1
|
Uguen M, Liu T, James LI, Frye SV. Tudor-Containing Methyl-Lysine and Methyl-Arginine Reader Proteins: Disease Implications and Chemical Tool Development. ACS Chem Biol 2024. [PMID: 39718819 DOI: 10.1021/acschembio.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Tudor domains are histone readers that can recognize various methylation marks on lysine and arginine. This recognition event plays a key role in the recruitment of other epigenetic effectors and the control of gene accessibility. The Tudor-containing protein family contains 42 members, many of which are involved in the development and progression of various diseases, especially cancer. The development of chemical tools for this family will not only lead to a deeper understanding of the biological functions of Tudor domains but also lay the foundation for therapeutic discoveries. In this review, we discuss the role of several Tudor domain-containing proteins in a range of relevant diseases and progress toward the development of chemical tools such as peptides, peptidomimetics, or small-molecules that bind Tudor domains. Overall, we highlight how Tudor domains are promising targets for therapeutic development and would benefit from the development of novel chemical tools.
Collapse
Affiliation(s)
- Mélanie Uguen
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tongkun Liu
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lindsey I James
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Stephen V Frye
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Wang Y, Chen Y, Li M, Wang J, Jiang Y, Xie R, Zhang Y, Li Z, Yan Z, Wu C. Phase separation of SPIN1 through its IDR facilitates histone methylation readout and tumorigenesis. J Mol Cell Biol 2024; 16:mjae024. [PMID: 38777743 PMCID: PMC11630302 DOI: 10.1093/jmcb/mjae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/20/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Spindlin1 (SPIN1) is a unique multivalent histone modification reader that plays a role in ribosomal RNA transcription, chromosome segregation, and tumorigenesis. However, the function of the extended N-terminal region of SPIN1 remains unclear. Here, we demonstrated that SPIN1 can form phase-separated and liquid-like condensates both in vitro and in vivo through its N-terminal intrinsically disordered region (IDR). The phase separation of SPIN1 recruits the histone methyltransferase MLL1 to the same condensates and enriches the H3K4 methylation marks. This process also facilitates the binding of SPIN1 to H3K4me3 and activates tumorigenesis-related genes. Moreover, SPIN1-IDR enhances the genome-wide chromatin binding of SPIN1 and facilitates its localization to genes associated with the MAPK signaling pathway. These findings provide new insights into the biological function of the IDR in regulating SPIN1 activity and reveal a previously unrecognized role of SPIN1-IDR in histone methylation readout. Our study uncovers the crucial role of appropriate biophysical properties of SPIN1 in facilitating gene expression and links phase separation to tumorigenesis, which provides a new perspective for understanding the function of SPIN1.
Collapse
Affiliation(s)
- Yukun Wang
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yuhan Chen
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Mengyao Li
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Jiayue Wang
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yuhan Jiang
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Rong Xie
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yifeng Zhang
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Zhihua Li
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Zhenzhen Yan
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Chen Wu
- College of Life Sciences, Hebei University, Baoding 071002, China
| |
Collapse
|
3
|
Tian Y, Guo J, Mao L, Chen Z, Zhang X, Li Y, Zhang Y, Zha X, Luo OJ. Single-cell dissection reveals promotive role of ENO1 in leukemia stem cell self-renewal and chemoresistance in acute myeloid leukemia. Stem Cell Res Ther 2024; 15:347. [PMID: 39380054 PMCID: PMC11463110 DOI: 10.1186/s13287-024-03969-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Quiescent self-renewal of leukemia stem cells (LSCs) and resistance to conventional chemotherapy are the main factors leading to relapse of acute myeloid leukemia (AML). Alpha-enolase (ENO1), a key glycolytic enzyme, has been shown to regulate embryonic stem cell differentiation and promote self-renewal and malignant phenotypes in various cancer stem cells. Here, we sought to test whether and how ENO1 influences LSCs renewal and chemoresistance within the context of AML. METHODS We analyzed single-cell RNA sequencing data from bone marrow samples of 8 relapsed/refractory AML patients and 4 healthy controls using bioinformatics and machine learning algorithms. In addition, we compared ENO1 expression levels in the AML cohort with those in 37 control subjects and conducted survival analyses to correlate ENO1 expression with clinical outcomes. Furthermore, we performed functional studies involving ENO1 knockdown and inhibition in AML cell line. RESULTS We used machine learning to model and infer malignant cells in AML, finding more primitive malignant cells in the non-response (NR) group. The differentiation capacity of LSCs and progenitor malignant cells exhibited an inverse correlation with glycolysis levels. Trajectory analysis indicated delayed myeloid cell differentiation in NR group, with high ENO1-expressing LSCs at the initial stages of differentiation being preserved post-treatment. Simultaneously, ENO1 and stemness-related genes were upregulated and co-expressed in malignant cells during early differentiation. ENO1 level in our AML cohort was significantly higher than the controls, with higher levels in NR compared to those in complete remission. Knockdown of ENO1 in AML cell line resulted in the activation of LSCs, promoting cell differentiation and apoptosis, and inhibited proliferation. ENO1 inhibitor can impede the proliferation of AML cells. Furthermore, survival analyses associated higher ENO1 expression with poorer outcome in AML patients. CONCLUSIONS Our findings underscore the critical role of ENO1 as a plausible driver of LSC self-renewal, a potential target for AML target therapy and a biomarker for AML prognosis.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Phosphopyruvate Hydratase/metabolism
- Phosphopyruvate Hydratase/genetics
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Tumor Suppressor Proteins/metabolism
- Tumor Suppressor Proteins/genetics
- Female
- Drug Resistance, Neoplasm
- Single-Cell Analysis
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/genetics
- Male
- Middle Aged
- Cell Self Renewal
- Adult
- Cell Line, Tumor
- Cell Differentiation
- Aged
- Biomarkers, Tumor
Collapse
Affiliation(s)
- Yun Tian
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou, 510632, China
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jiafan Guo
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Lipeng Mao
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhixi Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou, 510632, China
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Xingwei Zhang
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou, 510632, China.
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Yikai Zhang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou, 510632, China.
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
4
|
Wang Y, Li M, Chen Y, Jiang Y, Zhang Z, Yan Z, Liu X, Wu C. SPIN1 facilitates chemoresistance and HR repair by promoting Tip60 binding to H3K9me3. EMBO Rep 2024; 25:3970-3989. [PMID: 39090319 PMCID: PMC11387427 DOI: 10.1038/s44319-024-00219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
The tandem Tudor-like domain-containing protein Spindlin1 (SPIN1) is a transcriptional coactivator with critical functions in embryonic development and emerging roles in cancer. However, the involvement of SPIN1 in DNA damage repair has remained unclear. Our study shows that SPIN1 is recruited to DNA lesions through its N-terminal disordered region that binds to Poly-ADP-ribose (PAR), and facilitates homologous recombination (HR)-mediated DNA damage repair. SPIN1 promotes H3K9me3 accumulation at DNA damage sites and enhances the interaction between H3K9me3 and Tip60, thereby promoting the activation of ATM and HR repair. We also show that SPIN1 increases chemoresistance. These findings reveal a novel role for SPIN1 in the activation of H3K9me3-dependent DNA repair pathways, and suggest that SPIN1 may contribute to cancer chemoresistance by modulating the efficiency of double-strand break (DSB) repair.
Collapse
Affiliation(s)
- Yukun Wang
- College of Life Sciences, Hebei University, Baoding, Hebei Province, 071002, China
| | - Mengyao Li
- College of Life Sciences, Hebei University, Baoding, Hebei Province, 071002, China
| | - Yuhan Chen
- College of Life Sciences, Hebei University, Baoding, Hebei Province, 071002, China
| | - Yuhan Jiang
- College of Life Sciences, Hebei University, Baoding, Hebei Province, 071002, China
| | - Ziyu Zhang
- College of Life Sciences, Hebei University, Baoding, Hebei Province, 071002, China
| | - Zhenzhen Yan
- College of Life Sciences, Hebei University, Baoding, Hebei Province, 071002, China
| | - Xiuhua Liu
- College of Life Sciences, Hebei University, Baoding, Hebei Province, 071002, China.
| | - Chen Wu
- College of Life Sciences, Hebei University, Baoding, Hebei Province, 071002, China.
| |
Collapse
|
5
|
Liu X, Zhang Y, Wen Z, Hao Y, Banks CA, Cesare J, Bhattacharya S, Arvindekar S, Lange JJ, Xie Y, Garcia BA, Slaughter BD, Unruh JR, Viswanath S, Florens L, Workman JL, Washburn MP. An integrated structural model of the DNA damage-responsive H3K4me3 binding WDR76:SPIN1 complex with the nucleosome. Proc Natl Acad Sci U S A 2024; 121:e2318601121. [PMID: 39116123 PMCID: PMC11331135 DOI: 10.1073/pnas.2318601121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
Serial capture affinity purification (SCAP) is a powerful method to isolate a specific protein complex. When combined with cross-linking mass spectrometry and computational approaches, one can build an integrated structural model of the isolated complex. Here, we applied SCAP to dissect a subpopulation of WDR76 in complex with SPIN1, a histone reader that recognizes trimethylated histone H3 lysine4 (H3K4me3). In contrast to a previous SCAP analysis of the SPIN1:SPINDOC complex, histones and the H3K4me3 mark were enriched with the WDR76:SPIN1 complex. Next, interaction network analysis of copurifying proteins and microscopy analysis revealed a potential role of the WDR76:SPIN1 complex in the DNA damage response. Since we detected 149 pairs of cross-links between WDR76, SPIN1, and histones, we then built an integrated structural model of the complex where SPIN1 recognized the H3K4me3 epigenetic mark while interacting with WDR76. Finally, we used the powerful Bayesian Integrative Modeling approach as implemented in the Integrative Modeling Platform to build a model of WDR76 and SPIN1 bound to the nucleosome.
Collapse
Affiliation(s)
- Xingyu Liu
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Zhihui Wen
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Yan Hao
- Stowers Institute for Medical Research, Kansas City, MO64110
| | | | - Joseph Cesare
- Stowers Institute for Medical Research, Kansas City, MO64110
- Medical Scientist Training Program, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS66150
| | | | - Shreyas Arvindekar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore560065, India
| | | | - Yixuan Xie
- Department of Biochemistry and Molecular Biophysics, Washington University St. Louis School of Medicine, St. Louis, MO63110
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University St. Louis School of Medicine, St. Louis, MO63110
| | | | - Jay R. Unruh
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Shruthi Viswanath
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore560065, India
| | | | | | | |
Collapse
|
6
|
Travis CR, Dumais RG, Treacy JW, Kean KM, Houk KN, Waters ML. Contribution of Electrostatic CH 3-π Interactions to Recognition of Histone Asymmetric Dimethylarginine by the SPIN1 Triple Tudor Domain. J Am Chem Soc 2024; 146:20678-20684. [PMID: 39023428 PMCID: PMC11407275 DOI: 10.1021/jacs.4c03463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Methylation of arginine (Arg) residues on histones creates a new binding epitope, enabling recognition by aromatic cage binding pockets in Tudor domains; these protein-protein interactions (PPIs) govern gene expression. Despite their biological importance, the molecular details of methylated Arg recognition are poorly understood. While the desolvation, hydrogen bonding, and guanidinium stacking of methylated Arg have been explored in model systems and proposed to contribute to binding, direct interactions between the methyl groups and the aromatic residues in the binding pocket have not previously been investigated. Herein, we mechanistically study the CH3-π interactions between the SPIN1 triple Tudor domain and histone asymmetric dimethylarginine. We find that these CH3-π interactions are electrostatically tunable, exhibiting cation-π character, albeit attenuated relative to cation-π interactions with quaternary ammonium ions, offering key insight into how methylation of Arg alters its binding epitope to enable new PPIs.
Collapse
Affiliation(s)
- Christopher R Travis
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ryan G Dumais
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joseph W Treacy
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095-1569, United States
| | - Kelsey M Kean
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095-1569, United States
| | - Marcey L Waters
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
7
|
Rajabloo Y, Latifi H, Akhlaghipour I, Taghehchian N, Moghbeli M. MicroRNA-409: Molecular functions and clinical applications in cancer. Biochem Biophys Rep 2024; 38:101728. [PMID: 38737729 PMCID: PMC11087923 DOI: 10.1016/j.bbrep.2024.101728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/30/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024] Open
Abstract
Late diagnosis is one of the main reasons for high mortality rates in cancer patients. Therefore, investigating the molecular mechanisms involved in tumor progression can improve the cancer diagnosis in the early stages of the tumor progression. MicroRNAs (miRNAs) have important roles in regulation of cell growth, proliferation, metabolism, and migration. Since, deregulation of miR-409 has been reported in a wide range of cancers, in the present review, we investigated the molecular mechanisms of miR-409 during tumor progression and invasion. It has been shown that miR-409 functions as a tumor suppressor in different tumor types. MiR-409 can reduce tumor cell proliferation, growth, and migration by regulation of signaling pathways, cellular metabolism, transcription factors, and cellular adhesion. This review can be an effective step in introducing miR-409 as a non-invasive marker in cancer patients.
Collapse
Affiliation(s)
- Yasamin Rajabloo
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Latifi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Vorreiter C, Robaa D, Sippl W. Exploring Aromatic Cage Flexibility Using Cosolvent Molecular Dynamics Simulations─An In-Silico Case Study of Tudor Domains. J Chem Inf Model 2024; 64:4553-4569. [PMID: 38771194 PMCID: PMC11167732 DOI: 10.1021/acs.jcim.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Cosolvent molecular dynamics (MD) simulations have proven to be powerful in silico tools to predict hotspots for binding regions on protein surfaces. In the current study, the method was adapted and applied to two Tudor domain-containing proteins, namely Spindlin1 (SPIN1) and survival motor neuron protein (SMN). Tudor domains are characterized by so-called aromatic cages that recognize methylated lysine residues of protein targets. In the study, the conformational transitions from closed to open aromatic cage conformations were investigated by performing MD simulations with cosolvents using six different probe molecules. It is shown that a trajectory clustering approach in combination with volume and atomic distance tracking allows a reasonable discrimination between open and closed aromatic cage conformations and the docking of inhibitors yields very good reproducibility with crystal structures. Cosolvent MDs are suitable to capture the flexibility of aromatic cages and thus represent a promising tool for the optimization of inhibitors.
Collapse
Affiliation(s)
- Christopher Vorreiter
- Department of Medicinal Chemistry,
Institute of Pharmacy, Martin-Luther-University
of Halle-Wittenberg, 06120 Halle, Saale, Germany
| | - Dina Robaa
- Department of Medicinal Chemistry,
Institute of Pharmacy, Martin-Luther-University
of Halle-Wittenberg, 06120 Halle, Saale, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry,
Institute of Pharmacy, Martin-Luther-University
of Halle-Wittenberg, 06120 Halle, Saale, Germany
| |
Collapse
|
9
|
Xiong Y, Greschik H, Johansson C, Seifert L, Gamble V, Park KS, Fagan V, Li F, Chau I, Vedadi M, Arrowsmith CH, Brennan P, Fedorov O, Jung M, Farnie G, Liu J, Oppermann U, Schüle R, Jin J. Discovery of a Potent, Selective, and Cell-Active SPIN1 Inhibitor. J Med Chem 2024; 67:5837-5853. [PMID: 38533580 PMCID: PMC11022035 DOI: 10.1021/acs.jmedchem.4c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The methyl-lysine reader protein SPIN1 plays important roles in various human diseases. However, targeting methyl-lysine reader proteins has been challenging. Very few cellularly active SPIN1 inhibitors have been developed. We previously reported that our G9a/GLP inhibitor UNC0638 weakly inhibited SPIN1. Here, we present our comprehensive structure-activity relationship study that led to the discovery of compound 11, a dual SPIN1 and G9a/GLP inhibitor, and compound 18 (MS8535), a SPIN1 selective inhibitor. We solved the cocrystal structure of SPIN1 in complex with 11, confirming that 11 occupied one of the three Tudor domains. Importantly, 18 displayed high selectivity for SPIN1 over 38 epigenetic targets, including G9a/GLP, and concentration dependently disrupted the interactions of SPIN1 and H3 in cells. Furthermore, 18 was bioavailable in mice. We also developed 19 (MS8535N), which was inactive against SPIN1, as a negative control of 18. Collectively, these compounds are useful chemical tools to study biological functions of SPIN1.
Collapse
Affiliation(s)
- Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Holger Greschik
- Department of Urology and Center for Clinical Research, University Freiburg Medical Center, Freiburg 79106, Germany
| | - Catrine Johansson
- Structural Genomics Consortium, Botnar Research Center, NIHR Oxford BRU, University of Oxford, Oxford OX3 7LD, U.K
| | - Ludwig Seifert
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg 79104, Germany
| | - Vicki Gamble
- Structural Genomics Consortium, Botnar Research Center, NIHR Oxford BRU, University of Oxford, Oxford OX3 7LD, U.K
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Vincent Fagan
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.; Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Masoud Vedadi
- Ontario Institute for Cancer Research, 661 University Avenue, Toronto, Ontario M5G 0A3, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Paul Brennan
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.; Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Oleg Fedorov
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.; Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg 79104, Germany
- German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany
- German Cancer Consortium (DKTK), Freiburg 79104, Germany
| | - Gillian Farnie
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K.; Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Udo Oppermann
- Structural Genomics Consortium, Botnar Research Center, NIHR Oxford BRU, University of Oxford, Oxford OX3 7LD, U.K
- Botnar Research Centre, University of Oxford, Oxford OX3 7LD, U.K
- Oxford Translational Myeloma Centre, University of Oxford, Oxford OX3 7LD, U.K
| | - Roland Schüle
- Department of Urology and Center for Clinical Research, University Freiburg Medical Center, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), Freiburg 79104, Germany
- CIBSS Centre of Biological Signalling Studies, University of Freiburg, Freiburg 79106, Germany
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
10
|
Zhao F, Deng Y, Yang F, Yan Y, Feng F, Peng B, Gao J, Bedford MT, Li H. Molecular Basis for SPINDOC-Spindlin1 Engagement and Its Role in Transcriptional Attenuation. J Mol Biol 2024; 436:168371. [PMID: 37977297 DOI: 10.1016/j.jmb.2023.168371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Spindlin1 is a histone reader with three Tudor-like domains and its transcriptional co-activator activity could be attenuated by SPINDOC. The first two Tudors are involved in histone methylation readout, while the function of Tudor 3 is largely unknown. Here our structural and binding studies revealed an engagement mode of SPINDOC-Spindlin1, in which a hydrophobic motif of SPINDOC, DOCpep3, stably interacts with Spindlin1 Tudor 3, and two neighboring K/R-rich motifs, DOCpep1 and DOCpep2, bind to the acidic surface of Spindlin1 Tudor 2. Although DOCpep3-Spindlin1 engagement is compatible with histone readout, an extended SPINDOC fragment containing the K/R-rich region attenuates histone or TCF4 binding by Spindlin1 due to introduced competition. This inhibitory effect is more pronounced for weaker binding targets but not for strong ones such as H3 "K4me3-K9me3" bivalent mark. Further ChIP-seq and RT-qPCR indicated that SPINDOC could promote genomic relocation of Spindlin1, thus modulate downstream gene transcription. Collectively, we revealed multivalent engagement between SPINDOC and Spindlin1, in which a hydrophobic motif acts as the primary binding site for stable SPINDOC-Spindlin1 association, while K/R-rich region modulates the target selectivity of Spindlin1 via competitive inhibition, therefore attenuating the transcriptional co-activator activity of Spindlin1.
Collapse
Affiliation(s)
- Fan Zhao
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yafang Deng
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Fen Yang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Yan Yan
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Fan Feng
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Bo Peng
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Juntao Gao
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China.
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.
| | - Haitao Li
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, MOE Key Laboratory of Coal Environmental Pathogenesis and Prevention, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
11
|
Kovács SA, Fekete JT, Győrffy B. Predictive biomarkers of immunotherapy response with pharmacological applications in solid tumors. Acta Pharmacol Sin 2023; 44:1879-1889. [PMID: 37055532 PMCID: PMC10462766 DOI: 10.1038/s41401-023-01079-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/14/2023] [Indexed: 04/15/2023] Open
Abstract
Immune-checkpoint inhibitors show promising effects in the treatment of multiple tumor types. Biomarkers are biological indicators used to select patients for a systemic anticancer treatment, but there are only a few clinically useful biomarkers such as PD-L1 expression and tumor mutational burden, which can be used to predict immunotherapy response. In this study, we established a database consisting of both gene expression and clinical data to identify biomarkers of response to anti-PD-1, anti-PD-L1, and anti-CTLA-4 immunotherapies. A GEO screening was executed to identify datasets with simultaneously available clinical response and transcriptomic data regardless of cancer type. The screening was restricted to the studies involving administration of anti-PD-1 (nivolumab, pembrolizumab), anti-PD-L1 (atezolizumab, durvalumab) or anti-CTLA-4 (ipilimumab) agents. Receiver operating characteristic (ROC) analysis and Mann-Whitney test were executed across all genes to identify features related to therapy response. The database consisted of 1434 tumor tissue samples from 19 datasets with esophageal, gastric, head and neck, lung, and urothelial cancers, plus melanoma. The strongest druggable gene candidates linked to anti-PD-1 resistance were SPIN1 (AUC = 0.682, P = 9.1E-12), SRC (AUC = 0.667, P = 5.9E-10), SETD7 (AUC = 0.663, P = 1.0E-09), FGFR3 (AUC = 0.657, P = 3.7E-09), YAP1 (AUC = 0.655, P = 6.0E-09), TEAD3 (AUC = 0.649, P = 4.1E-08) and BCL2 (AUC = 0.634, P = 9.7E-08). In the anti-CTLA-4 treatment cohort, BLCAP (AUC = 0.735, P = 2.1E-06) was the most promising gene candidate. No therapeutically relevant target was found to be predictive in the anti-PD-L1 cohort. In the anti-PD-1 group, we were able to confirm the significant correlation with survival for the mismatch-repair genes MLH1 and MSH6. A web platform for further analysis and validation of new biomarker candidates was set up and available at https://www.rocplot.com/immune . In summary, a database and a web platform were established to investigate biomarkers of immunotherapy response in a large cohort of solid tumor samples. Our results could help to identify new patient cohorts eligible for immunotherapy.
Collapse
Affiliation(s)
- Szonja Anna Kovács
- Department of Bioinformatics, Semmelweis University, Tűzoltó utca 7-9, 1094, Budapest, Hungary
- Doctoral School of Pathological Sciences, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
- National Laboratory for Drug Research and Development, Magyar tudósok körútja 2 1117, Budapest, Hungary
| | - János Tibor Fekete
- National Laboratory for Drug Research and Development, Magyar tudósok körútja 2 1117, Budapest, Hungary
- Research Centre for Natural Sciences, Oncology Biomarker Research Group, Institute of Enzymology, Eötvös Loránd Research Network, Magyar Tudósok körútja 2, 1117, Budapest, Hungary
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Tűzoltó utca 7-9, 1094, Budapest, Hungary.
- Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, 1094, Budapest, Hungary.
| |
Collapse
|
12
|
Liu W, Yao Q, Su X, Deng Y, Yang M, Peng B, Zhao F, Du C, Zhang X, Zhu J, Wang D, Li W, Li H. Molecular insights into Spindlin1-HBx interplay and its impact on HBV transcription from cccDNA minichromosome. Nat Commun 2023; 14:4663. [PMID: 37537164 PMCID: PMC10400593 DOI: 10.1038/s41467-023-40225-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/11/2023] [Indexed: 08/05/2023] Open
Abstract
Molecular interplay between host epigenetic factors and viral proteins constitutes an intriguing mechanism for sustaining hepatitis B virus (HBV) life cycle and its chronic infection. HBV encodes a regulatory protein, HBx, which activates transcription and replication of HBV genome organized as covalently closed circular (ccc) DNA minichromosome. Here we illustrate how HBx accomplishes its task by hijacking Spindlin1, an epigenetic reader comprising three consecutive Tudor domains. Our biochemical and structural studies have revealed that the highly conserved N-terminal 2-21 segment of HBx (HBx2-21) associates intimately with Tudor 3 of Spindlin1, enhancing histone H3 "K4me3-K9me3" readout by Tudors 2 and 1. Functionally, Spindlin1-HBx engagement promotes gene expression from the chromatinized cccDNA, accompanied by an epigenetic switch from an H3K9me3-enriched repressive state to an H3K4me3-marked active state, as well as a conformational switch of HBx that may occur in coordination with other HBx-binding factors, such as DDB1. Despite a proposed transrepression activity of HBx2-21, our study reveals a key role of Spindlin1 in derepressing this conserved motif, thereby promoting HBV transcription from its chromatinized genome.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Qiyan Yao
- National Institute of Biological Sciences, Beijing, 102206, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaonan Su
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Yafang Deng
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Mo Yang
- National Center for Nanoscience and Technology, Beijing, 100190, China
- Chemical Biology Laboratory, National Cancer Institute, 1050 Boyles Str., Frederick, MD, 21702, USA
| | - Bo Peng
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Fan Zhao
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Chao Du
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Xiulan Zhang
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jinsong Zhu
- National Center for Nanoscience and Technology, Beijing, 100190, China
- Suzhou Puxin Life Science Technology, Ltd, Suzhou, 215124, China
| | - Daliang Wang
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China.
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, 102206, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
| | - Haitao Li
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| |
Collapse
|
13
|
Lui JC, Wagner J, Zhou E, Dong L, Barnes KM, Jee YH, Baron J. Loss-of-function variant in SPIN4 causes an X-linked overgrowth syndrome. JCI Insight 2023; 8:e167074. [PMID: 36927955 PMCID: PMC10243798 DOI: 10.1172/jci.insight.167074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
Overgrowth syndromes can be caused by pathogenic genetic variants in epigenetic writers, such as DNA and histone methyltransferases. However, no overgrowth disorder has previously been ascribed to variants in a gene that acts primarily as an epigenetic reader. Here, we studied a male individual with generalized overgrowth of prenatal onset. Exome sequencing identified a hemizygous frameshift variant in Spindlin 4 (SPIN4), with X-linked inheritance. We found evidence that SPIN4 binds specific histone modifications, promotes canonical WNT signaling, and inhibits cell proliferation in vitro and that the identified frameshift variant had lost all of these functions. Ablation of Spin4 in mice recapitulated the human phenotype with generalized overgrowth, including increased longitudinal bone growth. Growth plate analysis revealed increased cell proliferation in the proliferative zone and an increased number of progenitor chondrocytes in the resting zone. We also found evidence of decreased canonical Wnt signaling in growth plate chondrocytes, providing a potential explanation for the increased number of resting zone chondrocytes. Taken together, our findings provide strong evidence that SPIN4 is an epigenetic reader that negatively regulates mammalian body growth and that loss of SPIN4 causes an overgrowth syndrome in humans, expanding our knowledge of the epigenetic regulation of human growth.
Collapse
Affiliation(s)
- Julian C. Lui
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and
| | - Jacob Wagner
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and
| | - Elaine Zhou
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institute of Health, Bethesda, Maryland, USA
| | - Kevin M. Barnes
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and
| | - Youn Hee Jee
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and
| | - Jeffrey Baron
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and
| |
Collapse
|
14
|
Liu X, Zhang Y, Wen Z, Hao Y, Banks CAS, Lange JJ, Cesare J, Bhattacharya S, Slaughter BD, Unruh JR, Florens L, Workman JL, Washburn MP. Serial Capture Affinity Purification and Integrated Structural Modeling of the H3K4me3 Binding and DNA Damage Related WDR76:SPIN1 Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526478. [PMID: 36778327 PMCID: PMC9915617 DOI: 10.1101/2023.01.31.526478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
WDR76 is a multifunctional protein involved in many cellular functions. With a diverse and complicated protein interaction network, dissecting the structure and function of specific WDR76 complexes is needed. We previously demonstrated the ability of the Serial Capture Affinity Purification (SCAP) method to isolate specific complexes by introducing two proteins of interest as baits at the same time. Here, we applied SCAP to dissect a subpopulation of WDR76 in complex with SPIN1, a histone marker reader that specifically recognizes trimethylated histone H3 lysine4 (H3K4me3). In contrast to the SCAP analysis of the SPIN1:SPINDOC complex, H3K4me3 was copurified with the WDR76:SPIN1 complex. In combination with crosslinking mass spectrometry, we built an integrated structural model of the complex which revealed that SPIN1 recognized the H3K4me3 epigenetic mark while interacting with WDR76. Lastly, interaction network analysis of copurifying proteins revealed the potential role of the WDR76:SPIN1 complex in the DNA damage response. Teaser In contrast to the SPINDOC/SPIN1 complex, analyses reveal that the WDR76/SPIN1 complex interacts with core histones and is involved in DNA damage.
Collapse
|
15
|
Hsa_circ_0007380 silencing restrains the growth and enhances radiosensitivity in esophagus cancer by miR-644a/Spindlin 1 axis. Anticancer Drugs 2023; 34:166-177. [PMID: 36539369 DOI: 10.1097/cad.0000000000001375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Circular RNAs are frequently dysregulated and show important regulatory function of tumorigenesis in cancers. Hsa_circ_0007380 was found to be elevated in human radioresistant esophageal cancer cells. Here, this study aimed to investigate the action and mechanism of hsa_circ_0007380 in esophageal cancer carcinogenesis and radiosensitivity. Quantitative real-time PCR and western blotting were performed to detect levels of genes and proteins. Functional experiments were conducted using MTT assay, EdU assay, clonogenic survival assay, flow cytometry and murine xenograft model assay, respectively. The binding between miR-644a and hsa_circ_0007380 or spindlin1 (SPIN1) was validated using dual-luciferase activity assay. Hsa_circ_0007380 was highly expressed in esophagus cancer tissues and cells, knockdown of hsa_circ_0007380 suppressed esophagus cancer cell proliferation, induced apoptosis and enhanced radiosensitivity in vitro, and the same effects were also confirmed in nude mice. Mechanistically, hsa_circ_0007380 sequestered miR-644a to release SPIN1 expression, implying the hsa_circ_0007380/miR-644a/SPIN1 competing endogenous RNA network esophagus cancer cells. miR-644a was decreased in esophagus cancer, re-expression of miR-644a restrained cell growth and conferred radiosensitivity in esophagus cancer, which were reversed by SPIN1 overexpression. Besides that, inhibition of miR-644a abolished the promoting action of hsa_circ_0007380 knockdown on esophagus cancer apoptosis and radiosensitivity. Hsa_circ_0007380 silencing impedes cell growth and reinforces radiosensitivity in esophagus cancer by miR-644a/SPIN1 axis, suggesting a promising therapeutic target for esophagus cancer combined treatment.
Collapse
|
16
|
Yamazaki K, Miyauchi E, Kato T, Sato K, Suda W, Tsuzuno T, Yamada-Hara M, Sasaki N, Ohno H, Yamazaki K. Dysbiotic human oral microbiota alters systemic metabolism via modulation of gut microbiota in germ-free mice. J Oral Microbiol 2022; 14:2110194. [PMID: 35966937 PMCID: PMC9373767 DOI: 10.1080/20002297.2022.2110194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background The effect of oral microbiota on the intestinal microbiota has garnered growing attention as a mechanism linking periodontal diseases to systemic diseases. However, the salivary microbiota is diverse and comprises numerous bacteria with a largely similar composition in healthy individuals and periodontitis patients. Aim We explored how health-associated and periodontitis-associated salivary microbiota differently colonized the intestine and their subsequent systemic effects. Methods The salivary microbiota was collected from a healthy individual and a periodontitis patient and gavaged into C57BL/6NJcl[GF] mice. Gut microbial communities, hepatic gene expression profiles, and serum metabolites were analyzed. Results The gut microbial composition was significantly different between periodontitis-associated microbiota-administered (PAO) and health-associated oral microbiota-administered (HAO) mice. The hepatic gene expression profile demonstrated a distinct pattern between the two groups, with higher expression of lipid and glucose metabolism-related genes. Disease-associated metabolites such as 2-hydroxyisobutyric acid and hydroxybenzoic acid were elevated in PAO mice. These metabolites were significantly correlated with characteristic gut microbial taxa in PAO mice. Conversely, health-associated oral microbiota were associated with higher levels of beneficial serum metabolites in HAO mice. Conclusion The multi-omics approach used in this study revealed that periodontitis-associated oral microbiota is associated with the induction of disease phenotype when they colonized the gut of germ-free mice.
Collapse
Affiliation(s)
- Kyoko Yamazaki
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata Japan
| | - Eiji Miyauchi
- Laboratory for Intestinal Ecosystem, RIKEN Centre for Integrative Medical Sciences (IMS), Kanagawa Japan
- Laboratory of Mucosal Ecosystem Design, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma Japan
| | - Tamotsu Kato
- Laboratory for Intestinal Ecosystem, RIKEN Centre for Integrative Medical Sciences (IMS), Kanagawa Japan
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa Japan
| | - Keisuke Sato
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takahiro Tsuzuno
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata Japan
| | - Miki Yamada-Hara
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata Japan
| | - Nobuo Sasaki
- Laboratory of Mucosal Ecosystem Design, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Centre for Integrative Medical Sciences (IMS), Kanagawa Japan
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa Japan
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kazuhisa Yamazaki
- Laboratory for Intestinal Ecosystem, RIKEN Centre for Integrative Medical Sciences (IMS), Kanagawa Japan
| |
Collapse
|
17
|
Tong W, Yang L, Liu L, Liu X, Luo N. SPINDOC is Highly Expressed in Pan-Cancer Samples and Can Promote the Proliferation, Invasion and Migration of Hepatocellular Carcinoma Cells by Activating Wnt/β-Catenin Signaling Pathway. Onco Targets Ther 2022; 15:555-570. [PMID: 35611367 PMCID: PMC9124522 DOI: 10.2147/ott.s348843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Wangxia Tong
- The Medical Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530011, People’s Republic of China
| | - Lilan Yang
- The Medical Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530011, People’s Republic of China
| | - Li Liu
- The Medical Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530011, People’s Republic of China
| | - Xudong Liu
- The Medical Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530011, People’s Republic of China
| | - Ning Luo
- RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530011, People’s Republic of China
- Correspondence: Ning Luo, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, 10 Huadong Road, Nanning, People’s Republic of China, 530011, Tel +86 0771-2183191, Fax +86 0771-4733943, Email
| |
Collapse
|
18
|
Porzberg MRB, Moesgaard L, Johansson C, Oppermann U, Kongsted J, Mecinović J. Recognition of Dimethylarginine Analogues by Tandem Tudor Domain Protein Spindlin1. Molecules 2022; 27:983. [PMID: 35164245 PMCID: PMC8838590 DOI: 10.3390/molecules27030983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
Epigenetic readout of the combinatorial posttranslational modification comprised of trimethyllysine and asymmetric dimethylarginine (H3K4me3R8me2a) takes place via biomolecular recognition of tandem Tudor-domain-containing protein Spindlin1. Through comparative thermodynamic data and molecular dynamics simulations, we sought to explore the binding scope of asymmetric dimethylarginine mimics by Spindlin1. Herein, we provide evidence that the biomolecular recognition of H3K4me2R8me2a is not significantly affected when R8me2a is replaced by dimethylarginine analogues, implying that the binding of K4me3 provides the major binding contribution. High-energy water molecules inside both aromatic cages of the ligand binding sites contribute to the reader-histone association upon displacement by histone peptide, with the K4me3 hydration site being lower in free energy due to a flip of Trp151.
Collapse
Affiliation(s)
- Miriam R. B. Porzberg
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (M.R.B.P.); (L.M.); (J.K.)
| | - Laust Moesgaard
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (M.R.B.P.); (L.M.); (J.K.)
| | - Catrine Johansson
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-Medical Research Centre, University of Oxford, Oxford OX3 7LD, UK; (C.J.); (U.O.)
| | - Udo Oppermann
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-Medical Research Centre, University of Oxford, Oxford OX3 7LD, UK; (C.J.); (U.O.)
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (M.R.B.P.); (L.M.); (J.K.)
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark; (M.R.B.P.); (L.M.); (J.K.)
| |
Collapse
|
19
|
Bahrami A, Ferns GA. Diagnostic, Prognostic, and Therapeutic Value of miR-148b in Human Cancers. Curr Mol Med 2022; 22:860-869. [PMID: 34961461 DOI: 10.2174/1566524021666211213123315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/06/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRs) is a class of conserved, small, noncoding RNA molecules that modulate gene expression post-transcriptionally. miR-148b is a member of miR- 148/152 family generally known to be a tumor suppressor via its effect on different signaling pathways and regulatory genes. Aberrant expression of miR-148b has recently been shown to be responsible for tumorigenesis of several different cancer types. This review discusses the current evidence regarding the involvement of miR-148b expression in human cancers and its potential clinical importance for tumor diagnosis, prognosis, and therapeutics.
Collapse
Affiliation(s)
- Afsane Bahrami
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, Sussex, UK
| |
Collapse
|
20
|
Revealing the role of miRNA-489 as a new onco-suppressor factor in different cancers based on pre-clinical and clinical evidence. Int J Biol Macromol 2021; 191:727-737. [PMID: 34562537 DOI: 10.1016/j.ijbiomac.2021.09.089] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/17/2023]
Abstract
Recently, microRNAs (miRNAs) have shown to be potential therapeutic, diagnostic and prognostic targets in disease therapy. These endogenous non-coding RNAs contribute to regulation of different cellular events that are necessary for maintaining physiological condition. Dysregulation of miRNAs is correlated with development of various pathological events such as neurological disorders, cardiovascular diseases, and cancer. miRNA-489 is a new emerging miRNA and studies are extensively investigating its role in pathological conditions. Herein, potential function of miRNA-489 as tumor-suppressor in various cancers is described. miRNA-489 is able to sensitize cancer cells into chemotherapy by disrupting molecular pathways involved in cancer growth such as PI3K/Akt, and induction of apoptosis. The PROX1 and SUZ12 as oncogenic pathways, are affected by miRNA-489 in suppressing metastasis of cancer cells. Wnt/β-catenin as an oncogenic factor ensuring growth and malignancy of tumors is inhibited via miRNA-489 function. For enhancing drug sensitivity of tumors, restoring miRNA-489 expression is a promising strategy. The lncRNAs can modulate miRNA-489 expression in tumors and studies about circRNA role in miRNA-489 modulation should be performed. The expression level of miRNA-489 is a diagnostic tool for tumor detection. Besides, down-regulation of miRNA-489 in tumors provides unfavorable prognosis.
Collapse
|
21
|
Li D, Guo J, Jia R. Histone code reader SPIN1 is a promising target of cancer therapy. Biochimie 2021; 191:78-86. [PMID: 34492335 DOI: 10.1016/j.biochi.2021.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/07/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022]
Abstract
SPIN1 is a histone methylation reader, which can epigenetically control multiple tumorigenesis-associated signaling pathways, including the Wnt, PI3K/AKT, and RET pathways. Considerable evidence has shown that SPIN1 is overexpressed in many cancers, which can promote cell proliferation, transformation, metastasis, and chemical or radiation resistance. With the growing understanding of the SPIN1 protein structure, some inhibitors have been developed to interfere with the recognition between SPIN1 and histone H3K4me3 and H3R8me2a methylation and block the oncogenic functions of SPIN1. Therefore, SPIN1 is a potential target of cancer therapy. However, the mechanism by which SPIN1-transformed cells overcome the significant mitotic spindle defects and the factors promoting SPIN1 overexpression in cancers remain unclear. In this review, we described the current understanding of the SPIN1 protein structure and its expression, functions, and regulatory mechanisms in carcinogenesis, and discussed the challenges faced in the mechanisms of SPIN1 overexpression and oncogenic functions, and the potential application of anti-SPIN1 treatment in human cancers.
Collapse
Affiliation(s)
- Di Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
22
|
Structure-Based Design, Docking and Binding Free Energy Calculations of A366 Derivatives as Spindlin1 Inhibitors. Int J Mol Sci 2021; 22:ijms22115910. [PMID: 34072837 PMCID: PMC8199216 DOI: 10.3390/ijms22115910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
The chromatin reader protein Spindlin1 plays an important role in epigenetic regulation, through which it has been linked to several types of malignant tumors. In the current work, we report on the development of novel analogs of the previously published lead inhibitor A366. In an effort to improve the activity and explore the structure-activity relationship (SAR), a series of 21 derivatives was synthesized, tested in vitro, and investigated by means of molecular modeling tools. Docking studies and molecular dynamics (MD) simulations were performed to analyze and rationalize the structural differences responsible for the Spindlin1 activity. The analysis of MD simulations shed light on the important interactions. Our study highlighted the main structural features that are required for Spindlin1 inhibitory activity, which include a positively charged pyrrolidine moiety embedded into the aromatic cage connected via a propyloxy linker to the 2-aminoindole core. Of the latter, the amidine group anchor the compounds into the pocket through salt bridge interactions with Asp184. Different protocols were tested to identify a fast in silico method that could help to discriminate between active and inactive compounds within the A366 series. Rescoring the docking poses with MM-GBSA calculations was successful in this regard. Because A366 is known to be a G9a inhibitor, the most active developed Spindlin1 inhibitors were also tested over G9a and GLP to verify the selectivity profile of the A366 analogs. This resulted in the discovery of diverse selective compounds, among which 1s and 1t showed Spindlin1 activity in the nanomolar range and selectivity over G9a and GLP. Finally, future design hypotheses were suggested based on our findings.
Collapse
|
23
|
Jiang J, Zhang C, Yuan X, Li J, Zhang M, Shi X, Jin K, Zhang Y, Zuo Q, Chen G, Li B. Spin1z induces the male pathway in the chicken by down-regulating Tcf4. Gene 2021; 780:145521. [PMID: 33631236 DOI: 10.1016/j.gene.2021.145521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/20/2021] [Accepted: 02/09/2021] [Indexed: 11/17/2022]
Abstract
SPINDLIN1-Z (SPIN1Z), a member of the Spin/Ssty(Y-linked spermiogenesis specific transcript) protein family, participates in the early embryonic development process. Our previous RNA-seq analysis indicates that the level of Spin1z was abundantly expressed in male embryonic stem cells (ESCs) and primitive germ cells (PGCs), we speculate that Spin1z may play an important role in chicken male differentiation. Therefore, the loss- and gain-of-function experiments provide solid evidence that Spin1z is both necessary and sufficient to initiate male development in chicken. Furthermore, chromatin immunoprecipitation (ChIP) assay and the dual-luciferase assay was performed to further confirm that Spin1z contributed to chicken male differentiation by inhibiting the Tcf4 transcription. Our findings provide a novel insight into the molecular mechanism for chicken male differentiation.
Collapse
Affiliation(s)
- Jingyi Jiang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chen Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xia Yuan
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jiancheng Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ming Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiang Shi
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Guohong Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
24
|
Structural mechanism of bivalent histone H3K4me3K9me3 recognition by the Spindlin1/C11orf84 complex in rRNA transcription activation. Nat Commun 2021; 12:949. [PMID: 33574238 PMCID: PMC7878818 DOI: 10.1038/s41467-021-21236-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Spindlin1 is a unique multivalent epigenetic reader that facilitates ribosomal RNA transcription. In this study, we provide molecular and structural basis by which Spindlin1 acts in complex with C11orf84 to preferentially recognize non-canonical bivalent mark of trimethylated lysine 4 and lysine 9 present on the same histone H3 tail (H3K4me3K9me3). We demonstrate that C11orf84 binding stabilizes Spindlin1 and enhances its association with bivalent H3K4me3K9me3 mark. The functional analysis suggests that Spindlin1/C11orf84 complex can displace HP1 proteins from H3K4me3K9me3-enriched rDNA loci, thereby facilitating the conversion of these poised rDNA repeats from the repressed state to the active conformation, and the consequent recruitment of RNA Polymerase I for rRNA transcription. Our study uncovers a previously unappreciated mechanism of bivalent H3K4me3K9me3 recognition by Spindlin1/C11orf84 complex required for activation of rRNA transcription. Spindlin1 is an epigenetic reader that facilitates ribosomal RNA transcription. Here the authors reveal in vitro and structural evidence suggesting that Spindlin1 acts together with C11orf84 to recognize noncanonical bivalent mark of trimethylated lysine 4 and lysine 9 present on histone H3 tail (H3K4me3K9me3).
Collapse
|
25
|
Palicharla VR, Gupta D, Bhattacharya D, Maddika S. Ubiquitin-independent proteasomal degradation of Spindlin-1 by the E3 ligase HACE1 contributes to cell-cell adhesion. FEBS Lett 2021; 595:491-506. [PMID: 33421097 DOI: 10.1002/1873-3468.14031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/10/2020] [Accepted: 12/21/2020] [Indexed: 11/06/2022]
Abstract
HECT-E3 ligases play an essential role in catalyzing the transfer of ubiquitin to protein substrates. The noncatalytic roles of HECT-E3 ligases in cells are unknown. Here, we report that a HECT-E3 ligase, HACE1, functions as an adaptor independent of its E3 ligase activity. We identified Spindlin-1, a histone reader, as a new HACE1-associated protein. Interestingly, we found that HACE1 promotes Spindlin-1 degradation via the proteasome in an ubiquitination-independent manner. Functionally, we demonstrated that the loss of HACE1 results in weak cell-cell adhesion due to Spindlin-1-mediated accumulation of GDNF, a negative regulator of cell adhesion. Together, our data suggest that HACE1 acts as a molecular adaptor and plays an important noncatalytic role in presenting selected substrates directly to the proteasome for degradation.
Collapse
Affiliation(s)
- Vivek Reddy Palicharla
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, India
| | - Devanshi Gupta
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, India.,Graduate Studies, Regional Centre for Biotechnology, Faridabad, India
| | - Debjani Bhattacharya
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, India
| | - Subbareddy Maddika
- Laboratory of Cell Death & Cell Survival, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, India
| |
Collapse
|
26
|
Bivalent Genes Targeting of Glioma Heterogeneity and Plasticity. Int J Mol Sci 2021; 22:ijms22020540. [PMID: 33430434 PMCID: PMC7826605 DOI: 10.3390/ijms22020540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Gliomas account for most primary Central Nervous System (CNS) neoplasms, characterized by high aggressiveness and low survival rates. Despite the immense research efforts, there is a small improvement in glioma survival rates, mostly attributed to their heterogeneity and complex pathophysiology. Recent data indicate the delicate interplay of genetic and epigenetic mechanisms in regulating gene expression and cell differentiation, pointing towards the pivotal role of bivalent genes. Bivalency refers to a property of chromatin to acquire more than one histone marks during the cell cycle and rapidly transition gene expression from an active to a suppressed transcriptional state. Although first identified in embryonal stem cells, bivalent genes have now been associated with tumorigenesis and cancer progression. Emerging evidence indicates the implication of bivalent gene regulation in glioma heterogeneity and plasticity, mainly involving Homeobox genes, Wingless-Type MMTV Integration Site Family Members, Hedgehog protein, and Solute Carrier Family members. These genes control a wide variety of cellular functions, including cellular differentiation during early organism development, regulation of cell growth, invasion, migration, angiogenesis, therapy resistance, and apoptosis. In this review, we discuss the implication of bivalent genes in glioma pathogenesis and their potential therapeutic targeting options.
Collapse
|
27
|
The histone methyltransferase inhibitor A-366 enhances hemoglobin expression in erythroleukemia cells upon co-exposure with chemical inducers in culture. ACTA ACUST UNITED AC 2021; 28:2. [PMID: 33407944 PMCID: PMC7788816 DOI: 10.1186/s40709-020-00132-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 01/02/2023]
Abstract
Background Erythroleukemia is caused by the uncontrolled multiplication of immature erythroid progenitor cells which fail to differentiate into erythrocytes. By directly targeting this class of malignant cells, the induction of terminal erythroid differentiation represents a vital therapeutic strategy for this disease. Erythroid differentiation involves the execution of a well-orchestrated gene expression program in which epigenetic enzymes play critical roles. In order to identify novel epigenetic mediators of differentiation, this study explores the effects of multiple, highly specific, epigenetic enzyme inhibitors, in murine and human erythroleukemia cell lines. Results We used a group of compounds designed to uniquely target the following epigenetic enzymes: G9a/GLP, EZH1/2, SMYD2, PRMT3, WDR5, SETD7, SUV420H1 and DOT1L. The majority of the probes had a negative impact on both cell proliferation and differentiation. On the contrary, one of the compounds, A-366, demonstrated the opposite effect by promoting erythroid differentiation of both cell models. A-366 is a selective inhibitor of the G9a methyltransferase and the chromatin reader Spindlin1. Investigation of the molecular mechanism of action revealed that A-366 forced cells to exit from the cell cycle, a fact that favored erythroid differentiation. Further analysis led to the identification of a group of genes that mediate the A-366 effects and include CDK2, CDK4 and CDK6. Conclusions A-366, a selective inhibitor of G9a and Spindlin1, demonstrates a compelling role in the erythroid maturation process by promoting differentiation, a fact that is highly beneficial for patients suffering from erythroleukemia. In conclusion, this data calls for further investigation towards the delivery of epigenetic drugs and especially A-366 in hematopoietic disorders.
Collapse
|
28
|
Zhao F, Liu Y, Su X, Lee JE, Song Y, Wang D, Ge K, Gao J, Zhang MQ, Li H. Molecular basis for histone H3 "K4me3-K9me3/2" methylation pattern readout by Spindlin1. J Biol Chem 2020; 295:16877-16887. [PMID: 32994220 PMCID: PMC7864079 DOI: 10.1074/jbc.ra120.013649] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Histone recognition by "reader" modules serves as a fundamental mechanism in epigenetic regulation. Previous studies have shown that Spindlin1 is a reader of histone H3K4me3 as well as "K4me3-R8me2a" and promotes transcription of rDNA or Wnt/TCF4 target genes. Here we show that Spindlin1 also acts as a potent reader of histone H3 "K4me3-K9me3/2" bivalent methylation pattern. Calorimetric titration revealed a binding affinity of 16 nm between Spindlin1 and H3 "K4me3-K9me3" peptide, which is one to three orders of magnitude stronger than most other histone readout events at peptide level. Structural studies revealed concurrent recognition of H3K4me3 and H3K9me3/2 by aromatic pockets 2 and 1 of Spindlin1, respectively. Epigenomic profiling studies showed that Spindlin1 colocalizes with both H3K4me3 and H3K9me3 peaks in a subset of genes enriched in biological processes of transcription and its regulation. Moreover, the distribution of Spindlin1 peaks is primarily associated with H3K4me3 but not H3K9me3, which suggests that Spindlin1 is a downstream effector of H3K4me3 generated in heterochromatic regions. Collectively, our work calls attention to an intriguing function of Spindlin1 as a potent H3 "K4me3-K9me3/2" bivalent mark reader, thereby balancing gene expression and silencing in H3K9me3/2-enriched regions.
Collapse
Affiliation(s)
- Fan Zhao
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yunan Liu
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division, Center for Synthetic and Systems Biology, BNRist, Tsinghua University, Beijing, China
| | - Xiaonan Su
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Ji-Eun Lee
- Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland USA
| | - Yutong Song
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Daliang Wang
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Kai Ge
- Adipocyte Biology and Gene Regulation Section, Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland USA
| | - Juntao Gao
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division, Center for Synthetic and Systems Biology, BNRist, Tsinghua University, Beijing, China
| | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division, Center for Synthetic and Systems Biology, BNRist, Tsinghua University, Beijing, China; Department of Biological Sciences Center for Systems Biology, University of Texas at Dallas, Richardson, Texas, USA
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
29
|
Abstract
Determining the three-dimensional structures of protein complexes is critically important to guide biological research. Structural models of complexes can be built using powerful integrative approaches that combine emerging technologies in mass spectrometry, molecular modeling, and protein docking; however, preparing enriched biochemical samples suitable for analysis remains a major challenge. Here we describe serial capture affinity purification (SCAP), which can be used for the study of protein interactions in live cells and, when combined with cross-linking mass spectrometry, contribute distance restraints for integrative structural modeling. This broadly applicable technology can be used to study any protein complex in human tissue culture cells. We demonstrate SCAP capabilities on a poorly characterized epigenetic protein complex with roles in human cancer. Streamlined characterization of protein complexes remains a challenge for the study of protein interaction networks. Here we describe serial capture affinity purification (SCAP), in which two separate proteins are tagged with either the HaloTag or the SNAP-tag, permitting a multistep affinity enrichment of specific protein complexes. The multifunctional capabilities of this protein-tagging system also permit in vivo validation of interactions using acceptor photobleaching Förster resonance energy transfer and fluorescence cross-correlation spectroscopy quantitative imaging. By coupling SCAP to cross-linking mass spectrometry, an integrative structural model of the complex of interest can be generated. We demonstrate this approach using the Spindlin1 and SPINDOC protein complex, culminating in a structural model with two SPINDOC molecules docked on one SPIN1 molecule. In this model, SPINDOC interacts with the SPIN1 interface previously shown to bind a lysine and arginine methylated sequence of histone H3. Our approach combines serial affinity purification, live cell imaging, and cross-linking mass spectrometry to build integrative structural models of protein complexes.
Collapse
|
30
|
Li S, Bai H, Chen X, Gong S, Xiao J, Li D, Li L, Jiang Y, Li T, Qin X, Yang H, Wu C, You F, Liu Y. Soft Substrate Promotes Osteosarcoma Cell Self-Renewal, Differentiation, and Drug Resistance Through miR-29b and Its Target Protein Spin 1. ACS Biomater Sci Eng 2020; 6:5588-5598. [DOI: 10.1021/acsbiomaterials.0c00816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Hongxia Bai
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Xiangyan Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Shengnan Gong
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Jinman Xiao
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Dan Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Li Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Ying Jiang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, P. R. China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P. R. China
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, P. R. China
| |
Collapse
|
31
|
Lv BB, Ma RR, Chen X, Zhang GH, Song L, Wang SX, Wang YW, Liu HT, Gao P. E2F1-activated SPIN1 promotes tumor growth via a MDM2-p21-E2F1 feedback loop in gastric cancer. Mol Oncol 2020; 14:2629-2645. [PMID: 32767629 PMCID: PMC7530787 DOI: 10.1002/1878-0261.12778] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 06/30/2020] [Accepted: 08/03/2020] [Indexed: 01/07/2023] Open
Abstract
Gastric cancer (GC) is one of the most common cancers around the world. Searching for specific gene expression changes during the development of GC could help identify potential therapy targets. We previously showed that the histone code reader SPIN1 may act as an oncogene in breast cancer. At present, the biological function and regulation of SPIN1 in GC remain unclear. Here, we demonstrate that SPIN1 is upregulated in GC tissues, compared with nontumorous gastric tissues. Increased expression of SPIN1 is closely associated with poor prognosis for patients with GC. Increased SPIN1 expression enhances GC cell proliferation, migration, and invasion and promotes cell cycle progression. Mechanically, SPIN1 sustains GC cell proliferation via activation of the MDM2-p21-E2F1 signaling pathway by binding to H3K4me3 of the MDM2 promoter region. Interestingly, E2F1 could directly bind to the SPIN1 promoter and activate its transcription, thus forming a positive feedback loop. Our data suggest that SPIN1 plays an important role in the development of GC and could be used as a promising prognostic biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Bei-Bei Lv
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Ran-Ran Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Xu Chen
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Guo-Hao Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lin Song
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Su-Xia Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Ya-Wen Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Hai-Ting Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Peng Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
32
|
Wang L, Wu L, Pang J. Long noncoding RNA PSMA3‑AS1 functions as a microRNA‑409‑3p sponge to promote the progression of non‑small cell lung carcinoma by targeting spindlin 1. Oncol Rep 2020; 44:1550-1560. [PMID: 32945481 PMCID: PMC7448465 DOI: 10.3892/or.2020.7693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022] Open
Abstract
PSMA3 antisense RNA 1 (PSMA3‑AS1), a long noncoding RNA, promotes the progression of esophageal squamous cell carcinoma. However, no study to date has explored the expression or roles of PSMA3‑AS1 in non‑small cell lung carcinoma (NSCLC). The present study examined the expression profile and role of PSMA3‑AS1 in NSCLC. It also aimed to identify how PSMA3‑AS1 promotes the malignant phenotype of NSCLC cells. PSMA3‑AS1 expression in NSCLC tissues and cell lines was measured by reverse transcription‑quantitative polymerase chain reaction. Cell Counting Kit‑8, cell apoptosis, Transwell migration and invasion, and xenograft tumor assays were conducted to study the effects of PSMA3‑AS1 on the aggressive phenotype of NSCLC cells. Furthermore, bioinformatics analysis, RNA immunoprecipitation, luciferase reporter assay, western blotting, and rescue experiments were used to elucidate the interaction among PSMA3‑AS1, microRNA‑409‑3p (miR‑409‑3p), and spindlin 1 (SPIN1) in NSCLC cells. In the present study, high levels of PSMA3‑AS1 were confirmed in both NSCLC tissues and cell lines. An increased PSMA3‑AS1 level was correlated with advanced tumor‑node‑metastasis stage and increased lymph node metastasis. Patients with NSCLC with high PSMA3‑AS1 levels had shorter overall survival than those with low PSMA3‑AS1 levels. PSMA3‑AS1 depletion significantly decreased NSCLC cell proliferation, migration, and invasion, as well as substantially increased cell apoptosis in vitro. Furthermore, PSMA3‑AS1 deficiency decreased NSCLC tumor growth in vivo. Through molecular mechanism assays, it was revealed that PSMA3‑AS1 acted as a molecular sponge for miR‑409‑3p and consequently increased SPIN1 expression. Notably, rescue experiments revealed that the inhibition of miR‑409‑3p or restoration of SPIN1 expression abrogated the effects of PSMA3‑AS1 knockdown in NSCLC cells. Collectively, PSMA3‑AS1 functioned as an oncogenic long noncoding RNA in NSCLC. PSMA3‑AS1 sponged miR‑409‑3p and thus increased SPIN1 expression, promoting the aggressive phenotype of NSCLC cells.
Collapse
Affiliation(s)
- Lingling Wang
- Precision Medical Center, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Lei Wu
- Department of Thoracic Surgery, Jilin City Central Hospital, Capital Medical University, Jilin, Jilin 132010, P.R. China
| | - Jinfeng Pang
- Department of Neurosurgery, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| |
Collapse
|
33
|
Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. Br J Cancer 2020; 122:1277-1287. [PMID: 32047295 PMCID: PMC7188667 DOI: 10.1038/s41416-019-0722-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/06/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
The best-known role of UDP-glucuronosyltransferase enzymes (UGTs) in cancer is the metabolic inactivation of drug therapies. By conjugating glucuronic acid to lipophilic drugs, UGTs impair the biological activity and enhance the water solubility of these agents, driving their elimination. Multiple clinical observations support an expanding role for UGTs as modulators of the drug response and in mediating drug resistance in numerous cancer types. However, accumulating evidence also suggests an influence of the UGT pathway on cancer progression. Dysregulation of the expression and activity of UGTs has been associated with the progression of several cancers, arguing for UGTs as possible mediators of oncogenic pathways and/or disease accelerators in a drug-naive context. The consequences of altered UGT activity on tumour biology are incompletely understood. They might be associated with perturbed levels of bioactive endogenous metabolites such as steroids and bioactive lipids that are inactivated by UGTs or through non-enzymatic mechanisms, thereby eliciting oncogenic signalling cascades. This review highlights the evidence supporting dual roles for the UGT pathway, affecting cancer progression and drug resistance. Pharmacogenomic testing of UGT profiles in patients and the development of therapeutic options that impair UGT actions could provide useful prognostic and predictive biomarkers and enhance the efficacy of anti-cancer drugs.
Collapse
|
34
|
SPIN1 triggers abnormal lipid metabolism and enhances tumor growth in liver cancer. Cancer Lett 2019; 470:54-63. [PMID: 31790762 DOI: 10.1016/j.canlet.2019.11.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/24/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022]
Abstract
Abnormal lipid metabolism plays crucial roles in the development of cancer. Spindlin 1 (SPIN1) involving the process of spindle organization and chromosomal stability serves as an important player in the carcinogenesis. In this study, we try to identify the new function of SPIN1 in lipid metabolism of liver cancer. Tissue microarray showed that 75% (60/80) of hepatocellular carcinoma (HCC) tissues were positive for SPIN1, which was highly expressed in clinical HCC samples and positively associated with malignancy of HCC. Strikingly, SPIN1 could modulate abnormal lipid metabolism by increasing intracellular triglycerides, cholesterols, and lipid droplets in hepatoma cells, which could remarkably enhance the proliferation of hepatoma cells. Mechanistically, SPIN1 up-regulated FASN in hepatoma cells. SPIN1 co-activated transcriptional factor SREBP1c in the promoter of FASN through interaction with SREBP1c. Moreover, SPIN1 promoted the growth of liver cancer in vitro and in vivo and the levels of intracellular triglycerides, cholesterols and lipid droplets were increased in the tumor tissues from mice. In conclusion, SPIN1 modulates abnormal lipid metabolism and enhances growth of liver cancer through SREBP1c-triggered FASN signaling. Therapeutically, SPIN1 may serve as a novel target for HCC.
Collapse
|
35
|
Xiong Y, Greschik H, Johansson C, Seifert L, Bacher J, Park KS, Babault N, Martini M, Fagan V, Li F, Chau I, Christott T, Dilworth D, Barsyte-Lovejoy D, Vedadi M, Arrowsmith CH, Brennan P, Fedorov O, Jung M, Farnie G, Liu J, Oppermann U, Schüle R, Jin J. Discovery of a Potent and Selective Fragment-like Inhibitor of Methyllysine Reader Protein Spindlin 1 (SPIN1). J Med Chem 2019; 62:8996-9007. [PMID: 31260300 DOI: 10.1021/acs.jmedchem.9b00522] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
By screening an epigenetic compound library, we identified that UNC0638, a highly potent inhibitor of the histone methyltransferases G9a and GLP, was a weak inhibitor of SPIN1 (spindlin 1), a methyllysine reader protein. Our optimization of this weak hit resulted in the discovery of a potent, selective, and cell-active SPIN1 inhibitor, compound 3 (MS31). Compound 3 potently inhibited binding of trimethyllysine-containing peptides to SPIN1, displayed high binding affinity, was highly selective for SPIN1 over other epigenetic readers and writers, directly engaged SPIN1 in cells, and was not toxic to nontumorigenic cells. The crystal structure of the SPIN1-compound 3 complex indicated that it selectively binds tudor domain II of SPIN1. We also designed a structurally similar but inactive compound 4 (MS31N) as a negative control. Our results have demonstrated for the first time that potent, selective, and cell-active fragment-like inhibitors can be generated by targeting a single tudor domain.
Collapse
Affiliation(s)
- Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Holger Greschik
- Department of Urology and Center for Clinical Research , University Freiburg Medical Center , Freiburg 79106 , Germany
| | - Catrine Johansson
- Structural Genomics Consortium, Botnar Research Center, NIHR Oxford BRU , University of Oxford , Oxford OX37LD , U.K
| | - Ludwig Seifert
- Institute of Pharmaceutical Sciences , University of Freiburg , Freiburg 79104 , Germany
| | - Johannes Bacher
- Institute of Pharmaceutical Sciences , University of Freiburg , Freiburg 79104 , Germany
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Nicolas Babault
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Michael Martini
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Vincent Fagan
- Structural Genomics Consortium & Target Discovery Institute , University of Oxford , Oxford OX37DQ and OX37FZ, U.K
| | | | | | - Thomas Christott
- Structural Genomics Consortium & Target Discovery Institute , University of Oxford , Oxford OX37DQ and OX37FZ, U.K
| | | | | | - Masoud Vedadi
- Department of Pharmacology and Toxicology , University of Toronto , Toronto , Ontario M5S 1A8 , Canada
| | | | - Paul Brennan
- Structural Genomics Consortium & Target Discovery Institute , University of Oxford , Oxford OX37DQ and OX37FZ, U.K
| | - Oleg Fedorov
- Structural Genomics Consortium & Target Discovery Institute , University of Oxford , Oxford OX37DQ and OX37FZ, U.K
| | - Manfred Jung
- Institute of Pharmaceutical Sciences , University of Freiburg , Freiburg 79104 , Germany
- German Cancer Research Centre (DKFZ) , Heidelberg 69120 , Germany
- German Cancer Consortium (DKTK) , Freiburg 79106 , Germany
| | - Gillian Farnie
- Structural Genomics Consortium & Target Discovery Institute , University of Oxford , Oxford OX37DQ and OX37FZ, U.K
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Udo Oppermann
- Structural Genomics Consortium, Botnar Research Center, NIHR Oxford BRU , University of Oxford , Oxford OX37LD , U.K
| | - Roland Schüle
- Department of Urology and Center for Clinical Research , University Freiburg Medical Center , Freiburg 79106 , Germany
- BIOSS Centre of Biological Signalling Studies , University of Freiburg , Freiburg 79106 , Germany
- German Cancer Consortium (DKTK) , Freiburg 79106 , Germany
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| |
Collapse
|
36
|
Fagan V, Johansson C, Gileadi C, Monteiro O, Dunford JE, Nibhani R, Philpott M, Malzahn J, Wells G, Faram R, Cribbs AP, Halidi N, Li F, Chau I, Greschik H, Velupillai S, Allali-Hassani A, Bennett J, Christott T, Giroud C, Lewis AM, Huber KVM, Athanasou N, Bountra C, Jung M, Schüle R, Vedadi M, Arrowsmith C, Xiong Y, Jin J, Fedorov O, Farnie G, Brennan PE, Oppermann U. A Chemical Probe for Tudor Domain Protein Spindlin1 to Investigate Chromatin Function. J Med Chem 2019; 62:9008-9025. [PMID: 31550156 DOI: 10.1021/acs.jmedchem.9b00562] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Modifications of histone tails, including lysine/arginine methylation, provide the basis of a "chromatin or histone code". Proteins that contain "reader" domains can bind to these modifications and form specific effector complexes, which ultimately mediate chromatin function. The spindlin1 (SPIN1) protein contains three Tudor methyllysine/arginine reader domains and was identified as a putative oncogene and transcriptional coactivator. Here we report a SPIN1 chemical probe inhibitor with low nanomolar in vitro activity, exquisite selectivity on a panel of methyl reader and writer proteins, and with submicromolar cellular activity. X-ray crystallography showed that this Tudor domain chemical probe simultaneously engages Tudor domains 1 and 2 via a bidentate binding mode. Small molecule inhibition and siRNA knockdown of SPIN1, as well as chemoproteomic studies, identified genes which are transcriptionally regulated by SPIN1 in squamous cell carcinoma and suggest that SPIN1 may have a role in cancer related inflammation and/or cancer metastasis.
Collapse
Affiliation(s)
- Vincent Fagan
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
| | - Catrine Johansson
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Carina Gileadi
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Octovia Monteiro
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
| | - James E Dunford
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Reshma Nibhani
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Martin Philpott
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Jessica Malzahn
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Graham Wells
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Ruth Faram
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Adam P Cribbs
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Nadia Halidi
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Fengling Li
- Structural Genomics Consortium , University of Toronto , 101 College Street , Toronto , Ontario M5G 1L7 , Canada
| | - Irene Chau
- Structural Genomics Consortium , University of Toronto , 101 College Street , Toronto , Ontario M5G 1L7 , Canada
| | - Holger Greschik
- Department of Urology, Center for Clinical Research, Medical Center, Signalling Research Centres BIOSS and CIBSS , University of Freiburg , D-79106 Freiburg , Germany
| | - Srikannathasan Velupillai
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
| | - Abdellah Allali-Hassani
- Structural Genomics Consortium , University of Toronto , 101 College Street , Toronto , Ontario M5G 1L7 , Canada
| | - James Bennett
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
| | - Thomas Christott
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
| | - Charline Giroud
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
| | - Andrew M Lewis
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
| | - Kilian V M Huber
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
| | - Nick Athanasou
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Chas Bountra
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
| | - Manfred Jung
- FRIAS-Freiburg Institute of Advanced Studies , University of Freiburg , 79104 Freiburg , Germany
- Institute of Pharmaceutical Sciences , University of Freiburg , Albertstraße 25 , 79104 Freiburg , Germany
| | - Roland Schüle
- Department of Urology, Center for Clinical Research, Medical Center, Signalling Research Centres BIOSS and CIBSS , University of Freiburg , D-79106 Freiburg , Germany
| | - Masoud Vedadi
- Structural Genomics Consortium , University of Toronto , 101 College Street , Toronto , Ontario M5G 1L7 , Canada
| | - Cheryl Arrowsmith
- Structural Genomics Consortium , University of Toronto , 101 College Street , Toronto , Ontario M5G 1L7 , Canada
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences , Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences , Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Oleg Fedorov
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
| | - Gillian Farnie
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
| | - Paul E Brennan
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Target Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
- Alzheimer's Research UK Oxford Drug Discovery Institute, Nuffield Department of Medicine , University of Oxford , OX3 7FZ Oxford , U.K
| | - Udo Oppermann
- Structural Genomics Consortium, Nuffield Department of Medicine , University of Oxford , OX3 7DQ Oxford , U.K
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Bio-medical Research Centre , University of Oxford , Oxford OX3 7LD , U.K
- FRIAS-Freiburg Institute of Advanced Studies , University of Freiburg , 79104 Freiburg , Germany
| |
Collapse
|
37
|
Richa K, Karmaker R, Longkumer N, Das V, Bhuyan PJ, Pal M, Sinha UB. Synthesis, In Vitro Evaluation, Molecular Docking and DFT Studies of Some Phenyl Isothiocyanates as Anticancer Agents. Anticancer Agents Med Chem 2019; 19:2211-2222. [PMID: 31566135 DOI: 10.2174/1871520619666190930122137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/11/2019] [Accepted: 06/30/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Isothiocyanates (ITCs) are small molecules that are important in synthetic organic chemistry, but their actual importance lies in their potential as anti-carcinogens. Through this piece of work, an effort was made to assess the anti-cancer activity of some simple ITCs which can be synthesized through easy greener pathways. METHODS Cell proliferation assay was performed on ovarian cancer cells (PA-1) and non-tumorigenic ovarian epithelial cells (IOSE-364). Furthermore, qRT-PCR for transcript expression levels of Spindlin1 and caspases in ovarian cancer cells and cell cycle analysis was performed. In silico studies were incorporated to understand the mode of ligand-protein interaction, ADME/Toxicity and drug-likeliness parameters. Density functional theory studies have been also been employed on the ITCs to assess their efficiency in anticancer activity. RESULTS An inexpensive, environmentally benign pathway has been developed for synthesizing a series of ITCs. Among the synthesized ITCs, NC6 showed better cytotoxic effects as compared to its counterparts. Novel findings revealed that NC6 had 5-folds lower transcript expression levels of Spindlin1 and induced caspases 3 and 7 expressions assessed by qRT-PCR in ovarian cancer cells. Furthermore, flow cytometry assay showed the cell cycle arrest at G1/S phase of cell cycle. The molecular docking studies revealed favorable binding affinities and the physiochemical parameters were predicted to be compatible with drug-likeliness. CONCLUSION The results demonstrated the possibility that small isothiocyanate molecules which can be synthesized by a simple green methodology, can pose as promising candidates for their application as anticancer agents.
Collapse
Affiliation(s)
- Kikoleho Richa
- Department of Chemistry, Nagaland University, Lumami-798627, Nagaland, India.,Bioinformatics Facility Centre, Nagaland University, Lumami-798627, Nagaland, India
| | - Rituparna Karmaker
- Department of Chemistry, Nagaland University, Lumami-798627, Nagaland, India
| | - Naruti Longkumer
- Department of Chemistry, Nagaland University, Lumami-798627, Nagaland, India
| | - Vishal Das
- Biological Sciences and Technology Division, Biotechnology Group, CSIR-North East Institute of Science and Technology (NEIST), Academy of Scientific and Innovative Research, Jorhat, Assam-785006, India
| | - Pulak J Bhuyan
- Chemical Sciences and Technology Division, CSIR- North East Institute of Science and Technology (NEIST), Jorhat, Assam-785006, India
| | - Mintu Pal
- Biological Sciences and Technology Division, Biotechnology Group, CSIR-North East Institute of Science and Technology (NEIST), Academy of Scientific and Innovative Research, Jorhat, Assam-785006, India
| | - Upasana B Sinha
- Department of Chemistry, Nagaland University, Lumami-798627, Nagaland, India
| |
Collapse
|
38
|
Chen W, Zhang Y, Wang H, Pan T, Zhang Y, Li C. LINC00473/miR-374a-5p regulates esophageal squamous cell carcinoma via targeting SPIN1 to weaken the effect of radiotherapy. J Cell Biochem 2019; 120:14562-14572. [PMID: 31017716 DOI: 10.1002/jcb.28717] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/15/2019] [Accepted: 02/28/2019] [Indexed: 12/25/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most prevalent type in esophageal cancers. Despite accumulating achievements in treatments of ESCC, patients still suffer from recurrence because of the treatment failures, one of the reasons for which is radioresistance. Therefore, it is a necessity to explore the molecular mechanism underlying ESCC radioresistance. Long intergenic noncoding RNA 473 (LINC00473) has been reported to be aberrantly expressed in several human malignancies. However, its biological function in radiosensitivity of ESCC remains to be fully understood. This study explored the role of LINC00473 in radiosensitivity of ESCC cells and whether LINC00473 acted as a competing endogenous RNA to realize its modulation on radioresistance. We found that LINC00473 was markedly upregulated in ESCC tissues and cell lines, and its expression was remarkably related to cellular response to irradiation. In addition, knockdown of LINC00473 could sensitize ESCC cells to radiation in vitro. As for the underlying mechanism, we uncovered that there was a mutual inhibition between LINC00473 and miR-374a-5p. Spindlin1 (SPIN1) was verified as a downstream target of miR-374a-5p, and LINC00473 upregulated SPIN1 expression through negatively modulating miR-374a-5p expression. Furthermore, we revealed that SPIN1 could aggravate the radioresistance of ESCC cells. Finally, overexpression of SPIN1 reversed the LINC00473 silencing-enhanced radiosensitivity in ESCC cells. To sum up, we demonstrated that LINC00473 facilitated radioresistance by regulating the miR-374a-5p/SPIN1 axis in ESCC.
Collapse
Affiliation(s)
- Weizuo Chen
- Department of Radiotherapy, Tumor Hospital of Wuwei, Wuwei, Gansu, China
| | - Yanshan Zhang
- Department of Radiotherapy, Tumor Hospital of Wuwei, Wuwei, Gansu, China
| | - Huijuan Wang
- Department of Tumor Chemotherapy, Tumor Hospital of Wuwei, Wuwei, Gansu, China
| | - Tingting Pan
- Department of Radiotherapy, Tumor Hospital of Wuwei, Wuwei, Gansu, China
| | - Yinguo Zhang
- Department of Thoracic Surgery, Tumor Hospital of Wuwei, Wuwei, Gansu, China
| | - Chao Li
- Department of Thoracic Surgery, Tumor Hospital of Wuwei, Wuwei, Gansu, China
| |
Collapse
|
39
|
Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer. Nat Med 2019; 25:403-418. [PMID: 30842676 DOI: 10.1038/s41591-019-0376-8] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 01/25/2019] [Indexed: 12/31/2022]
Abstract
Epigenetic dysregulation is a common feature of most cancers, often occurring directly through alteration of epigenetic machinery. Over the last several years, a new generation of drugs directed at epigenetic modulators have entered clinical development, and results from these trials are now being disclosed. Unlike first-generation epigenetic therapies, these new agents are selective, and many are targeted to proteins which are mutated or translocated in cancer. This review will provide a summary of the epigenetic modulatory agents currently in clinical development and discuss the opportunities and challenges in their development. As these drugs advance in the clinic, drug discovery has continued with a focus on both novel and existing epigenetic targets. We will provide an overview of these efforts and the strategies being employed.
Collapse
|
40
|
Spindlin docking protein (SPIN.DOC) interaction with SPIN1 (a histone code reader) regulates Wnt signaling. Biochem Biophys Res Commun 2019; 511:498-503. [PMID: 30803761 DOI: 10.1016/j.bbrc.2019.02.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022]
Abstract
Indepth studies of protein-protein interactions are essential for discovering the molecular mechanisms and the biological context of protein functions. Even though previous study on the purification of SPIN1 interacting protein complex has shown Spindlin docking protein (SPIN.DOC) as the most abundant interacting protein partner; the study on the molecular function of SPIN.DOC is limited. Since the role of SPIN1 has been previously documented as a histone code reader and transcriptional coactivator of Wnt signaling, SPIN.DOC may probably involve in epigenetic regulation and Wnt signaling. This study aims to purify SPIN.DOC interacting protein complex and characterize the molecular function of SPIN.DOC. The finding of this study revealed that the suppression of SPIN.DOC expression in HEK293 cells by shRNA, slightly destabilized SPIN1 without any change in its chromatin localization. However, knockdown of SPIN1 decreased the expression and chromatin localization of SPIN.DOC. Nevertheless, overexpression of SPIN.DOC increased the expression and chromatin localization of SPIN1 but no change in the SPIN.DOC protein expression and chromatin localization when SPIN1 is overexpressed. TOPflash reporter assays revealed that SPIN.DOC regulates gene expression in Wnt signaling pathway and act as transcriptional repressor. Further, we show that C-terminal deleted mutant of SPIN.DOC is unable to interact with SPIN1. Unlike the wild type SPIN.DOC which acts as transcriptional repressor, overexpression of C-terminal deletion mutant activates Wnt signaling suggesting that SPIN.DOC-SPIN1 complex may act as transcriptional repressor. Overall, our data revealed new molecular functions of SPIN.DOC.
Collapse
|
41
|
Zhang X, Zhu G, Su X, Li H, Wu W. Nucleolar localization signal and histone methylation reader function is required for SPIN1 to promote rRNA gene expression. Biochem Biophys Res Commun 2018; 505:325-332. [PMID: 30249398 DOI: 10.1016/j.bbrc.2018.09.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/15/2018] [Indexed: 01/07/2023]
Abstract
Spindlin1 (SPIN1), a histone modification reader protein, was enriched in the cell nucleolus and facilitated rRNA expression. However, how SPIN1 localizes to the nucleolus and its functional role in rRNA gene expression remain unresolved. Here, we identified a nucleolar localization signal in the N-terminal region of SPIN1 that is essential for its enrichment and function in the nucleolus. We also discovered that, in addition to its H3K4me3 recognizing activity, the H3R8me2a-recognizing capacity of SPIN1 is also indispensable for stimulating rRNA expression. Chromatin immunoprecipitation results indicated that SPIN1 is required for the association or assembly of selective factor 1 (SL1) complex, probably facilitating the initiation of rDNA transcription through its H3 K4me3-R8me2a reader function.
Collapse
Affiliation(s)
- Xiaolei Zhang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guixin Zhu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaonan Su
- Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Haitao Li
- Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Wei Wu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
42
|
Song Q, Ji Q, Xiao J, Li F, Wang L, Chen Y, Xu Y, Jiao S. miR-409 Inhibits Human Non-Small-Cell Lung Cancer Progression by Directly Targeting SPIN1. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:154-163. [PMID: 30290307 PMCID: PMC6171160 DOI: 10.1016/j.omtn.2018.08.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022]
Abstract
Lung cancers, the leading cause of cancer mortality worldwide, are characterized by a high metastatic potential. Growing evidence reveals that Spindlin 1 (SPIN1) is involved in tumor progression and carcinogenesis. However, the role of SPIN1 in non-small-cell lung cancer (NSCLC) and the molecular mechanisms underlying SPIN1 in human NSCLC remain undetermined. Here we examined the function of SPIN1 in human NSCLC and found that the expression of SPIN1 was closely correlated with the overall survival and poor prognosis of NSCLC patients. Aberrant regulation of microRNAs (miRNAs) has an important role in cancer progression. We revealed that miR-409 inhibits the expression of SPIN1 by binding directly to the 3′ UTR of SPIN1 using dual-luciferase reporter assays. Overexpression of miR-409 significantly suppressed cell migration, growth, and proliferation by inhibiting SPIN1 in vitro and in vivo. SPIN1 overexpression in miR-409-transfected NSCLC cells effectively rescued the suppression of cell migration, growth, and proliferation regulated by miR-409. miR-409 regulates the PI3K/AKT (protein kinase B) pathway in NSCLC. Moreover, clinical data showed that NSCLC patients with high levels of miR-409 experienced significantly better survival. miR-409 expression was also negatively associated with SPIN1 expression. Taken together, these findings highlight that the miR-409/SPIN1 axis is a useful pleiotropic regulatory network and could predict the metastatic potential in NSCLC patients early, indicating the possibility that miR-409 and SPIN1 might be attractive prognostic markers for treating NSCLC patients.
Collapse
Affiliation(s)
- Qi Song
- Department of Oncology, Division of Internal Medicine, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Quanbo Ji
- Department of Orthopedics, General Hospital of the Chinese People's Liberation Army, Beijing, China; Department of Orthopedic Surgery, Stanford University, Stanford, CA, USA
| | | | - Fang Li
- Department of Oncology, Division of Internal Medicine, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Lingxiong Wang
- Key Lab of the Cancer Center, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Yin Chen
- Key Lab of the Cancer Center, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Yameng Xu
- Department of Traditional Chinese Medicine, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shunchang Jiao
- Department of Oncology, Division of Internal Medicine, General Hospital of the Chinese People's Liberation Army, Beijing, China.
| |
Collapse
|
43
|
Janecki DM, Sajek M, Smialek MJ, Kotecki M, Ginter-Matuszewska B, Kuczynska B, Spik A, Kolanowski T, Kitazawa R, Kurpisz M, Jaruzelska J. SPIN1 is a proto-oncogene and SPIN3 is a tumor suppressor in human seminoma. Oncotarget 2018; 9:32466-32477. [PMID: 30197756 PMCID: PMC6126697 DOI: 10.18632/oncotarget.25977] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022] Open
Abstract
SPIN1 is necessary for normal meiotic progression in mammals. It is overexpressed in human ovarian cancers and some cancer cell lines. Here, we examined the functional significance and regulation of SPIN1 and SPIN3 in the TCam-2 human seminoma cell line. We found that while SPIN1 overexpression reduced apoptosis in these cells, SPIN3 overexpression induced it. Similarly, SPIN1 upregulated and SPIN3 downregulated CYCD1, which is a downstream target of the PI3K/AKT pathway and contributes to apoptosis resistance in cancer cell lines. It appears that SPIN1 is pro-oncogenic and SPIN3 acts as a tumor suppressor in TCam-2 cells. To our knowledge, this is the first report of SPIN3 tumor suppressor activity. However, both SPIN1 and SPIN3 stimulated cell cycle progression. In addition, using luciferase reporters carrying SPIN1 or SPIN3 mRNA 3′UTRs, we found that PUM1 and PUM2 targeted and repressed SPINs. We also found that PUM1 itself strongly stimulated apoptosis and moderately slowed cell cycle progression in TCam-2 cells, suggesting that PUM1, like SPIN3, is a tumor suppressor. Our findings suggest that acting, at least in part, through SPIN1 and SPIN3, PUM proteins contribute to a mechanism promoting normal human male germ cell apoptotic status and thus preventing cancer.
Collapse
Affiliation(s)
| | - Marcin Sajek
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Maciej Kotecki
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Department of Developmental, Molecular and Chemical Biology, Tufts University Medical School, Boston, Massachusetts, U.S.A
| | | | - Bogna Kuczynska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Anna Spik
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz Kolanowski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Institute of Pharmacology and Toxicology, Technische Universität Dresden, Germany
| | - Riko Kitazawa
- Division of Molecular Pathology, Ehime University, Graduate School of Medicine, Shitsukawa, Toon City, Ehime, Japan
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | |
Collapse
|
44
|
De Meulder B, Lefaudeux D, Bansal AT, Mazein A, Chaiboonchoe A, Ahmed H, Balaur I, Saqi M, Pellet J, Ballereau S, Lemonnier N, Sun K, Pandis I, Yang X, Batuwitage M, Kretsos K, van Eyll J, Bedding A, Davison T, Dodson P, Larminie C, Postle A, Corfield J, Djukanovic R, Chung KF, Adcock IM, Guo YK, Sterk PJ, Manta A, Rowe A, Baribaud F, Auffray C. A computational framework for complex disease stratification from multiple large-scale datasets. BMC SYSTEMS BIOLOGY 2018; 12:60. [PMID: 29843806 PMCID: PMC5975674 DOI: 10.1186/s12918-018-0556-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 02/21/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Multilevel data integration is becoming a major area of research in systems biology. Within this area, multi-'omics datasets on complex diseases are becoming more readily available and there is a need to set standards and good practices for integrated analysis of biological, clinical and environmental data. We present a framework to plan and generate single and multi-'omics signatures of disease states. METHODS The framework is divided into four major steps: dataset subsetting, feature filtering, 'omics-based clustering and biomarker identification. RESULTS We illustrate the usefulness of this framework by identifying potential patient clusters based on integrated multi-'omics signatures in a publicly available ovarian cystadenocarcinoma dataset. The analysis generated a higher number of stable and clinically relevant clusters than previously reported, and enabled the generation of predictive models of patient outcomes. CONCLUSIONS This framework will help health researchers plan and perform multi-'omics big data analyses to generate hypotheses and make sense of their rich, diverse and ever growing datasets, to enable implementation of translational P4 medicine.
Collapse
Affiliation(s)
- Bertrand De Meulder
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France.
| | - Diane Lefaudeux
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Aruna T Bansal
- Acclarogen Ltd, St John's Innovation Centre, Cambridge, CB4 OWS, UK
| | - Alexander Mazein
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Amphun Chaiboonchoe
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Hassan Ahmed
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Irina Balaur
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Mansoor Saqi
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Johann Pellet
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Stéphane Ballereau
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Nathanaël Lemonnier
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France
| | - Kai Sun
- Data Science Institute, Imperial College, London, SW7 2AZ, UK
| | - Ioannis Pandis
- Data Science Institute, Imperial College, London, SW7 2AZ, UK.,Janssen Research and Development Ltd, High Wycombe, HP12 4DP, UK
| | - Xian Yang
- Data Science Institute, Imperial College, London, SW7 2AZ, UK
| | | | | | | | | | - Timothy Davison
- Janssen Research and Development Ltd, High Wycombe, HP12 4DP, UK
| | - Paul Dodson
- AstraZeneca Ltd, Alderley Park, Macclesfield, SK10 4TG, UK
| | | | - Anthony Postle
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Julie Corfield
- AstraZeneca R & D, 43150, Mölndal, Sweden.,Arateva R & D Ltd, Nottingham, NG1 1GF, UK
| | - Ratko Djukanovic
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Kian Fan Chung
- National Hearth and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Ian M Adcock
- National Hearth and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Yi-Ke Guo
- Data Science Institute, Imperial College, London, SW7 2AZ, UK
| | - Peter J Sterk
- Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, AZ1105, The Netherlands
| | - Alexander Manta
- Research Informatics, Roche Diagnostics GmbH, 82008, Unterhaching, Germany
| | - Anthony Rowe
- Janssen Research and Development Ltd, High Wycombe, HP12 4DP, UK
| | | | - Charles Auffray
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, EISBM, 50 Avenue Tony Garnier, 69007, Lyon, France.
| | | |
Collapse
|
45
|
Chen X, Wang YW, Gao P. SPIN1, negatively regulated by miR-148/152, enhances Adriamycin resistance via upregulating drug metabolizing enzymes and transporter in breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:100. [PMID: 29743122 PMCID: PMC5944004 DOI: 10.1186/s13046-018-0748-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/02/2018] [Indexed: 12/11/2022]
Abstract
Background Spindlin1 (SPIN1), a protein highly expressed in several human cancers, has been correlated with tumorigenesis and development. Alterations of drug metabolizing enzymes and drug transporters are major determinants of chemoresistance in tumor cells. However, whether the metabolizing enzymes and transporters are under the control of SPIN1 in breast cancer chemoresistance has not yet been defined. Methods SPIN1 expression in breast cancer cells and tissues was detected by quantitative real-time PCR (qRT-PCR) and immunohistochemistry. Chemosensitivity assays in vitro and in vivo were performed to determine the effect of SPIN1 on Adriamycin resistance. Downstream effectors of SPIN1 were screened by microarray and confirmed by qRT-PCR and Western blot. Luciferase assay and Western blot were used to identify miRNAs regulating SPIN1. Results We showed that SPIN1 was significantly elevated in drug-resistant breast cancer cell lines and tissues, compared with the chemosensitive ones. SPIN1 enhanced Adriamycin resistance of breast cancer cells in vitro, and downregulation of SPIN1 by miRNA could decrease Adriamycin resistance in vivo. Mechanistically, drug metabolizing enzymes and transporter CYP2C8, UGT2B4, UGT2B17 and ABCB4 were proven to be downstream effectors of SPIN1. Notably, SPIN1 was identified as a direct target of the miR-148/152 family (miR-148a-3p, miR-148b-3p and miR-152-3p). As expected, miR-148a-3p, miR-148b-3p or miR-152-3p could increase Adriamycin sensitivity in breast cancer cells in vitro. Moreover, high expression of SPIN1 or low expression of the miR-148/152 family predicted poorer survival in breast cancer patients. Conclusions Our results establish that SPIN1, negatively regulated by the miR-148/152 family, enhances Adriamycin resistance in breast cancer via upregulating the expression of drug metabolizing enzymes and drug transporter. Electronic supplementary material The online version of this article (10.1186/s13046-018-0748-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xu Chen
- Department of Pathology, School of Medicine, Shandong University, 44 Wen Hua Xi Road, Jinan, 250012, People's Republic of China
| | - Ya-Wen Wang
- Department of Pathology, School of Medicine, Shandong University, 44 Wen Hua Xi Road, Jinan, 250012, People's Republic of China
| | - Peng Gao
- Department of Pathology, School of Medicine, Shandong University, 44 Wen Hua Xi Road, Jinan, 250012, People's Republic of China.
| |
Collapse
|
46
|
Hauser AT, Robaa D, Jung M. Epigenetic small molecule modulators of histone and DNA methylation. Curr Opin Chem Biol 2018; 45:73-85. [PMID: 29579619 DOI: 10.1016/j.cbpa.2018.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 12/14/2022]
Abstract
DNA and histone methylation belong to the key regulatory components in the epigenetic machinery, and dysregulations of these processes have been associated with various human diseases. Small molecule modulators of these epigenetic targets are highly valuable both as chemical probes to study the biological roles of the target proteins, and as potential therapeutics. Indeed, recent years have seen the discovery of chemical modulators of several epigenetic targets, some of which are already marketed drugs or undergoing clinical trials. In this review, we will focus on small molecule modulators of DNA and histone methylation.
Collapse
Affiliation(s)
- Alexander-Thomas Hauser
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg im Breisgau, Germany
| | - Dina Robaa
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg im Breisgau, Germany.
| |
Collapse
|
47
|
Fang Z, Cao B, Liao JM, Deng J, Plummer KD, Liao P, Liu T, Zhang W, Zhang K, Li L, Margolin D, Zeng SX, Xiong J, Lu H. SPIN1 promotes tumorigenesis by blocking the uL18 (universal large ribosomal subunit protein 18)-MDM2-p53 pathway in human cancer. eLife 2018; 7:31275. [PMID: 29547122 PMCID: PMC5871334 DOI: 10.7554/elife.31275] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 03/13/2018] [Indexed: 12/14/2022] Open
Abstract
Ribosomal proteins (RPs) play important roles in modulating the MDM2-p53 pathway. However, less is known about the upstream regulators of the RPs. Here, we identify SPIN1 (Spindlin 1) as a novel binding partner of human RPL5/uL18 that is important for this pathway. SPIN1 ablation activates p53, suppresses cell growth, reduces clonogenic ability, and induces apoptosis of human cancer cells. Mechanistically, SPIN1 sequesters uL18 in the nucleolus, preventing it from interacting with MDM2, and thereby alleviating uL18-mediated inhibition of MDM2 ubiquitin ligase activity toward p53. SPIN1 deficiency increases ribosome-free uL18 and uL5 (human RPL11), which are required for SPIN1 depletion-induced p53 activation. Analysis of cancer genomic databases suggests that SPIN1 is highly expressed in several human cancers, and its overexpression is positively correlated with poor prognosis in cancer patients. Altogether, our findings reveal that the oncogenic property of SPIN1 may be attributed to its negative regulation of uL18, leading to p53 inactivation.
Collapse
Affiliation(s)
- Ziling Fang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Bo Cao
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Jun-Ming Liao
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States.,School of Dentistry at Case Western University, Cleveland, United States
| | - Jun Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Kevin D Plummer
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Peng Liao
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Tao Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Wensheng Zhang
- Department of Computer Science, Bioinformatics Facility of Xavier RCMI Center of Cancer Research, Xavier University of Louisiana, New Orleans, United States
| | - Kun Zhang
- Department of Computer Science, Bioinformatics Facility of Xavier RCMI Center of Cancer Research, Xavier University of Louisiana, New Orleans, United States
| | - Li Li
- Laboratory of Translational Cancer Research, Ochsner Clinical Foundation, New Orleans, United States
| | - David Margolin
- Department of Colon and Rectal Surgery, Ochsner Clinical Foundation, New Orleans, United States
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| |
Collapse
|
48
|
Drago-Ferrante R, Pentimalli F, Carlisi D, De Blasio A, Saliba C, Baldacchino S, Degaetano J, Debono J, Caruana-Dingli G, Grech G, Scerri C, Tesoriere G, Giordano A, Vento R, Di Fiore R. Suppressive role exerted by microRNA-29b-1-5p in triple negative breast cancer through SPIN1 regulation. Oncotarget 2018; 8:28939-28958. [PMID: 28423652 PMCID: PMC5438704 DOI: 10.18632/oncotarget.15960] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/18/2017] [Indexed: 01/06/2023] Open
Abstract
MiR-29 family dysregulation occurs in various cancers including breast cancers. We investigated miR-29b-1 functional role in human triple negative breast cancer (TNBC) the most aggressive breast cancer subtype. We found that miR-29b-1-5p was downregulated in human TNBC tissues and cell lines. To assess whether miR-29b-1-5p correlated with TNBC regenerative potential, we evaluated cancer stem cell enrichment in our TNBC cell lines, and found that only MDA-MB-231 and BT-20 produced primary, secondary and tertiary mammospheres, which were progressively enriched in OCT4, NANOG and SOX2 stemness genes. MiR-29b-1-5p expression inversely correlated with mammosphere stemness potential, and miR-29b-1 ectopic overexpression decreased TNBC cell growth, self-renewal, migration, invasiveness and paclitaxel resistance repressing WNT/βcatenin and AKT signaling pathways and stemness regulators. We identified SPINDLIN1 (SPIN1) among predicted miR-29b-1-5p targets. Consistently, SPIN1 was overexpressed in most TNBC tissues and cell lines and negatively correlated with miR-29b-1-5p. Target site inhibition showed that SPIN1 seems to be directly controlled by miR-29b-1-5p. Silencing SPIN1 mirrored the effects triggered by miR-29b-1 overexpression, whereas SPIN1 rescue by SPIN1miScript protector, determined the reversal of the molecular effects produced by the mimic-miR-29b-1-5p. Overall, we show that miR-29b-1 deregulation impacts on multiple oncogenic features of TNBC cells and their renewal potential, acting, at least partly, through SPIN1, and suggest that both these factors should be evaluated as new possible therapeutic targets against TNBC.
Collapse
Affiliation(s)
- Rosa Drago-Ferrante
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Polyclinic, Palermo, Italy
| | - Francesca Pentimalli
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Daniela Carlisi
- Laboratory of Biochemistry, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Polyclinic, Palermo, Italy
| | - Anna De Blasio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Polyclinic, Palermo, Italy
| | - Christian Saliba
- Centre of Molecular Medicine and Biobanking, University of Malta, Msida, MSD, Malta
| | - Shawn Baldacchino
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, MSD, Malta
| | - James Degaetano
- Department of Pathology, Mater Dei Hospital, Msida, MSD, Malta
| | - Joseph Debono
- Department of Surgery, Mater Dei Hospital, Msida, MSD, Malta
| | | | - Godfrey Grech
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, MSD, Malta
| | - Christian Scerri
- Department of Pathology, Mater Dei Hospital, Msida, MSD, Malta.,Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, MSD, Malta
| | - Giovanni Tesoriere
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Associazione Siciliana per la Lotta contro i Tumori (ASLOT), Palermo, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Department of Medicine, Surgery & Neuroscience University of Siena, Italy
| | - Renza Vento
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Polyclinic, Palermo, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Associazione Siciliana per la Lotta contro i Tumori (ASLOT), Palermo, Italy
| | - Riccardo Di Fiore
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Polyclinic, Palermo, Italy.,Associazione Siciliana per la Lotta contro i Tumori (ASLOT), Palermo, Italy
| |
Collapse
|
49
|
Luise C, Robaa D. Application of Virtual Screening Approaches for the Identification of Small Molecule Inhibitors of the Methyllysine Reader Protein Spindlin1. Methods Mol Biol 2018; 1824:347-370. [PMID: 30039418 DOI: 10.1007/978-1-4939-8630-9_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Computer-based approaches represent a powerful tool which helps to identify and optimize lead structures in the process of drug discovery. Computer-aided drug design techniques (CADD) encompass a large variety of methods which are subdivided into structure-based (SBDD) and ligand-based drug design (LBDD) methods. Several approaches have been successfully used over the last three decades in different fields. Indeed also in the field of epigenetics, virtual screening (VS) studies and structure-based approaches have been applied to identify novel chemical modulators of epigenetic targets as well as to predict the binding mode of active ligands and to study the protein dynamics.In this chapter, an iterative VS approach using both SBDD and LBDD methods, which was successful in identifying Spindlin1 inhibitors, will be described. All protocol steps, starting from structure-based pharmacophore modeling, protein and database preparation along with docking and similarity search, will be explained in details.
Collapse
Affiliation(s)
- Chiara Luise
- Department of Pharmaceutical Chemistry, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany
| | - Dina Robaa
- Department of Pharmaceutical Chemistry, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany.
| |
Collapse
|
50
|
Choi JW, Zhao MH, Liang S, Guo J, Lin ZL, Li YH, Jo YJ, Kim NH, Cui XS. Spindlin 1 is essential for metaphase II stage maintenance and chromosomal stability in porcine oocytes. Mol Hum Reprod 2017; 23:166-176. [PMID: 28364522 DOI: 10.1093/molehr/gax005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/27/2017] [Indexed: 02/06/2023] Open
Abstract
Study question What is the function of Spindlin 1 (Spin1) in metaphase II stage oocytes in pigs? Summary answer Depletion of Spin1 induces spontaneous oocyte activation and overexpression of Spin1 causes multinuclear formation through induction of DNA damage in porcine oocytes. What is known already Little is known about the function of Spin1 in oocytes and embryos. In mouse oocytes, Spin1 is specifically expressed during gametogenesis and is essential for meiotic resumption. In somatic cells, Spin1 promotes cancer cell proliferation and activates WNT/T-cell factor signaling. Study design size, duration After knockdown (KD) or overexpression of Spin1 in porcine MII-stage oocytes, MII maintenance was checked following additional culture for 24 h. Investigated parthenotes were cultured up to the four cell (72 h) or blastocyst (7 days) stages. Participants/materials, setting, methods Spin1 was knocked down in porcine oocytes and embryos via microinjection of pig Spin1-targeting siRNA. For Spin1 overexpression, porcine Spin1-eGFP cRNA was generated. Additionally, for rescue experiments, cRNA encoding siRNA-resistant mouse Spin1 was added to the pig Spin1-targeting siRNA. For the overexpression and rescue experiments, microinjection and culture were performed using the same methods as the KD experiments. Main results and the role of chance KD of Spin1 in MII-stage porcine oocytes reduced metaphase-promoting factor and mitogen-activated protein kinase activities, resulting in spontaneous pronuclear formation without calcium activation. However, the DNA damage response was triggered by Spin1 overexpression, generating the checkpoint protein γH2A.X. Furthermore, Spin1 overexpression blocked metaphase-anaphase transition and led to multinucleation in oocytes and embryos. Large scale data None. Limitations, reasons for caution This study is based on in vitro investigations with abnormal expression levels of Spin1. This may or may not accurately reflect the situation in vivo. Wider implications of the findings Spin1 is essential to maintain MII arrest, but a high level of Spin1 induces DNA damage in oocytes and embryos. Thus, a system to accurately regulate Spin1 expression operates in porcine MII-stage oocytes and embryos. Study funding and competing interest(s) This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2015R1D1A1A01057629). The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Jeong-Woo Choi
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Ming-Hui Zhao
- Division of Animal Biotechnology, National Institute of Animal Science, Rural Development Administration, Jeonju 55536, Republic of Korea
| | - Shuang Liang
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Jing Guo
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Zi-Li Lin
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Ying-Hua Li
- Department of Animal Science, Yanbian University, Yanji, Jilin 133000, P.R. China
| | - Yu-Jin Jo
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| |
Collapse
|