that EphB4 and ephrinB2 play in head and neck squamous cell carcinoma (HNSCC) poses a significant challenge to rational drug design. We find that EphB4 knockdown in cancer cells enhances metastasis in preclinical HNSCC models by augmenting immunosuppressive cells like T regulatory cells (Tregs) within the tumor microenvironment. EphB4 inhibition in cancer cells also amplifies their ability to metastasize through increased expression of genes associated with epithelial mesenchymal transition and hallmark pathways of metastasis. In contrast, vascular ephrinB2 knockout coupled with radiation therapy (RT) enhances anti-tumor immunity, reduces Treg accumulation into the tumor, and decreases metastasis. Notably, targeting the EphB4-ephrinB2 signaling axis with the engineered EphB4 ligands EFNB2-Fc-His and Fc-TNYL-RAW-GS reduces local tumor growth and distant metastasis in a preclinical model of HNSCC. Our data suggest that targeted inhibition of vascular ephrinB2 while avoiding inhibition of EphB4 in cancer cells could be a promising strategy to mitigate HNSCC metastasis.
Collapse
Affiliation(s)
- Khalid N.M. Abdelazeem
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Radiation Biology Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Sophia Corbo
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Laurel B. Darragh
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mike W. Matsumoto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Brooke Neupert
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Justin Yu
- Department of Otolaryngology - Head and Neck Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas A. Olimpo
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Douglas Grant Osborne
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard B. Ross
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Alexander Nguyen
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Mohit Kapoor
- Krembil Research Institute, University Health Network, and University of Toronto, Toronto, Ontario, Canada
| | - Rachel S. Friedman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Michael W. Knitz
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Elena B. Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
4
|
Abstract
Evidence implicating Eph receptor tyrosine kinases and their ephrin ligands (that together make up the 'Eph system') in cancer development and progression has been accumulating since the discovery of the first Eph receptor approximately 35 years ago. Advances in the past decade and a half have considerably increased the understanding of Eph receptor-ephrin signalling mechanisms in cancer and have uncovered intriguing new roles in cancer progression and drug resistance. This Review focuses mainly on these more recent developments. I provide an update on the different mechanisms of Eph receptor-ephrin-mediated cell-cell communication and cell autonomous signalling, as well as on the interplay of the Eph system with other signalling systems. I further discuss recent advances in elucidating how the Eph system controls tumour expansion, invasiveness and metastasis, supports cancer stem cells, and drives therapy resistance. In addition to functioning within cancer cells, the Eph system also mediates the reciprocal communication between cancer cells and cells of the tumour microenvironment. The involvement of the Eph system in tumour angiogenesis is well established, but recent findings also demonstrate roles in immune cells, cancer-associated fibroblasts and the extracellular matrix. Lastly, I discuss strategies under evaluation for therapeutic targeting of Eph receptors-ephrins in cancer and conclude with an outlook on promising future research directions.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
5
|
Ye P, Chen Z, Lou H, Mai Y, Zhu X, Fu X. Ephrin-A4 Ligand (EFNA4) Predicts Poor Prognosis of Hepatocellular Carcinoma and Promotes Tumor Proliferation. J Clin Exp Hepatol 2023; 13:767-773. [PMID: 37693261 PMCID: PMC10482992 DOI: 10.1016/j.jceh.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/13/2023] [Indexed: 09/12/2023] Open
Abstract
Background/Aims Primary hepatocellular carcinoma (HCC) is one of the most lethal tumor diseases in the world. Receptor tyrosine kinases (RTKs) are thought to play a vital role in HCC and Ephrin-A4 ligand (EFNA4) is a membrane-bound molecule that can activate RTKs through erythropoietin-producing hepatocellular (Eph) receptors. However, the specific role of EFNA4 remains unknown. The aim of our study was to explore the prognostic value of EFNA4 expression in HCC. Methods Bioinformatics analyses were conducted to probe the expression levels and prognostic value of EFNA4 in HCC. The quantitative real-time polymerase chain reaction, immunohistochemical and western blot were used to confirm the expression of EFNA4 in paired clinical specimens of HCC. Colony formation assay was used to confirm the proliferation of tumor cell. Results The expression of EFNA4 is generally elevated in various cancers. Especially, EFNA4 was upregulated in tumor tissue and associated with clinical stage in HCC patients. HCC patients with lower levels of EFNA4 possessed better survival and progression-free survival times. Colony formation assay indicated that the overexpression of EFNA4 promoted tumor cell proliferation. Conclusion These results demonstrated that EFNA4 played as an oncogenic gene and a prognostic biomarker for HCC patients.
Collapse
Affiliation(s)
- Peng Ye
- Department of Infectious Diseases and Hepatology Unit, Panyu Central Hospital, Guangzhou, Guangdong, China
| | - Zide Chen
- Department of Interventional Radiology, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Haibo Lou
- Department of Infectious Diseases and Hepatology Unit, Panyu Central Hospital, Guangzhou, Guangdong, China
| | - Yanjun Mai
- Department of Infectious Diseases and Hepatology Unit, Panyu Central Hospital, Guangzhou, Guangdong, China
| | - Xiaolin Zhu
- Department of Infectious Disease, Central Hospital of Zibo, Zibo, Shandong Province, China
| | - Xihua Fu
- Department of Infectious Diseases and Hepatology Unit, Panyu Central Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Abstract
The lymphatic system, composed of initial and collecting lymphatic vessels as well as lymph nodes that are present in almost every tissue of the human body, acts as an essential transport system for fluids, biomolecules and cells between peripheral tissues and the central circulation. Consequently, it is required for normal body physiology but is also involved in the pathogenesis of various diseases, most notably cancer. The important role of tumor-associated lymphatic vessels and lymphangiogenesis in the formation of lymph node metastasis has been elucidated during the last two decades, whereas the underlying mechanisms and the relation between lymphatic and peripheral organ dissemination of cancer cells are incompletely understood. Lymphatic vessels are also important for tumor-host communication, relaying molecular information from a primary or metastatic tumor to regional lymph nodes and the circulatory system. Beyond antigen transport, lymphatic endothelial cells, particularly those residing in lymph node sinuses, have recently been recognized as direct regulators of tumor immunity and immunotherapy responsiveness, presenting tumor antigens and expressing several immune-modulatory signals including PD-L1. In this review, we summarize recent discoveries in this rapidly evolving field and highlight strategies and challenges of therapeutic targeting of lymphatic vessels or specific lymphatic functions in cancer patients.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
EphrinB2-EphB4 Signaling in Neurooncological Disease. Int J Mol Sci 2022; 23:ijms23031679. [PMID: 35163601 PMCID: PMC8836162 DOI: 10.3390/ijms23031679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
EphrinB2-EphB4 signaling is critical during embryogenesis for cardiovascular formation and neuronal guidance. Intriguingly, critical expression patterns have been discovered in cancer pathologies over the last two decades. Multiple connections to tumor migration, growth, angiogenesis, apoptosis, and metastasis have been identified in vitro and in vivo. However, the molecular signaling pathways are manifold and signaling of the EphB4 receptor or the ephrinB2 ligand is cancer type specific. Here we explore the impact of these signaling pathways in neurooncological disease, including glioma, brain metastasis, and spinal bone metastasis. We identify potential downstream pathways that mediate cancer suppression or progression and seek to understand it´s role in antiangiogenic therapy resistance in glioma. Despite the Janus-faced functions of ephrinB2-EphB4 signaling in cancer Eph signaling remains a promising clinical target.
Collapse
|
8
|
Ligand-Dependent and Ligand-Independent Effects of Ephrin-B2-EphB4 Signaling in Melanoma Metastatic Spine Disease. Int J Mol Sci 2021; 22:ijms22158028. [PMID: 34360793 PMCID: PMC8347368 DOI: 10.3390/ijms22158028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Tumor–endothelial cell interactions represent an essential mechanism in spinal metastasis. Ephrin-B2–EphB4 communication induces tumor cell repulsion from the endothelium in metastatic melanoma, reducing spinal bone metastasis formation. To shed further light on the Ephrin-B2–EphB4 signaling mechanism, we researched the effects of pharmacological EphB4 receptor stimulation and inhibition in a ligand-dependent/independent context. We chose a preventative and a post-diagnostic therapeutic window. EphB4 stimulation during tumor cell seeding led to an increase in spinal metastatic loci and number of disseminated melanoma cells, as well as earlier locomotion deficits in the presence of endothelial Ephrin-B2. In the absence of endothelial Ephrin-B2, reduction of metastatic loci with a later manifestation of locomotion deficits occurred. Thus, EphB4 receptor stimulation affects metastatic dissemination depending on the presence/absence of endothelial Ephrin-B2. After the manifestation of solid metastasis, EphB4 kinase inhibition resulted in significantly earlier manifestation of locomotion deficits in the presence of the ligand. No post-diagnostic treatment effect was found in the absence of endothelial Ephrin-B2. For solid metastasis treatment, EphB4 kinase inhibition induced prometastatic effects in the presence of endothelial Ephrin-B2. In the absence of endothelial Ephrin-B2, both therapies showed no effect on the growth of solid metastasis.
Collapse
|
9
|
Broggini T, Piffko A, Hoffmann CJ, Ghori A, Harms C, Adams RH, Vajkoczy P, Czabanka M. Ephrin-B2-EphB4 communication mediates tumor-endothelial cell interactions during hematogenous spread to spinal bone in a melanoma metastasis model. Oncogene 2020; 39:7063-7075. [PMID: 32989254 DOI: 10.1038/s41388-020-01473-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 11/09/2022]
Abstract
Metastases account for the majority of cancer deaths. Bone represents one of the most common sites of distant metastases, and spinal bone metastasis is the most common source of neurological morbidity in cancer patients. During metastatic seeding of cancer cells, endothelial-tumor cell interactions govern extravasation to the bone and potentially represent one of the first points of action for antimetastatic treatment. The ephrin-B2-EphB4 pathway controls cellular interactions by inducing repulsive or adhesive properties, depending on forward or reverse signaling. Here, we report that in an in vivo metastatic melanoma model, ephrin-B2-mediated activation of EphB4 induces tumor cell repulsion from bone endothelium, translating in reduced spinal bone metastatic loci and improved neurological function. Selective ephrin-B2 depletion in endothelial cells or EphB4 inhibition increases bone metastasis and shortens the time window to hind-limb locomotion deficit from spinal cord compression. EphB4 overexpression in melanoma cells ameliorates the metastatic phenotype and improves neurological outcome. Timely harvesting of bone tissue after tumor cell injection and intravital bone microscopy revealed less tumor cells attached to ephrin-B2-positive endothelial cells. These results suggest that ephrin-B2-EphB4 communication influences bone metastasis formation by altering melanoma cell repulsion/adhesion to bone endothelial cells, and represents a molecular target for therapeutic intervention.
Collapse
Affiliation(s)
- Thomas Broggini
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany.,Department of Physics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Andras Piffko
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany.,Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Christian J Hoffmann
- Department of Experimental Neurology, Center for Stroke Research Berlin, Universitätsmedizin Charite, D-10117, Berlin, Germany
| | - Adnan Ghori
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany
| | - Christoph Harms
- Department of Experimental Neurology, Center for Stroke Research Berlin, Universitätsmedizin Charite, D-10117, Berlin, Germany
| | - Ralf H Adams
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany
| | - Marcus Czabanka
- Department of Neurosurgery, Universitätsmedizin Charite, D-10117, Berlin, Germany.
| |
Collapse
|
10
|
Yuan C, Ni L, Zhang C, Xia H, Wu X. Ephrin B2 mediates high glucose induced endothelial-to-mesenchymal transition in human aortic endothelial cells. Cardiovasc Diagn Ther 2020; 10:778-785. [PMID: 32968633 DOI: 10.21037/cdt-20-299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Previous study revealed that high glucose (HG) induced endothelial cell (EC) damage via endothelial-to-mesenchymal transition (EndMT). Recent studies suggested the role of Ephrin B2 in mediate ECs damage. However, the underlying mechanism remains unclear. The aim of the present study was to investigate whether Ephrin B2 mediates HG-induced EndMT in human aortic ECs (HAECs) and to determine the possible downstream signaling effector. Methods Primary HAECs were exposed to normal glucose (NG, 5.5 mM), HG (30 mM) and HG+Ephrin B2 small interfering RNA (siRNA), respectively. The pathological changes were investigated by light microscope and confocal microscopy. To study the effects of focal adhesion kinase (FAK) activation on Ephrin B2 in HAECs, cells were incubated with FAK siRNA in HG group. The expression of EndMT-related markers (CD31 and FSP1), Ephrin B2 and FAK were detected by qRT-PCR and western blot. Results The results showed that HG significantly inhibited the expression of CD31 and increased FSP1 compared with NG group. Moreover, Ephrin B2 was increased after HG incubation. Ephrin B2 siRNA attenuated HG-induced expression of EndMT-related markers. Furthermore, HG increased the expression of FAK and phosphorylated FAK (pho-FAK) in HAECs. In contrast, blocking Ephrin B2 could partially attenuate HG-induced FAK activation. And FAK siRNA further inhibited the EndMT-related markers in HAECs treated with HG. Conclusions HG-induced EndMT in HAECs might be partially mediated by Ephrin B2 and the downstream FAK pathway.
Collapse
Affiliation(s)
- Cheng Yuan
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Changjiang Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China.,Cardiovascular Disease Center, Enshi Central Hospital, Enshi, China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Izraely S, Witz IP. Site-specific metastasis: A cooperation between cancer cells and the metastatic microenvironment. Int J Cancer 2020; 148:1308-1322. [PMID: 32761606 PMCID: PMC7891572 DOI: 10.1002/ijc.33247] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/08/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
The conclusion derived from the information provided in this review is that disseminating tumor cells (DTC) collaborate with the microenvironment of a future metastatic organ site in the establishment of organ‐specific metastasis. We review the basic principles of site‐specific metastasis and the contribution of the cross talk between DTC and the microenvironment of metastatic sites (metastatic microenvironment [MME]) to the establishment of the organ‐specific premetastatic niche; the targeted migration of DTC to the endothelium of the future organ‐specific metastasis; the transmigration of DTC to this site and the seeding and colonization of DTC in their future MME. We also discuss the role played by DTC‐MME interactions on tumor dormancy and on the differential response of tumor cells residing in different MMEs to antitumor therapy. Finally, we summarize some studies dealing with the effects of the MME on a unique site‐specific metastasis—brain metastasis.
Collapse
Affiliation(s)
- Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Isaac P Witz
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Targeting Forward and Reverse EphB4/EFNB2 Signaling by a Peptide with Dual Functions. Sci Rep 2020; 10:520. [PMID: 31949258 PMCID: PMC6965176 DOI: 10.1038/s41598-020-57477-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/19/2019] [Indexed: 11/09/2022] Open
Abstract
The tyrosine kinase receptor EphB4 is frequently overexpressed in ovarian and other solid tumors and is involved in interactions between tumor cells and the tumor microenvironment, contributing to metastasis. Trans-interaction between EphB4 and its membrane-bound ligand ephrin B2 (EFNB2) mediates bi-directional signaling: forward EFNB2-to-EphB4 signaling suppresses tumor cell proliferation, while reverse EphB4-to-EFNB2 signaling stimulates the invasive and angiogenic properties of endothelial cells. Currently, no small molecule–based, dual-function, EphB4-binding peptides are available. Here, we report our discovery of a bi-directional ephrin agonist peptide, BIDEN-AP which, when selectively internalized via receptor-mediated endocytosis, suppressed invasion and epithelial-mesenchymal transition of ovarian cancer cells. BIDEN-AP also inhibited endothelial migration and tube formation. In vivo, BIDEN-AP and its nanoconjugate CCPM-BIDEN-AP significantly reduced growth of orthotopic ovarian tumors, with CCPM-BIDEN-AP displaying greater antitumor potency than BIDEN-AP. Both BIDEN-AP and CCPM-BIDEN-AP compromised angiogenesis by downregulating epithelial-mesenchymal transition and angiogenic pathways. Thus, we report a novel EphB4-based therapeutic approach against ovarian cancer.
Collapse
|
13
|
Li D, Wenger TL, Seiler C, March ME, Gutierrez-Uzquiza A, Kao C, Bhoj E, Tian L, Rosenbach M, Liu Y, Robinson N, Behr M, Chiavacci R, Hou C, Wang T, Bakay M, Pellegrino da Silva R, Perkins JA, Sleiman P, Levine MA, Hicks PJ, Itkin M, Dori Y, Hakonarson H. Pathogenic variant in EPHB4 results in central conducting lymphatic anomaly. Hum Mol Genet 2019; 27:3233-3245. [PMID: 29905864 DOI: 10.1093/hmg/ddy218] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022] Open
Abstract
Central conducting lymphatic anomaly (CCLA) is one of the complex lymphatic anomalies characterized by dilated lymphatic channels, lymphatic channel dysmotility and distal obstruction affecting lymphatic drainage. We performed whole exome sequencing (WES) of DNA from a four-generation pedigree and examined the consequences of the variant by transfection of mammalian cells and morpholino and rescue studies in zebrafish. WES revealed a heterozygous mutation in EPHB4 (RefSeq NM_004444.4; c.2334 + 1G>C) and RNA-Seq demonstrated that the EPHB4 mutation destroys the normal donor site, which leads to the use of a cryptic splice donor that results in retention of the intervening 12-bp intron sequence. Transient co-expression of the wild-type and mutant EPHB4 proteins showed reduced phosphorylation of tyrosine, consistent with a loss-of-function effect. Zebrafish ephb4a morpholino resulted in vessel misbranching and deformities in the lymphatic vessel development, indicative of possible differentiation defects in lymphatic vessels, mimicking the lymphatic presentations of the patients. Immunoblot analysis using zebrafish lysates demonstrated over-activation of mTORC1 as a consequence of reduced EPHB4 signaling. Strikingly, drugs that inhibit mTOR signaling or RAS-MAPK signaling effectively rescued the misbranching phenotype in a comparable manner. Moreover, knock-in of EPHB4 mutation in HEK293T cells also induced mTORC1 activity. Our data demonstrate the pathogenicity of the identified EPHB4 mutation as a novel cause of CCLA and suggesting that ERK inhibitors may have therapeutic benefits in such patients with complex lymphatic anomalies.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tara L Wenger
- Division of Craniofacial Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - Christoph Seiler
- Zebrafish core, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael E March
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Charlly Kao
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth Bhoj
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lifeng Tian
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Misha Rosenbach
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Yichuan Liu
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nora Robinson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mechenzie Behr
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rosetta Chiavacci
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cuiping Hou
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tiancheng Wang
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marina Bakay
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Jonathan A Perkins
- Division of Otolaryngology-Head and Neck Surgery, Seattle Children's Hospital, Seattle, WA, USA
| | - Patrick Sleiman
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Michael A Levine
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Division of Endocrinology and Diabetes
| | - Patricia J Hicks
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Maxim Itkin
- Center for Lymphatic Imaging and Interventions
| | - Yoav Dori
- Center for Lymphatic Imaging and Interventions
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Divisions of Human Genetics and Pulmonary Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
14
|
Jimenez L, Yu H, McKenzie AJ, Franklin JL, Patton JG, Liu Q, Weaver AM. Quantitative Proteomic Analysis of Small and Large Extracellular Vesicles (EVs) Reveals Enrichment of Adhesion Proteins in Small EVs. J Proteome Res 2019; 18:947-959. [PMID: 30608700 DOI: 10.1021/acs.jproteome.8b00647] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs) are important mediators of cell-cell communication due to their cargo content of proteins, lipids, and RNAs. We previously reported that small EVs (SEVs) called exosomes promote directed and random cell motility, invasion, and serum-independent growth. In contrast, larger EVs (LEVs) were not active in those assays, but might have unique functional properties. In order to identify protein cargos that may contribute to different functions of SEVs and LEVs, we used isobaric tags for relative and absolute quantitation (iTRAQ)-liquid chromatography (LC) tandem mass spectrometry (MS) on EVs isolated from a colon cancer cell line. Bioinformatics analyses revealed that SEVs are enriched in proteins associated with cell-cell junctions, cell-matrix adhesion, exosome biogenesis machinery, and various signaling pathways. In contrast, LEVs are enriched in proteins associated with ribosome and RNA biogenesis, processing, and metabolism. Western blot analysis of EVs purified from two different cancer cell types confirmed the enrichment of cell-matrix and cell-cell adhesion proteins in SEVs. Consistent with those data, we found that cells exhibit enhanced adhesion to surfaces coated with SEVs compared to an equal protein concentration of LEVs. These data suggest that a major function of SEVs is to promote cellular adhesion.
Collapse
Affiliation(s)
- Lizandra Jimenez
- Department of Cell and Developmental Biology , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States
| | - Hui Yu
- Department of Internal Medicine , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Andrew J McKenzie
- Sarah Cannon Research Institute , Nashville , Tennessee 37203 , United States
| | - Jeffrey L Franklin
- Department of Cell and Developmental Biology , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States.,Department of Medicine , Vanderbilt University Medical Center , Nashville , Tennessee 37212 , United States
| | - James G Patton
- Department of Biological Sciences , Vanderbilt University School of Medicine , Nashville , Tennessee 37212 , United States
| | - Qi Liu
- Department of Biostatistics , Vanderbilt University Medical Center , Nashville , Tennessee 37232 , United States
| | - Alissa M Weaver
- Department of Cell and Developmental Biology , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States.,Department of Pathology, Microbiology and Immunology , Vanderbilt University Medical Center , Nashville , Tennessee 37212 , United States
| |
Collapse
|
15
|
Guo D, Lui GYL, Lai SL, Wilmott JS, Tikoo S, Jackett LA, Quek C, Brown DL, Sharp DM, Kwan RYQ, Chacon D, Wong JH, Beck D, van Geldermalsen M, Holst J, Thompson JF, Mann GJ, Scolyer RA, Stow JL, Weninger W, Haass NK, Beaumont KA. RAB27A promotes melanoma cell invasion and metastasis via regulation of pro-invasive exosomes. Int J Cancer 2019; 144:3070-3085. [PMID: 30556600 DOI: 10.1002/ijc.32064] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/30/2018] [Indexed: 01/03/2023]
Abstract
Despite recent advances in targeted and immune-based therapies, advanced stage melanoma remains a clinical challenge with a poor prognosis. Understanding the genes and cellular processes that drive progression and metastasis is critical for identifying new therapeutic strategies. Here, we found that the GTPase RAB27A was overexpressed in a subset of melanomas, which correlated with poor patient survival. Loss of RAB27A expression in melanoma cell lines inhibited 3D spheroid invasion and cell motility in vitro, and spontaneous metastasis in vivo. The reduced invasion phenotype was rescued by RAB27A-replete exosomes, but not RAB27A-knockdown exosomes, indicating that RAB27A is responsible for the generation of pro-invasive exosomes. Furthermore, while RAB27A loss did not alter the number of exosomes secreted, it did change exosome size and altered the composition and abundance of exosomal proteins, some of which are known to regulate cancer cell movement. Our data suggest that RAB27A promotes the biogenesis of a distinct pro-invasive exosome population. These findings support RAB27A as a key cancer regulator, as well as a potential prognostic marker and therapeutic target in melanoma.
Collapse
Affiliation(s)
- Dajiang Guo
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Goldie Y L Lui
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Siew Li Lai
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia
| | - James S Wilmott
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia
| | - Shweta Tikoo
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Louise A Jackett
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Camelia Quek
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia
| | - Darren L Brown
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Danae M Sharp
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Rain Y Q Kwan
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Diego Chacon
- Centre for Health Technologies and the School of Biomedical Engineering, University of Technology, Sydney, NSW, Australia.,Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Jason H Wong
- Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Dominik Beck
- Centre for Health Technologies and the School of Biomedical Engineering, University of Technology, Sydney, NSW, Australia.,Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Michelle van Geldermalsen
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Jeff Holst
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - John F Thompson
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Graham J Mann
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Richard A Scolyer
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Jennifer L Stow
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Wolfgang Weninger
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Discipline of Dermatology, The University of Sydney, Camperdown, NSW, Australia.,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Nikolas K Haass
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Discipline of Dermatology, The University of Sydney, Camperdown, NSW, Australia.,The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Kimberley A Beaumont
- The Centenary Institute, The University of Sydney, Newtown, NSW, Australia.,Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
16
|
Neuber C, Belter B, Meister S, Hofheinz F, Bergmann R, Pietzsch HJ, Pietzsch J. Overexpression of Receptor Tyrosine Kinase EphB4 Triggers Tumor Growth and Hypoxia in A375 Melanoma Xenografts: Insights from Multitracer Small Animal Imaging Experiments. Molecules 2018; 23:E444. [PMID: 29462967 PMCID: PMC6017846 DOI: 10.3390/molecules23020444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 12/15/2022] Open
Abstract
Experimental evidence has associated receptor tyrosine kinase EphB4 with tumor angiogenesis also in malignant melanoma. Considering the limited in vivo data available, we have conducted a systematic multitracer and multimodal imaging investigation in EphB4-overexpressing and mock-transfected A375 melanoma xenografts. Tumor growth, perfusion, and hypoxia were investigated by positron emission tomography. Vascularization was investigated by fluorescence imaging in vivo and ex vivo. The approach was completed by magnetic resonance imaging, radioluminography ex vivo, and immunohistochemical staining for blood and lymph vessel markers. Results revealed EphB4 to be a positive regulator of A375 melanoma growth, but a negative regulator of tumor vascularization. Resulting in increased hypoxia, this physiological characteristic is considered as highly unfavorable for melanoma prognosis and therapy outcome. Lymphangiogenesis, by contrast, was not influenced by EphB4 overexpression. In order to distinguish between EphB4 forward and EphrinB2, the natural EphB4 ligand, reverse signaling a specific EphB4 kinase inhibitor was applied. Blocking experiments show EphrinB2 reverse signaling rather than EphB4 forward signaling to be responsible for the observed effects. In conclusion, functional expression of EphB4 is considered a promising differentiating characteristic, preferentially determined by non-invasive in vivo imaging, which may improve personalized theranostics of malignant melanoma.
Collapse
Affiliation(s)
- Christin Neuber
- Department Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01314 Dresden, Germany.
| | - Birgit Belter
- Department Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01314 Dresden, Germany.
| | - Sebastian Meister
- Department Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01314 Dresden, Germany.
| | - Frank Hofheinz
- Department Positron Emission Tomography, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01314 Dresden, Germany.
| | - Ralf Bergmann
- Department Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01314 Dresden, Germany.
| | - Hans-Jürgen Pietzsch
- Department Radionuclide Theragnostics, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01314 Dresden, Germany.
| | - Jens Pietzsch
- Department Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01314 Dresden, Germany.
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
17
|
Chen Y, Zhang H, Zhang Y. Targeting receptor tyrosine kinase EphB4 in cancer therapy. Semin Cancer Biol 2017; 56:37-46. [PMID: 28993206 DOI: 10.1016/j.semcancer.2017.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/13/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Abstract
Eph receptors and their Eph receptor-interacting (ephrin) ligands together form an important cell communication system with diverse roles. Experimental evidence demonstrated Eph receptor bidirectional signaling with both tumor-suppressing and tumor-promoting activities in cancer cells. The tyrosine kinase EphB4, a member of the Eph receptor family, has been associated with tumor angiogenesis, growth and metastasis, thus making it a valuable and attractive target for drug design for therapeutic applications. In the past decade, many studies have focused on elucidating the structure and function of EphB4 in complex with its ligand ephrinB2 for their role in carcinogenesis. Meanwhile, an array of compounds targeting EphB4 have been studied and several selective inhibitors have been tested in clinical studies. This review discusses the structure and function of the EphB4 receptor, analyzes its potential as a target for anticancer therapy, and summarizes the information about inhibitors of EphB4 kinase activity. Conclusively, EphB4 is a challenging but promising therapeutic target in cancer.
Collapse
Affiliation(s)
- Yinnan Chen
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Hongmei Zhang
- Department of Endocrinology, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, PR China.
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Street, #54, Xi'an, Shaanxi Province 710061, PR China.
| |
Collapse
|
18
|
EPHB4 is a therapeutic target in AML and promotes leukemia cell survival via AKT. Blood Adv 2017; 1:1635-1644. [PMID: 29296810 DOI: 10.1182/bloodadvances.2017005694] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/05/2017] [Indexed: 02/01/2023] Open
Abstract
EPHB4, an ephrin type B receptor, is implicated in the growth of several epithelial tumors and is a promising target in cancer therapy; however, little is known about its role in hematologic malignancies. In this article, we show that EPHB4 is highly expressed in ∼30% of acute myeloid leukemia (AML) samples. In an unbiased RNA interference screen of primary leukemia samples, we found that EPHB4 drives survival in a subset of AML cases. Knockdown of EPHB4 inhibits phosphatidylinositol 3-kinase/AKT signaling, and this is accompanied by a reduction in cell viability, which can be rescued by a constitutively active form of AKT. Finally, targeting EPHB4 with a highly specific monoclonal antibody (MAb131) is effective against AML in vitro and in vivo. EPHB4 is therefore a potential target in AML with high EPHB4 expression.
Collapse
|
19
|
Sundar Rajan V, Laurent VM, Verdier C, Duperray A. Unraveling the Receptor-Ligand Interactions between Bladder Cancer Cells and the Endothelium Using AFM. Biophys J 2017; 112:1246-1257. [PMID: 28355551 DOI: 10.1016/j.bpj.2017.01.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/10/2017] [Accepted: 01/23/2017] [Indexed: 01/18/2023] Open
Abstract
Adhesion of cancer cells to endothelial cells is a key step in cancer metastasis; therefore, identifying the key molecules involved during this process promises to aid in efforts to block the metastatic cascade. We have previously shown that intercellular adhesion molecule-1 (ICAM-1) expressed by endothelial cells is involved in the interactions of bladder cancer cells (BCs) with the endothelium. However, the ICAM-1 ligands have never been investigated. In this study, we combined adhesion assays and atomic force microscopy (AFM) to identify the ligands involved and to quantify the forces relevant in such interactions. We report the expression of MUC1 and CD43 on BCs, and demonstrate that these ligands interact with ICAM-1 to mediate cancer cell-endothelial cell adhesion in the case of the more invasive BCs. This was achieved with the use of adhesion assays, which showed a strong decrease in the attachment of BCs to endothelial cells when MUC1 and CD43 were blocked by antibodies. In addition, AFM measurements showed a similar decrease, by up to 70%, in the number of rupture events that occurred when MUC1 and CD43 were blocked. When we applied a Gaussian mixture model to the AFM data, we observed a distinct force range for receptor-ligand bonds, which allowed us to precisely identify the interactions of ICAM-1 with MUC1 or CD43. Furthermore, a detailed analysis of the rupture events suggested that CD43 is strongly connected to the cytoskeleton and that its interaction with ICAM-1 mainly corresponds to force ramps followed by sudden jumps. In contrast, MUC1 seems to be weakly connected to the cytoskeleton, as its interactions with ICAM-1 are mainly associated with the formation of tethers. This analysis is quite promising and may also be applied to other types of cancer cells.
Collapse
Affiliation(s)
- Vinoth Sundar Rajan
- INSERM U1209, CNRS UMR5309, IAB, Grenoble, France; University Grenoble Alpes, IAB, Grenoble, France
| | - Valérie M Laurent
- CNRS UMR 5588, LIPhy, Grenoble, France; University Grenoble Alpes, LIPhy, Grenoble, France
| | - Claude Verdier
- CNRS UMR 5588, LIPhy, Grenoble, France; University Grenoble Alpes, LIPhy, Grenoble, France
| | - Alain Duperray
- INSERM U1209, CNRS UMR5309, IAB, Grenoble, France; University Grenoble Alpes, IAB, Grenoble, France.
| |
Collapse
|
20
|
Passive Entrapment of Tumor Cells Determines Metastatic Dissemination to Spinal Bone and Other Osseous Tissues. PLoS One 2016; 11:e0162540. [PMID: 27603673 PMCID: PMC5014376 DOI: 10.1371/journal.pone.0162540] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/24/2016] [Indexed: 11/29/2022] Open
Abstract
During the metastatic process tumor cells circulate in the blood stream and are carried to various organs. In order to spread to different organs tumor cell—endothelial cell interactions are crucial for extravasation mechanisms. It remains unclear if tumor cell dissemination to the spinal bone occurs by passive entrapment of circulating tumor cells or by active cellular mechanisms mediated by cell surface molecules or secreted factors. We investigated the seeding of three different tumor cell lines (melanoma, lung and prostate carcinoma) to the microvasculature of different organs. Their dissemination was compared to biologically passive microbeads. The spine and other organs were resected three hours after intraarterial injection of tumor cells or microbeads. Ex vivo homogenization and fluorescence analysis allowed quantification of tumor cells or microbeads in different organs. Interestingly, tumor cell distribution to the spinal bone was comparable to dissemination of microbeads independent of the tumor cell type (melanoma: 5.646% ± 7.614%, lung: 6.007% ± 1.785%, prostate: 3.469% ± 0.602%, 7 μm beads: 9.884% ± 7.379%, 16 μm beads: 7.23% ± 1.488%). Tumor cell seeding differed significantly between tumor cells and microbeads in all soft tissue organs. Moreover, there were significant differences between the different tumor cell lines in their dissemination behaviour to soft tissue organs only. These findings demonstrate that metastatic dissemination of tumor cells to spinal bone and other osseous organs is mediated by passive entrapment of tumor cells similar to passive plugging of microvasculature observed after intraarterial microbeads injection.
Collapse
|
21
|
Broggini T, Czabanka M, Piffko A, Harms C, Hoffmann C, Mrowka R, Wenke F, Deutsch U, Grötzinger C, Vajkoczy P. ICAM1 depletion reduces spinal metastasis formation in vivo and improves neurological outcome. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2015; 24:2173-81. [PMID: 25711910 DOI: 10.1007/s00586-015-3811-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Clinical treatment of spinal metastasis is gaining in complexity while the underlying biology remains unknown. Insufficient biological understanding is due to a lack of suitable experimental animal models. Intercellular adhesion molecule-1 (ICAM1) has been implicated in metastasis formation. Its role in spinal metastasis remains unclear. It was the aim to generate a reliable spinal metastasis model in mice and to investigate metastasis formation under ICAM1 depletion. MATERIAL AND METHODS B16 melanoma cells were infected with a lentivirus containing firefly luciferase (B16-luc). Stable cell clones (B16-luc) were injected retrogradely into the distal aortic arch. Spinal metastasis formation was monitored using in vivo bioluminescence imaging/MRI. Neurological deficits were monitored daily. In vivo selected, metastasized tumor cells were isolated (mB16-luc) and reinjected intraarterially. mB16-luc cells were injected intraarterially in ICAM1 KO mice. Metastasis distribution was analyzed using organ-specific fluorescence analysis. RESULTS Intraarterial injection of B16-luc and metastatic mB16-luc reliably induced spinal metastasis formation with neurological deficits (B16-luc:26.5, mB16-luc:21 days, p<0.05). In vivo selection increased the metastatic aggressiveness and led to a bone specific homing phenotype. Thus, mB16-luc cells demonstrated higher number (B16-luc: 1.2±0.447, mB16-luc:3.2±1.643) and increased total metastasis volume (B16-luc:2.87±2.453 mm3, mB16-luc:11.19±3.898 mm3, p<0.05) in the spine. ICAM1 depletion leads to a significantly reduced number of spinal metastasis (mB16-luc:1.2±0.84) with improved neurological outcome (29 days). General metastatic burden was significantly reduced under ICAM1 depletion (control: 3.47×10(7)±1.66×10(7); ICAM-1-/-: 5.20×10(4)±4.44×10(4), p<0.05 vs. control) CONCLUSION Applying a reliable animal model for spinal metastasis, ICAM1 depletion reduces spinal metastasis formation due to an organ-unspecific reduction of metastasis development.
Collapse
Affiliation(s)
- Thomas Broggini
- Department of Neurosurgery, Universitätsmedizin Charite, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Marcus Czabanka
- Department of Neurosurgery, Universitätsmedizin Charite, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Andras Piffko
- Department of Neurosurgery, Universitätsmedizin Charite, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Christoph Harms
- Department of Experimental Neurology, Universitätsmedizin Charite, Berlin, Germany
| | - Christian Hoffmann
- Department of Experimental Neurology, Universitätsmedizin Charite, Berlin, Germany
| | - Ralf Mrowka
- Experimental Nephrology, Universitätsklinikum, Jena, Germany
| | - Frank Wenke
- Experimental Nephrology, Universitätsklinikum, Jena, Germany
| | - Urban Deutsch
- Theodor Kocher Institute, University of Berne, Berne, Germany
| | - Carsten Grötzinger
- Department for Hepatology and Gastroenterology, Charite, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Universitätsmedizin Charite, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
22
|
Lisle JE, Mertens-Walker I, Stephens CR, Stansfield SH, Clements JA, Herington AC, Stephenson SA. Murine, but not human, ephrin-B2 can be efficiently cleaved by the serine protease kallikrein-4: implications for xenograft models of human prostate cancer. Exp Cell Res 2015; 333:136-46. [PMID: 25724897 DOI: 10.1016/j.yexcr.2015.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/24/2014] [Accepted: 02/14/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Ephrin-B2 is the sole physiologically-relevant ligand of the receptor tyrosine kinase EphB4, which is over-expressed in many epithelial cancers, including 66% of prostate cancers, and contributes to cancer cell survival, invasion and migration. Crucially, however, the cancer-promoting EphB4 signalling pathways are independent of interaction with its ligand ephrin-B2, as activation of ligand-dependent signalling causes tumour suppression. Ephrin-B2, however, is often found on the surface of endothelial cells of the tumour vasculature, where it can regulate angiogenesis to support tumour growth. Proteolytic cleavage of endothelial cell ephrin-B2 has previously been suggested as one mechanism whereby the interaction between tumour cell-expressed EphB4 and endothelial cell ephrin-B2 is regulated to support both cancer promotion and angiogenesis. METHODS An in silico approach was used to search accessible surfaces of 3D protein models for cleavage sites for the key prostate cancer serine protease, KLK4, and this identified murine ephrin-B2 as a potential KLK4 substrate. Mouse ephrin-B2 was then confirmed as a KLK4 substrate by in vitro incubation of recombinant mouse ephrin-B2 with active recombinant human KLK4. Cleavage products were visualised by SDS-PAGE, silver staining and Western blot and confirmed by N-terminal sequencing. RESULTS At low molar ratios, KLK4 cleaved murine ephrin-B2 but other prostate-specific KLK family members (KLK2 and KLK3/PSA) were less efficient, suggesting cleavage was KLK4-selective. The primary KLK4 cleavage site in murine ephrin-B2 was verified and shown to correspond to one of the in silico predicted sites between extracellular domain residues arginine 178 and asparagine 179. Surprisingly, the highly homologous human ephrin-B2 was poorly cleaved by KLK4 at these low molar ratios, likely due to the 3 amino acid differences at this primary cleavage site. CONCLUSION These data suggest that in in vivo mouse xenograft models, endogenous mouse ephrin-B2, but not human tumour ephrin-B2, may be a downstream target of cancer cell secreted human KLK4. This is a critical consideration when interpreting data from murine explants of human EphB4+/KLK4+ cancer cells, such as prostate cancer cells, where differential effects may be seen in mouse models as opposed to human clinical situations.
Collapse
Affiliation(s)
- J E Lisle
- Institute of Health and Biomedical Innovation and the Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Translational Research Institute, Woolloongabba 4102, QLD, Australia
| | - I Mertens-Walker
- Institute of Health and Biomedical Innovation and the Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Translational Research Institute, Woolloongabba 4102, QLD, Australia
| | - C R Stephens
- Institute of Health and Biomedical Innovation and the Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Translational Research Institute, Woolloongabba 4102, QLD, Australia
| | - S H Stansfield
- Institute of Health and Biomedical Innovation and the Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Translational Research Institute, Woolloongabba 4102, QLD, Australia
| | - J A Clements
- Institute of Health and Biomedical Innovation and the Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Translational Research Institute, Woolloongabba 4102, QLD, Australia
| | - A C Herington
- Institute of Health and Biomedical Innovation and the Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Translational Research Institute, Woolloongabba 4102, QLD, Australia
| | - S-A Stephenson
- Institute of Health and Biomedical Innovation and the Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Translational Research Institute, Woolloongabba 4102, QLD, Australia.
| |
Collapse
|
23
|
Becerikli M, Merwart B, Lam MC, Suppelna P, Rittig A, Mirmohammedsadegh A, Stricker I, Theiss C, Singer BB, Jacobsen F, Steinstraesser L. EPHB4 tyrosine-kinase receptor expression and biological significance in soft tissue sarcoma. Int J Cancer 2014; 136:1781-91. [PMID: 25274141 DOI: 10.1002/ijc.29244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 08/09/2014] [Accepted: 08/22/2014] [Indexed: 12/22/2022]
Abstract
Soft tissue sarcomas (STS) are heterogeneous malignant tumors of mesenchymal origin. Due to low incidence and high number of different histological subtypes, their pathogenesis and thus potential targets for their therapy remain barely investigated. Several studies revealed significant higher EPHB4 expression in malignancies such as prostate and colorectal cancer showing survival advantages for these tumor cells. Therefore we studied the expression of EPHB4 in a total of 46 clinical human specimens of different STS and human fibroblasts. EPHB4 mRNA and protein expression were significantly increased in synovial sarcoma. After targeting EPHB4 in fibrosarcoma, synovial sarcoma, liposarcoma and MFH sarcoma cell lines by siRNA or by inhibition of autophosphorylation using the specific EPHB4 kinase inhibitor NVP-BHG712 a decreased proliferation rate/vitality of synovial- and fibrosarcoma cells was observed. Silencing of EPHB4 significantly reduced the transmigration of synovial sarcoma cells towards fibroblasts and endothelial cells. In addition, we assessed the anti-metastatic effect of EPHB4 inhibition in vivo by intraperitoneal administration of the EPHB4 inhibitor in an appropriate sarcoma lung metastasis xenograft model. As result 43% of NVP-BHG712 treated mice (n = 3/7) developed pulmonary metastases whereas all control mice (n = 5) revealed lung metastases. The residual 57% of mice (n = 4/7) showed only small local tumor cell spots. Size measurements of the Vimentin positive area explained significant decrease in lung metastasis formation (p < 0.05) after EPHB4 kinase inhibition. In summary, these data provide first evidence of the importance of EPHB4 in the tumorigenesis of synovial sarcoma and present EPHB4 as a potential target in the therapy of this malignancy.
Collapse
Affiliation(s)
- M Becerikli
- Department of Plastic and Reconstructive Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The erythropoietin-producing hepatocellular carcinoma (Eph) receptor tyrosine kinase family plays important roles in developmental processes, adult tissue homeostasis, and various diseases. Interaction with Eph receptor-interacting protein (ephrin) ligands on the surface of neighboring cells triggers Eph receptor kinase-dependent signaling. The ephrins can also transmit signals, leading to bidirectional cell contact-dependent communication. Moreover, Eph receptors and ephrins can function independently of each other through interplay with other signaling systems. Given their involvement in many pathological conditions ranging from neurological disorders to cancer and viral infections, Eph receptors and ephrins are increasingly recognized as attractive therapeutic targets, and various strategies are being explored to modulate their expression and function. Eph receptor/ephrin upregulation in cancer cells, the angiogenic vasculature, and injured or diseased tissues also offer opportunities for Eph/ephrin-based targeted drug delivery and imaging. Thus, despite the challenges presented by the complex biology of the Eph receptor/ephrin system, exciting possibilities exist for therapies exploiting these molecules.
Collapse
Affiliation(s)
- Antonio Barquilla
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037; ,
| | | |
Collapse
|
25
|
Kaenel P, Hahnewald S, Wotzkow C, Strange R, Andres AC. Overexpression of EphB4 in the mammary epithelium shifts the differentiation pathway of progenitor cells and promotes branching activity and vascularization. Dev Growth Differ 2014; 56:255-75. [PMID: 24635767 DOI: 10.1111/dgd.12126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 02/02/2014] [Accepted: 02/04/2014] [Indexed: 01/16/2023]
Abstract
Postnatally, the mammary gland undergoes continuous morphogenesis and thereby is especially prone to malignant transformation. Thus, the maintenance of the epithelium depends on a tight control of stem cell recruitment. We have previously shown that epithelial overexpression of the EphB4 receptor results in defective mammary epithelial development and conferred a metastasizing tumor phenotype on experimental mouse mammary tumors accompanied by a preponderance of progenitor cells. To analyze the effect of EphB4 overexpression on mammary epithelial cell fate, we have used Fluorescence Activated Cell Sorting (FACS) analyses to quantify epithelial sub-populations and repopulation assays of cleared fat pads to investigate their regenerative potential. These experiments revealed that deregulated EphB4 expression leads to an augmentation of bi-potent progenitor cells and to a shift of the differentiation pathway towards the luminal lineage. The analyses of the ductal outgrowths indicated that EphB4 overexpression leads to enforced branching activity, impedes ductal differentiation and stimulates angiogenesis. To elucidate the mechanisms forwarding EphB4 signals, we have compared the expression profile of defined cell populations between EphB4 transgene and wild type mammary glands concentrating on the wnt signaling pathway and on genes implicated in cell migration. With respect to wnt signaling, the progenitor cell population was the most affected, whereas the stem cell-enriched population showed the most pronounced deregulation of migration-associated genes. Thus, the luminal epithelial EphB4 signaling contributes, most likely via wnt signaling, to the regulation of migration and cell fate of early progenitors and is involved in the determination of branching points along the ductal tree.
Collapse
Affiliation(s)
- Philip Kaenel
- Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH-3004, Bern, Switzerland
| | | | | | | | | |
Collapse
|
26
|
Experimental hypoxia does not influence gene expression and protein synthesis of Eph receptors and ephrin ligands in human melanoma cells in vitro. Melanoma Res 2014; 23:85-95. [PMID: 23358429 DOI: 10.1097/cmr.0b013e32835e58f3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Eph receptor tyrosine kinases and their ephrin ligands are considered to play important roles in melanoma progression and metastasis. Moreover, hypoxia is known to contribute to melanoma metastasis. In this study, the influence of experimental hypoxia on the expression and synthesis of EphA2 and EphB4, and their corresponding ligands ephrinA1, ephrinA5, and ephrinB2 was studied systematically in four human melanoma cell lines in vitro. Melanoma cell monolayer and spheroid cultures were used as both extrinsic and intrinsic hypoxia models. Hypoxic conditions were confirmed by analyzing hypoxia-inducible factors 1α or 2α expression, vascular endothelial growth factor expression, and cellular uptake of [F]fluoromisonidazole. In normoxia, EphA2, EphB4, ephrinA1, ephrinA5, and ephrinB2 expression was detectable in all cell lines to varying extents. Considerable protein synthesis of EphA2 was detected in all cell lines. However, no effect of experimental hypoxia on both Eph/ephrin expression and protein synthesis was observed. This contributes critically to the debate on the hypothesis that hypoxia regulates the Eph/ephrin system in melanoma.
Collapse
|
27
|
|
28
|
Li RX, Chen ZH, Chen ZK. The role of EPH receptors in cancer-related epithelial-mesenchymal transition. CHINESE JOURNAL OF CANCER 2013; 33:231-40. [PMID: 24103789 PMCID: PMC4026543 DOI: 10.5732/cjc.013.10108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Erythropoietin-producing hepatoma (EPH) receptors are considered the largest family of receptor tyrosine kinases and play key roles in physiological and pathologic processes in development and disease. EPH receptors are often overexpressed in human malignancies and are associated with poor prognosis. However, the functions of EPH receptors in epithelial-mesenchymal transition (EMT) remain largely unknown. This review depicts the relationship between EPH receptors and the EMT marker E-cadherin as well as the crosstalk between EPH receptors and the signaling pathways involved EMT. Further discussion is focused on the clinical significance of EPH receptors as candidates for targeting in cancer therapeutics. Finally, we summarize how targeted inhibition of both EPH receptors and EMT-related signaling pathways represents a novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Rui-Xin Li
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.
| | | | | |
Collapse
|
29
|
Eph receptors and their ligands: promising molecular biomarkers and therapeutic targets in prostate cancer. Biochim Biophys Acta Rev Cancer 2013; 1835:243-57. [PMID: 23396052 DOI: 10.1016/j.bbcan.2013.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/21/2013] [Accepted: 01/25/2013] [Indexed: 01/01/2023]
Abstract
Although at present, there is a high incidence of prostate cancer, particularly in the Western world, mortality from this disease is declining and occurs primarily only from clinically significant late stage tumors with a poor prognosis. A major current focus of this field is the identification of new biomarkers which can detect earlier, and more effectively, clinically significant tumors from those deemed "low risk", as well as predict the prognostic course of a particular cancer. This strategy can in turn offer novel avenues for targeted therapies. The large family of Receptor Tyrosine Kinases, the Ephs, and their binding partners, the ephrins, has been implicated in many cancers of epithelial origin through stimulation of oncogenic transformation, tumor angiogenesis, and promotion of increased cell survival, invasion and migration. They also show promise as both biomarkers of diagnostic and prognostic value and as targeted therapies in cancer. This review will briefly discuss the complex roles and biological mechanisms of action of these receptors and ligands and, with regard to prostate cancer, highlight their potential as biomarkers for both diagnosis and prognosis, their application as imaging agents, and current approaches to assessing them as therapeutic targets. This review demonstrates the need for future studies into those particular family members that will prove helpful in understanding the biology and potential as targets for treatment of prostate cancer.
Collapse
|
30
|
T-cadherin loss promotes experimental metastasis of squamous cell carcinoma. Eur J Cancer 2013; 49:2048-58. [PMID: 23369463 DOI: 10.1016/j.ejca.2012.12.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/11/2012] [Accepted: 12/24/2012] [Indexed: 11/24/2022]
Abstract
T-cadherin is gaining recognition as a determinant for the development of incipient invasive squamous cell carcinoma (SCC). However, effects of T-cadherin expression on the metastatic potential of SCC have not been studied. Here, using a murine model of experimental metastasis following tail vein injection of A431 SCC cells we report that loss of T-cadherin increased both the incidence and rate of appearance of lung metastases. T-cadherin-silenced SCC metastases were highly disordered with evidence of single cell dissemination away from main foci whereas SCC metastases overexpressing T-cadherin developed as compact, tightly organised sheets. SCC cell adhesion to vascular endothelial cells (EC) in culture was increased for T-cadherin-silenced SCC and decreased for T-cadherin-overexpressing SCC. Confocal microscopy showed that T-cadherin-silenced SCC adherent on EC display an elongated morphology with long thin extensions and a high degree of intercalation within the EC monolayer, whereas SCC overexpressing T-cadherin formed poorly-spread multicellular aggregates that remain on the outer surface of the EC monolayer. T-cadherin-deficient SCC or human keratinocyte cells exhibited increased transendothelial migration in vitro which could be attenuated in the presence of EGFR inhibitor gefitinib. Our data suggest that loss of T-cadherin can increase metastatic potential and aggressiveness of SCC, possibly due to facilitating arrest and extravasation through the vascular wall and/or more efficient establishment of metastases in the new microenvironment.
Collapse
|
31
|
Orentas RJ, Yang JJ, Wen X, Wei JS, Mackall CL, Khan J. Identification of cell surface proteins as potential immunotherapy targets in 12 pediatric cancers. Front Oncol 2012; 2:194. [PMID: 23251904 PMCID: PMC3523547 DOI: 10.3389/fonc.2012.00194] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/30/2012] [Indexed: 12/11/2022] Open
Abstract
Technological advances now allow us to rapidly produce CARs and other antibody-derived therapeutics targeting cell surface receptors. To maximize the potential of these new technologies, relevant extracellular targets must be identified. The Pediatric Oncology Branch of the NCI curates a freely accessible database of gene expression data for both pediatric cancers and normal tissues, through which we have defined discrete sets of over-expressed transcripts in 12 pediatric cancer subtypes as compared to normal tissues. We coupled gene expression profiles to current annotation databases (i.e., Affymetrix, Gene Ontology, Entrez Gene), in order to categorize transcripts by their sub-cellular location. In this manner we generated a list of potential immune targets expressed on the cell surface, ranked by their difference from normal tissue. Global differences from normal between each of the pediatric tumor types studied varied, indicating that some malignancies expressed transcript sets that were more highly diverged from normal tissues than others. The validity of our approach is seen by our findings for pre-B cell ALL, where targets currently in clinical trials were top-ranked hits (CD19, CD22). For some cancers, reagents already in development could potentially be applied to a new disease class, as exemplified by CD30 expression on sarcomas. Moreover, several potential new targets shared among several pediatric solid tumors are herein identified, such as MCAM (MUC18), metadherin (MTDH), and glypican-2 (GPC2). These targets have been identified at the mRNA level and are yet to be validated at the protein level. The safety of targeting these antigens has yet to be demonstrated and therefore the identified transcripts should be considered preliminary candidates for new CAR and therapeutic antibody targets. Prospective candidate targets will be evaluated by proteomic analysis including Westerns and immunohistochemistry of normal and tumor tissues.
Collapse
Affiliation(s)
- Rimas J Orentas
- Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Cancer cells rely on intercellular communication throughout the different stages of their transformation and progression into metastasis. They do so by co-opting different processes such as cell-cell junctions, growth factors, receptors, and vesicular release. Initially characterized in neuronal and vascular tissues, Ephs and Ephrins, the largest family of receptor tyrosine kinases, comprised of two classes (i.e., A and B types), is increasingly scrutinized by cancer researchers. These proteins possess the particular features of both the receptors and ligands being membrane-bound which, via mandatory direct cell-cell interactions, undergo a bidirectional signal transduction initiated from both the receptor and the ligand. Following cell-cell interactions, Ephs/Ephrins behave as guidance molecules which trigger both repulsive and attractive signals, so as to direct the movement of cells through their immediate microenvironment. They also direct processes which include sorting and positioning and cytoskeleton rearrangements, thus making them perfect candidates for the control of the metastatic process. In fact, the role of Ephs and Ephrins in cancer progression has been demonstrated for many of the family members and they, surprisingly, have both tumor promoter and suppressor functions in different cellular contexts. They are also able to coordinate between multiple processes including cell survival, proliferation, differentiation, adhesion, motility, and invasion. This review is an attempt to summarize the data available on these Ephs/Ephrins' biological functions which contribute to the onset of aggressive cancers. I will also provide an overview of the factors which could explain the functional differences demonstrated by Ephs and Ephrins at different stages of tumor progression and whose elucidation is warranted for any future therapeutic targeting of this signaling pathway in cancer metastasis.
Collapse
|
33
|
Tu Y, He S, Fu J, Li G, Xu R, Lu H, Deng J. Expression of EphrinB2 and EphB4 in glioma tissues correlated to the progression of glioma and the prognosis of glioblastoma patients. Clin Transl Oncol 2012; 14:214-20. [PMID: 22374425 DOI: 10.1007/s12094-012-0786-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVE The ligand EphrinB2 and the corresponding receptor EphB4 are up-regulated and involved in tumour growth in various human cancers. However, little is known about how this receptor-ligand complex contributes to the progression of glioma. This prompted us to study the association between the expressions of EphrinB2 and EphB4, clinicopathological variables, and glioma patient outcome. METHODS Immunohistochemical staining was performed to detect the expression patterns of EphrinB2 and EphB4 in the biopsies from 96 patients with primary gliomas. Kaplan-Meier survival and Cox regression analyses were performed to evaluate the prognosis of patients. RESULTS Immunohistochemical analysis revealed that the expression of EphrinB2 was significantly correlated with that of EphB4 (r=0.86, p=0.002). EphrinB2 and EphB4 were significantly associated with the Karnofsky performance scale (KPS) score and World Health Organization grades of patients with gliomas, respectively. Especially, the positive expression rates of EphrinB2 and EphB4 were significantly higher in patients with higher grade (both p=0.001) and lower KPS score (p=0.002 and 0.003, respectively). Multivariate Cox regression analysis revealed that EphrinB2 and EphB4 expressions were both independent prognostic factors for progress-free survival of glioblastoma patients (both p=0.02). CONCLUSION Our data indicated for the first time that EphrinB2 and EphB4 expressions increase according to the histopathological grade and KPS score of glioma, and their expression levels are related to the progression-free survival of glioblastoma patients.
Collapse
Affiliation(s)
- Yanyang Tu
- Department of Emergency, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Kim JH, Peacock MR, George SC, Hughes CCW. BMP9 induces EphrinB2 expression in endothelial cells through an Alk1-BMPRII/ActRII-ID1/ID3-dependent pathway: implications for hereditary hemorrhagic telangiectasia type II. Angiogenesis 2012; 15:497-509. [PMID: 22622516 DOI: 10.1007/s10456-012-9277-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 04/30/2012] [Indexed: 02/07/2023]
Abstract
ALK1 (ACVRL1) is a member of the TGFβ receptor family and is expressed predominantly by arterial endothelial cells (EC). Mutations in ACVRL1 are responsible for hereditary hemorrhagic telangiectasia type 2 (HHT2), a disease manifesting as fragile vessels, capillary overgrowth, and numerous arterio-venous malformations. Arterial EC also express EphrinB2, which has multiple roles in vascular development and angiogenesis and is known to be reduced in ACVRL1 knockout mice. Using an in vitro angiogenesis model we find that the Alk1 ligand BMP9 induces EphrinB2 in EC, and this is entirely dependent on expression of Alk1 and at least one of the co-receptors BMPRII or ActRII. BMP9 induces both ID1 and ID3, and both are necessary for full induction of EphrinB2. Loss of Alk1 or EphrinB2 results in increased arterial-venous anastomosis, while loss of Alk1 but not EphrinB2 results in increased VEGFR2 expression and enhanced capillary sprouting. Conversely, BMP9 blocks EC sprouting and this is dependent on Alk1, BMPRII/ActRII and ID1/ID3. Finally, notch signaling overcomes the loss of Alk1-restoring EphrinB2 expression in EC, and curbing excess sprouting. Thus, in an in vitro model of HHT2, loss of Alk1 blocks BMP9 signaling, resulting in reduced EphrinB2 expression, enhanced VEGFR2 expression, and misregulated EC sprouting and anastomosis.
Collapse
MESH Headings
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/metabolism
- Activin Receptors, Type II/metabolism
- Animals
- Base Sequence
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- DNA Primers
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Ephrin-B2/genetics
- Ephrin-B2/metabolism
- Growth Differentiation Factor 2/physiology
- Inhibitor of Differentiation Proteins/metabolism
- Mice
- Mice, Knockout
- Microscopy, Confocal
- Promoter Regions, Genetic
- Real-Time Polymerase Chain Reaction
- Receptors, Notch/metabolism
- Signal Transduction
- Telangiectasia, Hereditary Hemorrhagic/genetics
- Telangiectasia, Hereditary Hemorrhagic/metabolism
Collapse
Affiliation(s)
- Jai-Hyun Kim
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
35
|
Kaenel P, Mosimann M, Andres AC. The multifaceted roles of Eph/ephrin signaling in breast cancer. Cell Adh Migr 2012; 6:138-47. [PMID: 22568950 PMCID: PMC3499313 DOI: 10.4161/cam.20154] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Eph receptors and their membrane-bound ligands are intimately involved in the control of morphogenic processes during embryonic development and adult tissue homeostasis. By their ability to orchestrate cell migration, pattern formation and tissue integrity they are also prone to be involved in carcinogenic growth. In this review we concentrate on their involvement in the normal and carcinogenic development of the breast. In this context we summarize their multi-faceted functions as tumor suppressors, tumor promoters, angiogenic inducers and regulators of stem cell homeostasis.
Collapse
Affiliation(s)
- Philip Kaenel
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
36
|
Rutkowski R, Mertens-Walker I, Lisle JE, Herington AC, Stephenson SA. Evidence for a dual function of EphB4 as tumor promoter and suppressor regulated by the absence or presence of the ephrin-B2 ligand. Int J Cancer 2012; 131:E614-24. [PMID: 22161689 DOI: 10.1002/ijc.27392] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 12/01/2011] [Indexed: 11/10/2022]
Abstract
Overexpression of the receptor tyrosine kinase EphB4 is common in epithelial cancers and linked to tumor progression by promoting angiogenesis, increasing survival and facilitating invasion and migration. However, other studies have reported loss of EphB4 suggesting a tumor suppressor function in some cancers. These opposing roles may be regulated by (i) the presence of the primary ligand ephrin-B2 that regulates pathways involved in tumor suppression or (ii) the absence of ephrin-B2 that allows EphB4 signaling via ligand-independent pathways that contribute to tumor promotion. To explore this theory, EphB4 was overexpressed in the prostate cancer cell line 22Rv1 and the mammary epithelial cell line MCF-10A. Overexpressed EphB4 localized to lipid-rich regions of the plasma membrane and confirmed to be ligand-responsive as demonstrated by increased phosphorylation of ERK1/2 and internalization. EphB4 overexpressing cells demonstrated enhanced anchorage-independent growth, migration and invasion, all characteristics associated with an aggressive phenotype, and therefore supporting the hypothesis that overexpressed EphB4 facilitates tumor promotion. Importantly, these effects were reversed in the presence of ephrin-B2 which led to a reduction in EphB4 protein levels, demonstrating that ligand-dependent signaling is tumor suppressive. Furthermore, extended ligand stimulation caused a significant decrease in proliferation that correlated with a rise in caspase-3/7 and -8 activities. Together, these results demonstrate that overexpression of EphB4 confers a transformed phenotype in the case of MCF-10A cells and an increased metastatic phenotype in the case of 22Rv1 cancer cells and that both phenotypes can be restrained by stimulation with ephrin-B2, in part by reducing EphB4 levels.
Collapse
Affiliation(s)
- Raphael Rutkowski
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
| | | | | | | | | |
Collapse
|
37
|
Noberini R, Mitra S, Salvucci O, Valencia F, Duggineni S, Prigozhina N, Wei K, Tosato G, Huang Z, Pasquale EB. PEGylation potentiates the effectiveness of an antagonistic peptide that targets the EphB4 receptor with nanomolar affinity. PLoS One 2011; 6:e28611. [PMID: 22194865 PMCID: PMC3237458 DOI: 10.1371/journal.pone.0028611] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/11/2011] [Indexed: 01/12/2023] Open
Abstract
The EphB4 receptor tyrosine kinase together with its preferred ligand, ephrin-B2, regulates a variety of physiological and pathological processes, including tumor progression, pathological forms of angiogenesis, cardiomyocyte differentiation and bone remodeling. We previously reported the identification of TNYL-RAW, a 15 amino acid-long peptide that binds to the ephrin-binding pocked of EphB4 with low nanomolar affinity and inhibits ephrin-B2 binding. Although ephrin-B2 interacts promiscuously with all the EphB receptors, the TNYL-RAW peptide is remarkably selective and only binds to EphB4. Therefore, this peptide is a useful tool for studying the biological functions of EphB4 and for imaging EphB4-expressing tumors. Furthermore, TNYL-RAW could be useful for treating pathologies involving EphB4-ephrin-B2 interaction. However, the peptide has a very short half-life in cell culture and in the mouse blood circulation due to proteolytic degradation and clearance by the kidneys and reticuloendothelial system. To overcome these limitations, we have modified TNYL-RAW by fusion with the Fc portion of human IgG1, complexation with streptavidin or covalent coupling to a 40 KDa branched polyethylene glycol (PEG) polymer. These modified forms of TNYL-RAW all have greatly increased stability in cell culture, while retaining high binding affinity for EphB4. Furthermore, PEGylation most effectively increases peptide half-life in vivo. Consistent with increased stability, submicromolar concentrations of PEGylated TNYL-RAW effectively impair EphB4 activation by ephrin-B2 in cultured B16 melanoma cells as well as capillary-like tube formation and capillary sprouting in co-cultures of endothelial and epicardial mesothelial cells. Therefore, PEGylated TNYL-RAW may be useful for inhibiting pathological forms of angiogenesis through a novel mechanism involving disruption of EphB4-ephrin-B2 interactions between endothelial cells and supporting perivascular mesenchymal cells. Furthermore, the PEGylated peptide is suitable for other cell culture and in vivo applications requiring prolonged EphB4 receptor targeting.
Collapse
Affiliation(s)
- Roberta Noberini
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Sayantan Mitra
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Ombretta Salvucci
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Fatima Valencia
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Srinivas Duggineni
- Department of Pharmacology, State University of New York Upstate Cancer Research Institute, State University of New York, Syracuse, New York, United States of America
| | - Natalie Prigozhina
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- Biology Department, University of San Diego, San Diego, California, United States of America
| | - Ke Wei
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ziwei Huang
- Department of Pharmacology, State University of New York Upstate Cancer Research Institute, State University of New York, Syracuse, New York, United States of America
| | - Elena B. Pasquale
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- Department of Pathology, University of California San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|