1
|
Zhou Q, Li D, Liang Y, Long Y, Liu Y. SEC14L2 regulates the transport of cholesterol in non-small cell lung cancer through SCARB1. Lipids Health Dis 2024; 23:407. [PMID: 39696431 DOI: 10.1186/s12944-024-02401-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Inhibiting cholesterol metabolism has shown great potential in non-small cell lung cancer (NSCLC). However, the regulatory mechanism of the lipid metabolism key factor Sect. 14-like lipid binding 2 (SEC14L2) in NSCLC remains unclear. This study investigates the effects of differentially expressed genes related to cholesterol metabolism on the development of NSCLC. METHODS Cox regression and survival analysis were performed to screen cholesterol metabolism-related genes and predict survival prognosis in NSCLC patients. The proliferation and migration of NSCLC cells were assessed by CCK-8, EdU, colony formation and wound-healing assay. Cholesterol depletion and rescue trials were used to evaluate the effect of SEC14L2 on cholesterol transport in NSCLC cells. IF and Co-IP were used to analyze the targeting relationship between SEC14L2 and scavenger receptor class B member 1 (SCARB1). RESULTS SEC14L2 was a key gene related to prognosis in NSCLC patients and was highly expressed in A549 and Calu-1 cells. Subsequent studies demonstrated that knockdown of SEC14L2 significantly reduced the proliferation and migration of NSCLC cells, resulting in inhibited tumor growth. Furthermore, both in vitro and in vivo experiments indicated that SEC14L2 regulated cholesterol uptake. Silencing SEC14L2 partially counteracted the promotion of cholesterol content by MβCD-chol in A549 and Calu-1 cells. We then verified that there was a protein interaction between SEC14L2 and SCARB1. CONCLUSION SEC14L2 promoted cholesterol uptake in NSCLC cells by up-regulating SCARB1 expression, thereby promoting NSCLC development.
Collapse
Affiliation(s)
- Qianhui Zhou
- Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, No.116, Changjiang South Road, Tianyuan District, Zhuzhou, 412000, Hunan, China
| | - Dianwu Li
- Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, No.116, Changjiang South Road, Tianyuan District, Zhuzhou, 412000, Hunan, China
| | - Yanchao Liang
- Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, No.116, Changjiang South Road, Tianyuan District, Zhuzhou, 412000, Hunan, China
| | - Yunzhu Long
- Department of Infectious Diseases, Zhuzhou Central Hospital, No.116, Changjiang South Road, Tianyuan District, Zhuzhou, 412000, Hunan, China.
| | - Yi Liu
- Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, No.116, Changjiang South Road, Tianyuan District, Zhuzhou, 412000, Hunan, China.
| |
Collapse
|
2
|
Identifying General Tumor and Specific Lung Cancer Biomarkers by Transcriptomic Analysis. BIOLOGY 2022; 11:biology11071082. [PMID: 36101460 PMCID: PMC9313083 DOI: 10.3390/biology11071082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/25/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022]
Abstract
The bioinformatic pipeline previously developed in our research laboratory is used to identify potential general and specific deregulated tumor genes and transcription factors related to the establishment and progression of tumoral diseases, now comparing lung cancer with other two types of cancer. Twenty microarray datasets were selected and analyzed separately to identify hub differentiated expressed genes and compared to identify all the deregulated genes and transcription factors in common between the three types of cancer and those unique to lung cancer. The winning DEGs analysis allowed to identify an important number of TFs deregulated in the majority of microarray datasets, which can become key biomarkers of general tumors and specific to lung cancer. A coexpression network was constructed for every dataset with all deregulated genes associated with lung cancer, according to DAVID’s tool enrichment analysis, and transcription factors capable of regulating them, according to oPOSSUM´s tool. Several genes and transcription factors are coexpressed in the networks, suggesting that they could be related to the establishment or progression of the tumoral pathology in any tissue and specifically in the lung. The comparison of the coexpression networks of lung cancer and other types of cancer allowed the identification of common connectivity patterns with deregulated genes and transcription factors correlated to important tumoral processes and signaling pathways that have not been studied yet to experimentally validate their role in lung cancer. The Kaplan–Meier estimator determined the association of thirteen deregulated top winning transcription factors with the survival of lung cancer patients. The coregulatory analysis identified two top winning transcription factors networks related to the regulatory control of gene expression in lung and breast cancer. Our transcriptomic analysis suggests that cancer has an important coregulatory network of transcription factors related to the acquisition of the hallmarks of cancer. Moreover, lung cancer has a group of genes and transcription factors unique to pulmonary tissue that are coexpressed during tumorigenesis and must be studied experimentally to fully understand their role in the pathogenesis within its very complex transcriptomic scenario. Therefore, the downstream bioinformatic analysis developed was able to identify a coregulatory metafirm of cancer in general and specific to lung cancer taking into account the great heterogeneity of the tumoral process at cellular and population levels.
Collapse
|
3
|
Pediconi N, Ghirga F, Del Plato C, Peruzzi G, Athanassopoulos CM, Mori M, Crestoni ME, Corinti D, Ugozzoli F, Massera C, Arcovito A, Botta B, Boffi A, Quaglio D, Baiocco P. Design and Synthesis of Piperazine-Based Compounds Conjugated to Humanized Ferritin as Delivery System of siRNA in Cancer Cells. Bioconjug Chem 2021; 32:1105-1116. [PMID: 33978420 PMCID: PMC8253483 DOI: 10.1021/acs.bioconjchem.1c00137] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/27/2021] [Indexed: 01/23/2023]
Abstract
Gene expression regulation by small interfering RNA (siRNA) holds promise in treating a wide range of diseases through selective gene silencing. However, successful clinical application of nucleic acid-based therapy requires novel delivery options. Herein, to achieve efficient delivery of negatively charged siRNA duplexes, the internal cavity of "humanized" chimeric Archaeal ferritin (HumAfFt) was specifically decorated with novel cationic piperazine-based compounds (PAs). By coupling these rigid-rod-like amines with thiol-reactive reagents, chemoselective conjugation was efficiently afforded on topologically selected cysteine residues properly located inside HumAfFt. The capability of PAs-HumAfFt to host and deliver siRNA molecules through human transferrin receptor (TfR1), overexpressed in many cancer cells, was explored. These systems allowed siRNA delivery into HeLa, HepG2, and MCF-7 cancer cells with improved silencing effect on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene expression with respect to traditional transfection methodologies and provided a promising TfR1-targeting system for multifunctional siRNA delivery to therapeutic applications.
Collapse
Affiliation(s)
- Natalia Pediconi
- Center
for Life Nano- & Neuro-Science, Fondazione
Istituto Italiano di Tecnologia (IIT), V.le Regina Elena 291, 00161 Rome, Italy
| | - Francesca Ghirga
- Department
of Chemistry and Technology of Drugs, “Department of Excellence
2018−2022”, Sapienza University
of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Cristina Del Plato
- Center
for Life Nano- & Neuro-Science, Fondazione
Istituto Italiano di Tecnologia (IIT), V.le Regina Elena 291, 00161 Rome, Italy
- Department
of Chemistry and Technology of Drugs, “Department of Excellence
2018−2022”, Sapienza University
of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giovanna Peruzzi
- Center
for Life Nano- & Neuro-Science, Fondazione
Istituto Italiano di Tecnologia (IIT), V.le Regina Elena 291, 00161 Rome, Italy
| | - Constantinos M. Athanassopoulos
- Department
of Chemistry, University of Patras, GR-26504 Rio-Patras, Greece
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Mattia Mori
- Department
of Biotechnology, Chemistry and Pharmacy, “Department of Excellence
2018−2022”, University of
Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Maria Elisa Crestoni
- Department
of Chemistry and Technology of Drugs, “Department of Excellence
2018−2022”, Sapienza University
of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Davide Corinti
- Department
of Chemistry and Technology of Drugs, “Department of Excellence
2018−2022”, Sapienza University
of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Franco Ugozzoli
- Department
of Engineering and Architecture, University
of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| | - Chiara Massera
- Department
of Chemical Sciences, Life and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Alessandro Arcovito
- Dipartimento
di Scienze Biotecnologiche di base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Roma, Italy
| | - Bruno Botta
- Department
of Chemistry and Technology of Drugs, “Department of Excellence
2018−2022”, Sapienza University
of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Alberto Boffi
- Center
for Life Nano- & Neuro-Science, Fondazione
Istituto Italiano di Tecnologia (IIT), V.le Regina Elena 291, 00161 Rome, Italy
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
- Institute
of Molecular Biology and Pathology, National
Research Council, P.le
A. Moro 7, 00185 Rome, Italy
| | - Deborah Quaglio
- Department
of Chemistry and Technology of Drugs, “Department of Excellence
2018−2022”, Sapienza University
of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Paola Baiocco
- Center
for Life Nano- & Neuro-Science, Fondazione
Istituto Italiano di Tecnologia (IIT), V.le Regina Elena 291, 00161 Rome, Italy
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
4
|
Zhang Q, Meng Y, Du M, Li S, Xin J, Ben S, Zhang Z, Gu D, Wang M. Evaluation of common genetic variants in vitamin E-related pathway genes and colorectal cancer susceptibility. Arch Toxicol 2021; 95:2523-2532. [PMID: 34009442 DOI: 10.1007/s00204-021-03078-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
Vitamin E is effective for preventing the risk of cancer. However, few studies have elucidated the mechanism of vitamin E in cancer occurrence. Herein, we aimed to identify the genetic variants in vitamin E-related pathway genes associated with colorectal cancer risk. We applied logistic regression models to assess the association between single-nucleotide polymorphisms (SNPs) in vitamin E-related pathway genes and colorectal cancer risk in the Chinese and European population. The false discovery rate (FDR) method was used to correct multiple comparisons. The mRNA and protein expression analysis were evaluated in public database and in-house RNA-Seq data. SCARB1 rs73227586 was identified significantly increased risk of colorectal cancer in the Chinese population (odd ratio (OR) = 1.46, 95% confidence interval (CI) = 1.22-1.75, P = 2.99 × 10-5). This finding was further validated in the European population (OR = 1.11, 95% CI = 1.02-1.20, P = 1.44 × 10-2). Additionally, the mRNA and protein expression of SCARB1 were markedly up-regulated in colorectal tumor tissues. Moreover, rs73227586 T allele could increase the minimum free energy (MFE) and weaken binding ability to transcription factor ELL2. Our findings indicated that SCARB1 may play a carcinogenic role in colorectal cancer. Genetic variants in vitamin E-related pathway genes may concern to be predictors of colorectal cancer risk.
Collapse
Affiliation(s)
- Qiuyi Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yixuan Meng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuwei Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Shuai Ben
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, People's Republic of China. .,Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Yang J, Wang Q, Feng G, Zeng M. Significance of Selective Protein Degradation in the Development of Novel Targeted Drugs and Its Implications in Cancer Therapy. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Yang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Qiaoli Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Guo‐Kai Feng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Mu‐Sheng Zeng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center Guangzhou 510060 China
| |
Collapse
|
6
|
Ma X, Ren H, Peng R, Li Y, Ming L. Identification of key genes associated with progression and prognosis for lung squamous cell carcinoma. PeerJ 2020; 8:e9086. [PMID: 32411535 PMCID: PMC7210810 DOI: 10.7717/peerj.9086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/08/2020] [Indexed: 12/24/2022] Open
Abstract
Background Lung squamous cell carcinoma (LUSC) is a major subtype of lung cancer with limited therapeutic options and poor clinical prognosis. Methods Three datasets (GSE19188, GSE33532 and GSE33479) were obtained from the gene expression omnibus (GEO) database. Differentially expressed genes (DEGs) between LUSC and normal tissues were identified by GEO2R, and functional analysis was employed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool. Protein-protein interaction (PPI) and hub genes were identified via the Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape software. Hub genes were further validated in The Cancer Genome Atlas (TCGA) database. Subsequently, survival analysis was performed using the Kapla-Meier curve and Cox progression analysis. Based on univariate and multivariate Cox progression analysis, a gene signature was established to predict overall survival. Receiver operating characteristic curve was used to evaluate the prognostic value of the model. Results A total of 116 up-regulated genes and 84 down-regulated genes were identified. These DEGs were mainly enriched in the two pathways: cell cycle and p53 signaling way. According to the degree of protein nodes in the PPI network, 10 hub genes were identified. The mRNA expression levels of the 10 hub genes in LUSC were also significantly up-regulated in the TCGA database. Furthermore, a novel seven-gene signature (FLRT3, PPP2R2C, MMP3, MMP12, CAPN8, FILIP1 and SPP1) from the DEGs was constructed and acted as a significant and independent prognostic signature for LUSC. Conclusions The 10 hub genes might be tightly correlated with LUSC progression. The seven-gene signature might be an independent biomarker with a significant predictive value in LUSC overall survival.
Collapse
Affiliation(s)
- Xiaohan Ma
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Clinical Laboratory of Henan Province, Zhengzhou, Henan, China
| | - Huijun Ren
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Clinical Laboratory of Henan Province, Zhengzhou, Henan, China
| | - Ruoyu Peng
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Clinical Laboratory of Henan Province, Zhengzhou, Henan, China
| | - Yi Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Clinical Laboratory of Henan Province, Zhengzhou, Henan, China
| | - Liang Ming
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Clinical Laboratory of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Otálora-Otálora BA, Florez M, López-Kleine L, Canas Arboleda A, Grajales Urrego DM, Rojas A. Joint Transcriptomic Analysis of Lung Cancer and Other Lung Diseases. Front Genet 2019; 10:1260. [PMID: 31867044 PMCID: PMC6908522 DOI: 10.3389/fgene.2019.01260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/14/2019] [Indexed: 12/09/2022] Open
Abstract
Background: Epidemiological and clinical evidence points cancer comorbidity with pulmonary chronic disease. The acquisition of some hallmarks of cancer by cells affected with lung pathologies as a cell adaptive mechanism to a shear stress, suggests that could be associated with the establishment of tumoral processes. Objective: To propose a bioinformatic pipeline for the identification of all deregulated genes and the transcriptional regulators (TFs) that are coexpressed during lung cancer establishment, and therefore could be important for the acquisition of the hallmarks of cancer. Methods: Ten microarray datasets (six of lung cancer, four of lung diseases) comparing normal and diseases-related lung tissue were selected to identify hub differentiated expressed genes (DEGs) in common between lung pathologies and lung cancer, along with transcriptional regulators through the utilization of specialized libraries from R language. DAVID bioinformatics tool for gene enrichment analyses was used to identify genes with experimental evidence associated to tumoral processes and signaling pathways. Coexpression networks of DEGs and TFs in lung cancer establishment were created with Coexnet library, and a survival analysis of the main hub genes was made. Results: Two hundred ten DEGs were identified in common between lung cancer and other lung diseases related to the acquisition of tumoral characteristics, which are coexpressed in a lung cancer network with TFs, suggesting that could be related to the establishment of the tumoral pathology in lung. The comparison of the coexpression networks of lung cancer and other lung diseases allowed the identification of common connectivity patterns (CCPs) with DEGs and TFs correlated to important tumoral processes and signaling pathways, that haven´t been studied to experimentally validate their role in the early stages of lung cancer. Some of the TFs identified showed a correlation between its expression levels and the survival of lung cancer patients. Conclusion: Our findings indicate that lung diseases share genes with lung cancer which are coexpressed in lung cancer, and might be able to explain the epidemiological observations that point to direct and inverse comorbid associations between some chronic lung diseases and lung cancer and represent a complex transcriptomic scenario.
Collapse
Affiliation(s)
| | - Mauro Florez
- Departamento de Estadística, Grupo de Investigación en Bioinformática y Biología de sistemas – GiBBS, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Liliana López-Kleine
- Departamento de Estadística, Grupo de Investigación en Bioinformática y Biología de sistemas – GiBBS, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | - Adriana Rojas
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
8
|
Zhao Z, Ukidve A, Gao Y, Kim J, Mitragotri S. Erythrocyte leveraged chemotherapy (ELeCt): Nanoparticle assembly on erythrocyte surface to combat lung metastasis. SCIENCE ADVANCES 2019; 5:eaax9250. [PMID: 31763454 PMCID: PMC6853768 DOI: 10.1126/sciadv.aax9250] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/17/2019] [Indexed: 05/10/2023]
Abstract
Despite being the mainstay of cancer treatment, chemotherapy has shown limited efficacy for the treatment of lung metastasis due to ineffective targeting and poor tumor accumulation. Here, we report a highly effective erythrocyte leveraged chemotherapy (ELeCt) platform, consisting of biodegradable drug nanoparticles assembled onto the surface of erythrocytes, to enable chemotherapy for lung metastasis treatment. The ELeCt platform significantly extended the circulation time of the drug nanoparticles and delivered 10-fold higher drug content to the lung compared with the free nanoparticles. In both the early- and late-stage melanoma lung metastasis models, the ELeCt platform enabled substantial inhibition of tumor growth that resulted in significant improvement of survival. Further, the ELeCt platform can be used to deliver numerous approved chemotherapeutic drugs. Together, the findings suggest that the ELeCt platform offers a versatile strategy to enable chemotherapy for effective lung metastasis treatment.
Collapse
Affiliation(s)
- Zongmin Zhao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Anvay Ukidve
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Yongsheng Gao
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Jayoung Kim
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Samir Mitragotri
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
- Corresponding author.
| |
Collapse
|
9
|
Shu S, Iimori M, Wakasa T, Ando K, Saeki H, Oda Y, Oki E, Maehara Y. The balance of forces generated by kinesins controls spindle polarity and chromosomal heterogeneity in tetraploid cells. J Cell Sci 2019; 132:jcs.231530. [DOI: 10.1242/jcs.231530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022] Open
Abstract
Chromosomal instability, one of the most prominent features of tumour cells, causes aneuploidy. Tetraploidy is thought to be an intermediate on the path to aneuploidy, but the mechanistic relationship between the two states is poorly understood. Here, we show that spindle polarity (e.g., bipolarity or multipolarity) in tetraploid cells depends on the level of functional phospho-Eg5, a mitotic kinesin, localised at the spindle. Multipolar spindles are formed in cells with high levels of phospho-Eg5. This process is suppressed by inhibition of Eg5 or expression of a non-phosphorylatable Eg5 mutant, as well as by changing the balance between opposing forces required for centrosome separation. Tetraploid cells with high levels of functional Eg5 give rise to a heterogeneous aneuploid population via multipolar division, whereas those with low levels of functional Eg5 continue to undergo bipolar division and remain tetraploid. Furthermore, Eg5 expression levels correlate with ploidy status in tumour specimens. We provide a novel explanation for the tetraploid intermediate model: spindle polarity and subsequent tetraploid cell behaviour are determined by the balance of forces generated by mitotic kinesins at the spindle.
Collapse
Affiliation(s)
- Sei Shu
- Departments of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Product Research Department, Medical Affairs Division, Chugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Makoto Iimori
- Department of Molecular Cancer Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeshi Wakasa
- Department of Molecular Cancer Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Taiho Pharmaceutical Co. Ltd., 1-27 Kandanishiki-cho, Chiyoda-ku, Tokyo 101-8444, Japan
| | - Koji Ando
- Departments of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroshi Saeki
- Departments of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Eiji Oki
- Departments of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshihiko Maehara
- Departments of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Kyushu Central Hospital of the Mutual Aid Association of Public School Teachers, 3-23-1 Shiobaru, Minami-ku, Fukuoka, 815-8588, Japan
| |
Collapse
|
10
|
Ujiie H, Ding L, Fan R, Kato T, Lee D, Fujino K, Kinoshita T, Lee CY, Waddell TK, Keshavjee S, Wilson BC, Zheng G, Chen J, Yasufuku K. Porphyrin-High-Density Lipoprotein: A Novel Photosensitizing Nanoparticle for Lung Cancer Therapy. Ann Thorac Surg 2018; 107:369-377. [PMID: 30316853 DOI: 10.1016/j.athoracsur.2018.08.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/20/2018] [Accepted: 08/22/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND We have developed ultrasmall porphyrin-high-density lipoprotein (HDL) nanoparticles (<20 nm), called "porphyrinHDL," that have a high density of porphyrin molecules and dissociate rapidly upon tumor cell accumulation to become fluorescent and photoactive. This is introduced as a novel activatable photosensitizer for image-guided photodynamic therapy (PDT). Here, we report the studies of these nanoparticles targeted to scavenger receptor class B type I (SR-BI) expressed on lung cancer cells as a first step toward development of a minimally invasive treatment for peripheral lung cancer and metastatic lymph nodes of advanced lung cancer. METHODS The in vitro uptake of porphyrinHDL and the corresponding PDT efficacy were evaluated in both SR-BI-positive and SR-BI-negative lung cancer cell lines. A clinically relevant orthotopic lung cancer model in mice was used to examine fluorescence activation and quantification of uptake in tumor. In addition, we investigated the effect of porphyrinHDL-mediated PDT. RESULTS PorphyrinHDL promoted proper intracellular uptake in the H460 human lung cancer cell line. When irradiated with a 671-nm PDT laser, porphyrinHDL produced significant therapeutic effectiveness in vitro. After systemic administration in mice with orthotopic lung cancer xenografts, porphyrinHDL demonstrated selective accumulation and photoactivation in tumor with significantly enhanced disease-to-normal tissue contrast. Moreover, porphyrinHDL-PDT significantly induced cell apoptosis in lung tumors (73.2%) without toxicity in normal tissues or damage to adjacent critical structures. CONCLUSIONS SR-BI-targeted porphyrinHDL-mediated PDT of lung cancer is selective and effective in vitro and in vivo. These initial proof-of-principle studies suggest the potential of a "smart" PDT approach for highly selective tumor ablation.
Collapse
Affiliation(s)
- Hideki Ujiie
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario
| | - Lili Ding
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario
| | - Rong Fan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario
| | - Tatsuya Kato
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario
| | - Daiyoon Lee
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario
| | - Kosuke Fujino
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario
| | - Tomonari Kinoshita
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario
| | - Chang Young Lee
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario
| | - Thomas K Waddell
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario
| | - Shaf Keshavjee
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario
| | - Brian C Wilson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario; Department of Medical Biophysics, University of Toronto, Toronto, Ontario
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario; Department of Medical Biophysics, University of Toronto, Toronto, Ontario; Guided Therapeutics, Princess Margaret Cancer Centre and TECHNA Institute, University Health Network, Toronto, Ontario; Institute of Biomaterial and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Juan Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario
| | - Kazuhiro Yasufuku
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario; Department of Medical Biophysics, University of Toronto, Toronto, Ontario; Guided Therapeutics, Princess Margaret Cancer Centre and TECHNA Institute, University Health Network, Toronto, Ontario; Institute of Biomaterial and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|