1
|
Lee M, Kim HG. Anti-Cancer Strategy Based on Changes in the Role of Autophagy Depending on the Survival Environment and Tumorigenesis Stages. Molecules 2024; 29:5134. [PMID: 39519774 PMCID: PMC11547988 DOI: 10.3390/molecules29215134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Autophagy is a crucial mechanism for recycling intracellular materials, and under normal metabolic conditions, it is maintained at low levels in cells. However, when nutrients are deficient or under hypoxic conditions, the level of autophagy significantly increases. Particularly in cancer cells, which grow more rapidly than normal cells and tend to grow in a three-dimensional manner, cells inside the cell mass often face limited oxygen supply, leading to inherently higher levels of autophagy. Therefore, the initial development of anticancer drugs targeting autophagy was based on a strategy to suppress these high levels of autophagy. However, anticancer drugs that inhibit autophagy have not shown promising results in clinical trials, as it has been revealed that autophagy does not always play a role that favors cancer cell survival. Hence, this review aims to suggest anticancer strategies based on the changes in the role of autophagy according to survival conditions and tumorigenesis stage.
Collapse
Affiliation(s)
- Michael Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Institute for New Drug Development, Incheon National University, Incheon 22012, Republic of Korea
| | - Hye-Gyo Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
2
|
Liu T, Yue X, Chen X, Yan R, Wu C, Li Y, Bu X, Han H, Liu RY. Nilotinib in combination with sunitinib renders MCL-1 for degradation and activates autophagy that overcomes sunitinib resistance in renal cell carcinoma. Cell Oncol (Dordr) 2024; 47:1277-1294. [PMID: 38393513 DOI: 10.1007/s13402-024-00927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
PURPOSE Sunitinib is a recommended drug for metastatic renal cell carcinoma (RCC). However, the therapeutic potential of sunitinib is impaired by toxicity and resistance. Therefore, we seek to explore a combinatorial strategy to improve sunitinib efficacy of low-toxicity dose for better clinical application. METHODS We screen synergistic reagents of sunitinib from a compound library containing 1374 FDA-approved drugs by in vitro cell viability evaluation. The synergistically antiproliferative and proapoptotic effects were demonstrated on in vitro and in vivo models. The molecular mechanism was investigated by phosphoproteomics, co-immunoprecipitation, immunofluorescence and western-blot assays, etc. RESULTS: From the four-step screening, nilotinib stood out as a potential synergistic killer combined with sunitinib. Subsequent functional evaluation demonstrated that nilotinib and sunitinib synergistically inhibit RCC cell proliferation and promote apoptosis in vitro and in vivo. Mechanistically, nilotinib activates E3-ligase HUWE1 and in combination with sunitinib renders MCL-1 for degradation via proteasome pathway, resulting in the release of Beclin-1 from MCL-1/Beclin-1 complex. Subsequently, Beclin-1 induces complete autophagy flux to promote antitumor effect. CONCLUSION Our findings revealed that a novel mechanism that nilotinib in combination with sunitinib overcomes sunitinib resistance in RCC. Therefore, this novel rational combination regimen provides a promising therapeutic avenue for metastatic RCC and rationale for evaluating this combination clinically.
Collapse
Affiliation(s)
- Tingyu Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xin Yue
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Xue Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ru Yan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chong Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yunzhi Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xianzhang Bu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hui Han
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Ran-Yi Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
3
|
Liu Y, Meng Y, Zhang J, Gu L, Shen S, Zhu Y, Wang J. Pharmacology Progresses and Applications of Chloroquine in Cancer Therapy. Int J Nanomedicine 2024; 19:6777-6809. [PMID: 38983131 PMCID: PMC11232884 DOI: 10.2147/ijn.s458910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/07/2024] [Indexed: 07/11/2024] Open
Abstract
Chloroquine is a common antimalarial drug and is listed in the World Health Organization Standard List of Essential Medicines because of its safety, low cost and ease of use. Besides its antimalarial property, chloroquine also was used in anti-inflammatory and antivirus, especially in antitumor therapy. A mount of data showed that chloroquine mainly relied on autophagy inhibition to exert its antitumor effects. However, recently, more and more researches have revealed that chloroquine acts through other mechanisms that are autophagy-independent. Nevertheless, the current reviews lacked a comprehensive summary of the antitumor mechanism and combined pharmacotherapy of chloroquine. So here we focused on the antitumor properties of chloroquine, summarized the pharmacological mechanisms of antitumor progression of chloroquine dependent or independent of autophagy inhibition. Moreover, we also discussed the side effects and possible application developments of chloroquine. This review provided a more systematic and cutting-edge knowledge involved in the anti-tumor mechanisms and combined pharmacotherapy of chloroquine in hope of carrying out more in-depth exploration of chloroquine and obtaining more clinical applications.
Collapse
Affiliation(s)
- Yanqing Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Liwei Gu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Shengnan Shen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Yongping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- Department of Pharmacological Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| |
Collapse
|
4
|
Abbas AA, Farghaly TA, Dawood KM. Recent advances on anticancer and antimicrobial activities of directly-fluorinated five-membered heterocycles and their benzo-fused systems. RSC Adv 2024; 14:19752-19779. [PMID: 38899036 PMCID: PMC11185950 DOI: 10.1039/d4ra01387e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Due to the importance of the fluorinated heterocycles as main components of marketed drugs where 20% of the anticancer and antibiotic drugs contain fluorine atoms, this review describes the reported five-membered heterocycles and their benzo-fused systems having directly connected fluorine atom(s). The in vivo and in vitro anticancer and antimicrobial activities of these fluorinated heterocycles are well reported. Some fluorinated heterocycles were found to be lead structures for drug design developments where their activities were almost equal to or exceeded the potency of the reference drugs. In most cases, the fluorine-containing heterocycles showed promising safety index via their reduced cytotoxicity in non-cancerous cell lines. SAR study assigned that fluorinated heterocycles having various electron-donating or electron-withdrawing substituents significantly affected the anticancer and antimicrobial activities.
Collapse
Affiliation(s)
- Ashraf A Abbas
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +202 35727556
| | - Thoraya A Farghaly
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +202 35727556
- Department of Chemistry, Faculty of Science, Umm Al-Qura University Makkah Saudi Arabia
| | - Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +202 35727556
| |
Collapse
|
5
|
Ji L, Liu Y, Wang Z, Huang Q, Cai J, Gu H, Li J, Chen X, Feng C, He X, Deng X, Cheng X, Kong X, Zhu X, Wu T, Yang B, Lin Z, Yang X, Feng G, Yu J. Causal effect analysis of estrogen receptor associated breast cancer and clear cell ovarian cancer. Am J Transl Res 2024; 16:2699-2710. [PMID: 39006281 PMCID: PMC11236669 DOI: 10.62347/ecoo9552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Evidence indicates that the risk of developing a secondary ovarian cancer (OC) is correlated with estrogen receptor (ER) status. However, the clinical significance of the relationship between ER-associated breast cancer (BC) and clear cell ovarian cancer (CCOC) remains elusive. METHODS Independent single nucleotide polymorphisms (SNPs) strongly correlated with exposure were extracted, and those associated with confounders and outcomes were removed using the PhenoScanner database. SNP effects were extracted from the outcome datasets with minor allele frequency > 0.01 as the filtration criterion. Next, valid instrumental variables (IVs) were obtained by harmonizing exposure and outcome effects and further filtered based on F-statistics (> 10). Mendelian randomization (MR) assessment of valid IVs was carried out using inverse variance weighted (IVW), MR Egger (ME), weighted median (WM), and multiplicative random effects-inverse variance weighted (MRE-IVW) methods. For sensitivity analysis and visualization of MR findings, a heterogeneity test, a pleiotropy test, a leave-one-out test, scatter plots, forest plots, and funnel plots were employed. RESULTS MR analyses with all four methods revealed that CCOC was not causally associated with ER-negative BC (IVW results: odds ratio (OR) = 0.89, 95% confidence interval (CI) = 0.66-1.20, P = 0.431) or ER-positive BC (IVW results: OR = 0.99, 95% CI = 0.88-1.12, P = 0.901). F-statistics were computed for each valid IV, all of which exceeded 10. The stability and reliability of the results were confirmed by sensitivity analysis. CONCLUSIONS Our findings indicated that CCOC dids not have a causal association with ER-associated BC. The absence of a definitive causal link between ER-associated BC and CCOC suggested a minimal true causal influence of ER-associated BC exposure factors on CCOC. These results indicated that individuals afflicted by ER-associated BC could alleviate concerns regarding the developing of CCOC, thereby aiding in preserving their mental well-being stability and optimizing the efficacy of primary disease treatment.
Collapse
Affiliation(s)
- Li Ji
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Yanbo Liu
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215000, Jiangsu, China
| | - Zihan Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Qiuru Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Jiaying Cai
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Han Gu
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Jiaxin Li
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xia Chen
- Department of Obstetrics and Gynecology, Nantong First People’s Hospital, Affiliated Hospital 2 of Nantong University, Nantong UniversityNantong 226001, Jiangsu, China
| | - Chenrui Feng
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xuxin He
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xiaonan Deng
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xinmeng Cheng
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xiuwen Kong
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xiaoqi Zhu
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Tong Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Binbin Yang
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Ziwen Lin
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| | - Xiaoqing Yang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Nantong University, Nantong UniversityNantong 226001, Jiangsu, China
| | - Guannan Feng
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhou 215000, Jiangsu, China
| | - Jun Yu
- Institute of Reproductive Medicine, School of Medicine, Nantong UniversityNantong 226001, Jiangsu, China
| |
Collapse
|
6
|
Jiang M, Wu W, Xiong Z, Yu X, Ye Z, Wu Z. Targeting autophagy drug discovery: Targets, indications and development trends. Eur J Med Chem 2024; 267:116117. [PMID: 38295689 DOI: 10.1016/j.ejmech.2023.116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 02/25/2024]
Abstract
Autophagy plays a vital role in sustaining cellular homeostasis and its alterations have been implicated in the etiology of many diseases. Drugs development targeting autophagy began decades ago and hundreds of agents were developed, some of which are licensed for the clinical usage. However, no existing intervention specifically aimed at modulating autophagy is available. The obstacles that prevent drug developments come from the complexity of the actual impact of autophagy regulators in disease scenarios. With the development and application of new technologies, several promising categories of compounds for autophagy-based therapy have emerged in recent years. In this paper, the autophagy-targeted drugs based on their targets at various hierarchical sites of the autophagic signaling network, e.g., the upstream and downstream of the autophagosome and the autophagic components with enzyme activities are reviewed and analyzed respectively, with special attention paid to those at preclinical or clinical trials. The drugs tailored to specific autophagy alone and combination with drugs/adjuvant therapies widely used in clinical for various diseases treatments are also emphasized. The emerging drug design and development targeting selective autophagy receptors (SARs) and their related proteins, which would be expected to arrest or reverse the progression of disease in various cancers, inflammation, neurodegeneration, and metabolic disorders, are critically reviewed. And the challenges and perspective in clinically developing autophagy-targeted drugs and possible combinations with other medicine are considered in the review.
Collapse
Affiliation(s)
- Mengjia Jiang
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Wayne Wu
- College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Zijie Xiong
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Xiaoping Yu
- Department of Biology, China Jiliang University, China
| | - Zihong Ye
- Department of Biology, China Jiliang University, China
| | - Zhiping Wu
- Department of Pharmacology and Pharmacy, China Jiliang University, China.
| |
Collapse
|
7
|
Chen B, Zhao L, Yang R, Xu T. New insights about endometriosis-associated ovarian cancer: pathogenesis, risk factors, prediction and diagnosis and treatment. Front Oncol 2024; 14:1329133. [PMID: 38384812 PMCID: PMC10879431 DOI: 10.3389/fonc.2024.1329133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Previous studies have shown that the risk of malignant transformation of endometriosis in premenopausal women is approximately 1%, significantly impacting the overall well-being and quality of life of affected women. Presently, the diagnostic gold standard for endometriosis-associated ovarian cancer (EAOC) continues to be invasive laparoscopy followed by histological examination. However, the application of this technique is limited due to its high cost, highlighting the importance of identifying a non-invasive diagnostic approach. Therefore, there is a critical need to explore non-invasive diagnostic methods to improve diagnostic precision and optimize clinical outcomes for patients. This review presents a comprehensive survey of the current progress in comprehending the pathogenesis of malignant transformation in endometriosis. Furthermore, it examines the most recent research discoveries concerning the diagnosis of EAOC and emphasizes potential targets for therapeutic intervention. The ultimate objective is to improve prevention, early detection, precise diagnosis, and treatment approaches, thereby optimizing the clinical outcomes for patients.
Collapse
Affiliation(s)
| | | | | | - Tianmin Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Chu H, Xie W, Guo C, Shi H, Gu J, Qin Z, Xie Y. Inhibiting stanniocalcin 2 reduces sunitinib resistance of Caki-1 renal cancer cells under hypoxia condition. Ann Med Surg (Lond) 2023; 85:5963-5971. [PMID: 38098599 PMCID: PMC10718379 DOI: 10.1097/ms9.0000000000001450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/20/2023] [Indexed: 12/17/2023] Open
Abstract
Background Our previous study has suggested that blocking stanniocalcin 2 (STC2) could reduce sunitinib resistance in clear cell renal cell carcinoma (ccRCC) under normoxia. The hypoxia is a particularly important environment for RCC occurrence and development, as well as sunitinib resistance. The authors proposed that STC2 also plays important roles in RCC sunitinib resistance under hypoxia conditions. Methods The ccRCC Caki-1 cells were treated within the hypoxia conditions. Real-time quantitative PCR and Western blotting were applied to detect the STC2 expression in ccRCC Caki-1 cells. STC2-neutralizing antibodies, STC2 siRNA, and the recombinant human STC2 (rhSTC2) were used to identify targeting regulation on STC2 in modulating sunitinib resistance, proliferation, epithelial-mesenchymal transition (EMT), migration, and invasion. In addition, autophagy flux and the lysosomal acidic environment were investigated by Western blotting and fluorescence staining, and the accumulation of sunitinib in cells was observed with the addition of STC2-neutralizing antibodies and autophagy modulators. Results Under hypoxia conditions, sunitinib disrupted the lysosomal acidic environment and accumulated in Caki-1 cells. Hypoxia-induced the STC2 mRNA and protein levels in Caki-1 cells. STC2-neutralizing antibodies and STC2 siRNA effectively aggravated sunitinib-reduced cell viability and proliferation, which were reversed by rhSTC2. In addition, sunitinib promoted EMT, migration, and invasion, which were reduced by STC2-neutralizing antibodies. Conclusion Inhibiting STC2 could reduce the sunitinib resistance of ccRCC cells under hypoxia conditions.
Collapse
Affiliation(s)
- Hezhen Chu
- Department of Urology, Yixing Traditional Chinese Medicine Hospital
| | - Wenchao Xie
- Department of Urology, Affiliated Hospital of Jiangsu University-Yixing People’s Hospital, Yixing
| | - Chuanzhi Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Jie Gu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Zhenqian Qin
- Department of Urology, Affiliated Hospital of Jiangsu University-Yixing People’s Hospital, Yixing
| | - Yimin Xie
- Department of Urology, Affiliated Hospital of Jiangsu University-Yixing People’s Hospital, Yixing
| |
Collapse
|
9
|
Wang Y, Liu X, Gong L, Ding W, Hao W, Peng Y, Zhang J, Cai W, Gao Y. Mechanisms of sunitinib resistance in renal cell carcinoma and associated opportunities for therapeutics. Br J Pharmacol 2023; 180:2937-2955. [PMID: 37740648 DOI: 10.1111/bph.16252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/07/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023] Open
Abstract
Sunitinib is the first-line drug for renal cell carcinoma (RCC) treatment. However, patients who received sunitinib treatment will ultimately develop drug resistance after 6-15 months, creating a huge obstacle to the current treatment of renal cell carcinoma. Therefore, it is urgent to clarify the mechanisms of sunitinib resistance and develop new strategies to overcome it. In this review, the mechanisms of sunitinib resistance in renal cell carcinoma have been summarized based on five topics: activation of bypass or alternative pathway, inadequate drug accumulation, tumour microenvironment, metabolic reprogramming and epigenetic regulation. Furthermore, present and potential biomarkers, as well as potential treatment strategies for overcoming sunitinib resistance in renal cell carcinoma, are also covered.
Collapse
Affiliation(s)
- Yunxia Wang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaolin Liu
- School of Pharmacy, Fudan University, Shanghai, China
| | - Luyao Gong
- School of Pharmacy, Fudan University, Shanghai, China
| | - Weihong Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenjing Hao
- School of Pharmacy, Fudan University, Shanghai, China
| | - Yeheng Peng
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jun Zhang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Weimin Cai
- School of Pharmacy, Fudan University, Shanghai, China
| | - Yuan Gao
- School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Alhasan B, Mikeladze M, Guzhova I, Margulis B. Autophagy, molecular chaperones, and unfolded protein response as promoters of tumor recurrence. Cancer Metastasis Rev 2023; 42:217-254. [PMID: 36723697 DOI: 10.1007/s10555-023-10085-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023]
Abstract
Tumor recurrence is a paradoxical function of a machinery, whereby a small proportion of the cancer cell population enters a resistant, dormant state, persists long-term in this condition, and then transitions to proliferation. The dormant phenotype is typical of cancer stem cells, tumor-initiating cells, disseminated tumor cells, and drug-tolerant persisters, which all demonstrate similar or even equivalent properties. Cancer cell dormancy and its conversion to repopulation are regulated by several protein signaling systems that inhibit or induce cell proliferation and provide optimal interrelations between cancer cells and their special niche; these systems act in close connection with tumor microenvironment and immune response mechanisms. During dormancy and reawakening periods, cell proteostasis machineries, autophagy, molecular chaperones, and the unfolded protein response are recruited to protect refractory tumor cells from a wide variety of stressors and therapeutic insults. Proteostasis mechanisms functionally or even physically interfere with the main regulators of tumor relapse, and the significance of these interactions and implications in the tumor recurrence phases are discussed in this review.
Collapse
Affiliation(s)
- Bashar Alhasan
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia.
| | - Marina Mikeladze
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia
| | - Irina Guzhova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia
| | - Boris Margulis
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia
| |
Collapse
|
11
|
Canonical and Noncanonical ER Stress-Mediated Autophagy Is a Bite the Bullet in View of Cancer Therapy. Cells 2022; 11:cells11233773. [PMID: 36497032 PMCID: PMC9738281 DOI: 10.3390/cells11233773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer cells adapt multiple mechanisms to counter intense stress on their way to growth. Tumor microenvironment stress leads to canonical and noncanonical endoplasmic stress (ER) responses, which mediate autophagy and are engaged during proteotoxic challenges to clear unfolded or misfolded proteins and damaged organelles to mitigate stress. In these conditions, autophagy functions as a cytoprotective mechanism in which malignant tumor cells reuse degraded materials to generate energy under adverse growing conditions. However, cellular protection by autophagy is thought to be complicated, contentious, and context-dependent; the stress response to autophagy is suggested to support tumorigenesis and drug resistance, which must be adequately addressed. This review describes significant findings that suggest accelerated autophagy in cancer, a novel obstacle for anticancer therapy, and discusses the UPR components that have been suggested to be untreatable. Thus, addressing the UPR or noncanonical ER stress components is the most effective approach to suppressing cytoprotective autophagy for better and more effective cancer treatment.
Collapse
|
12
|
CircRNF144B/miR-342-3p/FBXL11 axis reduced autophagy and promoted the progression of ovarian cancer by increasing the ubiquitination of Beclin-1. Cell Death Dis 2022; 13:857. [PMID: 36209140 PMCID: PMC9547922 DOI: 10.1038/s41419-022-05286-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 01/23/2023]
Abstract
Circular RNAs (circRNAs) can regulate autophagy and ovarian cancer (OC) progression. However, autophagy-associated circRNAs involved in OC progression are largely unknown. Bioinformatics, RNA sequencing, and qRT-PCR were conducted to detect circRNF144B expression in OC as well as its relationship with patient prognosis. Functional experiments were used to determine the effects of circRNF144B on the proliferation, mobility and autophagy of OC. Double luciferase reporter assays, immunoprecipitation, and ubiquitination detection were performed to determine the molecular mechanisms of circRNF144B in autophagy and OC progression. CircRNF144B was elevated in OC tissues with low autophagy levels, and associated with poor prognosis. CircRNF144B promoted the malignant biological properties of OC cells, and inhibited the autophagy. Mechanistically, circRNF144B acts as a sponge for miR-342-3p and inhibits miR-342-3p-induced degradation of lysine demethylase 2 A (FBXL11) mRNA, leading to elevated FBXL11 protein levels. Elevated FBXL11 promoted the ubiquitination and degradation of Beclin-1, thus inhibiting autophagy. In conclusion, CircRNF144B increased FBXL11 level by sponging miR-342-3p, whereas elevated FBXL11 promoted the ubiquitination and protein degradation of Beclin-1, thus suppressing autophagy flux and promoting OC progression. Thus, circRNF144B may be an effective target for OC therapy.
Collapse
|
13
|
Yamamoto K, Iwadate D, Kato H, Nakai Y, Tateishi K, Fujishiro M. Targeting autophagy as a therapeutic strategy against pancreatic cancer. J Gastroenterol 2022; 57:603-618. [PMID: 35727403 PMCID: PMC9392712 DOI: 10.1007/s00535-022-01889-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/28/2022] [Indexed: 02/07/2023]
Abstract
Macroautophagy (hereafter autophagy) is a catabolic process through which cytosolic components are captured in the autophagosome and degraded in the lysosome. Autophagy plays two major roles: nutrient recycling under starvation or stress conditions and maintenance of cellular homeostasis by removing the damaged organelles or protein aggregates. In established cancer cells, autophagy-mediated nutrient recycling promotes tumor progression, whereas in normal/premalignant cells, autophagy suppresses tumor initiation by eliminating the oncogenic/harmful molecules. Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease that is refractory to most currently available treatment modalities, including immune checkpoint blockade and molecular-targeted therapy. One prominent feature of PDAC is its constitutively active and elevated autophagy-lysosome function, which enables PDAC to thrive in its nutrient-scarce tumor microenvironment. In addition to metabolic support, autophagy promotes PDAC progression in a metabolism-independent manner by conferring resistance to therapeutic treatment or facilitating immune evasion. Besides to cell-autonomous autophagy in cancer cells, host autophagy (autophagy in non-cancer cells) supports PDAC progression, further highlighting autophagy as a promising therapeutic target in PDAC. Based on a growing list of compelling preclinical evidence, there are numerous ongoing clinical trials targeting the autophagy-lysosome pathway in PDAC. Given the multifaceted and context-dependent roles of autophagy in both cancer cells and normal host cells, a deeper understanding of the mechanisms underlying the tumor-promoting roles of autophagy as well as of the consequences of autophagy inhibition is necessary for the development of autophagy inhibition-based therapies against PDAC.
Collapse
Affiliation(s)
- Keisuke Yamamoto
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Dosuke Iwadate
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroyuki Kato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yousuke Nakai
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Keisuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
14
|
Koizume S, Takahashi T, Nakamura Y, Yoshihara M, Ota Y, Sato S, Tadokoro H, Yokose T, Kato H, Miyagi E, Miyagi Y. Lipophagy-ICAM-1 pathway associated with fatty acid and oxygen deficiencies is involved in poor prognoses of ovarian clear cell carcinoma. Br J Cancer 2022; 127:462-473. [PMID: 35449452 PMCID: PMC9346109 DOI: 10.1038/s41416-022-01808-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Serum starvation and hypoxia (SSH) mimics a stress condition in tumours. We have shown that intercellular adhesion molecule-1 (ICAM-1) protein is synergistically expressed in ovarian clear cell carcinoma (CCC) cells under SSH in response to an insufficient supply of fatty acids (FAs). This ICAM-1 expression is responsible for resistance against the lethal condition, thereby promoting tumour growth. However, the underlying mechanisms that link SSH-driven ICAM1 gene expression to impaired FA supply and its clinical relevance are unclear. METHODS The underlying mechanisms of how FA deficiency induces ICAM-1 expression in cooperation with hypoxia were analysed in vitro and in vivo. Clinical significance of CCC cell-derived ICAM-1 and the mechanism associated with the transcriptional synergism were also investigated. RESULTS ICAM-1 expression was mediated through lipophagy-driven lipid droplet degradation, followed by impaired FA-lipid droplet flow. Lipophagy induced ICAM1 expression through stabilisation of NFκB binding to the promoter region via Sam68 and hTERT. Analyses of clinical specimens revealed that expression of ICAM-1 and LC3B, an autophagy marker associated with lipophagy, significantly correlated with poor prognoses of CCC. CONCLUSIONS The lipophagy-ICAM-1 pathway induced under a tumour-like stress conditions contributes to CCC progression and is a potential therapeutic target for this aggressive cancer type.
Collapse
Affiliation(s)
- Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, 241-8515, Japan. .,Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, 241-8515, Japan.
| | - Tomoko Takahashi
- grid.414944.80000 0004 0629 2905Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, 241-8515 Japan
| | - Yoshiyasu Nakamura
- grid.414944.80000 0004 0629 2905Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, 241-8515 Japan
| | - Mitsuyo Yoshihara
- grid.414944.80000 0004 0629 2905Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, 241-8515 Japan
| | - Yukihide Ota
- grid.414944.80000 0004 0629 2905Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, 241-8515 Japan ,grid.268441.d0000 0001 1033 6139Department of Obstetrics, Gynecology, and Molecular Reproductive Science, Yokohama City University, Graduate School of Medicine, Yokohama, 236-0004 Japan
| | - Shinya Sato
- grid.414944.80000 0004 0629 2905Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, 241-8515 Japan ,grid.414944.80000 0004 0629 2905Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, 241-8515 Japan
| | - Hiroko Tadokoro
- grid.414944.80000 0004 0629 2905Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, 241-8515 Japan
| | - Tomoyuki Yokose
- grid.414944.80000 0004 0629 2905Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, 241-8515 Japan
| | - Hisamori Kato
- grid.414944.80000 0004 0629 2905Department of Gynecology, Kanagawa Cancer Center Hospital, Yokohama, 241-8515 Japan
| | - Etsuko Miyagi
- grid.268441.d0000 0001 1033 6139Department of Obstetrics, Gynecology, and Molecular Reproductive Science, Yokohama City University, Graduate School of Medicine, Yokohama, 236-0004 Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, 241-8515, Japan. .,Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, 241-8515, Japan.
| |
Collapse
|
15
|
Sousa D, Pereira SS, Pignatelli D. Modulation of Autophagy in Adrenal Tumors. Front Endocrinol (Lausanne) 2022; 13:937367. [PMID: 35966083 PMCID: PMC9373848 DOI: 10.3389/fendo.2022.937367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/15/2022] [Indexed: 01/18/2023] Open
Abstract
Adrenal masses are one of the most common tumors in humans. The majority are benign and non-functioning and therefore do not require immediate treatment. In contrast, the rare adrenal malignant tumors are often highly aggressive and with poor prognosis. Besides usually being detected in advanced stages, often already with metastases, one of the reasons of the unfavorable outcome of the patients with adrenal cancer is the absence of effective treatments. Autophagy is one of the intracellular pathways targeted by several classes of chemotherapeutics. Mitotane, the most commonly used drug for the treatment of adrenocortical carcinoma, was recently shown to also modulate autophagy. Autophagy is a continuous programmed cellular process which culminates with the degradation of cellular organelles and proteins. However, being a dynamic mechanism, understanding the autophagic flux can be highly complex. The role of autophagy in cancer has been described paradoxically: initially described as a tumor pro-survival mechanism, different studies have been showing that it may result in other outcomes, namely in tumor cell death. In adrenal tumors, this dual role of autophagy has also been addressed in recent years. Studies reported both induction and inhibition of autophagy as a treatment strategy of adrenal malignancies. Importantly, most of these studies were performed using cell lines. Consequently clinical studies are still required. In this review, we describe what is known about the role of autophagy modulation in treatment of adrenal tumors. We will also highlight the aspects that need further evaluation to understand the paradoxical role of autophagy in adrenal tumors.
Collapse
Affiliation(s)
- Diana Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Cancer Signaling & Metabolism Group, IPATIMUP- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Sofia S. Pereira
- Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Duarte Pignatelli
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Cancer Signaling & Metabolism Group, IPATIMUP- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Endocrinology, Centro Hospitalar e Universitário de S. João, Porto, Portugal
- Department of Biomedicine, Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Chen J, Wei Z, Fu K, Duan Y, Zhang M, Li K, Guo T, Yin R. Non-apoptotic cell death in ovarian cancer: Treatment, resistance and prognosis. Biomed Pharmacother 2022; 150:112929. [PMID: 35429741 DOI: 10.1016/j.biopha.2022.112929] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 11/19/2022] Open
Abstract
Ovarian cancer is mostly diagnosed at an advanced stage due to the absence of effective screening methods and specific symptoms. Repeated chemotherapy resistance and recurrence before PARPi are used as maintenance therapies, lead to low survival rates and poor prognosis. Apoptotic cell death plays a crucial role in ovarian cancer, which is proved by current researches. With the ongoing development of targeted therapy, non-apoptotic cell death has shown substantial potential in tumor prevention and treatment, including autophagy, ferroptosis, necroptosis, immunogenic cell death, pyroptosis, alkaliptosis, and other modes of cell death. We systematically reviewed the research progress on the role of non-apoptotic cell death in the onset, development, and outcome of ovarian cancer. This review provides a more theoretical basis for exploring therapeutic targets, reversing drug resistance in refractory ovarian cancer, and establishing risk prediction models that help realize the clinical transformation of vital drugs.
Collapse
Affiliation(s)
- Jinghong Chen
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Zhichen Wei
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Kaiyu Fu
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yuanqiong Duan
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mengpei Zhang
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Kemin Li
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Tao Guo
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Rutie Yin
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
17
|
Fan G, Qin J, Fu X, Si X, Li L, Yang K, Wang B, Lou H, Zhu J. Low-Intensity Focused Ultrasound Targeted Microbubble Destruction Enhanced Paclitaxel Sensitivity by Decreasing Autophagy in Paclitaxel-Resistant Ovarian Cancer. Front Oncol 2022; 12:823956. [PMID: 35574313 PMCID: PMC9098947 DOI: 10.3389/fonc.2022.823956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/04/2022] [Indexed: 12/29/2022] Open
Abstract
Ultrasound targeted microbubble destruction (UTMD) was introduced as a promising method to improve anti-tumor therapeutic efficacy, while minimizing side effects to healthy tissues. Nevertheless, the acoustical phenomenon behind the UTMD as well as the exact mechanisms of autophagy action involved in the increased anti-cancer response are still not fully understood. Therefore, we examined the drug resistance-reversing effects of low-intensity focused ultrasound with microbubble (LIFU+MB) in paclitaxel (PTX)-resistant ovarian cancer cells. Cell viability was evaluated using CCK8 (Cell Counting Kit-8), apoptosis was detected by flow cytometry, quantitative real-time PCR and Western blot were used to detect the expressions of mRNA and protein, and autophagy was observed by transmission electron microscopy (TEM). We revealed that the level of autophagy was increased (p < 0.05) in PTX-resistant ovarian cancer cells. Treatment of LIFU+MB combined with PTX can notably inhibit proliferation as well as increase apoptosis (p < 0.01) in drug-resistant cells. We proposed that LIFU+MB might affect the sensitivity of ovarian cancer cells to PTX by modulating autophagy. To verify the hypothesis, we analyzed the autophagy level of drug-resistant cells after the treatment of LIFU+MB and found that autophagy was significantly inhibited. Altogether, our findings demonstrated that LIFU+MB could reverse PTX resistance in ovarian cancer via inhibiting autophagy, which provides a novel strategy to improve chemosensitivity in ovarian cancer.
Collapse
Affiliation(s)
- Gonglin Fan
- Department of Ultrasound, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiale Qin
- Department of Ultrasound, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaofeng Fu
- Department of Ultrasound, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xing Si
- Department of Ultrasound, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liqiang Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Keji Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Beibei Wang
- Center of Cryo-Electron Microscope (CCEM), Zhejiang University, Hangzhou, China
| | - Haiya Lou
- Department of Ultrasound, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiang Zhu
- Department of Ultrasound, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jiang Zhu,
| |
Collapse
|
18
|
Shen Y, Xu H, Guan Z, Lv M, Qian T, Wu Y. Effect of Rho GTPase activating protein 9 combined with preoperative ratio of platelet distribution width to platelet count on prognosis of patients with serous ovarian cancer. Transl Cancer Res 2022; 10:4440-4453. [PMID: 35116301 PMCID: PMC8797782 DOI: 10.21037/tcr-21-1946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023]
Abstract
Background This study aimed to investigate the relationship between Rho GTPase activating protein 9 (ARHGAP9) combined with preoperative ratio of platelet distribution width to platelet count (PDW/PLT) and patients prognosis with serous ovarian cancer. Methods The clinical data of 80 patients with serous ovarian cancer treated in Jiangsu Cancer Hospital from May 2011 to May 2016 were analyzed retrospectively. We verified ARHGAP9 expression in The Cancer Genome Atlas (TCGA) database, then detected messenger RNA (mRNA) expression encoding ARHGAP9 in ovarian cancer tissue samples using reverse transcription quantitative polymerase chain reaction (RT-qPCR). These patients were divided into an ARHGAP9 low-expression group and an ARHGAP9 high-expression group. The optimal critical value of PDW/PLT was determined by receiver operating characteristic (ROC) curve. The patients were divided into low PDW/PLT group and high PDW/PLT group. Kaplan-Meier method and log-rank test were used for univariate survival analysis, Cox regression method was used for multivariate analysis, and then a nomogram was constructed for internal verification. Results The ARHGAP9 protein was highly expressed both in TCGA serous ovarian cancer database and the serous ovarian cancer tumor tissues. There were significant differences in menstrual status, the International Federation of Gynecology and Obstetrics (FIGO) stage and grade between the ARHGAP9 low expression group and ARHGAP9 high expression group (all P<0.05). There were significant differences in FIGO stage, lymph node metastasis, and ascites between the low PDW/PLT group and high PDW/PLT group (all P<0.05). Finally, 80 patients were included, with a mortality rate of 45.0% and a survival rate of 55.0%; the median progression-free survival (PFS) was 19 months, and the median overall survival (OS) was 62.5 months. Cox multivariate analysis showed that PDW/PLT and ARHGAP9 were independent risk factors for tumor progression (P=0.026 and P=0.028, respectively). In the internal validation, the C-index of the nomogram was 0.6518 [95% confidence interval (CI): 0.5685 to 0.7352], and the prediction model had certain accuracy. Conclusions ARHGAP9 and PDW/PLT Decrease can significantly prolong OS and PFS in serous ovarian cancer patients. Therefore, ARHGAP9 can be used as a new predictive biomarker and may be related to the immune infiltration of serous ovarian cancer.
Collapse
Affiliation(s)
- Yang Shen
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Haibo Xu
- Department of Gynecology, Affiliated Cancer Hospital of Nantong University, Nantong, China
| | - Zhihong Guan
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Mengmeng Lv
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Tianye Qian
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yuzhong Wu
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Huang H, Wu K, Chen L, Lin X. Study on the Application of Systemic Inflammation Response Index and Platelet-Lymphocyte Ratio in Ovarian Malignant Tumors. Int J Gen Med 2021; 14:10015-10022. [PMID: 34955651 PMCID: PMC8694276 DOI: 10.2147/ijgm.s346610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Objective We aimed to evaluate whether the systemic inflammatory response index (SIRI) and platelet lymphocyte ratio (PLR) are associated with ovarian malignancy and their diagnostic value. Design: This retrospective study compared SIRI, PLR, cancer antigen 125 (CA125), cancer antigen 153 (CA153), cancer antigen 199 (CA199), A carcinoma embryonic antigen (CEA) and alpha fetal protein (AFP) of the two groups in Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University from January 2018 to December 2020, divided into two groups based on pathological results, including 85 with ovarian malignancy who met the study criteria and 85 patients with benign ovarian tumors were randomly selected as control group. Results 1) SIRI and PLR in benign ovarian tumor group were lower than those in ovarian malignancy group; 2) SIRI and PLR in ovarian malignant tumor low stage group were lower than those in the high stage group; 3) In ovarian malignancies, SIRI and PLR were positively associated with CA125 (the correlation coefficient r = 0.251, p = 0.021; r = 0.251, p = 0.020;) but showed no correlation with CA153. Conclusion The study shows that SIRI and PLR are both convenient and associated with ovarian malignancy. SIRI and PLR can be used to help the differentiation of benign and malignant ovarian tumors and can also be used in the markers of ovarian malignant tumors roughly staging.
Collapse
Affiliation(s)
- Huifang Huang
- Intensive Care Unit, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Kunhai Wu
- Blood Transfusion Department, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Lufei Chen
- Blood Transfusion Department, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Xiaomei Lin
- Intensive Care Unit, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
20
|
Martins WK, Silva MDND, Pandey K, Maejima I, Ramalho E, Olivon VC, Diniz SN, Grasso D. Autophagy-targeted therapy to modulate age-related diseases: Success, pitfalls, and new directions. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100033. [PMID: 34909664 PMCID: PMC8663935 DOI: 10.1016/j.crphar.2021.100033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 02/08/2023] Open
Abstract
Autophagy is a critical metabolic process that supports homeostasis at a basal level and is dynamically regulated in response to various physiological and pathological processes. Autophagy has some etiologic implications that support certain pathological processes due to alterations in the lysosomal-degradative pathway. Some of the conditions related to autophagy play key roles in highly relevant human diseases, e.g., cardiovascular diseases (15.5%), malignant and other neoplasms (9.4%), and neurodegenerative conditions (3.7%). Despite advances in the discovery of new strategies to treat these age-related diseases, autophagy has emerged as a therapeutic option after preclinical and clinical studies. Here, we discuss the pitfalls and success in regulating autophagy initiation and its lysosome-dependent pathway to restore its homeostatic role and mediate therapeutic effects for cancer, neurodegenerative, and cardiac diseases. The main challenge for the development of autophagy regulators for clinical application is the lack of specificity of the repurposed drugs, due to the low pharmacological uniqueness of their target, including those that target the PI3K/AKT/mTOR and AMPK pathway. Then, future efforts must be conducted to deal with this scenery, including the disclosure of key components in the autophagy machinery that may intervene in its therapeutic regulation. Among all efforts, those focusing on the development of novel allosteric inhibitors against autophagy inducers, as well as those targeting autolysosomal function, and their integration into therapeutic regimens should remain a priority for the field.
Collapse
Affiliation(s)
- Waleska Kerllen Martins
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Maryana do Nascimento da Silva
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Kiran Pandey
- Center for Neural Science, New York University, Meyer Building, Room 823, 4 Washington Place, New York, NY, 10003, USA
| | - Ikuko Maejima
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa Machi, Maebashi, Gunma, 3718512, Japan
| | - Ercília Ramalho
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Vania Claudia Olivon
- Laboratory of Pharmacology and Physiology, UNIDERP, Av. Ceará, 333. Vila Miguel Couto, Campo Grande, MS, 79003-010, Brazil
| | - Susana Nogueira Diniz
- Laboratory of Molecular Biology and Functional Genomics, Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Daniel Grasso
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, CONICET, Junín 954 p4, Buenos Aires, C1113AAD, Argentina
| |
Collapse
|
21
|
Autophagy Modulators in Cancer Therapy. Int J Mol Sci 2021; 22:ijms22115804. [PMID: 34071600 PMCID: PMC8199315 DOI: 10.3390/ijms22115804] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a process of self-degradation that plays an important role in removing damaged proteins, organelles or cellular fragments from the cell. Under stressful conditions such as hypoxia, nutrient deficiency or chemotherapy, this process can also become the strategy for cell survival. Autophagy can be nonselective or selective in removing specific organelles, ribosomes, and protein aggregates, although the complete mechanisms that regulate aspects of selective autophagy are not fully understood. This review summarizes the most recent research into understanding the different types and mechanisms of autophagy. The relationship between apoptosis and autophagy on the level of molecular regulation of the expression of selected proteins such as p53, Bcl-2/Beclin 1, p62, Atg proteins, and caspases was discussed. Intensive studies have revealed a whole range of novel compounds with an anticancer activity that inhibit or activate regulatory pathways involved in autophagy. We focused on the presentation of compounds strongly affecting the autophagy process, with particular emphasis on those that are undergoing clinical and preclinical cancer research. Moreover, the target points, adverse effects and therapeutic schemes of autophagy inhibitors and activators are presented.
Collapse
|
22
|
朱 晨, 杜 家, 姚 言, 武 丹, 苑 敏, 干 露, 童 旭. [Inhibiting autophagy by silencing ATG5 and ATG7 enhances inhibitory effect of DDP on DDP-resistant I-10 testicular cancer cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:657-663. [PMID: 34134951 PMCID: PMC8214968 DOI: 10.12122/j.issn.1673-4254.2021.05.04] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Indexed: 12/09/2022]
Abstract
OBJECTIVE To observe the changes in autophagy of cisplatin-resistant I-10 testicular cancer cells (I-10/DDP cells) in response to cisplatin treatment and the effect of silencing ATG5 and ATG7 on autophagy and proliferation of cisplatin-treated cells. OBJECTIVE I-10/DDP cells treated with 15 μmol/L cisplatin for 12 h were examined for expressions of LC3 and p62 by Western blotting and for autophagy level through transmission electron microscopy and mCherry-GFP-LC3B. I-10/DDP cells were transfected with short hairpin RNAs shRNA-ATG5 or shRNA-ATG7 via Lipfectamine2000, the empty vector (NC group), or Lipfectamine2000 alone (blank control group), and the cellular expressions of ATG5 and ATG7 were detected with Western blotting. The transfected cells were treated with 15 μmol/L cisplatin for 12 h, after that the expressions of LC3 and p62 were detected with Western blotting. Transmission electron microscopy and mCherry-GFP-LC3B were used to detect autophagy level in the cells. MTT assay and colony-forming assay were performed to assess the cell survival fraction and colony formation ability of the treated cells, respectively. OBJECTIVE After cisplatin treatmert, the expression level of LC3 II increased significantly (P < 0.001), the expression level of p62 decreased (P < 0.05), and the number of autophagosomes increased in I-10/DDP cells. The cells transfected with shRNA-ATG5 or shRNA-ATG7 showed significantly decreased expressions of ATG5 or ATG7 (P=0.005 or P < 0.001). Cisplatin treatment of the transfected cells obviously reduced the cellular expression of LC3 II (P < 0.001), increased the expression of p62 (P < 0.001), and decreased the number of autophagosomes, cell survival fraction and colony formation ability of the cells (P < 0.001). OBJECTIVE Silencing ATG5 and ATG7 inhibits cisplatin-mediated autophagy and enhances the inhibitory effect of cisplatin on inhibiting cell proliferation.
Collapse
Affiliation(s)
- 晨露 朱
- />蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 家如 杜
- />蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 言雪 姚
- />蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 丹丹 武
- />蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 敏 苑
- />蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 露 干
- />蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - 旭辉 童
- />蚌埠医学院药学院,安徽 蚌埠 233030School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
23
|
Ren C, Sun K, Zhang Y, Hu Y, Hu B, Zhao J, He Z, Ding R, Wang W, Liang C. Sodium-Glucose CoTransporter-2 Inhibitor Empagliflozin Ameliorates Sunitinib-Induced Cardiac Dysfunction via Regulation of AMPK-mTOR Signaling Pathway-Mediated Autophagy. Front Pharmacol 2021; 12:664181. [PMID: 33995090 PMCID: PMC8116890 DOI: 10.3389/fphar.2021.664181] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Sodium–glucose cotransporter-2 (SGLT2) inhibitors have been shown to decrease the adverse cardiac events and risks of cardiovascular mortality among patients with or without diabetes, which has made these drugs promising treatment options for patients with chronic heart failure. Cardiac dysfunction is a common and severe side effect induced by cancer chemotherapies, which seriously affects the prognosis and life quality of tumor patients. However, it is not clear whether SGLT2 inhibitors have cardiovascular benefits in patients with cancer chemotherapy–related cardiac dysfunction. We aimed to determine whether empagliflozin (EMPA), an SGLT2 inhibitor, has a protective role against sunitinib (SNT)-induced cardiac dysfunction in a mouse model. Methods: Male C57BL/6J mice were randomized into control (control, n = 8), empagliflozin (EMPA, n = 8), sunitinib (SNT, n = 12), or sunitinib and empagliflozin coadministration (SNT + EMPA, n = 12) groups. EMPA, SNT, or SNT-combined EMPA was given via oral gavage for consecutive 28 days. Cardiovascular functions and pathological changes were examined, and the underlying mechanisms of EMPA’s effects were investigated in H9c2 cardiomyocytes. Results: Mice in the SNT group exhibited dramatically elevated blood pressure (systolic blood pressure [SBP] 134.30 ± 6.455 mmHg vs. 114.85 ± 6.30 mmHg) and impaired left ventricular function (left ventricular ejection fraction [LVEF] 50.24 ± 3.06% vs. 84.92 ± 2.02%), as compared with those of the control group. However, EMPA could ameliorate SNT-induced cardiotoxicity, both in terms of SBP (117.51 ± 5.28 mmHg vs. 134.30 ± 6.455 mmHg) and LVEF (76.18 ± 5.16% vs. 50.24 ± 3.06 %). In H9c2 cardiomyocytes, SNT-induced cardiomyocyte death and cell viability loss as well as dysfunction of adenosine 5’-monophosphate–activated protein kinase–mammalian target of rapamycin (AMPK-mTOR) signaling–mediated autophagy were restored by EMPA. However, these favorable effects mediated by EMPA were blocked by the inhibition of AMPK or autophagy. Conclusion: EMPA could ameliorate SNT-induced cardiac dysfunction via regulating cardiomyocyte autophagy, which was mediated by the AMPK-mTOR signaling pathway. These findings supported that SGLT2 inhibitor therapy could be a potential cardioprotective approach for cardiovascular complications among patients receiving SNT. However, these favorable effects still need to be validated in clinical trials.
Collapse
Affiliation(s)
- Changzhen Ren
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai, China.,Department of General Practice, 960th Hospital of PLA, Jinan, China
| | - Kaiqiang Sun
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yanda Zhang
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yangxi Hu
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bowen Hu
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jian Zhao
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhiqing He
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ru Ding
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Weizhong Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of People's Liberation Army (PLA), Naval Medical University, Shanghai, China
| | - Chun Liang
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
24
|
Ho KH, Lee YT, Chen PH, Shih CM, Cheng CH, Chen KC. Guanabenz Sensitizes Glioblastoma Cells to Sunitinib by Inhibiting GADD34-Mediated Autophagic Signaling. Neurotherapeutics 2021; 18:1371-1392. [PMID: 33410111 PMCID: PMC8423979 DOI: 10.1007/s13311-020-00961-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2020] [Indexed: 12/14/2022] Open
Abstract
Limited therapeutic efficacy of temozolomide (TMZ) against glioblastomas highlights the importance of exploring new drugs for clinical therapy. Sunitinib, a multitargeted receptor tyrosine kinase inhibitor, is currently being tested as therapy for glioblastomas. Unfortunately, sunitinib still has insufficient activity to cure glioblastomas. Our aim was to determine the molecular mechanisms counteracting sunitinib drug sensitivity and find potential adjuvant drugs for glioblastoma therapy. Through in vitro experiments, transcriptome screening by RNA sequencing, and in silico analyses, we found that sunitinib induced glioma apoptotic death, and downregulated genes were enriched in oncogenic genes of glioblastoma. Meanwhile, sunitinib-upregulated genes were highly associated with the protective autophagy process. Blockade of autophagy significantly enhanced sunitinib's cytotoxicity. Growth arrest and DNA damage-inducible protein (GADD) 34 was identified as a candidate involved in sunitinib-promoted autophagy through activating p38-mitogen-activated protein kinase (MAPK) signaling. Higher GADD34 levels predicted poor survival of glioblastoma patients and induced autophagy formation in desensitizing sunitinib cytotoxicity. Guanabenz, an alpha2-selective adrenergic agonist and GADD34 functional inhibitor, was identified to enhance the efficacy of sunitinib by targeting GADD34-induced protective autophagy in glioblastoma cells, TMZ-resistant cells, hypoxic cultured cells, sphere-forming cells, and colony formation abilities. A better combined treatment effect with sunitinib and guanabenz was also observed by using xenograft mice. Taken together, the sunitinib therapy combined with guanabenz in the inhibition of GADD34-enhanced protective autophagy may provide a new therapeutic strategy for glioblastoma.
Collapse
Affiliation(s)
- Kuo-Hao Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Yi-Ting Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Peng-Hsu Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Chwen-Ming Shih
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Chia-Hsiung Cheng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan
| | - Ku-Chung Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Xinyi District, Taipei, 11031, Taiwan.
| |
Collapse
|
25
|
Antioxidants and Therapeutic Targets in Ovarian Clear Cell Carcinoma. Antioxidants (Basel) 2021; 10:antiox10020187. [PMID: 33525614 PMCID: PMC7911626 DOI: 10.3390/antiox10020187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 01/04/2023] Open
Abstract
Ovarian clear cell carcinomas (OCCCs) are resistant to conventional anti-cancer drugs; moreover, the prognoses of advanced or recurrent patients are extremely poor. OCCCs often arise from endometriosis associated with strong oxidative stress. Of note, the stress involved in OCCCs can be divided into the following two categories: (a) carcinogenesis from endometriosis to OCCC and (b) factors related to treatment after carcinogenesis. Antioxidants can reduce the risk of OCCC formation by quenching reactive oxygen species (ROS); however, the oxidant stress-tolerant properties assist in the survival of OCCC cells when the malignant transformation has already occurred. Moreover, the acquisition of oxidative stress resistance is also involved in the cancer stemness of OCCC. This review summarizes the recent advances in the process and prevention of carcinogenesis, the characteristic nature of tumors, and the treatment of post-refractory OCCCs, which are highly linked to oxidative stress. Although therapeutic approaches should still be improved against OCCCs, multi-combinatorial treatments including nucleic acid-based drugs directed to the transcriptional profile of each OCCC are expected to improve the outcomes of patients.
Collapse
|
26
|
Xia Y, Ye S, Yang Y, Liu Y, Tong G. Over-expression of RALYL suppresses the progression of ovarian clear cell carcinoma through inhibiting MAPK and CDH1 signaling pathways. Int J Med Sci 2021; 18:785-791. [PMID: 33437214 PMCID: PMC7797558 DOI: 10.7150/ijms.51488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/30/2020] [Indexed: 12/01/2022] Open
Abstract
Background: The molecular mechanism in the progression of ovarian clear cell carcinoma (OCCC) remains unclear. Objective: This study aimed to investigate the potential function of RAYLY in OCCC. Methods: To validate RAYLY expression, immunohistochemistry, quantitative real-time PCR and western blotting were performed in OCCC tissues and the cell lines of OCCC and epithelial ovarian carcinoma (EOC). Subsequently, the biological effects of RALYL were evaluated through colony formation, and cell proliferation, migration and invasion assays. Finally, RNA-sequencing and gene set enrichment analysis (GSEA) were conducted to explore potential mechanism of RALYL in OCCC. Results: In our study, RALYL was significantly down-regulated in a majority of OCCC tissues compared to adjacent non-tumorous tissues, and OCCC cells had a lower expression level of RALYL than that of EOC cells. OCCC patients with high RALYL expression had a better pathological stage and prognosis. In vitro, over-expression of RALYL inhibited cell proliferation, migration and invasion in OCCC. GSEA analysis and western blot indicated an enrichment of MAPK and CDH1 signaling pathways in OCCC cells without RALYL over-expression. Conclusions: RALYL played an important role in the progression of OCCC, and might serve as a potential prognostic biomarker and novel therapeutic target for OCCC.
Collapse
Affiliation(s)
- Ye Xia
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shanting Ye
- Department of Hepatobiliary Surgery, Shenzhen Second People's Hospital, Clinical Institute of Guangzhou Medical University, Shenzhen 518035, Guangdong Province, China
| | - Yang Yang
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuchen Liu
- Department of Hepatobiliary Surgery, Shenzhen Second People's Hospital, Clinical Institute of Guangzhou Medical University, Shenzhen 518035, Guangdong Province, China
| | - Guoqing Tong
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
27
|
Abstract
BACKGROUND Though accounts for 2.5% of all cancers in female, the death rate of ovarian cancer is high, which is the fifth leading cause of cancer death (5% of all cancer death) in female. The 5-year survival rate of ovarian cancer is less than 50%. The oncogenic molecular signaling of ovarian cancer are complicated and remain unclear, and there is a lack of effective targeted therapies for ovarian cancer treatment. METHODS In this study, we propose to investigate activated signaling pathways of individual ovarian cancer patients and sub-groups; and identify potential targets and drugs that are able to disrupt the activated signaling pathways. Specifically, we first identify the up-regulated genes of individual cancer patients using Markov chain Monte Carlo (MCMC), and then identify the potential activated transcription factors. After dividing ovarian cancer patients into several sub-groups sharing common transcription factors using K-modes method, we uncover the up-stream signaling pathways of activated transcription factors in each sub-group. Finally, we mapped all FDA approved drugs targeting on the upstream signaling. RESULTS The 427 ovarian cancer samples were divided into 3 sub-groups (with 100, 172, 155 samples respectively) based on the activated TFs (with 14, 25, 26 activated TFs respectively). Multiple up-stream signaling pathways, e.g., MYC, WNT, PDGFRA (RTK), PI3K, AKT TP53, and MTOR, are uncovered to activate the discovered TFs. In addition, 66 FDA approved drugs were identified targeting on the uncovered core signaling pathways. Forty-four drugs had been reported in ovarian cancer related reports. The signaling diversity and heterogeneity can be potential therapeutic targets for drug combination discovery. CONCLUSIONS The proposed integrative network analysis could uncover potential core signaling pathways, targets and drugs for ovarian cancer treatment.
Collapse
Affiliation(s)
- Tianyu Zhang
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Dalian University of Technology, Dalian, 116024, China
| | - Liwei Zhang
- Dalian University of Technology, Dalian, 116024, China
| | - Fuhai Li
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63130, USA.
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
28
|
Al-Bari MAA. Co-targeting of lysosome and mitophagy in cancer stem cells with chloroquine analogues and antibiotics. J Cell Mol Med 2020; 24:11667-11679. [PMID: 32935427 PMCID: PMC7578893 DOI: 10.1111/jcmm.15879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
The catabolic autophagy eliminates cytoplasmic components and organelles via lysosomes. Non‐selective bulk autophagy and selective autophagy (mitophagy) are linked in intracellular homeostasis both normal and cancer cells. Autophagy has complex and paradoxical dual role in cancers; it can play either tumour suppressor or tumour promoter depending on the tumour type, stage, microenvironment and genetic context. Cancer stem cells (CSCs) cause tumour recurrence and promote resistant to therapy for driving poor clinical consequences. Thus, new healing strategies are urgently needed to annihilate and eradicate CSCs. As chloroquine (CQ) analogues show positive clinical outcome in several clinical trials either standalone or combination with several chemotherapies. Moreover, CQ analogues are known to eliminate CSCs via altering DNA methylation. However, several obstacles such as higher concentrations and dose‐dependent toxicity are noticeable in the treatment of cancers. As tumour cells predominantly rely on mitochondrial actions, mitochondrial targeting FDA‐approved antibiotics are reported to effectively eradicate CSCs alone or combination with chemotherapy. However, antibiotics cause metabolic glycolytic shift in cancer cells for survival and repopulation. This review will provide a sketch of the inhibiting roles of current chloroquine analogues and antibiotic combination in CSC autophagy process and discuss the possibility that pre‐clinical and clinical potential therapeutic strategy for anticancer therapy.
Collapse
|
29
|
Russell KL, Gorgulho CM, Allen A, Vakaki M, Wang Y, Facciabene A, Lee D, Roy P, Buchser WJ, Appleman LJ, Maranchie J, Storkus WJ, Lotze MT. Inhibiting Autophagy in Renal Cell Cancer and the Associated Tumor Endothelium. ACTA ACUST UNITED AC 2020; 25:165-177. [PMID: 31135523 PMCID: PMC10395074 DOI: 10.1097/ppo.0000000000000374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The clear cell subtype of kidney cancer encompasses most renal cell carcinoma cases and is associated with the loss of von Hippel-Lindau gene function or expression. Subsequent loss or mutation of the other allele influences cellular stress responses involving nutrient and hypoxia sensing. Autophagy is an important regulatory process promoting the disposal of unnecessary or degraded cellular components, tightly linked to almost all cellular processes. Organelles and proteins that become damaged or that are no longer needed in the cell are sequestered and digested in autophagosomes upon fusing with lysosomes, or alternatively, released via vesicular exocytosis. Tumor development tends to disrupt the regulation of the balance between this process and apoptosis, permitting prolonged cell survival and increased replication. Completed trials of autophagic inhibitors using hydroxychloroquine in combination with other anticancer agents including rapalogues and high-dose interleukin 2 have now been reported. The complex nature of autophagy and the unique biology of clear cell renal cell carcinoma warrant further understanding to better develop the next generation of relevant anticancer agents.
Collapse
Affiliation(s)
| | | | - Abigail Allen
- Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | | | | | - Andrea Facciabene
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | | | - Partha Roy
- Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | | | | |
Collapse
|
30
|
Ho CJ, Samarasekera G, Rothe K, Xu J, Yang KC, Leung E, Chan M, Jiang X, Gorski SM. Puncta intended: connecting the dots between autophagy and cell stress networks. Autophagy 2020; 17:1028-1033. [PMID: 32507070 DOI: 10.1080/15548627.2020.1775394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Proteome profiling and global protein-interaction approaches have significantly improved our knowledge of the protein interactomes of autophagy and other cellular stress-response pathways. New discoveries regarding protein complexes, interaction partners, interaction domains, and biological roles of players that are part of these pathways are emerging. The fourth Vancouver Autophagy Symposium showcased research that expands our understanding of the protein interaction networks and molecular mechanisms underlying autophagy and other cellular stress responses in the context of distinct stressors. In the keynote presentation, Dr. Wade Harper described his team's recent discovery of a novel reticulophagy receptor for selective autophagic degradation of the endoplasmic reticulum, and discussed molecular mechanisms involved in ribophagy and non-autophagic ribosomal turnover. In other presentations, both omic and targeted approaches were used to reveal molecular players of other cellular stress responses including amyloid body and stress granule formation, anastasis, and extracellular vesicle biogenesis. Additional topics included the roles of autophagy in disease pathogenesis, autophagy regulatory mechanisms, and crosstalk between autophagy and cellular metabolism in anti-tumor immunity. The relationship between autophagy and other cell stress responses remains a relatively unexplored area in the field, with future investigations required to understand how the various processes are coordinated and connected in cells and tissues.Abbreviations: A-bodies: amyloid bodies; ACM: amyloid-converting motif; AMFR/gp78: autocrine motility factor receptor; ATG: autophagy-related; ATG4B: autophagy related 4B cysteine peptidase; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CAR T: chimeric antigen receptor T; CASP3: caspase 3; CCPG1: cell cycle progression 1; CAR: chimeric antigen receptor; CML: chronic myeloid leukemia; CCOCs: clear cell ovarian cancers; CVB3: coxsackievirus B3; CRISPR-Cas9: clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9; DDXs: DEAD-box helicases; EIF2S1/EIF-2alpha: eukaryotic translation initiation factor 2 subunit alpha; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; EV: extracellular vesicle; FAO: fatty acid oxidation; GABARAP: GABA type A receptor-associated protein; ILK: integrin linked kinase; ISR: integrated stress response; MTOR: mechanistic target of rapamycin kinase; MPECs: memory precursory effector T cells; MAVS: mitochondrial antiviral signaling protein; NBR1: NBR1 autophagy cargo receptor; PI4KB/PI4KIIIβ: phosphatidylinositol 4-kinase beta; PLEKHM1: pleckstrin homology and RUN domain containing M1; RB1CC1: RB1 inducible coiled-coil 1; RTN3: reticulon 3; rIGSRNAs: ribosomal intergenic noncoding RNAs; RPL29: ribosomal protein L29; RPS3: ribosomal protein S3; S. cerevisiae: Saccharomyces cerevisiae; sEV: small extracellular vesicles; S. pombe: Schizosaccharomyces pombe; SQSTM1: sequestosome 1; SF3B1: splicing factor 3b subunit 1; SILAC-MS: stable isotope labeling with amino acids in cell culture-mass spectrometry; SNAP29: synaptosome associated protein 29; TEX264: testis expressed 264, ER-phagy receptor; TNBC: triple-negative breast cancer; ULK1: unc-51 like autophagy activating kinase 1; VAS: Vancouver Autophagy Symposium.
Collapse
Affiliation(s)
- Cally J Ho
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Gayathri Samarasekera
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Katharina Rothe
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
| | - Jing Xu
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Kevin C Yang
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Emily Leung
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Michelle Chan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Xiaoyan Jiang
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
| | - Sharon M Gorski
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
31
|
Gralewska P, Gajek A, Marczak A, Rogalska A. Participation of the ATR/CHK1 pathway in replicative stress targeted therapy of high-grade ovarian cancer. J Hematol Oncol 2020; 13:39. [PMID: 32316968 PMCID: PMC7175546 DOI: 10.1186/s13045-020-00874-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer is one of the most lethal gynecologic malignancies reported throughout the world. The initial, standard-of-care, adjuvant chemotherapy in epithelial ovarian cancer is usually a platinum drug, such as cisplatin or carboplatin, combined with a taxane. However, despite surgical removal of the tumor and initial high response rates to first-line chemotherapy, around 80% of women will develop cancer recurrence. Effective strategies, including chemotherapy and new research models, are necessary to improve the prognosis. The replication stress response (RSR) is characteristic of the development of tumors, including ovarian cancer. Hence, RSR pathway and DNA repair proteins have emerged as a new area for anticancer drug development. Although clinical trials have shown poly (ADP-ribose) polymerase inhibitors (PARPi) response rates of around 40% in women who carry a mutation in the BRCA1/2 genes, PARPi is responsible for tumor suppression, but not for complete tumor regression. Recent reports suggest that cells with impaired homologous recombination (HR) activities due to mutations in TP53 gene or specific DNA repair proteins are specifically sensitive to ataxia telangiectasia and Rad3-related protein (ATR) inhibitors. Replication stress activates DNA repair checkpoint proteins (ATR, CHK1), which prevent further DNA damage. This review describes the use of DNA repair checkpoint inhibitors as single agents and strategies combining these inhibitors with DNA-damaging compounds for ovarian cancer therapy, as well as the new platforms used for optimizing ovarian cancer therapy.
Collapse
Affiliation(s)
- Patrycja Gralewska
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Agnieszka Marczak
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Aneta Rogalska
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| |
Collapse
|
32
|
Yang Z, Bian E, Xu Y, Ji X, Tang F, Ma C, Wang H, Zhao B. Meg3 Induces EMT and Invasion of Glioma Cells via Autophagy. Onco Targets Ther 2020; 13:989-1000. [PMID: 32099402 PMCID: PMC6999788 DOI: 10.2147/ott.s239648] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022] Open
Abstract
Background Glioma is one of the most common malignant tumors. Glioblastoma (grade IV) is considered the most malignant form of human brain tumors. Maternal expression gene 3 (Meg3) encodes a non-coding RNA (ncRNA) that plays an important role in the development and progression of cancer. However, the role of Meg3 in glioma cells remains largely unclear. Methods Reverse transcription-quantitative (RT-q) PCR was conducted to evaluate the mRNA expression related to cell autophagy and EMT while protein expression was detected by Western blotting. Staining of acidic vacuoles and immunofluorescence staining were used to detect autophagy. The ability of cells to migrate and invade was detected by Transwell migration and invasion assays. Results In the present study, it was found that the overexpression of Meg3 induced EMT, migration and invasion of glioma cells, whereas Meg3 overexpression induced autophagy of glioma cells. More importantly, the inhibition of autophagy impaired the EMT of glioma cells. In addition, Meg3-induced EMT, migration and invasion could be partially reversed by autophagy inhibitors, chloroquine (CQ) and Lys05, in glioma cells. Conclusion All data suggest that Meg3 induces EMT and invasion of glioma cells via autophagy. Overall, the findings of the present study demonstrate the importance of Meg3 in the molecular etiology of glioma, which also indicate its potential applications in the treatment of glioma.
Collapse
Affiliation(s)
- Zhihao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, People's Republic of China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, People's Republic of China
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, People's Republic of China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, People's Republic of China
| | - Yadi Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, People's Republic of China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, People's Republic of China
| | - Xinghu Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, People's Republic of China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, People's Republic of China
| | - Feng Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, People's Republic of China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, People's Republic of China
| | - Chunchun Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, People's Republic of China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, People's Republic of China
| | - Hongliang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, People's Republic of China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, People's Republic of China
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, People's Republic of China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, People's Republic of China
| |
Collapse
|
33
|
Yang Y, Li N, Chen T, Zhang C, Liu L, Qi Y, Bu P. Trimetazidine ameliorates sunitinib-induced cardiotoxicity in mice via the AMPK/mTOR/autophagy pathway. PHARMACEUTICAL BIOLOGY 2019; 57:625-631. [PMID: 31545912 PMCID: PMC6764339 DOI: 10.1080/13880209.2019.1657905] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/15/2019] [Indexed: 05/18/2023]
Abstract
Context: Sunitinib (SU) is a multi-targeted tyrosine kinase inhibitor anticancer agent whose clinical use is often limited by cardiovascular complications. Trimetazidine (TMZ) is an anti-angina agent that has been demonstrated cardioprotective effects in numerous cardiovascular conditions, but its potential effects in SU-induced cardiotoxicity have not been investigated. Objective: This study investigates the effect of TMZ in sunitinib-induced cardiotoxicity in vivo and in vitro and molecular mechanisms. Materials and methods: Male 129S1/SvImJ mice were treated with vehicle, SU (40 mg/kg/d) or SU and TMZ (20 mg/kg/d) via oral gavage for 28 days, and cardiovascular functions and cardiac protein expressions were examined. H9c2 cardiomyocytes were treated with vehicle, SU (2-10 μM) or SU and TMZ (40-120 μM) for 48 h, and cell viability, apoptosis, autophagy, and protein expression was tested. Results: SU induces hypertension (systolic blood pressure [SBP] + 28.33 ± 5.00 mmHg) and left ventricular dysfunction (left ventricular ejection fraction [LVEF] - 11.16 ± 2.53%) in mice. In H9c2 cardiomyocytes, SU reduces cell viability (IC50 4.07 μM) and inhibits the AMPK/mTOR/autophagy pathway (p < 0.05). TMZ co-administration with SU reverses SU-induced cardiotoxicity in mice (SBP - 23.75 ± 4.69 mmHg, LVEF + 10.95 ± 3.317%), alleviates cell viability loss in H9c2 cardiomyocytes (p < 0.01) and activates the AMPK/mTOR/autophagy pathway in vivo (p < 0.001) and in vitro (p < 0.05). Discussion and conclusions: Our results suggest TMZ as a potential cardioprotective approach for cardiovascular complications during SU regimen, and potentially for cardiotoxicity of other anticancer chemotherapies associated with cardiomyocyte autophagic pathways.
Collapse
Affiliation(s)
- Yi Yang
- Department of Cardiology, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Na Li
- Department of Cardiology, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tongshuai Chen
- Department of Cardiology, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chunmei Zhang
- Department of Cardiology, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lingxin Liu
- Department of Cardiology, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yan Qi
- Department of Cardiology, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peili Bu
- Department of Cardiology, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China
- CONTACT Peili Bu Department of Cardiology, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| |
Collapse
|
34
|
A Potent Autophagy Inhibitor (Lys05) Enhances the Impact of Ionizing Radiation on Human Lung Cancer Cells H1299. Int J Mol Sci 2019; 20:ijms20235881. [PMID: 31771188 PMCID: PMC6928878 DOI: 10.3390/ijms20235881] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy inhibition through small-molecule inhibitors is one of the approaches to increase the efficiency of radiotherapy in oncological patients. A new inhibitor-Lys05-with the potential to accumulate within lysosomes and to block autophagy was discovered a few years ago. Several studies have addressed its chemosensitizing effects but nothing is known about its impact in the context of ionizing radiation (IR). To describe its role in radiosensitization, we employed radioresistant human non-small cell lung carcinoma cells (H1299, p53-negative). Combined treatment of H1299 cells by Lys05 together with IR decreased cell survival in the clonogenic assay and real-time monitoring of cell growth more than either Lys05 or IR alone. Immunodetection of LC3 and p62/SQSTM1 indicated that autophagy was inhibited, which correlated with increased SQSTM1 and decreased BNIP3 gene expression determined by qRT-PCR. Fluorescence microscopy and flow cytometry uncovered an accumulation of lysosomes. Similarly, transmission electron microscopy demonstrated the accumulation of autophagosomes confirming the ability of Lys05 to potentiate autophagy inhibition in H1299 cells. We report here for the first time that Lys05 could be utilized in combination with IR as a promising future strategy in the eradication of lung cancer cells.
Collapse
|
35
|
Ho CJ, Gorski SM. Molecular Mechanisms Underlying Autophagy-Mediated Treatment Resistance in Cancer. Cancers (Basel) 2019; 11:E1775. [PMID: 31717997 PMCID: PMC6896088 DOI: 10.3390/cancers11111775] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Despite advances in diagnostic tools and therapeutic options, treatment resistance remains a challenge for many cancer patients. Recent studies have found evidence that autophagy, a cellular pathway that delivers cytoplasmic components to lysosomes for degradation and recycling, contributes to treatment resistance in different cancer types. A role for autophagy in resistance to chemotherapies and targeted therapies has been described based largely on associations with various signaling pathways, including MAPK and PI3K/AKT signaling. However, our current understanding of the molecular mechanisms underlying the role of autophagy in facilitating treatment resistance remains limited. Here we provide a comprehensive summary of the evidence linking autophagy to major signaling pathways in the context of treatment resistance and tumor progression, and then highlight recently emerged molecular mechanisms underlying autophagy and the p62/KEAP1/NRF2 and FOXO3A/PUMA axes in chemoresistance.
Collapse
Affiliation(s)
- Cally J. Ho
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Sharon M. Gorski
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
36
|
Linder B, Kögel D. Autophagy in Cancer Cell Death. BIOLOGY 2019; 8:biology8040082. [PMID: 31671879 PMCID: PMC6956186 DOI: 10.3390/biology8040082] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022]
Abstract
Autophagy has important functions in maintaining energy metabolism under conditions of starvation and to alleviate stress by removal of damaged and potentially harmful cellular components. Therefore, autophagy represents a pro-survival stress response in the majority of cases. However, the role of autophagy in cell survival and cell death decisions is highly dependent on its extent, duration, and on the respective cellular context. An alternative pro-death function of autophagy has been consistently observed in different settings, in particular, in developmental cell death of lower organisms and in drug-induced cancer cell death. This cell death is referred to as autophagic cell death (ACD) or autophagy-dependent cell death (ADCD), a type of cellular demise that may act as a backup cell death program in apoptosis-deficient tumors. This pro-death function of autophagy may be exerted either via non-selective bulk autophagy or excessive (lethal) removal of mitochondria via selective mitophagy, opening new avenues for the therapeutic exploitation of autophagy/mitophagy in cancer treatment.
Collapse
Affiliation(s)
- Benedikt Linder
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, 60528 Frankfurt am Main, Germany.
| | - Donat Kögel
- Experimental Neurosurgery, Department of Neurosurgery, Neuroscience Center, Goethe University Hospital, 60528 Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
37
|
Zhou W, Guo Y, Zhang X, Jiang Z. Lys05 induces lysosomal membrane permeabilization and increases radiosensitivity in glioblastoma. J Cell Biochem 2019; 121:2027-2037. [PMID: 31642111 DOI: 10.1002/jcb.29437] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/08/2019] [Indexed: 12/25/2022]
Abstract
Glioblastoma (GBM) is one of the most malignant primary brain tumors and its prognosis is very poor. Lysosome-dependent cell death is mainly caused by lysosomal membrane permeabilization (LMP), a process in which the lysosome loses its membrane integrity and lysosomal contents are released into the cytosol. Lysosomotropic agent, a kind of compound that selectively accumulates in the lysosomes, is one of the most important inducers of LMP. As a newly-synthetic lysosomotropic agent, Lys05 showed efficient autophagy inhibiting and antitumor effect. But its mechanisms are not well illustrated. Here, we studied whether Lys05 has antiglioma activity. We found that Lys05 decreased cell viability and reduced cell growth of glioma U251 and LN229 cells. After Lys05 treatment, autophagic flux is inhibited and lysosome function is impaired. We also found that Lys05 caused LMP and mitochondrial depolarization. Finally, Lys05 increased radiosensitivity in an LMP-dependent manner. For the first time, our findings indicate that LMP contributes to radiosensitivity in GBM cells. Therefore, LMP inducer, Lys05 might be a promising compound in the treatment of GBM cells.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Radiation Oncology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yulian Guo
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, China
| | - Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, China
| | - Zheng Jiang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, China
| |
Collapse
|
38
|
Yang Y, Li N, Chen T, Zhang C, Li J, Liu L, Qi Y, Zheng X, Zhang C, Bu P. Sirt3 promotes sensitivity to sunitinib-induced cardiotoxicity via inhibition of GTSP1/JNK/autophagy pathway in vivo and in vitro. Arch Toxicol 2019; 93:3249-3260. [PMID: 31552474 DOI: 10.1007/s00204-019-02573-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/17/2019] [Indexed: 02/01/2023]
Abstract
Sunitinib malate is a multi-targeted tyrosine kinase inhibitor used extensively for treatment of human tumors. However, cardiovascular adverse effects of sunitinib limit its clinical use. It is pivotal to elucidate molecular targets that mediate sunitinib-induced cardiotoxicity. Sirtuin 3 (Sirt3) is an effective mitochondrial deacetylase that has been reported to regulate sensitivity of different types of cells to chemotherapies, but roles of Sirt3 in sunitinib-induced cardiotoxicity have not been investigated. In the present study, we established wild type, Sirt3-knockout, and Sirt3-overexpressing mouse models of sunitinib (40 mg kg-1 day-1 for 28 days)-induced cardiotoxicity and examined cardiovascular functions and pathological changes. We further cultured wild type, Sirt3-knockout, and Sirt3-overexpressing primary mouse cardiac pericytes and analyzed sunitinib (10 μMol for 48 h)-induced alterations in cellular viability, cell death processes, and molecular pathways. Our results show that sunitinib predominantly induced hypertension, left ventricular systolic dysfunction, and cardiac pericyte death accompanied with upregulation of Sirt3 in cardiac pericytes, and these cardiotoxicities were significantly attenuated in Sirt3-knockout mice, but aggravated in Sirt3-overexpressing mice. Mechanistically, sunitinib induced cardiac pericyte death through inhibition of GSTP1/JNK/autophagy pathway and Sirt3 interacted with and inhibited GSTP1, further inhibiting the pathway and aggravating sunitinib-induced pericyte death. Conclusively, we demonstrate that Sirt3 promotes sensitivity to sunitinib-induced cardiotoxicity via GSTP1/JNK/autophagy pathway. Our results suggest Sirt3 might be a potential target for developing cardioprotective therapies for sunitinib-receiving patients.
Collapse
Affiliation(s)
- Yi Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Na Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Tongshuai Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Chunmei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Jingyuan Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Lingxin Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Yan Qi
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Xuehui Zheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Chen Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Peili Bu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
39
|
Amaravadi RK, Kimmelman AC, Debnath J. Targeting Autophagy in Cancer: Recent Advances and Future Directions. Cancer Discov 2019; 9:1167-1181. [PMID: 31434711 DOI: 10.1158/2159-8290.cd-19-0292] [Citation(s) in RCA: 625] [Impact Index Per Article: 104.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/31/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022]
Abstract
Autophagy, a multistep lysosomal degradation pathway that supports nutrient recycling and metabolic adaptation, has been implicated as a process that regulates cancer. Although autophagy induction may limit the development of tumors, evidence in mouse models demonstrates that autophagy inhibition can limit the growth of established tumors and improve response to cancer therapeutics. Certain cancer genotypes may be especially prone to autophagy inhibition. Different strategies for autophagy modulation may be needed depending on the cancer context. Here, we review new advances in the molecular control of autophagy, the role of selective autophagy in cancer, and the role of autophagy within the tumor microenvironment and tumor immunity. We also highlight clinical efforts to repurpose lysosomal inhibitors, such as hydroxychloroquine, as anticancer agents that block autophagy, as well as the development of more potent and specific autophagy inhibitors for cancer treatment, and review future directions for autophagy research. SIGNIFICANCE: Autophagy plays a complex role in cancer, but autophagy inhibition may be an effective therapeutic strategy in advanced cancer. A deeper understanding of autophagy within the tumor microenvironment has enabled the development of novel inhibitors and clinical trial strategies. Challenges and opportunities remain to identify patients most likely to benefit from this approach.
Collapse
Affiliation(s)
- Ravi K Amaravadi
- Abramson Cancer Center and the Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Jayanta Debnath
- Department of Pathology, University of California, San Francisco, California
| |
Collapse
|
40
|
|
41
|
Huang J, Gao L, Li B, Liu C, Hong S, Min J, Hong L. Knockdown of Hypoxia-Inducible Factor 1α (HIF-1α) Promotes Autophagy and Inhibits Phosphatidylinositol 3-Kinase (PI3K)/AKT/Mammalian Target of Rapamycin (mTOR) Signaling Pathway in Ovarian Cancer Cells. Med Sci Monit 2019; 25:4250-4263. [PMID: 31175269 PMCID: PMC6573092 DOI: 10.12659/msm.915730] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Ovarian cancer has the highest mortality rate among all female genital tumors because of its insidious onset and drug resistance. Hypoxia-inducible factor 1α (HIF-1α), one of the best-studied oncogenes, plays an important part in tumor adaptation to microenvironmental hypoxia and was found to be overexpressed in several malignancies, including ovarian cancer. Previous studies found that the effect of HIF-1α on cancers may be correlated with autophagy and some signaling pathways, such as PI3K/AKT/mTOR, in several tumors. However, the function and potential mechanism have not been clearly defined. Material/Methods The expression of HIF-1α in ovarian cancer tissues were detected by immunohistochemistry. HIF-1α was knocked down by siRNA transfection. Cell viability was examined by CCK8 and colony formation assay. Apoptosis and autophagy were detected with flow cytometry, transmission electron microscopy, and laser scanning confocal microscopy, respectively. The proteins related to autophagy and PI3K/AKT/mTOR were detected through Western blot analysis. Results HIF-1α was expressed at higher levels in epithelial or metastatic ovarian cancer tissue than in normal fallopian tube tissue. When HIF-1α was knocked down by siRNA in A2780 and SKOV3 cells, the viability of ovarian cancer cells was weakened, but the apoptosis and autophagy were strengthened. Accordingly, autophagosome formation increased and the expression of autophagy-related proteins LC3 and P62 increased in HIF-1α knockdown cells. The PI3K/Akt/mTOR signaling pathway was also found to be inactivated in HIF-1α knockdown cells. Conclusions These findings show that knockdown of HIF-1α promoted autophagy and inhibited the PI3K/AKT/mTOR signaling pathway in ovarian cancer cells.
Collapse
Affiliation(s)
- Jinling Huang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Likun Gao
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Bingshu Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Cheng Liu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Shasha Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Jie Min
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| |
Collapse
|
42
|
Davidson B. Biomarkers of drug resistance in ovarian cancer - an update. Expert Rev Mol Diagn 2019; 19:469-476. [PMID: 31075061 DOI: 10.1080/14737159.2019.1618187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/09/2019] [Indexed: 12/24/2022]
Abstract
Introduction: Ovarian cancer, consisting predominantly of ovarian carcinoma, is the most lethal gynecologic malignancy. Diagnosis at the advanced stage, particularly in high-grade serous carcinoma which is the most common and clinically aggressive histotype, is a major factor negatively affecting survival, while tumor heterogeneity and chemoresistance often preclude complete elimination of tumor cells even following radical surgery and combination chemotherapy. Recently, inhibition of angiogenesis and inhibition of poly (ADP-ribose) polymerase (PARP) have shown benefit in the treatment of this cancer. Areas covered: Extensive research has identified molecules associated with resistance to chemotherapy and implicated several biomarkers affecting response to antiangiogenic therapy and PARP inhibition. This review discusses recent data in this field. The presented data, gathered in a PubMed search focusing on the years 2016-2018, focus on regulators of the cell cycle and mitosis, cancer stem cell-related molecules, the immune response, receptor tyrosine kinases and related signaling pathways, BRCA and other DNA repair molecules, microRNAs, and other cancer-associated molecules. Expert opinion: Future research is likely to focus on histotype-specific analyses of clinical specimens and patient-generated cultures applying cutting-edge molecular technology, in the aim of identifying major regulators of chemotherapy response.
Collapse
Affiliation(s)
- Ben Davidson
- a Department of Pathology , Oslo University Hospital, Norwegian Radium Hospital , Oslo , Norway
- b Faculty of Medicine , Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| |
Collapse
|
43
|
Aydinlik S, Dere E, Ulukaya E. Induction of autophagy enhances apoptotic cell death via epidermal growth factor receptor inhibition by canertinib in cervical cancer cells. Biochim Biophys Acta Gen Subj 2019; 1863:903-916. [DOI: 10.1016/j.bbagen.2019.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 12/26/2022]
|
44
|
Targeting autophagy by small molecule inhibitors of vacuolar protein sorting 34 (Vps34) improves the sensitivity of breast cancer cells to Sunitinib. Cancer Lett 2018; 435:32-43. [DOI: 10.1016/j.canlet.2018.07.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/10/2018] [Accepted: 07/21/2018] [Indexed: 12/22/2022]
|
45
|
Luo P, Xu Z, Li G, Yan H, Zhu Y, Zhu H, Ma S, Yang B, He Q. HMGB1 represses the anti-cancer activity of sunitinib by governing TP53 autophagic degradation via its nucleus-to-cytoplasm transport. Autophagy 2018; 14:2155-2170. [PMID: 30205729 PMCID: PMC6984767 DOI: 10.1080/15548627.2018.1501134] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sunitinib, a multikinase inhibitor approved for a number of cancer indications has a low response rate. Identifying mechanisms of resistance could lead to rational combination regimens that could improve clinical outcomes. Here we report that resistance to sunitinib therapy was driven by autophagic degradation of TP53/p53. Deletion of ATG7 or ATG5 suppressed TP53 degradation, as did knockdown of SQSTM1/p62. Mechanistically, the transport of TP53 from the nucleus to the cytoplasm was essential for the sunitinib-induced autophagic degradation of TP53 and did not require TP53 nuclear export signals (NESs). Moreover, TP53 degradation was achieved by the transport of its nuclear binding target, HMGB1, which shifted TP53 from the nucleus to the cytoplasm. The inhibition of HMGB1 sensitized cancer cells to sunitinib. Importantly, sunitinib induced the degradation of all TP53 proteins, except for TP53 proteins with mutations in the interaction domain of TP53 with HMGB1 (amino acids 313 to 352). In conclusion, our data identify an alternative HMGB1-mediated TP53 protein turnover mechanism that participates in the resistance of sunitinib and suggest HMGB1 as a potential therapeutic target for improving clinical outcomes of sunitinib.
Collapse
Affiliation(s)
- Peihua Luo
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , China
| | - Zhifei Xu
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , China
| | - Guanqun Li
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , China
| | - Hao Yan
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , China
| | - Yi Zhu
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , China
| | - Hong Zhu
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , China
| | - Shenglin Ma
- b Department of Oncology , Hangzhou First People's Hospital, Nanjing Medical University , Hangzhou , China
| | - Bo Yang
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , China
| | - Qiaojun He
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , China
| |
Collapse
|
46
|
Wu CZ, Zheng JJ, Bai YH, Xia P, Zhang HC, Guo Y. HMGB1/RAGE axis mediates the apoptosis, invasion, autophagy, and angiogenesis of the renal cell carcinoma. Onco Targets Ther 2018; 11:4501-4510. [PMID: 30122942 PMCID: PMC6078191 DOI: 10.2147/ott.s167197] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background High mobility group box 1 protein (HMGB1) is a sort of non-histone protein in chromatin, which plays an important role in tumor proliferation, invasion, and immune escape. HMGB1-RAGE (receptor for advanced glycation end products) interactions have been reported to be important in a number of cancers. Methods CCK8, flow cytometry and qRT-PCR were used to detected cell viability, apoptosis and gene expression, respectively. Results In the present study, we demonstrated that HMGB1/RAGE axis regulated the cell proliferation, apoptosis, and invasion of the renal cell carcinoma (RCC). Further, we discovered that HMGB1/RAGE axis increased the expression of autophagic proteins LC3 and Beclin-1 in RCC. Finally, we used a coculture model of human umbilical vein endothelial cells with RCC cell lines to find out that HMGB1 also increased the expression of VEGF and VEGFR2 in human umbilical vein endothelial cells. An in vivo study further confirmed that HMGB1 knockdown inhibited RCC tumor growth. Conclusion Our results illustrated that HMGB1/RAGE axis mediated RCC cell viability, apoptosis, invasion, autophagy, and angiogenesis, which provides a novel theoretical basis for using HMGB1 as the target in RCC.
Collapse
Affiliation(s)
- Cun-Zao Wu
- Department of Transplantation Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,
| | - Jian-Jian Zheng
- Department of Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong-Heng Bai
- Department of Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng Xia
- Department of Transplantation Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,
| | - Hai-Cong Zhang
- Department of Pathology, The Fifth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Yong Guo
- Department of Transplantation Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,
| |
Collapse
|
47
|
Onorati A, Dyczynski M, Ojha R, Amaravadi RK. Targeting autophagy in cancer. Cancer 2018; 124:3307-3318. [PMID: 29671878 PMCID: PMC6108917 DOI: 10.1002/cncr.31335] [Citation(s) in RCA: 502] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/15/2018] [Accepted: 02/16/2018] [Indexed: 12/16/2022]
Abstract
Autophagy is a conserved, self-degradation system that is critical for maintaining cellular homeostasis during stress conditions. Dysregulated autophagy has implications in health and disease. Specifically, in cancer, autophagy plays a dichotomous role by inhibiting tumor initiation but supporting tumor progression. Early results from clinical trials that repurposed hydroxychloroquine for cancer have suggested that autophagy inhibition may be a promising approach for advanced cancers. In this review of the literature, the authors present fundamental advances in the biology of autophagy, approaches to targeting autophagy, the preclinical rationale and clinical experience with hydroxychloroquine in cancer clinical trials, the potential role of autophagy in tumor immunity, and recent developments in next-generation autophagy inhibitors that have clinical potential. Autophagy is a promising target for drug development in cancer. Cancer 2018. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Angelique Onorati
- Abramson Cancer Center and Department of Medicine; University of Pennsylvania, Philadelphia, PA, 19104; U.S.A
| | - Matheus Dyczynski
- Department of Oncology & Pathology Karolinska Institute, Stockholm, Sweden
| | - Rani Ojha
- Abramson Cancer Center and Department of Medicine; University of Pennsylvania, Philadelphia, PA, 19104; U.S.A
| | - Ravi K. Amaravadi
- Abramson Cancer Center and Department of Medicine; University of Pennsylvania, Philadelphia, PA, 19104; U.S.A
| |
Collapse
|
48
|
Nosova EV, Lipunova GN, Charushin VN, Chupakhin ON. Fluorine-containing indoles: Synthesis and biological activity. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2018.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Zhou P, Li Y, Li B, Zhang M, Xu C, Liu F, Bian L, Liu Y, Yao Y, Li D. Autophagy inhibition enhances celecoxib-induced apoptosis in osteosarcoma. Cell Cycle 2018; 17:997-1006. [PMID: 29884091 PMCID: PMC6103699 DOI: 10.1080/15384101.2018.1467677] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 06/01/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is the most prevalent bone malignancy in childhood and adolescence, with highly aggressive and early systemic metastases. Here, we reported that celecoxib, a selective COX-2 inhibitor in the NSAID class, exhibits strong antitumor activity in dose dependent manner in two OS cell lines-143B and U2OS. We showed that celecoxib inhibits OS cell growth, causes G0/G1-phase arrest, modulates apoptosis and autophagy and reduces migration in OS cells. In addition, the results of fluorescent mitochondrial probe JC-1 test indicated that the mitochondrial pathway mediates celecoxib-induced apoptosis. Significantly, the autophagy inhibitor CQ combined with celecoxib causes greater cell proliferation inhibition and apoptosis. Pharmacologic inhibition of autophagy with another potent autophagy inhibitor SAR405 also enhances celecoxib-mediated suppression of cell viability. These results were confirmed with shRNAs targeting the autophagy-related gene Atg5. In OS tumor xenografts in vivo, celecoxib also presents antitumor activity. Taken together, our results shed light on the function and mechanism of antitumor action of celecoxib for treatment of OS patients.
Collapse
Affiliation(s)
- Pingting Zhou
- Department of Radiation Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanyan Li
- Department of Radiation Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bo Li
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Meichao Zhang
- Department of Radiation Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ci Xu
- Department of Radiation Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Furao Liu
- Department of Radiation Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Bian
- Department of Radiation Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuanhua Liu
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Yuan Yao
- Department of Radiation Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Li
- Department of Radiation Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
50
|
Abstract
Autophagy is a conserved, self-degradation system that is critical for maintaining cellular homeostasis during stress conditions. Dysregulated autophagy has implications in health and disease. Specifically, in cancer, autophagy plays a dichotomous role by inhibiting tumor initiation but supporting tumor progression. Early results from clinical trials that repurposed hydroxychloroquine for cancer have suggested that autophagy inhibition may be a promising approach for advanced cancers. In this review of the literature, the authors present fundamental advances in the biology of autophagy, approaches to targeting autophagy, the preclinical rationale and clinical experience with hydroxychloroquine in cancer clinical trials, the potential role of autophagy in tumor immunity, and recent developments in next-generation autophagy inhibitors that have clinical potential. Autophagy is a promising target for drug development in cancer. Cancer 2018. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Angelique V Onorati
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matheus Dyczynski
- Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Rani Ojha
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ravi K Amaravadi
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|