1
|
Shil RK, Mohammed NBB, Dimitroff CJ. Galectin-9 - ligand axis: an emerging therapeutic target for multiple myeloma. Front Immunol 2024; 15:1469794. [PMID: 39386209 PMCID: PMC11461229 DOI: 10.3389/fimmu.2024.1469794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Galectin-9 (Gal-9) is a tandem-repeat galectin with diverse roles in immune homeostasis, inflammation, malignancy, and autoimmune diseases. In cancer, Gal-9 displays variable expression patterns across different tumor types. Its interactions with multiple binding partners, both intracellularly and extracellularly, influence key cellular processes, including immune cell modulation and tumor microenvironment dynamics. Notably, Gal-9 binding to cell-specific glycoconjugate ligands has been implicated in both promoting and suppressing tumor progression. Here, we provide insights into Gal-9 and its involvement in immune homeostasis and cancer biology with an emphasis on multiple myeloma (MM) pathophysiology, highlighting its complex and context-dependent dual functions as a pro- and anti-tumorigenic molecule and its potential implications for therapy in MM patients.
Collapse
Affiliation(s)
- Rajib K. Shil
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Norhan B. B. Mohammed
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, United States
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Charles J. Dimitroff
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
2
|
Kuroda J, Yamamoto M, Nagoshi H, Kobayashi T, Sasaki N, Shimura Y, Horiike S, Kimura S, Yamauchi A, Hirashima M, Taniwaki M. Editor's Note: Targeting Activating Transcription Factor 3 by Galectin-9 Induces Apoptosis and Overcomes Various Types of Treatment Resistance in Chronic Myelogenous Leukemia. Mol Cancer Res 2024; 22:779. [PMID: 39091160 DOI: 10.1158/1541-7786.mcr-24-0507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 08/04/2024]
|
3
|
Liu Y, Cao Y, Liu P, Zhai S, Liu Y, Tang X, Lin J, Shi M, Qi D, Deng X, Zhu Y, Wang W, Shen B. ATF3-induced activation of NF-κB pathway results in acquired PARP inhibitor resistance in pancreatic adenocarcinoma. Cell Oncol (Dordr) 2024; 47:939-950. [PMID: 38097870 DOI: 10.1007/s13402-023-00907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 07/04/2024] Open
Abstract
PURPOSE Olaparib, an inhibitor of poly-(adenosine diphosphate-ribose) polymerase (PARP), has been shown to have anticancer benefits in patients with pancreatic cancer who have a germline mutation in BRCA1/2. However, resistance acquired on long-term exposure to olaparib significantly impedes clinical efficacy. METHODS In this study, the chromatin accessibility and differentially expressed transcripts of parental and olaparib-resistant pancreatic cancer cell lines were assessed using the Assay for Transposase Accessible Chromatin with sequencing (ATAC-seq) and mRNA-seq. Detection of downstream genes regulated by transcription factors using ChIP (Chromatin immunoprecipitation assay). RESULTS According to pathway enrichment analysis, differentially expressed genes in olaparib-resistant cells were remarkably enriched in the NF-κB signaling pathway. With ATAC-seq, we identified chromatin regions with higher accessibility in olaparib-resistant cells and predicted a series of important transcription factors. Among them, activating transcription factor 3 (ATF3) was significantly highly expressed. Functional experiments verified that inhibition of ATF3 suppressed the NF-κB pathway significantly and restored olaparib sensitivity in olaparib-resistant cells. CONCLUSION Experiments in vitro and in vivo indicate ATF3 enhances olaparib resistance through the NF-κB signaling pathway, suggesting that ATF3 could be employed as an olaparib sensitivity and prognostic indicator in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Yang Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yizhi Cao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Pengyi Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Shuyu Zhai
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yihao Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Xiaomei Tang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Jiayu Lin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Debin Qi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Youwei Zhu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China.
| | - Weishen Wang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China.
| |
Collapse
|
4
|
Ghosh P, Patari N, Manisha C, Basavan D, Petchiappan V, Justin A. Reversal mechanism of multidrug-resistant cancer cells by lectin as chemo-adjuvant and targeted therapy- a systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155205. [PMID: 37980807 DOI: 10.1016/j.phymed.2023.155205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Cancer is characterized as the leading cause of death, and the susceptibility of cancer cells to develop resistance due to long-term exposure to complementary chemotherapeutic treatment is referred to as multidrug resistance cancer cells (MDRC), which is a significant obstacle in the treatment of malignancies. Since complementary medicine lost its effectiveness, the development of potential alternative and novel therapeutic approaches has been elevated to a top priority in recent years. In this context, a bioactive protein lectin from plant and animal sources exhibits an invaluable source of anticancer agents with vast therapeutic potential. PURPOSE This manuscript's primary purpose is to enlighten the evidence-based (from 1986 to 2022) possible molecular mechanism of alternative treatment approaches using lectins over the complementary medicines used for cancer treatment. METHODS The PRISMA rules have been followed properly and qualitative and quantitative data are synthesized systematically. Articles were identified based on Clinical and preclinical reports published on lectin that investigated the in-depth cellular mechanisms, of reverse drug integrative oncology, as a nano-carried targeted delivery. Articles were systematically screened from 1986 to 2022 and selected based on electronic database searches, Medline (PubMed), Google Scholar, Web of Science, Encyclopaedias, Scopus, and ClinicalTrials.gov database. RESULTS The search turned up 4,212 publications from 38 different nations, of which 170 reference articles were used in our analysis, in 16 combination therapy and their mode of action, and 27 clinical trial studies including dosage and mechanism of action were included. Reports from the 30 lectins belonging to 28 different families have been included. The reversal mechanism of lectin and alternative therapy against MDRC is critically screened and according to a few clinical and preclinical reports, lectin can suppress the overexpressing genes like P-53, EGFR, and P-gp, MRP, and ABC transporter proteins associated with intracellular transportation of drugs. Since, the drug efflux mechanism leads to MDRC, in this phenomenon, lectin plays a key role in reversing the efflux mechanism. Few preclinical reports have mentioned that lectin shows synergism in combination with complementary medicine and as a nano drug carrier helps to deliver to the targeted site. CONCLUSION We have discussed the alternative therapy using lectin and an in-depth insight into the reversal drug resistance mechanisms to combat MDRC cancer, enhance the efficacy, reduce toxicity and adverse events, and ensure targeted delivery, and their application in the field of cancer diagnosis and prognosis has been discussed. However, further investigation is necessary in drug development and clinical trials which could be helpful to elaborate the reversal mechanism and unlock newer treatment modalities in MDRC cancer.
Collapse
Affiliation(s)
- Puja Ghosh
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643 001, India
| | - Niloy Patari
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, USA
| | - Chennu Manisha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643 001, India
| | - Duraiswamy Basavan
- Department of Pharmacognosy, JSS College of Pharmacy, Najwal, Vijaypur, Jammu 184 120, India
| | - Velammal Petchiappan
- Department of General Medicine, PSG Institute of Medical Sciences & Research, Coimbatore, Tamil Nadu 641 004, India
| | - Antony Justin
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643 001, India.
| |
Collapse
|
5
|
Nersesian S, Carter EB, Lee SN, Westhaver LP, Boudreau JE. Killer instincts: natural killer cells as multifactorial cancer immunotherapy. Front Immunol 2023; 14:1269614. [PMID: 38090565 PMCID: PMC10715270 DOI: 10.3389/fimmu.2023.1269614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Natural killer (NK) cells integrate heterogeneous signals for activation and inhibition using germline-encoded receptors. These receptors are stochastically co-expressed, and their concurrent engagement and signaling can adjust the sensitivity of individual cells to putative targets. Against cancers, which mutate and evolve under therapeutic and immunologic pressure, the diversity for recognition provided by NK cells may be key to comprehensive cancer control. NK cells are already being trialled as adoptive cell therapy and targets for immunotherapeutic agents. However, strategies to leverage their naturally occurring diversity and agility have not yet been developed. In this review, we discuss the receptors and signaling pathways through which signals for activation or inhibition are generated in NK cells, focusing on their roles in cancer and potential as targets for immunotherapies. Finally, we consider the impacts of receptor co-expression and the potential to engage multiple pathways of NK cell reactivity to maximize the scope and strength of antitumor activities.
Collapse
Affiliation(s)
- Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Emily B. Carter
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Stacey N. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | - Jeanette E. Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
6
|
Choukrani G, Visser N, Ustyanovska Avtenyuk N, Olthuis M, Marsman G, Ammatuna E, Lourens HJ, Niki T, Huls G, Bremer E, Wiersma VR. Galectin-9 has non-apoptotic cytotoxic activity toward acute myeloid leukemia independent of cytarabine resistance. Cell Death Discov 2023; 9:228. [PMID: 37407572 DOI: 10.1038/s41420-023-01515-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is a malignancy still associated with poor survival rates, among others, due to frequent occurrence of therapy-resistant relapse after standard-of-care treatment with cytarabine (AraC). AraC triggers apoptotic cell death, a type of cell death to which AML cells often become resistant. Therefore, therapeutic options that trigger an alternate type of cell death are of particular interest. We previously identified that the glycan-binding protein Galectin-9 (Gal-9) has tumor-selective and non-apoptotic cytotoxicity towards various types of cancer, which depended on autophagy inhibition. Thus, Gal-9 could be of therapeutic interest for (AraC-resistant) AML. In the current study, treatment with Gal-9 was cytotoxic for AML cells, including for CD34+ patient-derived AML stem cells, but not for healthy cord blood-derived CD34+ stem cells. This Gal-9-mediated cytotoxicity did not rely on apoptosis but was negatively associated with autophagic flux. Importantly, both AraC-sensitive and -resistant AML cell lines, as well as AML patient samples, were sensitive to single-agent treatment with Gal-9. Additionally, Gal-9 potentiated the cytotoxic effect of DNA demethylase inhibitor Azacytidine (Aza), a drug that is clinically used for patients that are not eligible for intensive AraC treatment. Thus, Gal-9 is a potential therapeutic agent for the treatment of AML, including AraC-resistant AML, by inducing caspase-independent cell death.
Collapse
Affiliation(s)
- Ghizlane Choukrani
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nienke Visser
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Natasha Ustyanovska Avtenyuk
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Surflay Nanotec GmbH, Berlin, Germany
| | - Mirjam Olthuis
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Glenn Marsman
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Emanuele Ammatuna
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harm Jan Lourens
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Toshiro Niki
- Department of Immunology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Gerwin Huls
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edwin Bremer
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Valerie R Wiersma
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
7
|
Morishita A, Oura K, Tadokoro T, Shi T, Fujita K, Tani J, Atsukawa M, Masaki T. Galectin-9 in Gastroenterological Cancer. Int J Mol Sci 2023; 24:ijms24076174. [PMID: 37047155 PMCID: PMC10094448 DOI: 10.3390/ijms24076174] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Immunochemotherapy has become popular in recent years. The detailed mechanisms of cancer immunity are being elucidated, and new developments are expected in the future. Apoptosis allows tissues to maintain their form, quantity, and function by eliminating excess or abnormal cells. When apoptosis is inhibited, the balance between cell division and death is disrupted and tissue homeostasis is impaired. This leads to dysfunction and the accumulation of genetically abnormal cells, which can contribute to carcinogenesis. Lectins are neither enzymes nor antibodies but proteins that bind sugar chains. Among soluble endogenous lectins, galectins interact with cell surface sugar chains outside the cell to regulate signal transduction and cell growth. On the other hand, intracellular lectins are present at the plasma membrane and regulate signal transduction by regulating receptor–ligand interactions. Galectin-9 expressed on the surface of thymocytes induces apoptosis of T lymphocytes and plays an essential role in immune self-tolerance by negative selection in the thymus. Furthermore, the administration of extracellular galectin-9 induces apoptosis of human cancer and immunodeficient cells. However, the detailed pharmacokinetics of galectin-9 in vivo have not been elucidated. In addition, the cell surface receptors involved in galectin-9-induced apoptosis of cancer cells have not been identified, and the intracellular pathways involved in apoptosis have not been fully investigated. We have previously reported that galectin-9 induces apoptosis in various gastrointestinal cancers and suppresses tumor growth. However, the mechanism of galectin-9 and apoptosis induction in gastrointestinal cancers and the detailed mechanisms involved in tumor growth inhibition remain unknown. In this article, we review the effects of galectin-9 on gastrointestinal cancers and its mechanisms.
Collapse
|
8
|
Kruk L, Braun A, Cosset E, Gudermann T, Mammadova-Bach E. Galectin functions in cancer-associated inflammation and thrombosis. Front Cardiovasc Med 2023; 10:1052959. [PMID: 36873388 PMCID: PMC9981828 DOI: 10.3389/fcvm.2023.1052959] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/12/2023] [Indexed: 02/19/2023] Open
Abstract
Galectins are carbohydrate-binding proteins that regulate many cellular functions including proliferation, adhesion, migration, and phagocytosis. Increasing experimental and clinical evidence indicates that galectins influence many steps of cancer development by inducing the recruitment of immune cells to the inflammatory sites and modulating the effector function of neutrophils, monocytes, and lymphocytes. Recent studies described that different isoforms of galectins can induce platelet adhesion, aggregation, and granule release through the interaction with platelet-specific glycoproteins and integrins. Patients with cancer and/or deep-venous thrombosis have increased levels of galectins in the vasculature, suggesting that these proteins could be important contributors to cancer-associated inflammation and thrombosis. In this review, we summarize the pathological role of galectins in inflammatory and thrombotic events, influencing tumor progression and metastasis. We also discuss the potential of anti-cancer therapies targeting galectins in the pathological context of cancer-associated inflammation and thrombosis.
Collapse
Affiliation(s)
- Linus Kruk
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Erika Cosset
- CRCL, UMR INSERM 1052, CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
9
|
Niu X, Cui H, Gu X, Wu T, Sun M, Zhou C, Ma M. Nuclear Receptor PXR Confers Irradiation Resistance by Promoting DNA Damage Response Through Stabilization of ATF3. Front Oncol 2022; 12:837980. [PMID: 35372071 PMCID: PMC8965888 DOI: 10.3389/fonc.2022.837980] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/10/2022] [Indexed: 12/26/2022] Open
Abstract
Low response rate to radiotherapy remains a problem for liver and colorectal cancer patients due to inappropriate DNA damage response in tumors. Here, we report that pregnane X receptor (PXR) contributes to irradiation (IR) resistance by promoting activating transcription factor 3 (ATF3)-mediated ataxia-telangiectasia-mutated protein (ATM) activation. PXR stabilized ATF3 protein by blocking its ubiquitination. PXR–ATF3 interaction is required for regulating ATF3, as one mutant of lysine (K) 42R of ATF3 lost binding with PXR and abolished PXR-reduced ubiquitination of ATF3. On the other hand, threonine (T) 432A of PXR lost binding with ATF3 and further compromised ATM activation. Moreover, the PXR–ATF3 interaction increases ATF3 stabilization through disrupting ATF3–murine double minute 2 (MDM2) interaction and negatively regulating MDM2 protein expression. PXR enhanced MDM2 auto-ubiquitination and shortened its half-life, therefore compromising the MDM2-mediated degradation of ATF3 protein. Structurally, both ATF3 and PXR bind to the RING domain of MDM2, and on the other hand, MDM2 binds with PXR on the DNA-binding domain (DBD), which contains zinc finger sequence. Zinc finger sequence is well known for nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) playing E3 ligase activity to degrade nuclear factor κB (NFκB)/p65. However, whether zinc-RING sequence grants E3 ligase activity to PXR remains elusive. Taken together, these results provide a novel mechanism that PXR contributes to IR resistance by promoting ATF3-mediated ATM activation through stabilization of ATF3. Our result suggests that targeting PXR may sensitize liver and colon cancer cells to IR therapy.
Collapse
Affiliation(s)
- Xiaxia Niu
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xinsheng Gu
- College of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Ting Wu
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Min Sun
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Changlong Zhou
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Mei Ma
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Videla-Richardson GA, Morris-Hanon O, Torres NI, Esquivel MI, Vera MB, Ripari LB, Croci DO, Sevlever GE, Rabinovich GA. Galectins as Emerging Glyco-Checkpoints and Therapeutic Targets in Glioblastoma. Int J Mol Sci 2021; 23:ijms23010316. [PMID: 35008740 PMCID: PMC8745137 DOI: 10.3390/ijms23010316] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 02/08/2023] Open
Abstract
Despite recent advances in diagnosis and treatment, glioblastoma (GBM) represents the most common and aggressive brain tumor in the adult population, urging identification of new rational therapeutic targets. Galectins, a family of glycan-binding proteins, are highly expressed in the tumor microenvironment (TME) and delineate prognosis and clinical outcome in patients with GBM. These endogenous lectins play key roles in different hallmarks of cancer by modulating tumor cell proliferation, oncogenic signaling, migration, vascularization and immunity. Additionally, they have emerged as mediators of resistance to different anticancer treatments, including chemotherapy, radiotherapy, immunotherapy, and antiangiogenic therapy. Particularly in GBM, galectins control tumor cell transformation and proliferation, reprogram tumor cell migration and invasion, promote vascularization, modulate cell death pathways, and shape the tumor-immune landscape by targeting myeloid, natural killer (NK), and CD8+ T cell compartments. Here, we discuss the role of galectins, particularly galectin-1, -3, -8, and -9, as emerging glyco-checkpoints that control different mechanisms associated with GBM progression, and discuss possible therapeutic opportunities based on inhibition of galectin-driven circuits, either alone or in combination with other treatment modalities.
Collapse
Affiliation(s)
- Guillermo A. Videla-Richardson
- Laboratorio de Investigación Aplicada en Neurociencias (LIAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Belén de Escobar B1625, Argentina; (G.A.V.-R.); (O.M.-H.); (M.I.E.); (M.B.V.); (L.B.R.); (G.E.S.)
| | - Olivia Morris-Hanon
- Laboratorio de Investigación Aplicada en Neurociencias (LIAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Belén de Escobar B1625, Argentina; (G.A.V.-R.); (O.M.-H.); (M.I.E.); (M.B.V.); (L.B.R.); (G.E.S.)
| | - Nicolás I. Torres
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina;
| | - Myrian I. Esquivel
- Laboratorio de Investigación Aplicada en Neurociencias (LIAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Belén de Escobar B1625, Argentina; (G.A.V.-R.); (O.M.-H.); (M.I.E.); (M.B.V.); (L.B.R.); (G.E.S.)
| | - Mariana B. Vera
- Laboratorio de Investigación Aplicada en Neurociencias (LIAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Belén de Escobar B1625, Argentina; (G.A.V.-R.); (O.M.-H.); (M.I.E.); (M.B.V.); (L.B.R.); (G.E.S.)
| | - Luisina B. Ripari
- Laboratorio de Investigación Aplicada en Neurociencias (LIAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Belén de Escobar B1625, Argentina; (G.A.V.-R.); (O.M.-H.); (M.I.E.); (M.B.V.); (L.B.R.); (G.E.S.)
| | - Diego O. Croci
- Laboratorio de Inmunopatología, Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza C5500, Argentina;
| | - Gustavo E. Sevlever
- Laboratorio de Investigación Aplicada en Neurociencias (LIAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Belén de Escobar B1625, Argentina; (G.A.V.-R.); (O.M.-H.); (M.I.E.); (M.B.V.); (L.B.R.); (G.E.S.)
| | - Gabriel A. Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina;
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428, Argentina
- Correspondence: ; Tel.: +54-11-4783-2869 (ext. 266)
| |
Collapse
|
11
|
Bailly C, Thuru X, Quesnel B. Modulation of the Gal-9/TIM-3 Immune Checkpoint with α-Lactose. Does Anomery of Lactose Matter? Cancers (Basel) 2021; 13:cancers13246365. [PMID: 34944985 PMCID: PMC8699133 DOI: 10.3390/cancers13246365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The disaccharide lactose is a common excipient in pharmaceutical products. In addition, the two anomers α- and β-lactose can exert immuno-modulatory effects. α-Lactose functions as a major regulator of the T-cell immunoglobulin mucin-3 (Tim-3)/Galectin-9 (Gal-9) immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of TIM-3 with monoclonal antibodies or small molecules represents a promising approach to combat onco-hematological diseases, in particular myelodysplastic syndromes, and acute myeloid leukemia. Alternatively, the activity of the checkpoint can be modulated via targeting of Gal-9 with both α- and β-lactose. In fact, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. This review discusses the capacity of lactose and Gal-9 to modulate the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. The immuno-regulatory roles of lactose and Gal-9 are highlighted. Abstract The disaccharide lactose is an excipient commonly used in pharmaceutical products. The two anomers, α- and β-lactose (α-L/β-L), differ by the orientation of the C-1 hydroxyl group on the glucose unit. In aqueous solution, a mutarotation process leads to an equilibrium of about 40% α-L and 60% β-L at room temperature. Beyond a pharmaceutical excipient in solid products, α-L has immuno-modulatory effects and functions as a major regulator of TIM-3/Gal-9 immune checkpoint, through direct binding to the β-galactoside-binding lectin galectin-9. The blockade of the co-inhibitory checkpoint TIM-3 expressed on T cells with anti-TIM-3 antibodies represents a promising approach to combat different onco-hematological diseases, in particular myelodysplastic syndromes and acute myeloid leukemia. In parallel, the discovery and development of anti-TIM-3 small molecule ligands is emerging, including peptides, RNA aptamers and a few specifically designed heterocyclic molecules. An alternative option consists of targeting the different ligands of TIM-3, notably Gal-9 recognized by α-lactose. Modulation of the TIM-3/Gal-9 checkpoint can be achieved with both α- and β-lactose. Moreover, lactose is a quasi-pan-galectin ligand, capable of modulating the functions of most of the 16 galectin molecules. The present review provides a complete analysis of the pharmaceutical and galectin-related biological functions of (α/β)-lactose. A focus is made on the capacity of lactose and Gal-9 to modulate both the TIM-3/Gal-9 and PD-1/PD-L1 immune checkpoints in oncology. Modulation of the TIM-3/Gal-9 checkpoint is a promising approach for the treatment of cancers and the role of lactose in this context is discussed. The review highlights the immuno-regulatory functions of lactose, and the benefit of the molecule well beyond its use as a pharmaceutical excipient.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, 59290 Lille, France
- Correspondence:
| | - Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020—UMR1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; (X.T.); (B.Q.)
| | - Bruno Quesnel
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020—UMR1277—Canther—Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France; (X.T.); (B.Q.)
| |
Collapse
|
12
|
Zargar Balajam N, Shabani M, Aghaei M. Galectin-9 inhibits cell proliferation and induces apoptosis in Jurkat and KE-37 acute lymphoblastic leukemia cell lines via caspase-3 activation. Res Pharm Sci 2021; 16:612-622. [PMID: 34760009 PMCID: PMC8562407 DOI: 10.4103/1735-5362.327507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/06/2021] [Accepted: 09/12/2021] [Indexed: 11/27/2022] Open
Abstract
Background and purpose: Acute lymphoblastic leukemia (ALL) is a type of cancer of blood and bone marrow characterized by abnormal proliferation of lymphoid progenitor cells. Galectin-9 is a tandem-repeat type galectin expressed in various tumor cells. It seems that the connection between galectin-9 and T cell immunoglobulin mucin-3 receptor acts as a negative regulator of cancer cells proliferation. Experimental approach: In this research, the effects of galectin-9 were investigated using MTS cell proliferation colorimetric, colony-forming, annexin V-FITC/PI, and caspase-3 assays in the Jurkat and KE-37 cell lines of ALL. Furthermore, the western blotting technique was used to evaluate the levels of apoptotic proteins such as Bax and Bcl-2 in these cell lines. Findings/Results: Our results indicated that galectin-9 can considerably reduce the cell growth and colony formation ability of both Jurkat and KE-37 cell lines in a concentration-dependent manner. Besides, galectin-9 induced apoptosis in a concentration-dependent manner in ALL cells by a mechanism associated with Bax/Bcl-2 expression and activation of the caspase-3 activation. Conclusion and implications: Galectin-9 inhibited the growth and proliferation of cell lines with increased programmed cell death, therefore it can be considered as a potential factor in the progression of ALL therapeutics that needs more research in this context.
Collapse
Affiliation(s)
- Narges Zargar Balajam
- Department of Clinical Biochemistry and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
13
|
Wu YY, Lai HF, Huang TC, Chen YG, Ye RH, Chang PY, Lai SW, Chen YC, Lee CH, Liu WN, Dai MS, Chen JH, Ho CL, Chiu YL. Aberrantly reduced expression of miR-342-5p contributes to CCND1-associated chronic myeloid leukemia progression and imatinib resistance. Cell Death Dis 2021; 12:908. [PMID: 34611140 PMCID: PMC8492784 DOI: 10.1038/s41419-021-04209-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/08/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disorder associated with the Philadelphia chromosome, and the current standard of care is the use of tyrosine kinase inhibitors (TKI). However, some patients will not achieve a molecular response and may progress to blast crisis, and the underlying mechanisms remain to be clarified. In this study, next-generation sequencing was used to explore endogenous miRNAs in CML patients versus healthy volunteers, and miR-342-5p was identified as the primary target. We found that miR-342-5p was downregulated in CML patients and had a significant inhibitory effect on cell proliferation in CML. Through a luciferase reporter system, miR-342-5p was reported to target the 3'-UTR domain of CCND1 and downregulated its expression. Furthermore, overexpression of miR-342-5p enhanced imatinib-induced DNA double-strand breaks and apoptosis. Finally, by analyzing clinical databases, we further confirmed that miR-342-5p was associated with predicted molecular responses in CML patients. In conclusion, we found that both in vivo and in vitro experiments and database cohorts showed that miR-342-5p plays a key role in CML patients, indicating that miR-342-5p may be a potential target for future CML treatment or prognostic evaluation.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Base Sequence
- Cell Line, Tumor
- Cell Proliferation/genetics
- Cell Survival/genetics
- Cyclin D1/genetics
- Cyclin D1/metabolism
- DNA Breaks, Double-Stranded
- Disease Models, Animal
- Disease Progression
- Down-Regulation/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Leukemic
- Gene Ontology
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukocytes/pathology
- Mice, Inbred C57BL
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Up-Regulation/genetics
- Mice
Collapse
Affiliation(s)
- Yi-Ying Wu
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
| | - Hsing-Fan Lai
- Department of Biochemistry, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
- Graduate Institute of Life Sciences, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
| | - Tzu-Chuan Huang
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
| | - Yu-Guang Chen
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
| | - Ren-Hua Ye
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
| | - Ping-Ying Chang
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
| | - Shiue-Wei Lai
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
| | - Yeu-Chin Chen
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
| | - Cho-Hao Lee
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
| | - Wei-Nung Liu
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
| | - Ming-Shen Dai
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
| | - Jia-Hong Chen
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
| | - Ching-Liang Ho
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, 11490, Taipei, Taiwan, ROC.
| |
Collapse
|
14
|
Kremsreiter SM, Kroell ASH, Weinberger K, Boehm H. Glycan-Lectin Interactions in Cancer and Viral Infections and How to Disrupt Them. Int J Mol Sci 2021; 22:10577. [PMID: 34638920 PMCID: PMC8508825 DOI: 10.3390/ijms221910577] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Glycan-lectin interactions play an essential role in different cellular processes. One of their main functions is involvement in the immune response to pathogens or inflammation. However, cancer cells and viruses have adapted to avail themselves of these interactions. By displaying specific glycosylation structures, they are able to bind to lectins, thus promoting pathogenesis. While glycan-lectin interactions promote tumor progression, metastasis, and/or chemoresistance in cancer, in viral infections they are important for viral entry, release, and/or immune escape. For several years now, a growing number of investigations have been devoted to clarifying the role of glycan-lectin interactions in cancer and viral infections. Various overviews have already summarized and highlighted their findings. In this review, we consider the interactions of the lectins MGL, DC-SIGN, selectins, and galectins in both cancer and viral infections together. A possible transfer of ways to target and disrupt them might lead to new therapeutic approaches in different pathological backgrounds.
Collapse
Affiliation(s)
- Stefanie Maria Kremsreiter
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (S.M.K.); (A.-S.H.K.); (K.W.)
| | - Ann-Sophie Helene Kroell
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (S.M.K.); (A.-S.H.K.); (K.W.)
| | - Katharina Weinberger
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (S.M.K.); (A.-S.H.K.); (K.W.)
| | - Heike Boehm
- Max-Planck-Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Unraveling How Tumor-Derived Galectins Contribute to Anti-Cancer Immunity Failure. Cancers (Basel) 2021; 13:cancers13184529. [PMID: 34572756 PMCID: PMC8469970 DOI: 10.3390/cancers13184529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary This review compiles our current knowledge of one of the main pathways activated by tumors to escape immune attack. Indeed, it integrates the current understanding of how tumor-derived circulating galectins affect the elicitation of effective anti-tumor immunity. It focuses on several relevant topics: which are the main galectins produced by tumors, how soluble galectins circulate throughout biological liquids (taking a body-settled gradient concentration into account), the conditions required for the galectins’ functions to be accomplished at the tumor and tumor-distant sites, and how the physicochemical properties of the microenvironment in each tissue determine their functions. These are no mere semantic definitions as they define which functions can be performed in said tissues instead. Finally, we discuss the promising future of galectins as targets in cancer immunotherapy and some outstanding questions in the field. Abstract Current data indicates that anti-tumor T cell-mediated immunity correlates with a better prognosis in cancer patients. However, it has widely been demonstrated that tumor cells negatively manage immune attack by activating several immune-suppressive mechanisms. It is, therefore, essential to fully understand how lymphocytes are activated in a tumor microenvironment and, above all, how to prevent these cells from becoming dysfunctional. Tumors produce galectins-1, -3, -7, -8, and -9 as one of the major molecular mechanisms to evade immune control of tumor development. These galectins impact different steps in the establishment of the anti-tumor immune responses. Here, we carry out a critical dissection on the mechanisms through which tumor-derived galectins can influence the production and the functionality of anti-tumor T lymphocytes. This knowledge may help us design more effective immunotherapies to treat human cancers.
Collapse
|
16
|
Development of Multidrug Resistance in Acute Myeloid Leukemia Is Associated with Alterations of the LPHN1/GAL-9/TIM-3 Signaling Pathway. Cancers (Basel) 2021; 13:cancers13143629. [PMID: 34298843 PMCID: PMC8304048 DOI: 10.3390/cancers13143629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
P-glycoprotein (known as ABCB1 transporter) expression in myeloid blasts of acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS) leads to the commonly observed multidrug resistance. Overexpression of latrophilin-1 was detected in leukemic cells from AML patients. In a previous study, we showed that ABCB1 overexpression is associated with decreased latrophilin-1 expression in MOLM-13/VCR and SKM-1/VCR AML cell variants derived from MOLM-13 and SKM-1 cells by vincristine selection/adaptation. In the present study, we found that if ABCB1 overexpression occurs in myeloid blasts of newly diagnosed MDS patients, latrophilin-1 expression is attenuated. Latrophilin-1 may initiate TIM-3- and galectin-9-mediated immune escape. We demonstrated changes in the expression of both proteins by comparing ABCB1-positive cell variants (MOLM-13/VCR, SKM-1/VCR) with their ABCB1-negative counterparts. Galectin-9 was present in our cell lines in eight protein isoforms for which we identified the respective transcription variants resulting from alternative splicing, and we verified their structure by sequencing. The isoform profile of galectin-9 was different between ABCB1-positive and ABCB1-negative cell variants. The interaction partner of galectin-9 is CD44, and its expression was altered in the ABCB1-positive variants MOLM-13/VCR and SKM-1/VCR compared to their ABCB1-negative counterparts.
Collapse
|
17
|
Gutierrez C, Al’Khafaji AM, Brenner E, Johnson KE, Gohil SH, Lin Z, Knisbacher BA, Durrett RE, Li S, Parvin S, Biran A, Zhang W, Rassenti L, Kipps TJ, Livak KJ, Neuberg D, Letai A, Getz G, Wu CJ, Brock A. Multifunctional barcoding with ClonMapper enables high-resolution study of clonal dynamics during tumor evolution and treatment. NATURE CANCER 2021; 2:758-772. [PMID: 34939038 PMCID: PMC8691751 DOI: 10.1038/s43018-021-00222-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Lineage-tracing methods have enabled characterization of clonal dynamics in complex populations, but generally lack the ability to integrate genomic, epigenomic and transcriptomic measurements with live-cell manipulation of specific clones of interest. We developed a functionalized lineage-tracing system, ClonMapper, which integrates DNA barcoding with single-cell RNA sequencing and clonal isolation to comprehensively characterize thousands of clones within heterogeneous populations. Using ClonMapper, we identified subpopulations of a chronic lymphocytic leukemia cell line with distinct clonal compositions, transcriptional signatures and chemotherapy survivorship trajectories; patterns that were also observed in primary human chronic lymphocytic leukemia. The ability to retrieve specific clones before, during and after treatment enabled direct measurements of clonal diversification and durable subpopulation transcriptional signatures. ClonMapper is a powerful multifunctional approach to dissect the complex clonal dynamics of tumor progression and therapeutic response.
Collapse
Affiliation(s)
- Catherine Gutierrez
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- These authors contributed equally: Catherine Gutierrez, Aziz M. Al’Khafaji, Eric Brenner
| | - Aziz M. Al’Khafaji
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- These authors contributed equally: Catherine Gutierrez, Aziz M. Al’Khafaji, Eric Brenner
| | - Eric Brenner
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- These authors contributed equally: Catherine Gutierrez, Aziz M. Al’Khafaji, Eric Brenner
| | - Kaitlyn E. Johnson
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Satyen H. Gohil
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Academic Haematology, University College London, London, UK
- Department of Clinical Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Ziao Lin
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard University, Cambridge, MA, USA
| | | | - Russell E. Durrett
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Shuqiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Salma Parvin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anat Biran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wandi Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Laura Rassenti
- Department of Medicine, University of California at San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Thomas J. Kipps
- Department of Medicine, University of California at San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Kenneth J. Livak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Donna Neuberg
- Department of Data Sciences, Dana Farber Cancer Institute, Boston, MA, USA
| | - Anthony Letai
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gad Getz
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Catherine J. Wu
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Amy Brock
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
18
|
Liu Y, Chen P, Wang H, Wu S, Zhao S, He Y, Zhou C, Hirsch FR. The landscape of immune checkpoints expression in non-small cell lung cancer: a narrative review. Transl Lung Cancer Res 2021; 10:1029-1038. [PMID: 33718041 PMCID: PMC7947413 DOI: 10.21037/tlcr-20-1019] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
With the increasing clinical potential of tumor immunotherapy, more and more clinical trials are undergoing with immune checkpoint inhibitors (ICIs). Immune checkpoints (ICs) have been identified as crucial regulators of the immune response and have improved ICIs-inhibitor therapeutic strategies. The most important ICs in lung cancer include programmed cell death-1 (PD-1), programmed cell death ligand-1 (PD-L1), lymphocyte activation gene-3 (LAG-3), major histocompatibility complex class II (MHC II), T cell immunoglobulin and mucin-domain containing-3 (TIM-3), and Galectin-9 (GAL-9), OX-40, OX40L. However, the expression and prognostic value of these ICs are still controversial. Among them, high expression of PD-L1 on tumor cells (>50%) predicts a better therapeutic effect of anti-PD-1 monoclonal antibody compared to patients with low PD-L1 expression. However, only 20–30% of non-small cell lung cancer (NSCLC) patients seem to get benefit from immunotherapy. In order to improve the immunotherapy outcomes, more and more attention is paid to combination immunotherapy. Analyzing the co-expression of ICs can give us a more comprehensive basis for combination immunotherapy. This review article summarized our comprehensive expression of ICs based on our previous research, and analyzed their correlation with prognosis in NSCLC patients. We also provided suggestions for potentially personalized combination immunotherapy in NSCLC.
Collapse
Affiliation(s)
- Yu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Shengyu Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Shanghai, China
| | - Fred R Hirsch
- Center for Thoracic Oncology, Mount Sinai Cancer, New York, NY, USA
| |
Collapse
|
19
|
Moar P, Tandon R. Galectin-9 as a biomarker of disease severity. Cell Immunol 2021; 361:104287. [PMID: 33494007 DOI: 10.1016/j.cellimm.2021.104287] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 12/16/2022]
Abstract
Galectin-9 (Gal-9) is a β-galactoside binding lectin known for its immunomodulatory role in various microbial infections. Gal-9 is expressed in all organ systems and localized in the nucleus, cell surface, cytoplasm and the extracellular matrix. It mediates host-pathogen interactions and regulates cell signalling via binding to its receptors. Gal-9 is involved in many physiological functions such as cell growth, differentiation, adhesion, communication and death. However, recent studies have emphasized on the elevated levels of Gal-9 in autoimmune disorders, viral infections, parasitic invasion, cancer, acute liver failure, atopic dermatitis, chronic kidney disease, type-2 diabetes, coronary artery disease, atherosclerosis and benign infertility-related gynecological disorders. In this paper we have reviewed the potential of Gal-9 as a reliable, sensitive and non-invasive biomarker of disease severity. Tracking changes in Gal-9 levels and its implementation as a biomarker in clinical practice will be an important tool to monitor disease activity and facilitate personalized treatment decisions.
Collapse
Affiliation(s)
- Preeti Moar
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
20
|
Chen P, Zhang L, Zhang W, Sun C, Wu C, He Y, Zhou C. Galectin-9-based immune risk score model helps to predict relapse in stage I-III small cell lung cancer. J Immunother Cancer 2020; 8:jitc-2020-001391. [PMID: 33082168 PMCID: PMC7577067 DOI: 10.1136/jitc-2020-001391] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2020] [Indexed: 12/14/2022] Open
Abstract
Background For small cell lung cancer (SCLC) therapy, immunotherapy might have unique advantages to some extent. Galectin-9 (Gal-9) plays an important role in antitumor immunity, while little is known of its function in SCLC. Materials and methods By mean of immunohistochemistry (IHC), we tested the expression level of Gal-9 and other immune markers on both tumor cells and tumor-infiltrating lymphocytes (TILs) in 102 surgical-resected early stage SCLC clinical samples. On the basis of statistical analysis and machine learning results, the Gal-9-based immune risk score model was constructed and its predictive performance was evaluated. Then, we thoroughly explored the effects of Gal-9 and immune risk score on SCLC immune microenvironment and immune infiltration in different cohorts and platforms. Results In the SCLC cohort for IHC, the expression level of Gal-9 on TILs was statistically correlated with the levels of program death-1 (p=0.001), program death-ligand 1 (PD-L1) (p<0.001), CD3 (p<0.001), CD4 (p<0.001), CD8 (p<0.001), and FOXP3 (p=0.047). High Gal-9 protein expression on TILs indicated better recurrence-free survival (30.4 months, 95% CI: 23.7–37.1 vs 39.4 months, 95% CI: 31.6–47.3, p=0.009). The immune risk score model which consisted of Gal-9 on TILs, CD4, and PD-L1 on TILs was established and validated so as to differentiate high-risk or low-risk patients with SCLC. The prognostic predictive performance of immune risk score model was better than single immune biomarker (area under the curve 0.671 vs 0.621–0.644). High Gal-9-related enrichment pathways in SCLC were enriched in immune system diseases and rheumatic disease. Furthermore, we found that patients with SCLC with low immune risk score presented higher fractions of activated memory CD4 T cells than patients with high immune risk score (p=0.048). Conclusions Gal-9 is markedly related to tumor-immune microenvironment and immune infiltration in SCLC. This study emphasized the predictive value and promising clinical applications of Gal-9 in stage I–III SCLC.
Collapse
Affiliation(s)
- Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital,Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China.,Tongji University, No 1239 Siping Road, Shanghai 200433, China
| | - Liping Zhang
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China
| | - Wei Zhang
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China
| | - Chenglong Sun
- Department of Medical Oncology, Shanghai Pulmonary Hospital,Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China.,Tongji University, No 1239 Siping Road, Shanghai 200433, China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital,Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital,Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China
| |
Collapse
|
21
|
Yin J, Li L, Wang C, Zhang Y. Increased Galectin-9 expression, a prognostic biomarker of aGVHD, regulates the immune response through the Galectin-9 induced MDSC pathway after allogeneic hematopoietic stem cell transplantation. Int Immunopharmacol 2020; 88:106929. [PMID: 32889240 DOI: 10.1016/j.intimp.2020.106929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Galectin-9 (Gal-9) is a β-galactoside-binding soluble lectin family member that exerts its primary biological functions via specific glycoconjugate interactions. Gal-9 expression is closely related to tumor occurrence, development, metastasis and prognosis. In transplant immunology, a high level of Gal-9 expression has been shown to markedly reduce the severity of acute graft rejection and effectively prolong survival time in organ and bone marrow transplantation (BMT) models. The main mechanism of Gal-9-mediated immunoregulation involves the Tim-3/Gal-9 axis in T cells. However, myeloid-derived suppressor cell (MDSC) accumulation in transgenic mice with persistently high Gal-9 expression was observed in a model of lung inflammation, indicating that a potential immunosuppressive mechanism distinct from the Gal-9/Tim-3 axis might exist. In the present study, increased Gal-9 expression and MDSC frequencies before acute graft-versus-host disease (aGVHD) onset were observed in patients who developed aGVHD. Patients with higher Gal-9 expression (≥14.8417 ng/ml) exhibited reduced overall survival and increased cumulative incidences of GVHD at +100 day. We considered the elevated Gal-9 expression before aGVHD onset a secondary inflammatory response. This increase might be part of a negative feedback pathway corresponding to aGVHD pathogenesis. Additionally, a high Gal-9 concentration induced MDSC proliferation in vivo and in vitro. Gal-9-induced MDSCs (G9-MDSCs) suppressed T cell proliferation and activation. An infusion of G9-MDSCs into a graft contributed to the successful control of severe aGVHD and long-term survival in an allogeneic (allo)-BMT mouse model. Thus, we speculated that increased Gal-9 expression after allo-hematopoietic stem cell transplantation is a potential prognostic biomarker of aGVHD. The Gal-9-associated immunosuppressive effects on aGVHD development might occurr through G9-MDSCs and were independent of the Gal-9/Tim-3 axis.
Collapse
Affiliation(s)
- Jin Yin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan 430030, China
| | - Lin Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan 430030, China
| | - Chunyan Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan 430030, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie-Fang Avenue, Wuhan 430030, China.
| |
Collapse
|
22
|
Navarro P, Martínez-Bosch N, Blidner AG, Rabinovich GA. Impact of Galectins in Resistance to Anticancer Therapies. Clin Cancer Res 2020; 26:6086-6101. [DOI: 10.1158/1078-0432.ccr-18-3870] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/27/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022]
|
23
|
Shimada C, Xu R, Al-Alem L, Stasenko M, Spriggs DR, Rueda BR. Galectins and Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12061421. [PMID: 32486344 PMCID: PMC7352943 DOI: 10.3390/cancers12061421] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is known for its aggressive pathological features, including the capacity to undergo epithelial to mesenchymal transition, promoting angiogenesis, metastatic potential, chemoresistance, inhibiting apoptosis, immunosuppression and promoting stem-like features. Galectins, a family of glycan-binding proteins defined by a conserved carbohydrate recognition domain, can modulate many of these processes, enabling them to contribute to the pathology of ovarian cancer. Our goal herein was to review specific galectin members identified in the context of ovarian cancer, with emphasis on their association with clinical and pathological features, implied functions, diagnostic or prognostic potential and strategies being developed to disrupt their negative actions.
Collapse
Affiliation(s)
- Chisa Shimada
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Xu
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Linah Al-Alem
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marina Stasenko
- Gynecology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York City, NY 10065, USA;
| | - David R. Spriggs
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Department of Hematology/Medical Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bo R. Rueda
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
- Correspondence:
| |
Collapse
|
24
|
Liang Y, Jiang Y, Jin X, Chen P, Heng Y, Cai L, Zhang W, Li L, Jia L. Neddylation inhibition activates the protective autophagy through NF-κB-catalase-ATF3 Axis in human esophageal cancer cells. Cell Commun Signal 2020; 18:72. [PMID: 32398095 PMCID: PMC7218644 DOI: 10.1186/s12964-020-00576-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/06/2020] [Indexed: 11/11/2022] Open
Abstract
Background Protein neddylation plays a tumor-promoting role in esophageal cancer. Our previous study demonstrated that neddylation inhibition induced the accumulation of ATF4 to promote apoptosis in esophageal cancer cells. However, it is completely unknown whether neddylation inhibition could induce autophagy in esophageal cancer cells and affect the expression of other members of ATF/CREB subfamily, such as ATF3. Methods The expression of relevant proteins of NF-κB/Catalase/ATF3 pathway after neddylation inhibition was determined by immunoblotting analysis and downregulated by siRNA silencing for mechanistic studies. ROS generation upon MLN4924 treatment was determined by H2-DCFDA staining. The proliferation inhibition induced by MLN4924 was evaluated by ATPLite assay and apoptosis was evaluated by Annexin V /PI double staining. Results For the first time, we reported that MLN4924, a specific inhibitor of Nedd8-activating enzyme, promoted the expression of ATF3 to induce autophagy in esophageal cancer. Mechanistically, MLN4924 inhibited the activity of CRLs and induced the accumulation of its substrate IκBα to block NF-κB activation and Catalase expression. As a result, MLN4924 activated ATF3-induced protective autophagy, thereby inhibiting MLN4924-induced apoptosis, which could be alleviated by ATF3 silencing. Conclusions In our study, we elucidates a novel mechanism of NF-κB/Catalase/ATF3 pathway in MLN4924-induced protective autophagy in esophageal cancer cells, which provides a sound rationale and molecular basis for combinational anti-ESCC therapy with knockdown ATF3 and neddylation inhibitor (e.g. MLN4924). Video abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Yupei Liang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yanyu Jiang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xing Jin
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Ping Chen
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongqing Heng
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lili Cai
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wenjuan Zhang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lihui Li
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
25
|
Naqvi MAUH, Memon MA, Jamil T, Naqvi SZ, Aimulajiang K, Gadahi JA, Xu L, Song X, Li X, Yan R. Galectin Domain Containing Protein from Haemonchus contortus Modulates the Immune Functions of Goat PBMCs and Regulates CD4+ T-Helper Cells In Vitro. Biomolecules 2020; 10:E116. [PMID: 31936604 PMCID: PMC7022894 DOI: 10.3390/biom10010116] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/05/2020] [Accepted: 01/05/2020] [Indexed: 02/08/2023] Open
Abstract
Galectins are glycan-binding proteins that are widely expressed and distributed in mammalian tissues as well as cells of innate and adaptive immune responses. CD4+ T-helper cells differentiate into effector subsets in response to cytokines. T helper 9 cells are one of the recently described subsets of effector T cells that are relatively new and less studied. In this study, galectin domain containing protein from Haemonchus contortus (Hc-GDC) was cloned, expressed in pET32a, and immunoblotting was performed. Localization of recombinant (r)Hc-GDC on outer and inner surface of H. contortus worm and binding with goat Peripheral Blood Mononuclear cells (PBMCs) were performed using immunofluorescence assay. Moreover, effects of rHc-GDC on proliferation, apoptosis, cell migration, and the nitric oxide production in goat PBMCs were evaluated. Furthermore, modulatory effects of rHc-GDC on production of Th1, Th2, and Th9 cells were evaluated by flowcytometry and on interferon gamma, interleukin (IL)-4 and IL-9 were evaluated by quantitative real-time polymerase chain reaction. The results demonstrated that rHc-GDC was successfully cloned, expressed in expression vector as well as in the gut surface of adult H. contortus worm and successful binding with PBMCs surface were observed. Immunoblotting results revealed that rHc-GDC is an important active protein of H. contortus excretory and secretory products. Moreover, the interaction of rHc-GDC with host cells increased the production of Th2, Th9 cells, IL4, IL-9, PBMC proliferation, nitric oxide, and cell migration. No effects of rHc-GDC were observed on PMBC apoptosis, production of Th1 cells, and secretions of IFN- and IL-10 cytokines. These findings indicate that recombinant GDC protein from H. contortus modulates the immune functions of goat PBMCs and has the potential to enhance protective immunity by inducing T helper-9-derived IL-9 in vitro.
Collapse
Affiliation(s)
- Muhammad Ali-ul-Husnain Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Muhammad Ali Memon
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Tahseen Jamil
- Sindh Agriculture University, Tandojam 70050, Sindh, Pakistan; (T.J.); (J.A.G.)
| | - Sana Zahra Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Kalibixiati Aimulajiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Javaid Ali Gadahi
- Sindh Agriculture University, Tandojam 70050, Sindh, Pakistan; (T.J.); (J.A.G.)
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| |
Collapse
|
26
|
He Y, Jia K, Dziadziuszko R, Zhao S, Zhang X, Deng J, Wang H, Hirsch FR, Zhou C. Galectin-9 in non-small cell lung cancer. Lung Cancer 2019; 136:80-85. [DOI: 10.1016/j.lungcan.2019.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/11/2022]
|
27
|
Possible therapeutic applicability of galectin-9 in cutaneous T-cell lymphoma. J Dermatol Sci 2019; 96:134-142. [PMID: 31787505 DOI: 10.1016/j.jdermsci.2019.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/26/2019] [Accepted: 09/10/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Galectin-9, a member of the galectin family, can promote tumor growth through inducing apoptosis in anti-tumor immune cells via T cell immunoglobulin and mucin domain 3 (TIM-3). On the other hand, galectin-9 also induces tumor cell apoptosis in many malignancies and thought to have potential as an anti-cancer agent. OBJECTIVE To examine the expression and therapeutic applicability of galectin-9 in cutaneous T-cell lymphoma (CTCL). METHODS Galectin-9 expression in lesional skin and sera was measured using CTCL samples. The effect of galectin-9 on CTCL cell lines was investigated in vitro. We also examined effect of galectin-9 on tumor growth of CTCL cells in immune-deficient mice. Moreover, we examined the efficacy of galectin-9, anti-TIM-3 blocking antibody, or their combination on tumor growth of EL-4 cells in wild-type mice. RESULTS Galectin-9 was expressed on tumor cells in lesional skin of CTCL and the expression levels were associated with decreased CD8+ T-cell infiltration. Serum galectin-9 levels were correlated with disease severity markers. High-dose galectin-9 induced cell death of CTCL cell lines through activation of caspase-3 and caspase-9, independently of TIM-3. High-dose galectin-9 suppressed the growth of CTCL cells and EL-4 cells in vivo. Furthermore, additional anti-TIM-3 blocking antibody administration to galectin-9 achieved greater inhibition of tumor growth compared to single administration. CONCLUSION Galectin-9 expression on tumor cells may be associated with CTCL progression through attenuating anti-tumor immunity. On the other hand, exogenous high-dose galectin-9 administration can be a therapeutic strategy for CTCL and anti-TIM-3 blocking antibody can augment the efficacy of galectin-9.
Collapse
|
28
|
Chiyo T, Fujita K, Iwama H, Fujihara S, Tadokoro T, Ohura K, Matsui T, Goda Y, Kobayashi N, Nishiyama N, Yachida T, Morishita A, Kobara H, Mori H, Niki T, Hirashima M, Himoto T, Masaki T. Galectin-9 Induces Mitochondria-Mediated Apoptosis of Esophageal Cancer In Vitro and In Vivo in a Xenograft Mouse Model. Int J Mol Sci 2019; 20:ijms20112634. [PMID: 31146370 PMCID: PMC6600680 DOI: 10.3390/ijms20112634] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 12/30/2022] Open
Abstract
Galectin-9 (Gal-9) enhances tumor immunity mediated by T cells, macrophages, and dendritic cells. Its expression level in various cancers correlates with prognosis. Furthermore, Gal-9 directly induces apoptosis in various cancers; however, its mechanism of action and bioactivity has not been clarified. We evaluated Gal-9 antitumor effect against esophageal squamous cell carcinoma (ESCC) to analyze the dynamics of apoptosis-related molecules, elucidate its mechanism of action, and identify relevant changes in miRNA expressions. KYSE-150 and KYSE-180 cells were treated with Gal-9 and their proliferation was evaluated. Gal-9 inhibited cell proliferation in a concentration-dependent manner. The xenograft mouse model established with KYSE-150 cells was administered with Gal-9 and significant suppression in the tumor growth observed. Gal-9 treatment of KYSE-150 cells increased the number of Annexin V-positive cells, activation of caspase-3, and collapse of mitochondrial potential, indicating apoptosis induction. c-Jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38) phosphorylation were activated and could be involved in apoptosis. Therefore, Gal-9 induces mitochondria-mediated apoptosis of ESCC and inhibits cell proliferation in vitro and in vivo with JNK and p38 activation.
Collapse
Affiliation(s)
- Taiga Chiyo
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Shintaro Fujihara
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Kyoko Ohura
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Takanori Matsui
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Yasuhiro Goda
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Nobuya Kobayashi
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Noriko Nishiyama
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Tatsuo Yachida
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Hirohito Mori
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Toshiro Niki
- Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Mitsuomi Hirashima
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | - Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1, Hara, Mure-Cho, Takamatsu, Kagawa 761-0123, Japan.
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| |
Collapse
|
29
|
Bertino P, Premeaux TA, Fujita T, Haun BK, Marciel MP, Hoffmann FW, Garcia A, Yiang H, Pastorino S, Carbone M, Niki T, Berestecky J, Hoffmann PR, Ndhlovu LC. Targeting the C-terminus of galectin-9 induces mesothelioma apoptosis and M2 macrophage depletion. Oncoimmunology 2019; 8:1601482. [PMID: 31413910 PMCID: PMC6682368 DOI: 10.1080/2162402x.2019.1601482] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 10/27/2022] Open
Abstract
Galectin-9 has emerged as a promising biological target for cancer immunotherapy due to its role as a regulator of macrophage and T-cell differentiation. In addition, its expression in tumor cells modulates tumor cell adhesion, metastasis, and apoptosis. Malignant mesothelioma (MM) is an aggressive neoplasm of the mesothelial cells lining the pleural and peritoneal cavities, and in this study, we found that both human MM tissues and mouse MM cells express high levels of galectin-9. Using a novel monoclonal antibody (mAb) (Clone P4D2) that binds the C-terminal carbohydrate recognition domain (CRD) of galectin-9, we demonstrate unique agonistic properties resulting in MM cell apoptosis. Furthermore, the P4D2 mAb reduced tumor-associated macrophages differentiation toward a protumor phenotype. Importantly, these effects exerted by the P4D2 mAb were observed in both human and mouse in vitro experiments and not observed with another antigalectin-9 specific mAb (clone P1D9) that engages the N-terminus CRD of galectin-9. In syngeneic murine models of MM, P4D2 mAb treatment inhibited tumor growth and improved survival, with tumors from P4D2-treated mice exhibited reduced infiltration of tumor-associated M2 macrophages. This was consistent with an increased production of inducible nitric oxide synthase, which is a major enzyme-regulating macrophage inflammatory response to cancer. These data suggest that using an antigalectin 9 mAb with agonistic properties similar to those exerted by galectin-9 may provide a novel multitargeted strategy for the treatment of mesothelioma and possibly other galectin-9 expressing tumors.
Collapse
Affiliation(s)
- Pietro Bertino
- Department of Cell and Molecular Biology, Honolulu, HI, USA
| | - Thomas A. Premeaux
- Department of Tropical Medicine, John A. Burns School of Medicine, Honolulu, HI, USA
| | - Tsuyoshi Fujita
- Department of Tropical Medicine, John A. Burns School of Medicine, Honolulu, HI, USA
| | - Brien K. Haun
- Department of Cell and Molecular Biology, Honolulu, HI, USA
| | | | | | - Alan Garcia
- Department of Microbiology and Biotechnology, Kapi‘olani Community College, Honolulu, HI, USA
| | - Haining Yiang
- University of Hawai’i Cancer Center, University of Hawai’i, Honolulu, HI, USA
| | - Sandra Pastorino
- University of Hawai’i Cancer Center, University of Hawai’i, Honolulu, HI, USA
| | - Michele Carbone
- University of Hawai’i Cancer Center, University of Hawai’i, Honolulu, HI, USA
| | - Toshiro Niki
- Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- GalPharma, Co., Ltd., Takamatsu, Japan
| | - John Berestecky
- Department of Microbiology and Biotechnology, Kapi‘olani Community College, Honolulu, HI, USA
| | | | - Lishomwa C. Ndhlovu
- Department of Tropical Medicine, John A. Burns School of Medicine, Honolulu, HI, USA
| |
Collapse
|
30
|
Decoding the sweet regulation of apoptosis: the role of glycosylation and galectins in apoptotic signaling pathways. Cell Death Differ 2019; 26:981-993. [PMID: 30903104 DOI: 10.1038/s41418-019-0317-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/02/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
Glycosylation and glycan-binding proteins such as galectins play an important role in the control of cell death signaling. Strikingly, very little attention has been given so far to the understanding of the molecular details behind this key regulatory network. Glycans attached to the death receptors such as CD95 and TRAIL-Rs, either alone or in a complex with galectins, might promote or inhibit apoptotic signals. However, we have just started to decode the functions of galectins in the modulation of extrinsic and intrinsic apoptosis. In this work, we have discussed the current understanding of the glycosylation-galectin regulatory network in CD95- as well as TRAIL-R-induced apoptosis and therapeutic strategies based on targeting galectins in cancer.
Collapse
|
31
|
Kafi Z, Cheshomi H, Gholami O. 7-Isopenthenyloxycoumarin, Arctigenin, and Hesperidin Modify Myeloid Cell Leukemia Type-1 (Mcl-1) Gene Expression by Hormesis in K562 Cell Line. Dose Response 2018; 16:1559325818796014. [PMID: 30224905 PMCID: PMC6136114 DOI: 10.1177/1559325818796014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 12/31/2022] Open
Abstract
Hormesis is a new concept in dose–response relationship. Despite of traditional
dose–response curves, there is a low-dose stimulation and a high-dose inhibition
in this case. Hormesis effect in apoptosis induction/inhibition by natural
compounds is reported previously. Here, we searched this effect for myeloid cell
leukemia type-1 (Mcl-1) gene expression by phytochemicals
7-isopenthenyloxycoumarin (7-IP), arctigenin (Arg), and hesperidin (Hsp). For
this purpose, first we tested the cytotoxicity of various doses of these
compounds against K562 leukemia cell lines for different times by
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. After that
we explored the effect of various doses of these phytochemicals on Mcl-1 gene
expression for different times by real-time polymerase chain reaction method. We
found that these phytochemicals have cytotoxicity against K562 cell line.
Hesperidin is the most cytotoxic agent. We also found that these natural
compounds have hormetic effect on Mcl-1 gene expression. The hormetic model in
Mcl-1 gene expression is overcompensation stimulation. This phenomenon is
reported for the first time. We conclude that 7-IP, Arg, and Hsp are cytotoxic
against K562 cancerous cells and induce/inhibit Mcl-1 gene expression by
hormesis dose–response relationship.
Collapse
Affiliation(s)
- Zahra Kafi
- Cellular and Molecular Research Center, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hamid Cheshomi
- Cellular and Molecular Research Center, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran.,Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Omid Gholami
- Cellular and Molecular Research Center, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
32
|
Zhou X, Sun L, Jing D, Xu G, Zhang J, Lin L, Zhao J, Yao Z, Lin H. Galectin-9 Expression Predicts Favorable Clinical Outcome in Solid Tumors: A Systematic Review and Meta-Analysis. Front Physiol 2018; 9:452. [PMID: 29765332 PMCID: PMC5939667 DOI: 10.3389/fphys.2018.00452] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/11/2018] [Indexed: 01/01/2023] Open
Abstract
Background and Objective: Galectin-9 (Gal-9) is one of the galectin family members which are known as proteins with β-galactoside-binding affinity. Accumulative evidence suggest that Gal-9 plays multifaceted roles in tumor biology. However, the prognostic significance of Gal-9 in solid cancer patients remains controversial. The objective of the study was to clarify the prognostic significance of Gal-9 in solid tumors via meta-analysis. Methods: We searched PubMed, Embase and the Cochrane library for studies that report the correlation between Gal-9 expression and prognosis or clinicopathological parameters in solid cancer patients from inception to October 2017, with no language restriction. We calculated pooled hazard ratio (HR) and 95% confidence interval (CI) to investigate the prognostic significance of Gal-9 expression in solid tumors. We also calculated Odds ratio (OR) to explore the association between Gal-9 expression and clinicopathological features. Results: We included Fourteen studies with 2326 patients in our meta-analysis. The synthetic results revealed that high Gal-9 expression indicated improved overall survival (OS; HR = 0.70, 95% CI = 0.51-0.71, P = 0.006) but had no correlation with disease-free survival (DFS)/recurrence-free survival (RFS) (HR = 0.85, 95% CI = 0.51-1.41, P = 0.527) in solid tumors. In stratified analyses, high Gal-9 expression was significantly correlated with improved OS in hepatocellular carcinoma and colon cancer and with improved DFS/RFS in gastric cancer and non-small cell lung cancer. In addition, ethnicity and the method of data extraction didn't affect the positive prognostic values of high Gal-9 expression. Moreover, high Gal-9 expression was significantly correlated with a smaller depth of invasion (TI/TII vs. TIII/TIV, OR = 2.80, 95% CI = 1.97-3.96, P < 0.001), an earlier histopathological stage (I/II vs. III/IV, OR = 3.00, 95% CI = 2.04-4.42, P < 0.001), negative lymph node metastasis (Presence vs. Absence, OR = 0.47, 95% CI = 0.25-0.89, P = 0.020) and negative distal tumor metastasis (Presence vs. Absence, OR = 13.85, 95% CI = 3.50-54.76, P < 0.001). Conclusion: Gal-9 expression indicates beneficial outcome in patients with solid tumors and is correlated with the pathogenesis of solid tumors. Gal-9 may serve as a prognostic biomarker and an emerging therapeutic target against solid tumors.
Collapse
Affiliation(s)
- Xiaoxiang Zhou
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lejia Sun
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Jing
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jinmei Zhang
- Department of Hepatobiliary Surgery, Weifang People's Hospital, Weifang, China
| | - Li Lin
- Department of Hepatobiliary Surgery, Weifang People's Hospital, Weifang, China
| | - Jingjing Zhao
- Department of Hepatobiliary Surgery, Weifang People's Hospital, Weifang, China
| | - Zhuoran Yao
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hongfeng Lin
- Department of Hepatobiliary Surgery, Weifang People's Hospital, Weifang, China
| |
Collapse
|
33
|
Role of Galectins in Tumors and in Clinical Immunotherapy. Int J Mol Sci 2018; 19:ijms19020430. [PMID: 29389859 PMCID: PMC5855652 DOI: 10.3390/ijms19020430] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023] Open
Abstract
Galectins are glycan-binding proteins that contain one or two carbohydrate domains and mediate multiple biological functions. By analyzing clinical tumor samples, the abnormal expression of galectins is known to be linked to the development, progression and metastasis of cancers. Galectins also have diverse functions on different immune cells that either promote inflammation or dampen T cell-mediated immune responses, depending on cognate receptors on target cells. Thus, tumor-derived galectins can have bifunctional effects on tumor and immune cells. This review focuses on the biological effects of galectin-1, galectin-3 and galectin-9 in various cancers and discusses anticancer therapies that target these molecules.
Collapse
|
34
|
Galectin Targeted Therapy in Oncology: Current Knowledge and Perspectives. Int J Mol Sci 2018; 19:ijms19010210. [PMID: 29320431 PMCID: PMC5796159 DOI: 10.3390/ijms19010210] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/23/2017] [Accepted: 12/28/2017] [Indexed: 12/13/2022] Open
Abstract
The incidence and mortality of cancer have increased over the past decades. Significant progress has been made in understanding the underpinnings of this disease and developing therapies. Despite this, cancer still remains a major therapeutic challenge. Current therapeutic research has targeted several aspects of the disease such as cancer development, growth, angiogenesis and metastases. Many molecular and cellular mechanisms remain unknown and current therapies have so far failed to meet their intended potential. Recent studies show that glycans, especially oligosaccharide chains, may play a role in carcinogenesis as recognition patterns for galectins. Galectins are members of the lectin family, which show high affinity for β-galactosides. The galectin–glycan conjugate plays a fundamental role in metastasis, angiogenesis, tumor immunity, proliferation and apoptosis. Galectins’ action is mediated by a structure containing at least one carbohydrate recognition domain (CRD). The potential prognostic value of galectins has been described in several neoplasms and helps clinicians predict disease outcome and determine therapeutic interventions. Currently, new therapeutic strategies involve the use of inhibitors such as competitive carbohydrates, small non-carbohydrate binding molecules and antibodies. This review outlines our current knowledge regarding the mechanism of action and potential therapy implications of galectins in cancer.
Collapse
|
35
|
Okura R, Fujihara S, Iwama H, Morishita A, Chiyo T, Watanabe M, Hirose K, Kobayashi K, Fujimori T, Kato K, Kamada H, Kobara H, Mori H, Niki T, Hirashima M, Okano K, Suzuki Y, Masaki T. MicroRNA profiles during galectin-9-induced apoptosis of pancreatic cancer cells. Oncol Lett 2017; 15:407-414. [PMID: 29387226 DOI: 10.3892/ol.2017.7316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/17/2017] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer is the eighth-leading cause of cancer-associated mortality in males and the ninth-leading cause in females worldwide. Even when diagnosed early enough to be potentially resectable, the prognosis of invasive pancreatic cancer is poor. Galectin-9 (Gal-9) is a tandem-repeat type galectin that has recently been demonstrated to possess an anti-proliferative effect on cancer cells. Therefore, the present study evaluated the effects of Gal-9 on the proliferation of human pancreatic cancer cells and examined the microRNAs that are associated with the antitumor effects of Gal-9. Gal-9 suppressed the proliferation of multiple pancreatic cancer cell lines. In addition, Gal-9 treatment increased the levels of caspase-cleaved keratin 18 and the expression of cytochrome c in pancreatic cancer cell lines. This data suggests that Gal-9 induces intrinsic apoptosis in pancreatic cancer cell lines through the caspase-dependent and caspase-independent pathways. In addition, Gal-9 reduced the expression levels of phosphorylated epidermal growth factor receptor and numerous receptor tyrosine kinases (RTKs). In conclusion, Gal-9 may suppress the growth of human pancreatic cancer cells in vitro. These findings suggest that Gal-9 may be a new therapeutic agent for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Ryoichi Okura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Shintaro Fujihara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Taiga Chiyo
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Miwako Watanabe
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Kayo Hirose
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Kiyoyuki Kobayashi
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Takayuki Fujimori
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Kiyohito Kato
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Hideki Kamada
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Hirohito Mori
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Toshiro Niki
- Department of Immunology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Mitsuomi Hirashima
- Department of Immunology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Keiichi Okano
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Yasuyuki Suzuki
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| |
Collapse
|
36
|
Tadokoro T, Fujihara S, Chiyo T, Oura K, Samukawa E, Yamana Y, Fujita K, Mimura S, Sakamoto T, Nomura T, Tani J, Yoneyama H, Morishita A, Himoto T, Iwama H, Niki T, Hirashima M, Masaki T. Induction of apoptosis by Galectin-9 in liver metastatic cancer cells: In vitro study. Int J Oncol 2017; 51:607-614. [PMID: 28656219 DOI: 10.3892/ijo.2017.4053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 06/01/2017] [Indexed: 11/05/2022] Open
Abstract
Liver metastasis from gastrointestinal cancer defines a patient's prognosis. Despite medical developments, pancreatic cancer with liver metastasis confers a very poor prognosis. Galectin-9 (Gal‑9) is a tandem-repeat-type galectin that has recently been demonstrated to exert antitumor effects on various types of cancer cells by inducing apoptosis. However, the apoptotic pathway of Gal‑9 in solid tumors is unclear. The aim of the present study was to evaluate the effects of Gal‑9 on human liver metastasis from pancreatic cancer. Gal‑9 suppressed cell proliferation in metastatic liver cancer cell lines derived from pancreatic cancer (KMP2, KMP7, and KMP8) and increased the levels of caspase-cleaved keratin 18 and fluorescein isothiocyanate (FITC)-conjugated Annexin V. Furthermore, expression of apoptosis-related molecules such as caspase-7, cleaved caspase-3, cleaved PARP, cytochrome c, Smac/Diablo and HtrA2/Omi was enhanced. However, Gal‑9 did not affect expression of various cell cycle-related proteins. The microRNA (miRNA) expression profile was markedly altered by Gal‑9, and various miRNAs might contribute to tumor growth suppression. Our data reveal that Gal‑9 suppresses the growth of liver metastasis, possibly by inducing apoptosis through a mechanism involving mitochondria and changes in miRNA expression. Thus, Gal‑9 might serve as a therapeutic agent for the treatment of liver metastasis from pancreatic cancer.
Collapse
Affiliation(s)
- Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Shintaro Fujihara
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Taiga Chiyo
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Kyoko Oura
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Eri Samukawa
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Yoshimi Yamana
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Shima Mimura
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Teppei Sakamoto
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Takako Nomura
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Joji Tani
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Hirohito Yoneyama
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Takashi Himoto
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, Takamatsu, Kagawa, Japan
| | - Toshiro Niki
- Department of Immunology and Immunopathology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Mitsuomi Hirashima
- Department of Immunology and Immunopathology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| |
Collapse
|
37
|
Akashi E, Fujihara S, Morishita A, Tadokoro T, Chiyo T, Fujikawa K, Kobara H, Mori H, Iwama H, Okano K, Suzuki Y, Niki T, Hirashima M, Masaki T. Effects of galectin-9 on apoptosis, cell cycle and autophagy in human esophageal adenocarcinoma cells. Oncol Rep 2017; 38:506-514. [PMID: 28586026 DOI: 10.3892/or.2017.5689] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 05/22/2017] [Indexed: 11/06/2022] Open
Abstract
The incidence of esophageal adenocarcinoma (EAC) is rapidly increasing in western countries. The overall mortality of this disease remains high with a 5-year survival rate of less than 20%, despite remarkable advances in the care of patients with EAC. Galectin-9 (Gal-9) is a tandem-repeat type galectin that exerts anti-proliferative effects on various cancer cell types. The aim of the present study was to evaluate the effects of Gal-9 on human EAC cells and to assess the expression of microRNAs (miRNAs) associated with the antitumor effects of Gal-9 in vitro. Gal-9 suppressed the proliferation of the EAC cell lines OE19, OE33, SK-GT4, and OACM 5.1C. Additionally, Gal-9 treatment induced apoptosis and increased the expression levels of caspase-cleaved cytokeratin 18, activated caspase-3 and activated caspase-9. However, it did not promote cell cycle arrest by reducing cell cycle-related protein levels. Furthermore, Gal-9 increased the level of the angiogenesis-related protein interleukin-8 (IL-8) and markedly altered miRNA expression. Based on these findings, Gal-9 may be of clinical use for the treatment of EAC.
Collapse
Affiliation(s)
- Emiko Akashi
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Shintaro Fujihara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Taiga Chiyo
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Keiko Fujikawa
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Hirohito Mori
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Keiichi Okano
- Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Yasuyuki Suzuki
- Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Toshiro Niki
- Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Mitsuomi Hirashima
- Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Kagawa 761-0793, Japan
| |
Collapse
|
38
|
Abstract
Galectins is a family of non-classically secreted, beta-galactoside-binding proteins that has recently received considerable attention in the spatio-temporal regulation of surface 'signal lattice' organization, membrane dynamics, cell-adhesion and disease therapeutics. Galectin-9 is a unique member of this family, with two non-homologous carbohydrate recognition domains joined by a linker peptide sequence of variable lengths, generating isoforms with distinct properties and functions in both physiological and pathological settings, such as during development, immune reaction, neoplastic transformations and metastasis. In this review, we summarize the latest knowledge on the structure, receptors, cellular targets, trafficking pathways and functional properties of galectin-9 and discuss how galectin-9-mediated signalling cascades can be exploited in cancers and immunotherapies.
Collapse
Affiliation(s)
- Sebastian John
- Department of Neurobiology and Genetics, Division of Disease Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram 695014, India
| | | |
Collapse
|
39
|
Kieber-Emmons T, Monzavi-Karbassi B, Hutchins LF, Pennisi A, Makhoul I. Harnessing benefit from targeting tumor associated carbohydrate antigens. Hum Vaccin Immunother 2017; 13:323-331. [PMID: 27929800 PMCID: PMC5328237 DOI: 10.1080/21645515.2017.1264789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Integrating additive or synergistic antitumor effects that focus on distinct elements of tumor biology are the most rational strategies for cancer treatment. Treatments for breast cancer have increased overall survival, but remain limited by lack of efficacy in a subset of breast cancer patients. The real challenge is to define what elements of tumor biology make the most sense to be integrated. An emerging strategy is to consider a systems biology approach to impact multiple interactions in networks as compare with hitting a specific protein-protein interaction target. In this review, we consider how targeting tumor associated carbohydrate antigens (TACA) that are fundamental to signal pathways might be tailored to harness benefit from combination therapy of sustained immunity with chemotherapy. An approach we are developing makes use of a carbohydrate mimetic peptide (CMP) to induce polyspecific antibodies, which by their nature have numerous on and off target effects. Linking multi-target TACA recognition with mechanisms affecting tumor growth in the context of network heterogeneity and concepts of immune surveillance to tumor cells and the type of breast cancer patients that would benefit from such an approach provides a novel integrative treatment.
Collapse
Affiliation(s)
- Thomas Kieber-Emmons
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Laura F. Hutchins
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Angela Pennisi
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Issam Makhoul
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
40
|
Cancer Therapy Due to Apoptosis: Galectin-9. Int J Mol Sci 2017; 18:ijms18010074. [PMID: 28045432 PMCID: PMC5297709 DOI: 10.3390/ijms18010074] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/25/2016] [Accepted: 12/27/2016] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of apoptosis is a major hallmark in cancer biology that might equip tumors with a higher malignant potential and chemoresistance. The anti-cancer activities of lectin, defined as a carbohydrate-binding protein that is not an enzyme or antibody, have been investigated for over a century. Recently, galectin-9, which has two distinct carbohydrate recognition domains connected by a linker peptide, was noted to induce apoptosis in thymocytes and immune cells. The apoptosis of these cells contributes to the development and regulation of acquired immunity. Furthermore, human recombinant galectin-9, hG9NC (null), which lacks an entire region of the linker peptide, was designed to resist proteolysis. The hG9NC (null) has demonstrated anti-cancer activities, including inducing apoptosis in hematological, dermatological and gastrointestinal malignancies. In this review, the molecular characteristics, history and apoptosis-inducing potential of galectin-9 are described.
Collapse
|
41
|
Li G, Gao Y, Cui L, Wu L, Yang X, Chen J. Anguilla japonicalectin 1 delivery through adenovirus vector induces apoptotic cancer cell death through interaction with PRMT5. J Gene Med 2016; 18:65-74. [DOI: 10.1002/jgm.2878] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/20/2016] [Accepted: 03/07/2016] [Indexed: 12/22/2022] Open
Affiliation(s)
- Gongchu Li
- College of Life Sciences; Zhejiang Sci-Tech University; Hangzhou Zhejiang China
| | - Yajun Gao
- College of Life Sciences; Zhejiang Sci-Tech University; Hangzhou Zhejiang China
| | - Lianzhen Cui
- College of Life Sciences; Zhejiang Sci-Tech University; Hangzhou Zhejiang China
| | - Liqin Wu
- College of Life Sciences; Zhejiang Sci-Tech University; Hangzhou Zhejiang China
| | - Xinyan Yang
- College of Life Sciences; Zhejiang Sci-Tech University; Hangzhou Zhejiang China
| | - Jing Chen
- Institute of Life Sciences, College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou Zhejiang China
| |
Collapse
|
42
|
Abdel-Mohsen M, Chavez L, Tandon R, Chew GM, Deng X, Danesh A, Keating S, Lanteri M, Samuels ML, Hoh R, Sacha JB, Norris PJ, Niki T, Shikuma CM, Hirashima M, Deeks SG, Ndhlovu LC, Pillai SK. Human Galectin-9 Is a Potent Mediator of HIV Transcription and Reactivation. PLoS Pathog 2016; 12:e1005677. [PMID: 27253379 PMCID: PMC4890776 DOI: 10.1371/journal.ppat.1005677] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/12/2016] [Indexed: 02/06/2023] Open
Abstract
Identifying host immune determinants governing HIV transcription, latency and infectivity in vivo is critical to developing an HIV cure. Based on our recent finding that the host factor p21 regulates HIV transcription during antiretroviral therapy (ART), and published data demonstrating that the human carbohydrate-binding immunomodulatory protein galectin-9 regulates p21, we hypothesized that galectin-9 modulates HIV transcription. We report that the administration of a recombinant, stable form of galectin-9 (rGal-9) potently reverses HIV latency in vitro in the J-Lat HIV latency model. Furthermore, rGal-9 reverses HIV latency ex vivo in primary CD4+ T cells from HIV-infected, ART-suppressed individuals (p = 0.002), more potently than vorinostat (p = 0.02). rGal-9 co-administration with the latency reversal agent "JQ1", a bromodomain inhibitor, exhibits synergistic activity (p<0.05). rGal-9 signals through N-linked oligosaccharides and O-linked hexasaccharides on the T cell surface, modulating the gene expression levels of key transcription initiation, promoter proximal-pausing, and chromatin remodeling factors that regulate HIV latency. Beyond latent viral reactivation, rGal-9 induces robust expression of the host antiviral deaminase APOBEC3G in vitro and ex vivo (FDR<0.006) and significantly reduces infectivity of progeny virus, decreasing the probability that the HIV reservoir will be replenished when latency is reversed therapeutically. Lastly, endogenous levels of soluble galectin-9 in the plasma of 72 HIV-infected ART-suppressed individuals were associated with levels of HIV RNA in CD4+ T cells (p<0.02) and with the quantity and binding avidity of circulating anti-HIV antibodies (p<0.009), suggesting a role of galectin-9 in regulating HIV transcription and viral production in vivo during therapy. Our data suggest that galectin-9 and the host glycosylation machinery should be explored as foundations for novel HIV cure strategies.
Collapse
Affiliation(s)
- Mohamed Abdel-Mohsen
- Blood Systems Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
| | - Leonard Chavez
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Ravi Tandon
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Glen M. Chew
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Ali Danesh
- Blood Systems Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
| | - Sheila Keating
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Marion Lanteri
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Michael L. Samuels
- RainDance Technologies, Inc., Billerica, Massachusetts, United States of America
| | - Rebecca Hoh
- University of California, San Francisco, California, United States of America
| | - Jonah B. Sacha
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Philip J. Norris
- Blood Systems Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
| | - Toshiro Niki
- GalPharma Co., Ltd., Takamatsu-shi, Kagawa, Japan
- Department of Immunology and Immunopathology, Kagawa University, Kagawa, Japan
| | - Cecilia M. Shikuma
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Mitsuomi Hirashima
- GalPharma Co., Ltd., Takamatsu-shi, Kagawa, Japan
- Department of Immunology and Immunopathology, Kagawa University, Kagawa, Japan
| | - Steven G. Deeks
- University of California, San Francisco, California, United States of America
| | - Lishomwa C. Ndhlovu
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Satish K. Pillai
- Blood Systems Research Institute, San Francisco, California, United States of America
- University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Tadokoro T, Morishita A, Fujihara S, Iwama H, Niki T, Fujita K, Akashi E, Mimura S, Oura K, Sakamoto T, Nomura T, Tani J, Miyoshi H, Yoneyama H, Himoto T, Hirashima M, Masaki T. Galectin-9: An anticancer molecule for gallbladder carcinoma. Int J Oncol 2016; 48:1165-74. [PMID: 26797414 DOI: 10.3892/ijo.2016.3347] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/16/2015] [Indexed: 11/05/2022] Open
Abstract
Gallbladder cancer (GBC) is the most common and aggressive type of biliary tract cancer. There are various histological types of GBC, and the vast majority of GBC cases are adenocarcinomas. Squamous and adenosquamous carcinomas are rare GBC subtypes that are traditionally considered to be more aggressive and to be associated with a poorer prognosis than adenocarcinoma. Galectin-9 (Gal-9), a tandem-repeat-type galectin, has been reported to induce apoptosis-mediated elimination of various cancers, including hepatocellular carcinoma, cholangiocarcinoma, and hematologic malignancies. Therefore, we investigated the antitumor effects of Gal-9 on GBC in vitro and in vivo. In our in vitro experiments, Gal-9 suppressed cell proliferation in various GBC cell lines but not in the OCUG-1 cell line, which represents a poorly differentiated type of adenosquamous carcinoma. Gal-9 induced the apoptosis of Gal-9-sensitive GBC cells by increasing the levels of caspase-cleaved keratin 18 and phosphorylated p53. However, Gal-9 did not affect the expression of various cell cycle-related proteins. In addition, Gal-9 suppressed tumor growth by implanted human GBC cells in a xenograft model. Furthermore, Gal-9 induced the phosphorylation of the Ephrin type-B receptor, and the microRNA (miRNA) expression profile was markedly altered by Gal-9. Based on these results, various miRNAs might contribute to the suppression of tumor growth. Our data reveal that Gal-9 suppresses the growth of GBC, possibly by inducing apoptosis and altering miRNA expression. Thus, Gal-9 might serve as a therapeutic agent for the treatment of GBC.
Collapse
Affiliation(s)
- Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Shintaro Fujihara
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, Kagawa, Japan
| | - Toshiro Niki
- Department of Immunology and Immunopathology, Kagawa University, Kagawa, Japan
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Emiko Akashi
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Shima Mimura
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Kyoko Oura
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Teppei Sakamoto
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Takako Nomura
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Joji Tani
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Hisaaki Miyoshi
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Hirohito Yoneyama
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Takashi Himoto
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| | - Mitsuomi Hirashima
- Department of Immunology and Immunopathology, Kagawa University, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa, Japan
| |
Collapse
|
44
|
Takano J, Morishita A, Fujihara S, Iwama H, Kokado F, Fujikawa K, Fujita K, Chiyo T, Tadokoro T, Sakamoto T, Nomura T, Tani J, Miyoshi H, Yoneyama H, Kobara H, Mori H, Niki T, Hirashima M, Masaki T. Galectin-9 suppresses the proliferation of gastric cancer cells in vitro. Oncol Rep 2015; 35:851-60. [PMID: 26717877 DOI: 10.3892/or.2015.4452] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/26/2015] [Indexed: 11/06/2022] Open
Abstract
Gastric cancer is the second-leading cause of cancer-related mortality worldwide, and the prognosis of advanced gastric cancer remains poor. Galectin-9 (Gal-9) is a tandem-repeat-type galectin that has recently been demonstrated to exert anti-proliferative effects on various types of cancer cells. The aim of our present study was to evaluate the effects of Gal-9 on human gastric cancer cells and the expression levels of microRNAs (miRNAs) associated with the antitumor effects of Gal-9 in vitro. In our initial experiments, Gal-9 suppressed the proliferation of gastric cancer cell lines in vitro. Our data further revealed that Gal-9 increased caspase-cleaved keratin 18 (CCK18) levels in gastric cancer cells. Additionally, Gal-9 reduced the phosphorylation of vascular endothelial growth factor receptor-3 (VEGFR-3) and insulin-like growth factor-1 receptor (IGF-1R). Furthermore, miRNA expression levels were markedly altered with Gal-9 treatment in vitro. In conclusion, Gal-9 suppressed the proliferation of human gastric cancer cells by inducing apoptosis. These findings suggest that Gal-9 could be a potential therapeutic target in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Jitsuko Takano
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Shintaro Fujihara
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Fuyuko Kokado
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Keiko Fujikawa
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Taiga Chiyo
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Teppei Sakamoto
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Takako Nomura
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Joji Tani
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Hisaaki Miyoshi
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Hirohito Yoneyama
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Hirohito Mori
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Toshihiro Niki
- Department of Immunology and Immunopathology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Mitsuomi Hirashima
- Department of Immunology and Immunopathology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0793, Japan
| |
Collapse
|
45
|
Kobayashi K, Morishita A, Iwama H, Fujita K, Okura R, Fujihara S, Yamashita T, Fujimori T, Kato K, Kamada H, Niki T, Hirashima M, Okano K, Suzuki Y, Masaki T. Galectin-9 suppresses cholangiocarcinoma cell proliferation by inducing apoptosis but not cell cycle arrest. Oncol Rep 2015; 34:1761-70. [PMID: 26260906 DOI: 10.3892/or.2015.4197] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 06/02/2015] [Indexed: 11/06/2022] Open
Abstract
Cholangiocarcinoma is the most common biliary malignancy and the second most common hepatic malignancy after hepatocellular carcinoma (HCC). Galectin-9 (Gal-9) is a tandem-repeat-type galectin that has recently been shown to exert antiproliferative effects on cancer cells. Therefore, the present study evaluated the effects of Gal-9 on the proliferation of human cholangiocarcinoma cells in vitro as well as the microRNAs (miRNAs) associated with the antitumor effects of Gal-9. Gal-9 suppressed the proliferation of cholangiocarcinoma cell lines in vitro and the growth of human cholangiocarcinoma cell xenografts in nude mice. Our data further revealed that Gal-9 increased caspase‑cleaved keratin 18 (CCK18) levels, and the expression of cytochrome c increased in Gal-9-treated cholangiocarcinoma cell lines. These data suggested that Gal-9 induced cholangiocarcinoma cell apoptosis via the intrinsic apoptosis pathway mediated by caspase-dependent or -independent pathways. In addition, Gal-9 reduced the phosphorylation of the epidermal growth factor receptor (EGFR), insulin-like growth factor and insulin-like growth factor-1 receptor (IGF-1R), hepatocyte growth factor receptor and fibroblast growth factor receptor 3 (FGFR3). These findings suggest that Gal-9 can be a candidate of therapeutic target in the treatment of cholangiocarcinoma.
Collapse
Affiliation(s)
- Kiyoyuki Kobayashi
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Ryoichi Okura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Shintaro Fujihara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Takuma Yamashita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Takayuki Fujimori
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Kiyohito Kato
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Hideki Kamada
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Toshiro Niki
- Department of Immunology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Mitsuomi Hirashima
- Department of Immunology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Keiichi Okano
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Yasuyuki Suzuki
- Department of Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| |
Collapse
|
46
|
Fujita K, Iwama H, Sakamoto T, Okura R, Kobayashi K, Takano J, Katsura A, Tatsuta M, Maeda E, Mimura S, Nomura T, Tani J, Miyoshi H, Morishita A, Yoneyama H, Yamana Y, Himoto T, Okano K, Suzuki Y, Niki T, Hirashima M, Masaki T. Galectin-9 suppresses the growth of hepatocellular carcinoma via apoptosis in vitro and in vivo. Int J Oncol 2015; 46:2419-30. [PMID: 25823465 DOI: 10.3892/ijo.2015.2941] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/11/2015] [Indexed: 11/05/2022] Open
Abstract
Galectin-9, a soluble β-galactoside-binding animal lectin, evokes apoptosis in various human cancer cell lines. The galectin-9 antitumor effect against hepatocellular carcinoma (HCC) is, however, unknown. We investigated whether galectin-9 suppresses HCC growth in vitro and in vivo. We assessed the antitumor effect of galectin-9 on HCC cells by conducting WST-8 assay in vitro and xenograft model analysis in vivo. Galectin-9-induced apoptosis was evaluated by FACS and ELISA in vitro and by TUNEL stain in vivo. Cell cycle alteration was profiled by FACS. Caspases were profiled by colorimetry. MicroRNAs related to the galectin-9 antitumor effects were determined using microarrays, and their antitumor effect was confirmed in a transfection study in vitro. The expression levels of the target proteins of the miRNAs extracted above were analyzed by western blot analysis. To summarize the results, galectin-9 inhibited the growth of the HCC cell lines HLE and Li-7 in vitro and Li-7 in vivo inducing apoptosis. Cell cycle turnover was not arrested in HLE and Li-7 cells in vitro. miR-1246 was similarly extracted both in vitro and in vivo, which sensitized Li-7 cells to apoptosis when transfected into the cells. DYRK1A, a target protein of miR-1246 was downregulated in Li-7 cells. Caspase-9 was upregulated in Li-7 cells in vitro and in vivo. In conclusion, galectin-9 inhibited the growth of HCC cells by apoptosis, but not cell cycle arrest, in vitro and in vivo. miR-1246 mediated signals of galectin-9, possibly through miR-1246-DYRK1A-caspase-9 axis. Galectin-9 might be a candidate agent for HCC chemotherapy.
Collapse
Affiliation(s)
- Koji Fujita
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-079, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, Kagawa 761-079, Japan
| | - Teppei Sakamoto
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-079, Japan
| | - Ryoichi Okura
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-079, Japan
| | - Kiyoyuki Kobayashi
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-079, Japan
| | - Jitsuko Takano
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-079, Japan
| | - Akiko Katsura
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-079, Japan
| | - Miwa Tatsuta
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-079, Japan
| | - Emiko Maeda
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-079, Japan
| | - Shima Mimura
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-079, Japan
| | - Takako Nomura
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-079, Japan
| | - Joji Tani
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-079, Japan
| | - Hisaaki Miyoshi
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-079, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-079, Japan
| | - Hirohito Yoneyama
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-079, Japan
| | - Yuka Yamana
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-079, Japan
| | - Takashi Himoto
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-079, Japan
| | - Keiichi Okano
- Department of Gastroenterological Surgery, Kagawa University, Kagawa 761-079, Japan
| | - Yasuyuki Suzuki
- Department of Gastroenterological Surgery, Kagawa University, Kagawa 761-079, Japan
| | - Toshiro Niki
- Department of Immunology and Immunopathology, Kagawa University, Kagawa 761-079, Japan
| | - Mitsuomi Hirashima
- Department of Immunology and Immunopathology, Kagawa University, Kagawa 761-079, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University, Kagawa 761-079, Japan
| |
Collapse
|
47
|
Wang W, Wang S, Zhang H, Yuan C, Yan R, Song X, Xu L, Li X. Galectin Hco-gal-m from Haemonchus contortus modulates goat monocytes and T cell function in different patterns. Parasit Vectors 2014; 7:342. [PMID: 25056558 PMCID: PMC4117971 DOI: 10.1186/1756-3305-7-342] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/06/2014] [Indexed: 12/24/2022] Open
Abstract
Background Monocytes and T cells are two major subpopulations of peripheral blood mononuclear cells (PBMC) and play an essential role in the innate and adaptive immune systems. Different members of the galectin family show multiple and distinct regulatory effects on different cell types. Previous studies have demonstrated that the galectin from Haemonchus contortus (Hco-gal-m) performed immunomodulatory effects on goat PBMC, however, which subpopulation of PBMC is the primary target of Hco-gal-m and whether the immune modulations share the same mechanism remain unclear. Methods In this study, the developmental expression of Hco-gal-m was analyzed by RT-PCR and Western blot analysis. The distribution of Hco-gal-m in adult worm was detected by an immunohistochemical test. The binding activity of the recombinant Hco-gal-m (rHco-gal-m) on goat monocytes and T cells were assessed by flow cytometry. The immunomodulatory effects of Hco-gal-m on cytokine secretion, cell activation and apoptosis were observed by co-incubation of rHco-gal-m with goat monocytes and T cells. Results Hco-gal-m was expressed in L4 as well as adult worms and predominantly localized at the internal surface of the worm guts. rHco-gal-m could bind to both monocytes and T cells. The engagement of rHco-gal-m decreased the production of IL-6, IL-10 and TNF-α in T cells, however, it significantly increased the secretion of IL-10 in monocytes. After rHco-gal-m exposure, the expression of MHC-II on monocytes and that of CD25 on T cells were restricted. Consequently, T cell proliferations were potently inhibited by rHco-gal-m. In addition, rHco-gal-m induced apoptosis in T cells, but not significantly in monocytes. Conclusions Our results indicated that rHco-gal-m modulated goat monocytes and T cell function in different patterns. Electronic supplementary material The online version of this article (doi:10.1186/1756-3305-7-342) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - XiangRui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
48
|
Kiyota M, Kuroda J, Yamamoto-Sugitani M, Shimura Y, Nakayama R, Nagoshi H, Mizutani S, Chinen Y, Sasaki N, Sakamoto N, Kobayashi T, Matsumoto Y, Horiike S, Taniwaki M. FTY720 induces apoptosis of chronic myelogenous leukemia cells via dual activation of BIM and BID and overcomes various types of resistance to tyrosine kinase inhibitors. Apoptosis 2014; 18:1437-1446. [PMID: 23851982 DOI: 10.1007/s10495-013-0882-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PP2A activator FTY720 has been shown to possess the anti-leukemic activity for chronic myelogenous leukemia (CML), however, the cell killing mechanism underlying its anti-leukemic activity has remained to be verified. We investigated the precise mechanisms underlying the apoptosis induction by FTY720, especially focusing on the roles of BH3-only proteins, and the therapeutic potency of FTY720 for CML. Enforced expression of either BCL2 or the dominant-negative protein of FADD (FADD.DN) partly protected CML cells from apoptosis by FTY720, indicating the involvement of both cell extrinsic and intrinsic apoptosis pathways. FTY720 activates pro-apoptotic BH3-only proteins: BIM, which is essential for apoptosis by BCR-ABL1 tyrosine kinase inhibitors (TKIs), and BID, which accelerates the extrinsic apoptosis pathway. Gene knockdown of either BIM or BID partly protected K562 cells from apoptosis by FTY720, but the extent of cell protection was not as much as that by overexpression of either BCL2 or FADD.DN. Moreover, knockdown of both BIM and BID did not provide additional protection compared with knockdown of only BIM or BID, indicating that BIM and BID complement each other in apoptosis by FTY720, especially when either is functionally impaired. FTY720 can overcome TKI resistance caused by ABL kinase domain mutations, dysfunction of BIM resulting from gene deletion polymorphism, and galectin-3 overexpression. In addition, ABT-263, a BH3-mimetic, significantly augmented cell death induction by FTY720 both in TKI-sensitive and -resistant leukemic cells. These results provide the rationale that FTY720, with its unique effects on BIM and BID, could lead to new therapeutic strategies for CML.
Collapse
Affiliation(s)
- Miki Kiyota
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Junya Kuroda
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Mio Yamamoto-Sugitani
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yuji Shimura
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Ryuko Nakayama
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hisao Nagoshi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shinsuke Mizutani
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yoshiaki Chinen
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Nana Sasaki
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Natsumi Sakamoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tsutomu Kobayashi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yosuke Matsumoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shigeo Horiike
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Masafumi Taniwaki
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
49
|
Endothelial LGALS9 splice variant expression in endothelial cell biology and angiogenesis. Biochim Biophys Acta Mol Basis Dis 2014; 1842:284-92. [DOI: 10.1016/j.bbadis.2013.12.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 12/21/2022]
|
50
|
Vladoiu MC, Labrie M, St-Pierre Y. Intracellular galectins in cancer cells: potential new targets for therapy (Review). Int J Oncol 2014; 44:1001-14. [PMID: 24452506 DOI: 10.3892/ijo.2014.2267] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/02/2013] [Indexed: 11/06/2022] Open
Abstract
Dysregulation of galectin expression is frequently observed in cancer tissues. Such an abnormal expression pattern often correlates with aggressiveness and relapse in many types of cancer. Because galectins have the ability to modulate functions that are important for cell survival, migration and metastasis, they also represent attractive targets for cancer therapy. This has been well-exploited for extracellular galectins, which bind glycoconjugates expressed on the surface of cancer cells. Although the existence of intracellular functions of galectins has been known for many years, an increasing number of studies indicate that these proteins can also alter tumor progression through their interaction with intracellular ligands. In fact, in some instances, the interactions of galectins with their intracellular ligands seem to occur independently of their carbohydrate recognition domain. Such findings call for a change in the basic assumptions, or paradigms, concerning the activity of galectins in cancer and may force us to revisit our strategies to develop galectin antagonists for the treatment of cancer.
Collapse
Affiliation(s)
| | | | - Yves St-Pierre
- INRS-Institut Armand-Frappier, Laval, QC H7V 1B7, Canada
| |
Collapse
|