1
|
Smith HL, Willmore E, Prendergast L, Curtin NJ. ATR, CHK1 and WEE1 inhibitors cause homologous recombination repair deficiency to induce synthetic lethality with PARP inhibitors. Br J Cancer 2024; 131:905-917. [PMID: 38965423 PMCID: PMC11369084 DOI: 10.1038/s41416-024-02745-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 07/06/2024] Open
Abstract
PURPOSE PARP inhibitors (PARPi) are effective in homologous recombination repair (HRR) defective (HRD) cancers. To (re)sensitise HRR proficient (HRP) tumours to PARPi combinations with other drugs are being explored. Our aim was to determine the mechanism underpinning the sensitisation to PARPi by inhibitors of cell cycle checkpoint kinases ATR, CHK1 and WEE1. EXPERIMENTAL DESIGN A panel of HRD and HRP cells (including matched BRCA1 or 2 mutant and corrected pairs) and ovarian cancer ascites cells were used. Rucaparib (PARPi) induced replication stress (RS) and HRR (immunofluorescence microscopy for γH2AX and RAD51 foci, respectively), cell cycle changes (flow cytometry), activation of ATR, CHK1 and WEE1 (Western Blot for pCHK1S345, pCHK1S296 and pCDK1Y15, respectively) and cytotoxicity (colony formation assay) was determined, followed by investigations of the impact on all of these parameters by inhibitors of ATR (VE-821, 1 µM), CHK1 (PF-477736, 50 nM) and WEE1 (MK-1775, 100 nM). RESULTS Rucaparib induced RS (3 to10-fold), S-phase accumulation (2-fold) and ATR, CHK1 and WEE1 activation (up to 3-fold), and VE-821, PF-477736 and MK-1775 inhibited their targets and abrogated these rucaparib-induced cell cycle changes in HRP and HRD cells. Rucaparib activated HRR in HRP cells only and was (60-1,000x) more cytotoxic to HRD cells. VE-821, PF-477736 and MK-1775 blocked HRR and sensitised HRP but not HRD cells and primary ovarian ascites to rucaparib. CONCLUSIONS Our data indicate that, rather than acting via abrogation of cell cycle checkpoints, ATR, CHK1 and WEE1 inhibitors cause an HRD phenotype and hence "induced synthetic lethality" with PARPi.
Collapse
Affiliation(s)
- Hannah L Smith
- Faculty of Medical Sciences, Newcastle University Centre for Cancer, Newcastle upon Tyne, NE1 7RU, UK.
| | - Elaine Willmore
- Faculty of Medical Sciences, Newcastle University Centre for Cancer, Newcastle upon Tyne, NE1 7RU, UK
| | - Lisa Prendergast
- Faculty of Medical Sciences, Newcastle University Centre for Cancer, Newcastle upon Tyne, NE1 7RU, UK
| | - Nicola J Curtin
- Faculty of Medical Sciences, Newcastle University Centre for Cancer, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
2
|
Melia E, Parsons JL. The Potential for Targeting G 2/M Cell Cycle Checkpoint Kinases in Enhancing the Efficacy of Radiotherapy. Cancers (Basel) 2024; 16:3016. [PMID: 39272874 PMCID: PMC11394570 DOI: 10.3390/cancers16173016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Radiotherapy is one of the main cancer treatments being used for ~50% of all cancer patients. Conventional radiotherapy typically utilises X-rays (photons); however, there is increasing use of particle beam therapy (PBT), such as protons and carbon ions. This is because PBT elicits significant benefits through more precise dose delivery to the cancer than X-rays, but also due to the increases in linear energy transfer (LET) that lead to more enhanced biological effectiveness. Despite the radiotherapy type, the introduction of DNA damage ultimately drives the therapeutic response through stimulating cancer cell death. To combat this, cells harbour cell cycle checkpoints that enables time for efficient DNA damage repair. Interestingly, cancer cells frequently have mutations in key genes such as TP53 and ATM that drive the G1/S checkpoint, whereas the G2/M checkpoint driven through ATR, Chk1 and Wee1 remains intact. Therefore, targeting the G2/M checkpoint through specific inhibitors is considered an important strategy for enhancing the efficacy of radiotherapy. In this review, we focus on inhibitors of Chk1 and Wee1 kinases and present the current biological evidence supporting their utility as radiosensitisers with different radiotherapy modalities, as well as clinical trials that have and are investigating their potential for cancer patient benefit.
Collapse
Affiliation(s)
- Emma Melia
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jason L Parsons
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Stiegeler N, Garsed DW, Au-Yeung G, Bowtell DDL, Heinzelmann-Schwarz V, Zwimpfer TA. Homologous recombination proficient subtypes of high-grade serous ovarian cancer: treatment options for a poor prognosis group. Front Oncol 2024; 14:1387281. [PMID: 38894867 PMCID: PMC11183307 DOI: 10.3389/fonc.2024.1387281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Approximately 50% of tubo-ovarian high-grade serous carcinomas (HGSCs) have functional homologous recombination-mediated (HR) DNA repair, so-called HR-proficient tumors, which are often associated with primary platinum resistance (relapse within six months after completion of first-line therapy), minimal benefit from poly(ADP-ribose) polymerase (PARP) inhibitors, and shorter survival. HR-proficient tumors comprise multiple molecular subtypes including cases with CCNE1 amplification, AKT2 amplification or CDK12 alteration, and are often characterized as "cold" tumors with fewer infiltrating lymphocytes and decreased expression of PD-1/PD-L1. Several new treatment approaches aim to manipulate these negative prognostic features and render HR-proficient tumors more susceptible to treatment. Alterations in multiple different molecules and pathways in the DNA damage response are driving new drug development to target HR-proficient cancer cells, such as inhibitors of the CDK or P13K/AKT pathways, as well as ATR inhibitors. Treatment combinations with chemotherapy or PARP inhibitors and agents targeting DNA replication stress have shown promising preclinical and clinical results. New approaches in immunotherapy are also being explored, including vaccines or antibody drug conjugates. Many approaches are still in the early stages of development and further clinical trials will determine their clinical relevance. There is a need to include HR-proficient tumors in ovarian cancer trials and to analyze them in a more targeted manner to provide further evidence for their specific therapy, as this will be crucial in improving the overall prognosis of HGSC and ovarian cancer in general.
Collapse
Affiliation(s)
| | - Dale W. Garsed
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - George Au-Yeung
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - David D. L. Bowtell
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Tibor A. Zwimpfer
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Gynecological Oncology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
4
|
Ye Z, Xu S, Shi Y, Cheng X, Zhang Y, Roy S, Namjoshi S, Longo MA, Link TM, Schlacher K, Peng G, Yu D, Wang B, Tainer JA, Ahmed Z. GRB2 stabilizes RAD51 at reversed replication forks suppressing genomic instability and innate immunity against cancer. Nat Commun 2024; 15:2132. [PMID: 38459011 PMCID: PMC10923831 DOI: 10.1038/s41467-024-46283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
Growth factor receptor-bound protein 2 (GRB2) is a cytoplasmic adapter for tyrosine kinase signaling and a nuclear adapter for homology-directed-DNA repair. Here we find nuclear GRB2 protects DNA at stalled replication forks from MRE11-mediated degradation in the BRCA2 replication fork protection axis. Mechanistically, GRB2 binds and inhibits RAD51 ATPase activity to stabilize RAD51 on stalled replication forks. In GRB2-depleted cells, PARP inhibitor (PARPi) treatment releases DNA fragments from stalled forks into the cytoplasm that activate the cGAS-STING pathway to trigger pro-inflammatory cytokine production. Moreover in a syngeneic mouse metastatic ovarian cancer model, GRB2 depletion in the context of PARPi treatment reduced tumor burden and enabled high survival consistent with immune suppression of cancer growth. Collective findings unveil GRB2 function and mechanism for fork protection in the BRCA2-RAD51-MRE11 axis and suggest GRB2 as a potential therapeutic target and an enabling predictive biomarker for patient selection for PARPi and immunotherapy combination.
Collapse
Affiliation(s)
- Zu Ye
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Shengfeng Xu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yin Shi
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xueqian Cheng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuan Zhang
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sunetra Roy
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sarita Namjoshi
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael A Longo
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Todd M Link
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Katharina Schlacher
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dihua Yu
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bin Wang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John A Tainer
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Zamal Ahmed
- Departments of Molecular and Cellular Oncology and Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Mao X, Lee NK, Saad SE, Fong IL. Clinical translation for targeting DNA damage repair in non-small cell lung cancer: a review. Transl Lung Cancer Res 2024; 13:375-397. [PMID: 38496700 PMCID: PMC10938103 DOI: 10.21037/tlcr-23-742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/31/2024] [Indexed: 03/19/2024]
Abstract
Despite significant advancements in screening, diagnosis, and treatment of non-small cell lung cancer (NSCLC), it remains the primary cause of cancer-related deaths globally. DNA damage is caused by the exposure to exogenous and endogenous factors and the correct functioning of DNA damage repair (DDR) is essential to maintain of normal cell circulation. The presence of genomic instability, which results from defective DDR, is a critical characteristic of cancer. The changes promote the accumulation of mutations, which are implicated in cancer cells, but these may be exploited for anti-cancer therapies. NSCLC has a distinct genomic profile compared to other tumors, making precision medicine essential for targeting actionable gene mutations. Although various treatment options for NSCLC exist including chemotherapy, targeted therapy, and immunotherapy, drug resistance inevitably arises. The identification of deleterious DDR mutations in 49.6% of NSCLC patients has led to the development of novel target therapies that have the potential to improve patient outcomes. Synthetic lethal treatment using poly (ADP-ribose) polymerase (PARP) inhibitors is a breakthrough in biomarker-driven therapy. Additionally, promising new compounds targeting DDR, such as ATR, CHK1, CHK2, DNA-PK, and WEE1, had demonstrated great potential for tumor selectivity. In this review, we provide an overview of DDR pathways and discuss the clinical translation of DDR inhibitors in NSCLC, including their application as single agents or in combination with chemotherapy, radiotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Xinru Mao
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Malaysia
| | - Nung Kion Lee
- Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Malaysia
| | | | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Malaysia
| |
Collapse
|
6
|
Zhou M, Duan L, Chen J, Li Y, Yin Z, Song S, Cao Y, Luo P, Hu F, Yang G, Xu J, Liao T, Jin Y. The dynamic role of nucleoprotein SHCBP1 in the cancer cell cycle and its potential as a synergistic target for DNA-damaging agents in cancer therapy. Cell Commun Signal 2024; 22:131. [PMID: 38365687 PMCID: PMC10874017 DOI: 10.1186/s12964-024-01513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Malignant tumours seriously threaten human life and health, and effective treatments for cancer are still being explored. The ability of SHC SH2 domain-binding protein 1 (SHCBP1) to induce cell cycle disturbance and inhibit tumour growth has been increasingly studied, but its dynamic role in the tumour cell cycle and corresponding effects leading to mitotic catastrophe and DNA damage have rarely been studied. RESULTS In this paper, we found that the nucleoprotein SHCBP1 exhibits dynamic spatiotemporal expression during the tumour cell cycle, and SHCBP1 knockdown slowed cell cycle progression by inducing spindle disorder, as reflected by premature mitotic entry and multipolar spindle formation. This dysfunction was caused by G2/M checkpoint impairment mediated by downregulated WEE1 kinase and NEK7 (a member of the mammalian NIMA-related kinase family) expression and upregulated centromere/kinetochore protein Zeste White 10 (ZW10) expression. Moreover, both in vivo and in vitro experiments confirmed the significant inhibitory effects of SHCBP1 knockdown on tumour growth. Based on these findings, SHCBP1 knockdown in combination with low-dose DNA-damaging agents had synergistic tumouricidal effects on tumour cells. In response to this treatment, tumour cells were forced into the mitotic phase with considerable unrepaired DNA lesions, inducing mitotic catastrophe. These synergistic effects were attributed not only to the abrogation of the G2/M checkpoint and disrupted spindle function but also to the impairment of the DNA damage repair system, as demonstrated by mass spectrometry-based proteomic and western blotting analyses. Consistently, patients with low SHCBP1 expression in tumour tissue were more sensitive to radiotherapy. However, SHCBP1 knockdown combined with tubulin-toxic drugs weakened the killing effect of the drugs on tumour cells, which may guide the choice of chemotherapeutic agents in clinical practice. CONCLUSION In summary, we elucidated the role of the nucleoprotein SHCBP1 in tumour cell cycle progression and described a novel mechanism by which SHCBP1 regulates tumour progression and through which targeting SHCBP1 increases sensitivity to DNA-damaging agent therapy, indicating its potential as a cancer treatment.
Collapse
Affiliation(s)
- Mei Zhou
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, Union HospitalTongji Medical CollegeHuazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Limin Duan
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, Union HospitalTongji Medical CollegeHuazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiangbin Chen
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, Union HospitalTongji Medical CollegeHuazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yumei Li
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, Union HospitalTongji Medical CollegeHuazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhengrong Yin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, Union HospitalTongji Medical CollegeHuazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Siwei Song
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, Union HospitalTongji Medical CollegeHuazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yaqi Cao
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, Union HospitalTongji Medical CollegeHuazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Ping Luo
- Department of Translational Medicine Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Fan Hu
- Medical Subcenter of HUST Analytical & Testing Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Guanghai Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Juanjuan Xu
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, Union HospitalTongji Medical CollegeHuazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Tingting Liao
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, Union HospitalTongji Medical CollegeHuazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, Union HospitalTongji Medical CollegeHuazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
7
|
He H, Yang W, Shi Y, Chen X, Chen X, Hu X, Li X, Yang Y, Liu Z, Ye T, Wang N, Yu L. Design and synthesis of the first PARP-1 and proteasome dual inhibitors to treat breast cancer. Eur J Med Chem 2024; 264:115943. [PMID: 38039793 DOI: 10.1016/j.ejmech.2023.115943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/28/2023] [Accepted: 11/05/2023] [Indexed: 12/03/2023]
Abstract
PARP-1 is a crucial factor in repairing DNA single strand damage and maintaining genomic stability. However, the use of PARP-1 inhibitors is limited to combination with chemotherapy or radiotherapy, or as a single agent for indications carrying HRR defects. The ubiquitin-proteasome system processes the majority of cellular proteins and is the principal manner by which cells regulate protein homeostasis. Proteasome inhibitors can cooperate with PARP-1 inhibitors to inhibit DNA homologous recombination repair function. In this study, we designed and synthesized the first dual PARP-1 and proteasome inhibitor based on Olaparib and Ixazomib. Both compounds 42d and 42i exhibited excellent proliferation inhibition and dual-target synergistic effects on cells that were insensitive to PARP-1 inhibitors. Further mechanistic evaluations revealed that 42d and 42i could inhibit homologous recombination repair function by down-regulating the expression of BRCA1 and RAD51. Additionally, 42i induced more significant apoptosis and showed better inhibitory effect on cell proliferation in clonal formation experiments in breast cancer cells than 42d. In summary, our study presented a new class of dual PARP-1/proteasome inhibitors with significant synergistic effects for the treatment of breast cancer.
Collapse
Affiliation(s)
- Hualong He
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wan Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaojie Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xinyi Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyue Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yingyue Yang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhihao Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tinghong Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ningyu Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Luoting Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Bourlon MT, Valdez P, Castro E. Development of PARP inhibitors in advanced prostate cancer. Ther Adv Med Oncol 2024; 16:17588359231221337. [PMID: 38205078 PMCID: PMC10777773 DOI: 10.1177/17588359231221337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
The relatively high prevalence of alterations in the homologous recombination repair (HRR) pathway described in advanced prostate cancer provides a unique opportunity to develop therapeutic strategies that take advantage of the decreased tumor ability to repair DNA damage. Poly ADP-ribose polymerase (PARP) inhibitors have been demonstrated to improve the outcomes of metastatic castration-resistant prostate cancer (mCRPC) patients with HRR defects, particularly in those with BRCA1/2 alterations. To expand the benefit of PARPi to patients without detectable HRR alterations, multiple studies are addressing potential synergies between PARP inhibition (PARPi) and androgen receptor pathway inhibitors (ARSi), radiation, radioligand therapy, chemotherapy, or immunotherapy, and these strategies are also being evaluated in the hormone-sensitive setting. In this review, we summarize the development of PARPi in prostate cancer, the potential synergies, and combinations being investigated as well as the future directions of PARPi for the management of the disease.
Collapse
Affiliation(s)
- Maria Teresa Bourlon
- Hemato-Oncology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Paola Valdez
- Hemato-Oncology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Elena Castro
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Av. Cordoba s/n, 28041, Madrid, Spain
| |
Collapse
|
9
|
Pu M, Cheng K, Li X, Xin Y, Wei L, Jin S, Zheng W, Peng G, Tang Q, Zhou J, Zhang Y. Using graph-based model to identify cell specific synthetic lethal effects. Comput Struct Biotechnol J 2023; 21:5099-5110. [PMID: 37920819 PMCID: PMC10618116 DOI: 10.1016/j.csbj.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023] Open
Abstract
Synthetic lethal (SL) pairs are pairs of genes whose simultaneous loss-of-function results in cell death, while a damaging mutation of either gene alone does not affect the cell's survival. This makes SL pairs attractive targets for precision cancer therapies, as targeting the unimpaired gene of the SL pair can selectively kill cancer cells that already harbor the impaired gene. Limited by the difficulty of finding true SL pairs, especially on specific cell types, current computational approaches provide only limited insights because of overlooking the crucial aspects of cellular context dependency and mechanistic understanding of SL pairs. As a result, the identification of SL targets still relies on expensive, time-consuming experimental approaches. In this work, we applied cell-line specific multi-omics data to a specially designed deep learning model to predict cell-line specific SL pairs. Through incorporating multiple types of cell-specific omics data with a self-attention module, we represent gene relationships as graphs. Our approach achieves the prediction of SL pairs in a cell-specific manner and demonstrates the potential to facilitate the discovery of cell-specific SL targets for cancer therapeutics, providing a tool to unearth mechanisms underlying the origin of SL in cancer biology. The code and data of our approach can be found at https://github.com/promethiume/SLwise.
Collapse
Affiliation(s)
| | - Kaiyang Cheng
- StoneWise, AI, Ltd., Beijing, China
- Nanjing University of Chinese Medicine, Shanghai, China
| | - Xiaorong Li
- StoneWise, AI, Ltd., Beijing, China
- Minzu University of China, Beijing, China
| | | | | | - Sutong Jin
- StoneWise, AI, Ltd., Beijing, China
- Harbin Institute of Technology, Weihai, China
| | | | | | - Qihong Tang
- StoneWise, AI, Ltd., Beijing, China
- Guilin University of Electronic Science and Technology, Guangxi, China
| | | | | |
Collapse
|
10
|
Dilmac S, Ozpolat B. Mechanisms of PARP-Inhibitor-Resistance in BRCA-Mutated Breast Cancer and New Therapeutic Approaches. Cancers (Basel) 2023; 15:3642. [PMID: 37509303 PMCID: PMC10378018 DOI: 10.3390/cancers15143642] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The recent success of Poly (ADP-ribose) polymerase (PARP) inhibitors has led to the approval of four different PARP inhibitors for the treatment of BRCA1/2-mutant breast and ovarian cancers. About 40-50% of BRCA1/2-mutated patients do not respond to PARP inhibitors due to a preexisting innate or intrinsic resistance; the majority of patients who initially respond to the therapy inevitably develop acquired resistance. However, subsets of patients experience a long-term response (>2 years) to treatment with PARP inhibitors. Poly (ADP-ribose) polymerase 1 (PARP1) is an enzyme that plays an important role in the recognition and repair of DNA damage. PARP inhibitors induce "synthetic lethality" in patients with tumors with a homologous-recombination-deficiency (HRD). Several molecular mechanisms have been identified as causing PARP-inhibitor-resistance. In this review, we focus on the molecular mechanisms underlying the PARP-inhibitor-resistance in BRCA-mutated breast cancer and summarize potential therapeutic strategies to overcome the resistance mechanisms.
Collapse
Affiliation(s)
- Sayra Dilmac
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Houston Methodist Neal Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
11
|
Oetting A, Christiansen S, Gatzemeier F, Köcher S, Bußmann L, Böttcher A, Stölzel K, Hoffmann AS, Struve N, Kriegs M, Petersen C, Betz C, Rothkamm K, Zech HB, Rieckmann T. Impaired DNA double-strand break repair and effective radiosensitization of HPV-negative HNSCC cell lines through combined inhibition of PARP and Wee1. Clin Transl Radiat Oncol 2023; 41:100630. [PMID: 37180052 PMCID: PMC10172863 DOI: 10.1016/j.ctro.2023.100630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Objectives In head and neck squamous cell carcinoma (HNSCC), tumors negative for Human Papillomavirus (HPV) remain a difficult to treat entity and the morbidity of current multimodal treatment is high. Radiotherapy in combination with molecular targeting could represent suitable, less toxic treatment options especially for cisplatin ineligible patients. Therefore, we tested dual targeting of PARP and the intra-S/G2 checkpoint through Wee1 inhibition for its radiosensitizing capacity in radioresistant HPV-negative HNSCC cells. Materials and methods Three radioresistant HPV-negative cell lines (HSC4, SAS, UT-SCC-60a) were treated with olaparib, adavosertib and ionizing irradiation. The impact on cell cycle, G2 arrest and replication stress was assessed through flow cytometry after DAPI, phospho-histone H3 and γH2AX staining. Long term cell survival after treatment was determined through colony formation assay and DNA double-strand break (DSB) levels were assessed through quantification of nuclear 53BP1 foci in cell lines and patient-derived HPV± tumor slice cultures. Results Wee1 and dual targeting induced replication stress but failed to effectively inhibit radiation-induced G2 cell cycle arrest. Single as well as combined inhibition increased radiation sensitivity and residual DSB levels, with the largest effects induced through dual targeting. Dual targeting also enhanced residual DSB levels in patient-derived slice cultures from HPV-negative but not HPV+ HNSCC (5/7 vs. 1/6). Conclusion We conclude that the combined inhibition of PARP and Wee1 results in enhanced residual DNA damage levels after irradiation and effectively sensitizes radioresistant HPV-negative HNSCC cells. Ex vivo tumor slice cultures may predict the response of individual patients with HPV-negative HNSCC to this dual targeting approach.
Collapse
Affiliation(s)
- Agnes Oetting
- Department of Radiotherapy, University Medical Center Hamburg Eppendorf, Germany
- Department of Otorhinolaryngology, University Medical Center Hamburg Eppendorf, Germany
| | - Sabrina Christiansen
- Department of Radiotherapy, University Medical Center Hamburg Eppendorf, Germany
- Department of Otorhinolaryngology, University Medical Center Hamburg Eppendorf, Germany
| | - Fruzsina Gatzemeier
- Department of Radiotherapy, University Medical Center Hamburg Eppendorf, Germany
- Department of Otorhinolaryngology, University Medical Center Hamburg Eppendorf, Germany
| | - Sabrina Köcher
- Department of Radiotherapy, University Medical Center Hamburg Eppendorf, Germany
- Department of Otorhinolaryngology, University Medical Center Hamburg Eppendorf, Germany
| | - Lara Bußmann
- Department of Otorhinolaryngology, University Medical Center Hamburg Eppendorf, Germany
- Mildred-Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Germany
| | - Arne Böttcher
- Department of Otorhinolaryngology, University Medical Center Hamburg Eppendorf, Germany
| | - Katharina Stölzel
- Department of Otorhinolaryngology, University Medical Center Hamburg Eppendorf, Germany
| | - Anna Sophie Hoffmann
- Department of Otorhinolaryngology, University Medical Center Hamburg Eppendorf, Germany
| | - Nina Struve
- Department of Radiotherapy, University Medical Center Hamburg Eppendorf, Germany
- Mildred-Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Germany
| | - Malte Kriegs
- Department of Radiotherapy, University Medical Center Hamburg Eppendorf, Germany
| | - Cordula Petersen
- Department of Radiotherapy, University Medical Center Hamburg Eppendorf, Germany
| | - Christian Betz
- Department of Otorhinolaryngology, University Medical Center Hamburg Eppendorf, Germany
| | - Kai Rothkamm
- Department of Radiotherapy, University Medical Center Hamburg Eppendorf, Germany
| | - Henrike Barbara Zech
- Department of Radiotherapy, University Medical Center Hamburg Eppendorf, Germany
- Department of Otorhinolaryngology, University Medical Center Hamburg Eppendorf, Germany
- Mildred-Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Germany
| | - Thorsten Rieckmann
- Department of Radiotherapy, University Medical Center Hamburg Eppendorf, Germany
- Department of Otorhinolaryngology, University Medical Center Hamburg Eppendorf, Germany
- Corresponding author at: University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
12
|
Okabe S, Tanaka Y, Moriyama M, Gotoh A. WEE1 and PARP-1 play critical roles in myelodysplastic syndrome and acute myeloid leukemia treatment. Cancer Cell Int 2023; 23:128. [PMID: 37370065 DOI: 10.1186/s12935-023-02961-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Myelodysplastic syndrome (MDS) is a clonal bone marrow disorder defined by cytopenia and is associated with an increased risk of transformation to acute myeloid leukemia (AML). The outcome of MDS is poor, so alternative therapeutic approaches are needed to improve survival. The inhibition of the DNA damage response pathway, including poly (ADP-ribose) polymerase-1 (PARP-1), has been approved to treat several cancers. In addition, WEE1, a nuclear kinase, is overexpressed in many cancers. Therefore, a WEE1 inhibitor combined with a PARP-1 inhibitor could inhibit the proliferation of MDS and AML. METHODS We analyzed whether WEE1 was regulated in the progression of MDS and AML. We also evaluated the efficacy of MK-1775 (WEE1 inhibitor) and talazoparib (PARP-1 inhibitor). RESULTS PARP-1 expression was higher in the AML cells than in the MDS cells. However, WEE1 expression remained unchanged. MK-1775 or talazoparib alone inhibited MDS and AML cells after 72 h, and cellular cytotoxicity and caspase 3/7 activity were increased. The combined use of MK-1775 and talazoparib produced superior efficacy than either drug alone and SKM-1 colony formation was reduced. Significant cell populations in the sub-G1 phase were found in the cell-cycle analyses. Additionally, γ-H2AX expression and caspase 3 activity were increased. The combined treatment also changed the mitochondrial membrane potential. CONCLUSIONS The combination of a WEE1 inhibitor and PARP-1 inhibitor had enhanced efficacy and is proposed as a new therapeutic option for patients with MDS or AML. Our findings have clinical implications for a potential novel therapeutic strategy for MDS and AML patients.
Collapse
Affiliation(s)
- Seiichi Okabe
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, 160-0023, Tokyo, Japan.
| | - Yuko Tanaka
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, 160-0023, Tokyo, Japan
| | - Mitsuru Moriyama
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, 160-0023, Tokyo, Japan
| | - Akihiko Gotoh
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, 160-0023, Tokyo, Japan
| |
Collapse
|
13
|
Tisseverasinghe S, Bahoric B, Anidjar M, Probst S, Niazi T. Advances in PARP Inhibitors for Prostate Cancer. Cancers (Basel) 2023; 15:1849. [PMID: 36980735 PMCID: PMC10046616 DOI: 10.3390/cancers15061849] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Poly-adenosine diphosphate-ribose polymerase plays an essential role in cell function by regulating apoptosis, genomic stability and DNA repair. PARPi is a promising drug class that has gained significant traction in the last decade with good outcomes in different cancers. Several trials have sought to test its effectiveness in metastatic castration resistant prostate cancer (mCRPC). We conducted a comprehensive literature review to evaluate the current role of PARPi in this setting. To this effect, we conducted queries in the PubMed, Embase and Cochrane databases. We reviewed and compared all major contemporary publications on the topic. In particular, recent phase II and III studies have also demonstrated the benefits of olaparib, rucaparib, niraparib, talazoparib in CRPC. Drug effectiveness has been assessed through radiological progression or overall response. Given the notion of synthetic lethality and potential synergy with other oncological therapies, several trials are looking to integrate PARPi in combined therapies. There remains ongoing controversy on the need for genetic screening prior to treatment initiation as well as the optimal patient population, which would benefit most from PARPi. PARPi is an important asset in the oncological arsenal for mCRPC. New combinations with PARPi may improve outcomes in earlier phases of prostate cancer.
Collapse
Affiliation(s)
| | - Boris Bahoric
- Department of Radiation Oncology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Maurice Anidjar
- Department of Urology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Stephan Probst
- Department of Nuclear Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Tamim Niazi
- Department of Radiation Oncology, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
14
|
Veneziani AC, Scott C, Wakefield MJ, Tinker AV, Lheureux S. Fighting resistance: post-PARP inhibitor treatment strategies in ovarian cancer. Ther Adv Med Oncol 2023; 15:17588359231157644. [PMID: 36872947 PMCID: PMC9983116 DOI: 10.1177/17588359231157644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPis) represent a therapeutic milestone in the management of epithelial ovarian cancer. The concept of 'synthetic lethality' is exploited by PARPi in tumors with defects in DNA repair pathways, particularly homologous recombination deficiency. The use of PARPis has been increasing since its approval as maintenance therapy, particularly in the first-line setting. Therefore, resistance to PARPi is an emerging issue in clinical practice. It brings an urgent need to elucidate and identify the mechanisms of PARPi resistance. Ongoing studies address this challenge and investigate potential therapeutic strategies to prevent, overcome, or re-sensitize tumor cells to PARPi. This review aims to summarize the mechanisms of resistance to PARPi, discuss emerging strategies to treat patients post-PARPi progression, and discuss potential biomarkers of resistance.
Collapse
Affiliation(s)
- Ana C. Veneziani
- Division of Medical Oncology and Haematology,
Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Clare Scott
- Walter and Eliza Hall Institute of Medical
Research, Parkville, VIC, Australia
- Department of Medical Biology, University of
Melbourne, Parkville, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC,
Australia
- Sir Peter MacCallum Department of Oncology,
Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | | | | | - Stephanie Lheureux
- Division of Medical Oncology and Haematology,
Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5B 2M9,
Canada
| |
Collapse
|
15
|
Wang W, Xiong Y, Hu X, Lu F, Qin T, Zhang L, Guo E, Yang B, Fu Y, Hu D, Fan J, Qin X, Liu C, Xiao R, Chen G, Li Z, Sun C. Codelivery of adavosertib and olaparib by tumor-targeting nanoparticles for augmented efficacy and reduced toxicity. Acta Biomater 2023; 157:428-441. [PMID: 36549633 DOI: 10.1016/j.actbio.2022.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Ovarian cancer (OC) ranks first among gynecologic malignancies in terms of mortality. The benefits of poly (ADP-ribose) polymerase (PARP) inhibitors appear to be limited to OC with BRCA mutations. Concurrent administration of WEE1 inhibitors (eg, adavosertib (Ada)) and PARP inhibitors (eg, olaparib (Ola)) effectively suppress ovarian tumor growth regardless of BRCA mutation status, but is poorly tolerated. Henceforth, we aimed to seek a strategy to reduce the toxic effects of this combination by taking advantage of the mesoporous polydopamine (MPDA) nanoparticles with good biocompatibility and high drug loading capacity. In this work, we designed a tumor-targeting peptide TMTP1 modified MPDA-based nano-drug delivery system (TPNPs) for targeted co-delivery of Ada and Ola to treat OC. Ada and Ola could be effectively loaded into MPDA nanoplatform and showed tumor microenvironment triggered release behavior. The nanoparticles induced more apoptosis in OC cells, and significantly enhanced the synergy of combination therapy with Ada plus Ola in murine OC models. Moreover, the precise drug delivery of TPNPs towards tumor cells significantly diminished the toxic side effects caused by concurrent administration of Ada and Ola. Co-delivery of WEE1 inhibitors and PARP inhibitors via TPNPs represents a promising approach for the treatment of OC. STATEMENT OF SIGNIFICANCE: Combination therapy of WEE1 inhibitors (eg, Ada) with PARP inhibitors (eg, Ola) effectively suppress ovarian tumor growth regardless of BRCA mutation status. However, poor tolerability limits its clinical application. To address this issue, we construct a tumor-targeting nano-drug delivery system (TPNP) for co-delivery of Ada and Ola. The nanoparticles specifically target ovarian cancer and effectively enhance the antitumor effect while minimizing undesired toxic side effects. As the first nanomedicine co-loaded with a WEE1 inhibitor and a PARP inhibitor, TPNP-Ada-Ola may provide a promising and generally applicable therapeutic strategy for ovarian cancer patients.
Collapse
Affiliation(s)
- Wei Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuxuan Xiong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xingyuan Hu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Funian Lu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianyu Qin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ensong Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dianxing Hu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - JunPeng Fan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu Qin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - RouRou Xiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gang Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
16
|
Cetin MH, Rieckmann T, Hoffer K, Riepen B, Christiansen S, Gatzemeier F, Feyerabend S, Schoof M, Schüller U, Petersen C, Mynarek M, Rothkamm K, Kriegs M, Struve N. G2 checkpoint targeting via Wee1 inhibition radiosensitizes EGFRvIII-positive glioblastoma cells. Radiat Oncol 2023; 18:19. [PMID: 36709315 PMCID: PMC9884419 DOI: 10.1186/s13014-023-02210-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 01/19/2023] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The gene of the Epidermal growth factor receptor (EGFR) is one of the most frequently altered genes in glioblastoma (GBM), with deletions of exons 2-7 (EGFRvIII) being amongst the most common genomic mutations. EGFRvIII is heterogeneously expressed in GBM. We already showed that EGFRvIII expression has an impact on chemosensitivity, replication stress, and the DNA damage response. Wee1 kinase is a major regulator of the DNA damage induced G2 checkpoint. It is highly expressed in GBM and its overexpression is associated with poor prognosis. Since Wee1 inhibition can lead to radiosensitization of EGFRvIII-negative (EGFRvIII-) GBM cells, we asked, if Wee1 inhibition is sufficient to radiosensitize also EGFRvIII-positive (EGFRvIII+) GBM cells. METHODS We used the clinically relevant Wee1 inhibitor adavosertib and two pairs of isogenetic GBM cell lines with and without endogenous EGFRvIII expression exhibiting different TP53 status. Moreover, human GBM samples displaying heterogenous EGFRvIII expression were analyzed. Expression of Wee1 was assessed by Western blot and respectively immunohistochemistry. The impact of Wee1 inhibition in combination with irradiation on cell cycle and cell survival was analyzed by flow cytometry and colony formation assay. RESULTS Analysis of GBM cells and patient samples revealed a higher expression of Wee1 in EGFRvIII+ cells compared to their EGFRvIII- counterparts. Downregulation of EGFRvIII expression by siRNA resulted in a strong decrease in Wee1 expression. Wee1 inhibition efficiently abrogated radiation-induced G2-arrest and caused radiosensitization, without obvious differences between EGFRvIII- and EGFRvIII+ GBM cells. CONCLUSION We conclude that the inhibition of Wee1 is an effective targeting approach for the radiosensitization of both EGFRvIII- and EGFRvIII+ GBM cells and may therefore represent a promising new therapeutic option to increase response to radiotherapy.
Collapse
Affiliation(s)
- Meryem H. Cetin
- grid.13648.380000 0001 2180 3484Department of Radiobiology & Radiation Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Thorsten Rieckmann
- grid.13648.380000 0001 2180 3484Department of Radiobiology & Radiation Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany ,grid.13648.380000 0001 2180 3484 Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Konstantin Hoffer
- grid.13648.380000 0001 2180 3484Department of Radiobiology & Radiation Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Britta Riepen
- grid.13648.380000 0001 2180 3484Department of Radiobiology & Radiation Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Sabrina Christiansen
- grid.13648.380000 0001 2180 3484Department of Radiobiology & Radiation Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Fruzsina Gatzemeier
- grid.13648.380000 0001 2180 3484Department of Radiobiology & Radiation Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Simon Feyerabend
- grid.13648.380000 0001 2180 3484Department of Radiobiology & Radiation Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Melanie Schoof
- grid.470174.1Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany ,grid.13648.380000 0001 2180 3484Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- grid.470174.1Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany ,grid.13648.380000 0001 2180 3484Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ,grid.13648.380000 0001 2180 3484Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- grid.13648.380000 0001 2180 3484Department of Radiobiology & Radiation Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Martin Mynarek
- grid.13648.380000 0001 2180 3484Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany ,grid.13648.380000 0001 2180 3484Mildred-Scheel Cancer Career Center HaTriCs4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- grid.13648.380000 0001 2180 3484Department of Radiobiology & Radiation Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Malte Kriegs
- grid.13648.380000 0001 2180 3484Department of Radiobiology & Radiation Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Nina Struve
- grid.13648.380000 0001 2180 3484Department of Radiobiology & Radiation Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany ,grid.13648.380000 0001 2180 3484Mildred-Scheel Cancer Career Center HaTriCs4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
17
|
NKp44-Derived Peptide Used in Combination Stimulates Antineoplastic Efficacy of Targeted Therapeutic Drugs. Int J Mol Sci 2022; 23:ijms232214054. [PMID: 36430528 PMCID: PMC9692391 DOI: 10.3390/ijms232214054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Lung cancer cells in the tumor microenvironment facilitate immune evasion that leads to failure of conventional chemotherapies, despite provisionally decided on the genetic diagnosis of patients in a clinical setup. The current study follows three lung cancer patients who underwent "personalized" chemotherapeutic intervention. Patient-derived xenografts (PDXs) were subjected to tumor microarray and treatment screening with chemotherapies, either individually or in combination with the peptide R11-NLS-pep8; this peptide targets both membrane-associated and nuclear PCNA. Ex vivo, employing PDX-derived explants, it was found that combination with R11-NLS-pep8 stimulated antineoplastic effect of chemotherapies that were, although predicted based on the patient's genetic mutation, inactive on their own. Furthermore, treatment in vivo of PDX-bearing mice showed an exactly similar trend in the result, corroborating the finding to be translated into clinical setup.
Collapse
|
18
|
Li S, Wang L, Wang Y, Zhang C, Hong Z, Han Z. The synthetic lethality of targeting cell cycle checkpoints and PARPs in cancer treatment. J Hematol Oncol 2022; 15:147. [PMID: 36253861 PMCID: PMC9578258 DOI: 10.1186/s13045-022-01360-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Continuous cell division is a hallmark of cancer, and the underlying mechanism is tumor genomics instability. Cell cycle checkpoints are critical for enabling an orderly cell cycle and maintaining genome stability during cell division. Based on their distinct functions in cell cycle control, cell cycle checkpoints are classified into two groups: DNA damage checkpoints and DNA replication stress checkpoints. The DNA damage checkpoints (ATM-CHK2-p53) primarily monitor genetic errors and arrest cell cycle progression to facilitate DNA repair. Unfortunately, genes involved in DNA damage checkpoints are frequently mutated in human malignancies. In contrast, genes associated with DNA replication stress checkpoints (ATR-CHK1-WEE1) are rarely mutated in tumors, and cancer cells are highly dependent on these genes to prevent replication catastrophe and secure genome integrity. At present, poly (ADP-ribose) polymerase inhibitors (PARPi) operate through “synthetic lethality” mechanism with mutant DNA repair pathways genes in cancer cells. However, an increasing number of patients are acquiring PARP inhibitor resistance after prolonged treatment. Recent work suggests that a combination therapy of targeting cell cycle checkpoints and PARPs act synergistically to increase the number of DNA errors, compromise the DNA repair machinery, and disrupt the cell cycle, thereby increasing the death rate of cancer cells with DNA repair deficiency or PARP inhibitor resistance. We highlight a combinational strategy involving PARP inhibitors and inhibition of two major cell cycle checkpoint pathways, ATM-CHK2-TP53 and ATR-CHK1-WEE1. The biological functions, resistance mechanisms against PARP inhibitors, advances in preclinical research, and clinical trials are also reviewed.
Collapse
Affiliation(s)
- Shuangying Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Liangliang Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yuanyuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Changyi Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
19
|
Serra V, Wang AT, Castroviejo-Bermejo M, Polanska UM, Palafox M, Herencia-Ropero A, Jones GN, Lai Z, Armenia J, Michopoulos F, Llop-Guevara A, Brough R, Gulati A, Pettitt SJ, Bulusu KC, Nikkilä J, Wilson Z, Hughes A, Wijnhoven PW, Ahmed A, Bruna A, Gris-Oliver A, Guzman M, Rodríguez O, Grueso J, Arribas J, Cortés J, Saura C, Lau A, Critchlow S, Dougherty B, Caldas C, Mills GB, Barrett JC, Forment JV, Cadogan E, Lord CJ, Cruz C, Balmaña J, O'Connor MJ. Identification of a Molecularly-Defined Subset of Breast and Ovarian Cancer Models that Respond to WEE1 or ATR Inhibition, Overcoming PARP Inhibitor Resistance. Clin Cancer Res 2022; 28:4536-4550. [PMID: 35921524 PMCID: PMC9561606 DOI: 10.1158/1078-0432.ccr-22-0568] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE PARP inhibitors (PARPi) induce synthetic lethality in homologous recombination repair (HRR)-deficient tumors and are used to treat breast, ovarian, pancreatic, and prostate cancers. Multiple PARPi resistance mechanisms exist, most resulting in restoration of HRR and protection of stalled replication forks. ATR inhibition was highlighted as a unique approach to reverse both aspects of resistance. Recently, however, a PARPi/WEE1 inhibitor (WEE1i) combination demonstrated enhanced antitumor activity associated with the induction of replication stress, suggesting another approach to tackling PARPi resistance. EXPERIMENTAL DESIGN We analyzed breast and ovarian patient-derived xenoimplant models resistant to PARPi to quantify WEE1i and ATR inhibitor (ATRi) responses as single agents and in combination with PARPi. Biomarker analysis was conducted at the genetic and protein level. Metabolite analysis by mass spectrometry and nucleoside rescue experiments ex vivo were also conducted in patient-derived models. RESULTS Although WEE1i response was linked to markers of replication stress, including STK11/RB1 and phospho-RPA, ATRi response associated with ATM mutation. When combined with olaparib, WEE1i could be differentiated from the ATRi/olaparib combination, providing distinct therapeutic strategies to overcome PARPi resistance by targeting the replication stress response. Mechanistically, WEE1i sensitivity was associated with shortage of the dNTP pool and a concomitant increase in replication stress. CONCLUSIONS Targeting the replication stress response is a valid therapeutic option to overcome PARPi resistance including tumors without an underlying HRR deficiency. These preclinical insights are now being tested in several clinical trials where the PARPi is administered with either the WEE1i or the ATRi.
Collapse
Affiliation(s)
- Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- CIBERONC, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | | | | | - Marta Palafox
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Andrea Herencia-Ropero
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Zhongwu Lai
- AstraZeneca Oncology R&D, Waltham, Massachusetts
| | | | | | - Alba Llop-Guevara
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Rachel Brough
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Aditi Gulati
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Stephen J. Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | | | | | - Zena Wilson
- AstraZeneca Oncology R&D, Cambridge, United Kingdom
| | - Adina Hughes
- AstraZeneca Oncology R&D, Cambridge, United Kingdom
| | | | - Ambar Ahmed
- AstraZeneca Oncology R&D, Waltham, Massachusetts
| | - Alejandra Bruna
- Cancer Research UK, Cambridge Institute, Cambridge, United Kingdom
| | - Albert Gris-Oliver
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Marta Guzman
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Olga Rodríguez
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Judit Grueso
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Joaquin Arribas
- CIBERONC, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Growth Factors Laboratory, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Javier Cortés
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Cristina Saura
- Department of Medical Oncology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Breast Cancer and Melanoma Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Alan Lau
- AstraZeneca Oncology R&D, Cambridge, United Kingdom
| | | | | | - Carlos Caldas
- Cancer Research UK, Cambridge Institute, Cambridge, United Kingdom
| | - Gordon B. Mills
- Department of Cell Development and Cancer Biology, Knight Cancer Institute, Oregon Health and Sciences University, Portland, Oregon
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | - Christopher J. Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Cristina Cruz
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Medical Oncology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- High Risk and Familial Cancer, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Judith Balmaña
- Department of Medical Oncology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- High Risk and Familial Cancer, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | |
Collapse
|
20
|
Peng X, Pan W, Jiang F, Chen W, Qi Z, Peng W, Chen J. Selective PARP1 Inhibitors, PARP1-based Dual-Target Inhibitors, PROTAC PARP1 Degraders, and Prodrugs of PARP1 Inhibitors for Cancer Therapy. Pharmacol Res 2022; 186:106529. [DOI: 10.1016/j.phrs.2022.106529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
|
21
|
Ngoi NYL, Westin SN, Yap TA. Targeting the DNA damage response beyond poly(ADP-ribose) polymerase inhibitors: novel agents and rational combinations. Curr Opin Oncol 2022; 34:559-569. [PMID: 35787597 PMCID: PMC9371461 DOI: 10.1097/cco.0000000000000867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Poly(ADP-ribose) polymerase (PARP) inhibitors have transformed treatment paradigms in multiple cancer types defined by homologous recombination deficiency (HRD) and have become the archetypal example of synthetic lethal targeting within the DNA damage response (DDR). Despite this success, primary and acquired resistance to PARP inhibition inevitability threaten the efficacy and durability of response to these drugs. Beyond PARP inhibitors, recent advances in large-scale functional genomic screens have led to the identification of a steadily growing list of genetic dependencies across the DDR landscape. This has led to a wide array of novel synthetic lethal targets and corresponding inhibitors, which hold promise to widen the application of DDR inhibitors beyond HRD and potentially address PARP inhibitor resistance. RECENT FINDINGS In this review, we describe key synthetic lethal interactions that have been identified across the DDR landscape, summarize the early phase clinical development of the most promising DDR inhibitors, and highlight relevant combinations of DDR inhibitors with chemotherapy and other novel cancer therapies, which are anticipated to make an impact in rationally selected patient populations. SUMMARY The DDR landscape holds multiple opportunities for synthetic lethal targeting with multiple novel DDR inhibitors being evaluated on early phase clinical trials. Key challenges remain in optimizing the therapeutic window of ATR and WEE1 inhibitors as monotherapy and in combination approaches.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine
- The Institute for Applied Cancer Science
- Khalifa Institute for Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
22
|
Abbotts R, Dellomo AJ, Rassool FV. Pharmacologic Induction of BRCAness in BRCA-Proficient Cancers: Expanding PARP Inhibitor Use. Cancers (Basel) 2022; 14:2640. [PMID: 35681619 PMCID: PMC9179544 DOI: 10.3390/cancers14112640] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/17/2022] Open
Abstract
The poly(ADP-ribose) polymerase (PARP) family of proteins has been implicated in numerous cellular processes, including DNA repair, translation, transcription, telomere maintenance, and chromatin remodeling. Best characterized is PARP1, which plays a central role in the repair of single strand DNA damage, thus prompting the development of small molecule PARP inhibitors (PARPi) with the intent of potentiating the genotoxic effects of DNA damaging agents such as chemo- and radiotherapy. However, preclinical studies rapidly uncovered tumor-specific cytotoxicity of PARPi in a subset of cancers carrying mutations in the BReast CAncer 1 and 2 genes (BRCA1/2), which are defective in the homologous recombination (HR) DNA repair pathway, and several PARPi are now FDA-approved for single agent treatment in BRCA-mutated tumors. This phenomenon, termed synthetic lethality, has now been demonstrated in tumors harboring a number of repair gene mutations that produce a BRCA-like impairment of HR (also known as a 'BRCAness' phenotype). However, BRCA mutations or BRCAness is present in only a small subset of cancers, limiting PARPi therapeutic utility. Fortunately, it is now increasingly recognized that many small molecule agents, targeting a variety of molecular pathways, can induce therapeutic BRCAness as a downstream effect of activity. This review will discuss the potential for targeting a broad range of molecular pathways to therapeutically induce BRCAness and PARPi synthetic lethality.
Collapse
Affiliation(s)
- Rachel Abbotts
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.J.D.); (F.V.R.)
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Anna J. Dellomo
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.J.D.); (F.V.R.)
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Feyruz V. Rassool
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.J.D.); (F.V.R.)
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
23
|
Malenge MM, Maaland AF, Repetto-Llamazares A, Middleton B, Nijland M, Visser L, Patzke S, Heyerdahl H, Kolstad A, Stokke T, Ree AH, Dahle J. Anti-CD37 radioimmunotherapy with 177Lu-NNV003 synergizes with the PARP inhibitor olaparib in treatment of non-Hodgkin’s lymphoma in vitro. PLoS One 2022; 17:e0267543. [PMID: 35486574 PMCID: PMC9053826 DOI: 10.1371/journal.pone.0267543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Background and purpose
PARP inhibitors have been shown to increase the efficacy of radiotherapy in preclinical models. Radioimmunotherapy results in selective radiation cytotoxicity of targeted tumour cells. Here we investigate the combined effect of anti-CD37 β-emitting 177Lu-NNV003 radioimmunotherapy and the PARP inhibitor olaparib, and gene expression profiles in CD37 positive non-Hodgkin’s lymphoma cell lines.
Materials and methods
The combined effect of 177Lu-NNV003 and olaparib was studied in seven cell lines using a fixed-ratio ray design, and combination index was calculated for each combination concentration. mRNA was extracted before and after treatment with the drug combination. After RNA-sequencing, hierarchical clustering was performed on basal gene expression profiles and on differentially expressed genes after combination treatment from baseline. Functional gene annotation analysis of significant differentially expressed genes after combination treatment was performed to identify enriched biological processes.
Results
The combination of olaparib and 177Lu-NNV003 was synergistic in four of seven cell lines, antagonistic in one and both synergistic and antagonistic (conditionally synergistic) in two, depending on the concentration ratio between olaparib and 177Lu-NNV003. Cells treated with the combination significantly overexpressed genes in the TP53 signalling pathway. However, cluster analysis did not identify gene clusters that correlate with the sensitivity of cells to single agent or combination treatment.
Conclusion
The cytotoxic effect of the combination of the PARP inhibitor olaparib and the β-emitting radioimmunoconjugate 177Lu-NNV003 was synergistic in the majority of tested lymphoma cell lines.
Collapse
Affiliation(s)
- Marion M. Malenge
- Nordic Nanovector ASA, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Astri Fjelde Maaland
- Nordic Nanovector ASA, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | - Marcel Nijland
- University Medical Center Groningen, Groningen, The Netherlands
| | - Lydia Visser
- University Medical Center Groningen, Groningen, The Netherlands
| | - Sebastian Patzke
- Nordic Nanovector ASA, Oslo, Norway
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | - Arne Kolstad
- Department of Oncology, Innlandet Sykehus, Lillehammer, Norway
| | - Trond Stokke
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Anne Hansen Ree
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | | |
Collapse
|
24
|
Gupta N, Huang TT, Horibata S, Lee JM. Cell cycle checkpoints and beyond: Exploiting the ATR/CHK1/WEE1 pathway for the treatment of PARP inhibitor-resistant cancer. Pharmacol Res 2022; 178:106162. [PMID: 35259479 PMCID: PMC9026671 DOI: 10.1016/j.phrs.2022.106162] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/15/2022] [Accepted: 03/03/2022] [Indexed: 02/07/2023]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) have become a mainstay of therapy in ovarian cancer and other malignancies, including BRCA-mutant breast, prostate, and pancreatic cancers. However, a growing number of patients develop resistance to PARPis, highlighting the need to further understand the mechanisms of PARPi resistance and develop effective treatment strategies. Targeting cell cycle checkpoint protein kinases, e.g., ATR, CHK1, and WEE1, which are upregulated in response to replication stress, represents one such therapeutic approach for PARPi-resistant cancers. Mechanistically, activated cell cycle checkpoints promote cell cycle arrest, replication fork stabilization, and DNA repair, demonstrating the interplay of DNA repair proteins with replication stress in the development of PARPi resistance. Inhibitors of these cell cycle checkpoints are under investigation in PARPi-resistant ovarian and other cancers. In this review, we discuss the cell cycle checkpoints and their roles beyond mere cell cycle regulation as part of the arsenal to overcome PARPi-resistant cancers. We also address the current status and recent advancements as well as limitations of cell cycle checkpoint inhibitors in clinical trials.
Collapse
Affiliation(s)
- Nitasha Gupta
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tzu-Ting Huang
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sachi Horibata
- Precision Health Program, Michigan State University, East Lansing, MI, USA; Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
Lakiza O, Lutze J, Vogle A, Williams J, Abukdheir A, Miller P, Liao CY'A, Pitroda SP, Martinez C, Olivas A, Setia N, Kron SJ, Weichselbaum RR, Keutgen XM. Loss of MEN1 function impairs DNA repair capability of pancreatic neuroendocrine tumors. Endocr Relat Cancer 2022; 29:225-239. [PMID: 35171113 PMCID: PMC9045673 DOI: 10.1530/erc-21-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/08/2022]
Abstract
Somatic MEN1 mutations occur in up to 50% of pancreatic neuroendocrine tumors (PanNETs). Clinical studies have shown that radiation therapy (IR) is effective in a subset of PanNETs, but it remains unclear why some patients respond better to IR than others. Herein, we study whether MEN1 loss of function increases radiosensitivity of PanNETs and determine its effect on DNA double-strand break (DSB) repair. After creating a MEN1 knockout PanNET cell line, we confirmed reduced DSB repair capacity in MEN1-deficient cells and linked these findings to a defect in homologous recombination, as well as reduced BRCA2 expression levels. Consistent with this model, we found that MEN1 mutant cells displayed increased sensitivity to the highly trapping poly (ADP-ribose) polymerase (PARP) 1 inhibitor talazoparib in vitro. Our results suggest that combining IR with PARP inhibition may be beneficial in patients with PanNETs and MEN1 loss of function.
Collapse
Affiliation(s)
- Olga Lakiza
- Endocrine and Neuroendocrine Surgery Research Program, Division of General Surgery and Surgical Oncology, Department of Surgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - Julian Lutze
- Committee on Cancer Biology, University of Chicago, Chicago, Illinois, USA
| | - Alyx Vogle
- Endocrine and Neuroendocrine Surgery Research Program, Division of General Surgery and Surgical Oncology, Department of Surgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - Jelani Williams
- Endocrine and Neuroendocrine Surgery Research Program, Division of General Surgery and Surgical Oncology, Department of Surgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - Abde Abukdheir
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Paul Miller
- Endocrine and Neuroendocrine Surgery Research Program, Division of General Surgery and Surgical Oncology, Department of Surgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - Chih-Yi 'Andy' Liao
- Division of Hematology and Oncology, Department of Internal Medicine, University of Chicago, Chicago, Illinois, USA
| | - Sean P Pitroda
- Department of Radiation Oncology and Cellular Biology, University of Chicago, Chicago, Illinois, USA
| | - Carlos Martinez
- Department of Radiation Oncology and Cellular Biology, University of Chicago, Chicago, Illinois, USA
| | - Andrea Olivas
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Namrata Setia
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Stephen J Kron
- Committee on Cancer Biology, University of Chicago, Chicago, Illinois, USA
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, USA
| | - Ralph R Weichselbaum
- Department of Radiation Oncology and Cellular Biology, University of Chicago, Chicago, Illinois, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois, USA
| | - Xavier M Keutgen
- Endocrine and Neuroendocrine Surgery Research Program, Division of General Surgery and Surgical Oncology, Department of Surgery, University of Chicago Medicine, Chicago, Illinois, USA
| |
Collapse
|
26
|
Wilson Z, Odedra R, Wallez Y, Wijnhoven PW, Hughes AM, Gerrard J, Jones GN, Bargh-Dawson H, Brown E, Young LA, O'Connor MJ, Lau A. ATR Inhibitor AZD6738 (Ceralasertib) Exerts Antitumor Activity as a Monotherapy and in Combination with Chemotherapy and the PARP Inhibitor Olaparib. Cancer Res 2022; 82:1140-1152. [PMID: 35078817 PMCID: PMC9359726 DOI: 10.1158/0008-5472.can-21-2997] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/10/2021] [Accepted: 01/19/2022] [Indexed: 01/09/2023]
Abstract
AZD6738 (ceralasertib) is a potent and selective orally bioavailable inhibitor of ataxia telangiectasia and Rad3-related (ATR) kinase. ATR is activated in response to stalled DNA replication forks to promote G2-M cell-cycle checkpoints and fork restart. Here, we found AZD6738 modulated CHK1 phosphorylation and induced ATM-dependent signaling (pRAD50) and the DNA damage marker γH2AX. AZD6738 inhibited break-induced replication and homologous recombination repair. In vitro sensitivity to AZD6738 was elevated in, but not exclusive to, cells with defects in the ATM pathway or that harbor putative drivers of replication stress such as CCNE1 amplification. This translated to in vivo antitumor activity, with tumor control requiring continuous dosing and free plasma exposures, which correlated with induction of pCHK1, pRAD50, and γH2AX. AZD6738 showed combinatorial efficacy with agents associated with replication fork stalling and collapse such as carboplatin and irinotecan and the PARP inhibitor olaparib. These combinations required optimization of dose and schedules in vivo and showed superior antitumor activity at lower doses compared with that required for monotherapy. Tumor regressions required at least 2 days of daily dosing of AZD6738 concurrent with carboplatin, while twice daily dosing was required following irinotecan. In a BRCA2-mutant patient-derived triple-negative breast cancer (TNBC) xenograft model, complete tumor regression was achieved with 3 to5 days of daily AZD6738 per week concurrent with olaparib. Increasing olaparib dosage or AZD6738 dosing to twice daily allowed complete tumor regression even in a BRCA wild-type TNBC xenograft model. These preclinical data provide rationale for clinical evaluation of AZD6738 as a monotherapy or combinatorial agent. SIGNIFICANCE This detailed preclinical investigation, including pharmacokinetics/pharmacodynamics and dose-schedule optimizations, of AZD6738/ceralasertib alone and in combination with chemotherapy or PARP inhibitors can inform ongoing clinical efforts to treat cancer with ATR inhibitors.
Collapse
Affiliation(s)
- Zena Wilson
- Bioscience, Oncology R&D, AstraZeneca, Cheshire, United Kingdom
| | - Rajesh Odedra
- Bioscience, Oncology R&D, AstraZeneca, Cheshire, United Kingdom
| | - Yann Wallez
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Adina M. Hughes
- Bioscience, Oncology R&D, AstraZeneca, Cheshire, United Kingdom
| | - Joe Gerrard
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Gemma N. Jones
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Hannah Bargh-Dawson
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Elaine Brown
- Bioscience, Oncology R&D, AstraZeneca, Cheshire, United Kingdom
| | - Lucy A. Young
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Mark J. O'Connor
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Alan Lau
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom.,Corresponding Author: Alan Lau, Bioscience, Oncology R&D, AstraZeneca, Hodgkin Building, C/O Darwin Building, Unit 310, Cambridge Science Park, Milton Road, Cambridge CB4 OWG, United Kingdom. Phone: 4407-9171-88399; E-mail:
| |
Collapse
|
27
|
Bukhari AB, Chan GK, Gamper AM. Targeting the DNA Damage Response for Cancer Therapy by Inhibiting the Kinase Wee1. Front Oncol 2022; 12:828684. [PMID: 35251998 PMCID: PMC8891215 DOI: 10.3389/fonc.2022.828684] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer cells typically heavily rely on the G2/M checkpoint to survive endogenous and exogenous DNA damage, such as genotoxic stress due to genome instability or radiation and chemotherapy. The key regulator of the G2/M checkpoint, the cyclin-dependent kinase 1 (CDK1), is tightly controlled, including by its phosphorylation state. This posttranslational modification, which is determined by the opposing activities of the phosphatase cdc25 and the kinase Wee1, allows for a more rapid response to cellular stress than via the synthesis or degradation of modulatory interacting proteins, such as p21 or cyclin B. Reducing Wee1 activity results in ectopic activation of CDK1 activity and drives premature entry into mitosis with unrepaired or under-replicated DNA and causing mitotic catastrophe. Here, we review efforts to use small molecule inhibitors of Wee1 for therapeutic purposes, including strategies to combine Wee1 inhibition with genotoxic agents, such as radiation therapy or drugs inducing replication stress, or inhibitors of pathways that show synthetic lethality with Wee1. Furthermore, it become increasingly clear that Wee1 inhibition can also modulate therapeutic immune responses. We will discuss the mechanisms underlying combination treatments identifying both cell intrinsic and systemic anti-tumor activities.
Collapse
|
28
|
Zou C, Rong F, Zeng Y, Zeng J, Wei R, Wei D. Circ-SNAP47 (hsa_circ_0016760) and miR-625-5p are regulators of WEE1 in regulation of chemoresistance, growth and invasion of DDP-tolerant NSCLC cells via ceRNA pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:224-236. [PMID: 34664776 DOI: 10.1002/tox.23391] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/22/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Circular RNA-synaptosome associated protein 47 (circ-SNAP47; Hsa_circ_0016760) is oncogenic in non-small-cell lung cancer (NSCLC); however, its role is undescribed in cis-diamminedichloroplatinum II (DDP) resistance. We attempted to investigate its expression, role and mechanism in DDP-tolerant NSCLC. As a result, circ-SNAP47 expression was upregulated in human DDP-tolerant NSCLC tissues and cells, accompanied with WEE1 G2 checkpoint kinase (WEE1) upregulation and microRNA (miR)-625-5p downregulation. Functionally, interfering circ-SNAP47 and/or restoring miR-625-5p curbed the 50% inhibitory concentration of DDP, colony formation, cell proliferation and invasion, accompanied with apoptotic rate promotion and depressions of multidrug resistance (MDR) markers MDR1 and MRP1, anti-apoptosis protein Bcl-2, and pro-invasion protein MMP9. Notably, circ-SNAP47 interference suppressed xenograft tumor growth of DDP-tolerant NSCLC cells by elevating miR-625-5p and descending WEE1. Mechanistically, circ-SNAP47 directly targeted miR-625-5p, and miR-625-5p further targeted WEE1. Therefore, circ-SNAP47-miR-625-5p-WEE1 axis might participate in chemoresistance and progression of DDP-tolerant NSCLC.
Collapse
Affiliation(s)
- Can Zou
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| | - Feng Rong
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| | - Yan Zeng
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| | - Jing Zeng
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| | - Rong Wei
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| | - Dong Wei
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| |
Collapse
|
29
|
Petroni G, Cantley LC, Santambrogio L, Formenti SC, Galluzzi L. Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer. Nat Rev Clin Oncol 2022; 19:114-131. [PMID: 34819622 PMCID: PMC9004227 DOI: 10.1038/s41571-021-00579-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 02/03/2023]
Abstract
A variety of targeted anticancer agents have been successfully introduced into clinical practice, largely reflecting their ability to inhibit specific molecular alterations that are required for disease progression. However, not all malignant cells rely on such alterations to survive, proliferate, disseminate and/or evade anticancer immunity, implying that many tumours are intrinsically resistant to targeted therapies. Radiotherapy is well known for its ability to activate cytotoxic signalling pathways that ultimately promote the death of cancer cells, as well as numerous cytoprotective mechanisms that are elicited by cellular damage. Importantly, many cytoprotective mechanisms elicited by radiotherapy can be abrogated by targeted anticancer agents, suggesting that radiotherapy could be harnessed to enhance the clinical efficacy of these drugs. In this Review, we discuss preclinical and clinical data that introduce radiotherapy as a tool to elicit or amplify clinically actionable signalling pathways in patients with cancer.
Collapse
Affiliation(s)
- Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lewis C Cantley
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
30
|
Sethy C, Kundu CN. PARP inhibitor BMN-673 induced apoptosis by trapping PARP-1 and inhibiting base excision repair via modulation of pol-β in chromatin of breast cancer cells. Toxicol Appl Pharmacol 2022; 436:115860. [PMID: 34998856 DOI: 10.1016/j.taap.2021.115860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 01/05/2023]
Abstract
PARP inhibitors emerged as clinically effective anti-tumor agents in combination with DNA damaging agents but the toxicity of DNA damaging agents and their off-target effects caused serious problems in cancer therapy. They confer cytotoxicity in cancer cells both by catalytic inhibition and trapping of PARP-1 at the DNA damage site. There is a lack of direct evidence to quantitatively determine the trapped PARP-1 in cellular DNA. Here, we have precisely evaluated the mechanism of PARP trapping mediated anti-cancer action of Quinacrine (QC), BMN-673, and their combination (QC + BMN-673) in breast cancer cells. We introduced a strategy to measure the cellular PARP trapping potentiality of BMN-673 in QC pretreated cells using a fluorescence-based assay system. It was found that QC+ BMN-673 induced apoptosis by triggering DNA damage in breast cancer cells. Treatment with QC + BMN-673 stimulated the expression of PARP-1 in the chromatin compared to that of PARP-2 and PARP-3. QC + BMN-673 treatment also caused a dose-dependent and time-dependent accumulation of PARP-1 and inhibition of PARylation in the chromatin. Upregulation of BER components (pol-β and FEN-1), an unchanged HR and NHEJ pathway proteins, and reduction of luciferase activity of the cells transfected with R-p21-P (LP-BER) were noted in combined drug-treated cells. Interestingly, silencing of pol-β resulted in unchanged PARP-1 trapping and PAR activity in the chromatin with increasing time after QC + BMN-673 treatment without altering APC and FEN-1 expression. Thus, our data suggested that the QC + BMN-673 augmented breast cancer cell death by pol-β mediated repair inhibition primarily through trapping of PARP-1 besides PARP-1 catalytic inhibition.
Collapse
Affiliation(s)
- Chinmayee Sethy
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, Odisha 751024, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
31
|
Phosphorylation of TRIP13 at Y56 induces radiation resistance but sensitizes head and neck cancer to cetuximab. Mol Ther 2022; 30:468-484. [PMID: 34111559 PMCID: PMC8753291 DOI: 10.1016/j.ymthe.2021.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 01/07/2023] Open
Abstract
Radiation therapy, a mainstay of treatment for head and neck cancer, is not always curative due to the development of treatment resistance; additionally, multi-institutional trials have questioned the efficacy of concurrent radiation with cetuximab, the epidermal growth factor receptor (EGFR) inhibitor. We unraveled a mechanism for radiation resistance; that is, radiation induces EGFR, which phosphorylates TRIP13 (thyroid hormone receptor interactor 13) on tyrosine 56. Phosphorylated (phospho-)TRIP13 promotes non-homologous end joining (NHEJ) repair to induce radiation resistance. NHEJ is the main repair pathway for radiation-induced DNA damage. Tumors expressing high TRIP13 do not respond to radiation but are sensitive to cetuximab or cetuximab combined with radiation. Suppression of phosphorylation of TRIP13 at Y56 abrogates these effects. These findings show that EGFR-mediated phosphorylation of TRIP13 at Y56 is a vital mechanism of radiation resistance. Notably, TRIP13-pY56 could be used to predict the response to radiation or cetuximab and could be explored as an actionable target.
Collapse
|
32
|
Bhat V, Pellizzari S, Allan AL, Wong E, Lock M, Brackstone M, Lohmann AE, Cescon DW, Parsyan A. Radiotherapy and radiosensitization in breast cancer: Molecular targets and clinical applications. Crit Rev Oncol Hematol 2021; 169:103566. [PMID: 34890802 DOI: 10.1016/j.critrevonc.2021.103566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
Relatively poor survival outcomes are observed in advanced or metastatic breast cancer, where local control of the primary or metastatic disease may be achieved by surgical resection, local ablative and radiation therapies. Radioresistance, poses a major challenge in achieving durable oncologic outcomes, mandating development of novel management strategies. Although multimodality approaches that combine radiotherapy with chemotherapy, or systemic agents, are utilized for radiosensitization and treatment of various malignancies, this approach has not yet found its clinical application in breast cancer. Some agents for breast cancer treatment can serve as radiosensitizers, creating an opportunity to enhance effects of radiation while providing systemic disease control. Hence, combination of radiotherapy with radiosensitizing agents have the potential to improve oncologic outcomes in advanced or metastatic breast cancer. This review discusses molecular targets for radiosensitization and novel systemic agents that have potential for clinical use as radiosensitizers in breast cancer.
Collapse
Affiliation(s)
- Vasudeva Bhat
- London Regional Cancer Program, London Health Science Centre, London, ON, N6A 5W9, Canada; Department of Anatomy & Cell Biology, Western University, London, ON, N6A 3K7, Canada
| | - Sierra Pellizzari
- Department of Anatomy & Cell Biology, Western University, London, ON, N6A 3K7, Canada
| | - Alison L Allan
- London Regional Cancer Program, London Health Science Centre, London, ON, N6A 5W9, Canada; Department of Anatomy & Cell Biology, Western University, London, ON, N6A 3K7, Canada; Department of Oncology, Western University, London, ON, N6A 4L6, Canada
| | - Eugene Wong
- Department of Oncology, Western University, London, ON, N6A 4L6, Canada; Department of Physics and Astronomy, Western University, London, ON, N6A 3K7, Canada; Department of Medical Biophysics, Western University, London, N6A 5C1, Canada
| | - Michael Lock
- London Regional Cancer Program, London Health Science Centre, London, ON, N6A 5W9, Canada; Department of Oncology, Western University, London, ON, N6A 4L6, Canada
| | - Muriel Brackstone
- London Regional Cancer Program, London Health Science Centre, London, ON, N6A 5W9, Canada; Department of Oncology, Western University, London, ON, N6A 4L6, Canada; Department of Surgery, Western University, London, ON, N6A 3K7, Canada
| | - Ana Elisa Lohmann
- London Regional Cancer Program, London Health Science Centre, London, ON, N6A 5W9, Canada; Department of Oncology, Western University, London, ON, N6A 4L6, Canada
| | - David W Cescon
- Department of Medical Oncology and Hematology, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Armen Parsyan
- London Regional Cancer Program, London Health Science Centre, London, ON, N6A 5W9, Canada; Department of Anatomy & Cell Biology, Western University, London, ON, N6A 3K7, Canada; Department of Oncology, Western University, London, ON, N6A 4L6, Canada; Department of Surgery, Western University, London, ON, N6A 3K7, Canada.
| |
Collapse
|
33
|
Parsels LA, Zhang Q, Karnak D, Parsels JD, Lam K, Willers H, Green MD, Rehemtulla A, Lawrence TS, Morgan MA. Translation of DNA Damage Response Inhibitors as Chemoradiation Sensitizers From the Laboratory to the Clinic. Int J Radiat Oncol Biol Phys 2021; 111:e38-e53. [PMID: 34348175 PMCID: PMC8602768 DOI: 10.1016/j.ijrobp.2021.07.1708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022]
Abstract
Combination therapies with agents targeting the DNA damage response (DDR) offer an opportunity to selectively enhance the therapeutic index of chemoradiation or eliminate use of chemotherapy altogether. The successful translation of DDR inhibitors to clinical use requires investigating both their direct actions as (chemo)radiosensitizers and their potential to stimulate tumor immunogenicity. Beginning with high-throughput screening using both viability and DNA damage-reporter assays, followed by validation in gold-standard radiation colony-forming assays and in vitro assessment of mechanistic effects on the DDR, we describe proven strategies and methods leading to the clinical development of DDR inhibitors both with radiation alone and in combination with chemoradiation. Beyond these in vitro studies, we discuss the impact of key features of human xenograft and syngeneic mouse models on the relevance of in vivo tumor efficacy studies, particularly with regard to the immunogenic effects of combined therapy with radiation and DDR inhibitors. Finally, we describe recent technological advances in radiation delivery (using the small animal radiation research platform) that allow for conformal, clinically relevant radiation therapy in mouse models. This overall approach is critical to the successful clinical development and ultimate Food and Drug Administration approval of DDR inhibitors as (chemo)radiation sensitizers.
Collapse
Affiliation(s)
- Leslie A Parsels
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Qiang Zhang
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - David Karnak
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Joshua D Parsels
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Kwok Lam
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael D Green
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan.
| |
Collapse
|
34
|
Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat Rev Clin Oncol 2021; 18:773-791. [PMID: 34285417 DOI: 10.1038/s41571-021-00532-x] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Developing novel targeted anticancer therapies is a major goal of current research. The use of poly(ADP-ribose) polymerase (PARP) inhibitors in patients with homologous recombination-deficient tumours provides one of the best examples of a targeted therapy that has been successfully translated into the clinic. The success of this approach has so far led to the approval of four different PARP inhibitors for the treatment of several types of cancers and a total of seven different compounds are currently under clinical investigation for various indications. Clinical trials have demonstrated promising response rates among patients receiving PARP inhibitors, although the majority will inevitably develop resistance. Preclinical and clinical data have revealed multiple mechanisms of resistance and current efforts are focused on developing strategies to address this challenge. In this Review, we summarize the diverse processes underlying resistance to PARP inhibitors and discuss the potential strategies that might overcome these mechanisms such as combinations with chemotherapies, targeting the acquired vulnerabilities associated with resistance to PARP inhibitors or suppressing genomic instability.
Collapse
|
35
|
Barchiesi G, Roberto M, Verrico M, Vici P, Tomao S, Tomao F. Emerging Role of PARP Inhibitors in Metastatic Triple Negative Breast Cancer. Current Scenario and Future Perspectives. Front Oncol 2021; 11:769280. [PMID: 34900718 PMCID: PMC8655309 DOI: 10.3389/fonc.2021.769280] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/05/2021] [Indexed: 12/31/2022] Open
Abstract
Triple negative tumors represent 15% of breast cancer and are characterized by the lack of estrogen receptors, progesterone receptor, and HER2 amplification or overexpression. Approximately 25% of patients diagnosed with triple negative breast cancer carry a germline BRCA1 or BRCA2 mutation. They have an aggressive biology, and chemotherapy has been the mainstay of treatment for a long time. Despite intensive therapies, prognosis is still poor, and many patients will eventually relapse or die due to cancer. Therefore, novel targeted agents that can increase the treatment options for this disease are urgently needed. Recently, a new class of molecules has emerged as a standard of care for patients with triple negative breast cancer and germline BRCA1 or BRCA2 mutation: poly (ADP-ribose) (PARP) inhibitors. In the first part of the review, we summarize and discuss evidence supporting the use of PARP inhibitors. Currently, two PARP inhibitors have been approved for triple negative metastatic breast cancer-olaparib and talazoparib-based on two phase III trials, which showed a progression-free survival benefit when compared to chemotherapy. Safety profile was manageable with supportive therapies and dose reductions/interruptions. In addition, other PARP inhibitors are currently under investigation, such as talazoparib, rucaparib, and veliparib. Subsequently, we will discuss the potential role of PARP inhibitors in the future. Clinical research areas are investigating PARP inhibitors in combination with other agents and are including patients without germline BRCA mutations: ongoing phase II/III studies are combining PARP inhibitors with immunotherapy, while phases I and II trials are combining PARP inhibitors with other targeted agents such as ATM and PIK3CA inhibitors. Moreover, several clinical trials are enrolling patients with somatic BRCA mutation or patients carrying mutations in genes, other than BRCA1/2, involved in the homologous recombination repair pathway (e.g., CHECK2, PALB2, RAD51, etc.).
Collapse
Affiliation(s)
- Giacomo Barchiesi
- Dipartimento di Scienze Radiologiche, Oncologiche ed Anatomo Patologiche, Università di Roma Sapienza, Rome, Italy
| | - Michela Roberto
- Dipartimento di Scienze Radiologiche, Oncologiche ed Anatomo Patologiche, Università di Roma Sapienza, Rome, Italy
| | - Monica Verrico
- Dipartimento di Scienze Radiologiche, Oncologiche ed Anatomo Patologiche, Università di Roma Sapienza, Rome, Italy
| | - Patrizia Vici
- UOSD Sperimentazioni Di Fase IV, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Silverio Tomao
- Dipartimento di Scienze Radiologiche, Oncologiche ed Anatomo Patologiche, Università di Roma Sapienza, Rome, Italy
| | - Federica Tomao
- Gynecologic Oncology Program, European Institute of Oncology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Maternal and Child Department, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
36
|
Elbanna M, Chowdhury NN, Rhome R, Fishel ML. Clinical and Preclinical Outcomes of Combining Targeted Therapy With Radiotherapy. Front Oncol 2021; 11:749496. [PMID: 34733787 PMCID: PMC8558533 DOI: 10.3389/fonc.2021.749496] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
In the era of precision medicine, radiation medicine is currently focused on the precise delivery of highly conformal radiation treatments. However, the tremendous developments in targeted therapy are yet to fulfill their full promise and arguably have the potential to dramatically enhance the radiation therapeutic ratio. The increased ability to molecularly profile tumors both at diagnosis and at relapse and the co-incident progress in the field of radiogenomics could potentially pave the way for a more personalized approach to radiation treatment in contrast to the current ‘‘one size fits all’’ paradigm. Few clinical trials to date have shown an improved clinical outcome when combining targeted agents with radiation therapy, however, most have failed to show benefit, which is arguably due to limited preclinical data. Several key molecular pathways could theoretically enhance therapeutic effect of radiation when rationally targeted either by directly enhancing tumor cell kill or indirectly through the abscopal effect of radiation when combined with novel immunotherapies. The timing of combining molecular targeted therapy with radiation is also important to determine and could greatly affect the outcome depending on which pathway is being inhibited.
Collapse
Affiliation(s)
- May Elbanna
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Nayela N Chowdhury
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ryan Rhome
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Melissa L Fishel
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
37
|
Hiddinga BI, Raskin J, Janssens A, Pauwels P, Van Meerbeeck JP. Recent developments in the treatment of small cell lung cancer. Eur Respir Rev 2021; 30:210079. [PMID: 34261744 PMCID: PMC9488550 DOI: 10.1183/16000617.0079-2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/27/2021] [Indexed: 12/19/2022] Open
Abstract
Small cell lung cancer (SCLC) comprises about 15% of all lung cancers. It is an aggressive disease, with early metastasis and a poor prognosis. Until recently, SCLC treatment remained relatively unchanged, with chemotherapy remaining the cornerstone of treatment. In this overview we will highlight the recent advances in the field of staging, surgery, radiotherapy and systemic treatment. Nevertheless, the prognosis remains dismal and there is a pressing need for new treatment options. We describe the progress that has been made in systemic treatment by repurposing existing drugs and the addition of targeted treatment. In recent years, immunotherapy entered the clinic with high expectations of its role in the treatment of SCLC. Unravelling of the genomic sequence revealed new possible targets that may act as biomarkers in future treatment of patients with SCLC. Hopefully, in the near future, we will be able to identify patients who may benefit from targeted therapy or immunotherapy to improve prognoses.
Collapse
Affiliation(s)
- Birgitta I Hiddinga
- Dept of Pulmonary Medicine and Tuberculosis, University Medical Centre Groningen, Groningen, The Netherlands
- Both authors contributed equally
| | - Jo Raskin
- Dept of Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
- Both authors contributed equally
| | - Annelies Janssens
- Dept of Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
- University of Antwerp, Antwerp, Belgium
| | - Patrick Pauwels
- University of Antwerp, Antwerp, Belgium
- Dept of Pathology, Antwerp University Hospital, Edegem, Belgium
- European Reference Network for rare and low prevalent lung diseases (ERN-LUNG), Frankfurt am Main, Germany
| | - Jan P Van Meerbeeck
- Dept of Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
- University of Antwerp, Antwerp, Belgium
- European Reference Network for rare and low prevalent lung diseases (ERN-LUNG), Frankfurt am Main, Germany
| |
Collapse
|
38
|
Metformin Affects Olaparib Sensitivity through Induction of Apoptosis in Epithelial Ovarian Cancer Cell Lines. Int J Mol Sci 2021; 22:ijms221910557. [PMID: 34638899 PMCID: PMC8508816 DOI: 10.3390/ijms221910557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
This study examined the effect of combination treatment with the poly (ADP-ribose) polymerase inhibitor olaparib and metformin on homologous recombination (HR)-proficient epithelial ovarian cancer (EOC). Ovarian cancer cell lines (OV-90 and SKOV-3) were treated with olaparib, metformin, or a combination of both. Cell viability was assessed by MTT and colony formation assays. The production of reactive oxygen species (ROS) and changes in mitochondrial membrane potential were examined using the specific fluorescence probes, DCFH2-DA (2′,7′-dichloro-dihydrofluorescein diacetate) and JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine). Apoptotic and necrotic changes were measured by double staining with Hoechst 33258 and propidium iodide, orange acridine and ethidium bromide staining, phosphatidylserine externalization, TUNEL assay, caspase 3/7 activity, and cytochrome c and p53 expression. Compared with single-drug treatment, the combination of olaparib and metformin significantly inhibited cell proliferation and colony formation in HR-proficient ovarian cancer cells. ROS production preceded a decrease in mitochondrial membrane potential. The changes in ROS levels suggested their involvement in inducing apoptosis in response to combination treatment. The present results indicate a shift towards synergism in cells with mutant or null p53, treated with olaparib combined with metformin, providing a new approach to the treatment of gynecologic cancers. Taken together, the results support the use of metformin to sensitize EOC to olaparib therapy.
Collapse
|
39
|
Buchsbaum JC, Coleman CN, Bernhard EJ, Espey MG, Vikram B. Overview and Lessons From the Preclinical Chemoradiotherapy Testing Consortium. Int J Radiat Oncol Biol Phys 2021; 111:1126-1130. [PMID: 34348172 DOI: 10.1016/j.ijrobp.2021.07.1709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE In the current molecular-targeted cancer treatment era, many new agents are being developed so that optimizing therapy with a combination of radiation and drugs is complex. The use of emerging laboratory technologies to further biological understanding of drug-radiation mechanisms of action will enhance the efficiency of the progression from preclinical studies to clinical trials. In 2017, the National Cancer Institute (NCI) solicited proposals through PAR 16-111 to conduct preclinical research combining targeted anticancer agents in the Cancer Therapy Evaluation Program's portfolio with chemoradiation. METHODS AND MATERIALS The Preclinical Chemo-Radiotherapy Testing Consortium (PCRTC) was formed with 4 U01 programs supported to generate validated high-quality preclinical data on the effects of molecular therapeutics when added to standard-of-care therapies with a concentration on cancers of the pancreas, lung, head and neck, gastrointestinal tract, and brain. RESULTS The PCRTC provides a rational basis for prioritizing NCI-supported investigational new drugs or agents most likely to have clinical activity with chemoradiotherapy and accelerate the pace at which combined modality treatments with greater efficacy are identified and incorporated into standard treatment practices. CONCLUSIONS Herein, we introduce and summarize the course of the PCRTC to date and report 3 preliminary observations from the consortium's work to date.
Collapse
Affiliation(s)
- Jeffrey C Buchsbaum
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - C Norman Coleman
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Eric J Bernhard
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael G Espey
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Bhadrasain Vikram
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
40
|
Hintelmann K, Berenz T, Kriegs M, Christiansen S, Gatzemeier F, Struve N, Petersen C, Betz C, Rothkamm K, Oetting A, Rieckmann T. Dual Inhibition of PARP and the Intra-S/G2 Cell Cycle Checkpoints Results in Highly Effective Radiosensitization of HPV-Positive HNSCC Cells. Front Oncol 2021; 11:683688. [PMID: 34354944 PMCID: PMC8329549 DOI: 10.3389/fonc.2021.683688] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
In head and neck squamous cell carcinoma (HNSCC), tumors positive for human papillomavirus (HPV) represent a distinct biological entity with favorable prognosis. An enhanced radiation sensitivity of these tumors is evident in the clinic and on the cellular level when comparing HPV-positive and HPV-negative HNSCC cell lines. We could show that the underlying mechanism is a defect in DNA double-strand break repair associated with a profound and sustained G2 arrest. This defect can be exploited by molecular targeting approaches additionally compromising the DNA damage response to further enhance their radiation sensitivity, which may offer new opportunities in the setting of future de-intensified regimes. Against this background, we tested combined targeting of PARP and the DNA damage-induced intra-S/G2 cell cycle checkpoints to achieve effective radiosensitization. Enhancing CDK1/2 activity through the Wee1 inhibitor adavosertib or a combination of Wee1 and Chk1 inhibition resulted in an abrogation of the radiation-induced G2 cell cycle arrest and induction of replication stress as assessed by γH2AX and chromatin-bound RPA levels in S phase cells. Addition of the PARP inhibitor olaparib had little influence on these endpoints, irrespective of checkpoint inhibition. Combined PARP/Wee1 targeting did not result in an enhancement in the absolute number of residual, radiation induced 53BP1 foci as markers of DNA double-strand breaks but it induced a shift in foci numbers from S/G2 to G1 phase cells. Most importantly, while sole checkpoint or PARP inhibition induced moderate radiosensitization, their combination was clearly more effective, while exerting little effect in p53/G1 arrest proficient normal human fibroblasts, thus indicating tumor specificity. We conclude that the combined inhibition of PARP and the intra-S/G2 checkpoint is a highly effective approach for the radiosensitization of HPV-positive HNSCC cells and may represent a viable alternative for the current standard of concomitant cisplatin-based chemotherapy. In vivo studies to further evaluate the translational potential are highly warranted.
Collapse
Affiliation(s)
- Katharina Hintelmann
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Berenz
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Kriegs
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabrina Christiansen
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fruzsina Gatzemeier
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Struve
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred-Scheel Cancer Career Center HATRICs4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Betz
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Agnes Oetting
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Rieckmann
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Radiotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
41
|
Repositioning PARP inhibitors in the treatment of thoracic malignancies. Cancer Treat Rev 2021; 99:102256. [PMID: 34261032 DOI: 10.1016/j.ctrv.2021.102256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022]
Abstract
The evaluation of the homologous recombination repair (HRR) status is emerging as a predictive tumor agnostic biomarker for poly (ADP-ribose) polymerase (PARP) inhibition across different tumor types and testing for HRR-signature is currently a developing area with promising therapeutic implications. Treatment with PARP inhibitors (PARPi) either as single agent or in combination with chemotherapy have shown so far limited activity in patients with thoracic malignancies. A deeper understanding of the biological background underlying HRR-deficient tumors, along with the recent advent of new effective targeted and immunotherapeutic agents, prompted the design of a new generation of clinical trials investigating novel PARPi-combinations in patients with lung cancer as well as malignant pleural mesothelioma. In this review we briefly summarize the biological basis of the DNA damage response pathway inhibition and provide an updated and detailed overview of clinical trials testing different PARPi-combinations strategies in patients with thoracic malignancies.
Collapse
|
42
|
Ngoi NYL, Pham MM, Tan DSP, Yap TA. Targeting the replication stress response through synthetic lethal strategies in cancer medicine. Trends Cancer 2021; 7:930-957. [PMID: 34215565 DOI: 10.1016/j.trecan.2021.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
The replication stress response (RSR) involves a downstream kinase cascade comprising ataxia telangiectasia-mutated (ATM), ATM and rad3-related (ATR), checkpoint kinases 1 and 2 (CHK1/2), and WEE1-like protein kinase (WEE1), which cooperate to arrest the cell cycle, protect stalled forks, and allow time for replication fork repair. In the presence of elevated replicative stress, cancers are increasingly dependent on RSR to maintain genomic integrity. An increasing number of drug candidates targeting key RSR nodes, as monotherapy through synthetic lethality, or through rational combinations with immune checkpoint inhibitors and targeted therapies, are demonstrating promising efficacy in early phase trials. RSR targeting is also showing potential in reversing PARP inhibitor resistance, an important area of unmet clinical need. In this review, we introduce the concept of targeting the RSR, detail the current landscape of monotherapy and combination strategies, and discuss emerging therapeutic approaches, such as targeting Polθ.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Melissa M Pham
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David S P Tan
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
43
|
Goel N, Foxall ME, Scalise CB, Wall JA, Arend RC. Strategies in Overcoming Homologous Recombination Proficiency and PARP Inhibitor Resistance. Mol Cancer Ther 2021; 20:1542-1549. [PMID: 34172532 DOI: 10.1158/1535-7163.mct-20-0992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/21/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022]
Abstract
Ovarian cancer is the second most common gynecologic malignancy in the United States and the most common cause of gynecologic cancer-related death. The majority of ovarian cancers ultimately recur despite excellent response rates to upfront platinum- and taxane-based chemotherapy. Maintenance therapy after frontline treatment has emerged in recent years as an effective tool for extending the platinum-free interval of these patients. Maintenance therapy with PARP inhibitors (PARPis), in particular, has become part of standard of care in the upfront setting and in patients with platinum-sensitive disease. Homologous recombination deficient (HRD) tumors have a nonfunctioning homologous recombination repair (HRR) pathway and respond well to PARPis, which takes advantage of synthetic lethality by concomitantly impairing DNA repair mechanisms. Conversely, patients with a functioning HRR pathway, that is, HR-proficient tumors, can still elicit benefit from PARPi, but the efficacy is not as remarkable as what is seen in HRD tumors. PARPis are ineffective in some patients due to HR proficiency, which is either inherent to the tumor or potentially acquired as a method of therapeutic resistance. This review seeks to outline current strategies employed by clinicians and scientists to overcome PARPi resistance-either acquired or inherent to the tumor.
Collapse
Affiliation(s)
- Nidhi Goel
- University of Alabama School of Medicine, Birmingham, Alabama
| | - McKenzie E Foxall
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Carly Bess Scalise
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jaclyn A Wall
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rebecca C Arend
- Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
44
|
Gill SJ, Wijnhoven PWG, Fok JHL, Lloyd RL, Cairns J, Armenia J, Nikkilä J, Lau A, Bakkenist CJ, Galbraith SM, Vens C, O'Connor MJ. Radiopotentiation Profiling of Multiple Inhibitors of the DNA Damage Response for Early Clinical Development. Mol Cancer Ther 2021; 20:1614-1626. [PMID: 34158341 DOI: 10.1158/1535-7163.mct-20-0502] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/26/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022]
Abstract
Radiotherapy is an effective anticancer treatment, but combinations with targeted agents that maximize efficacy while sparing normal tissue are needed. Here, we assess the radiopotentiation profiles of DNA damage response inhibitors (DDRi) olaparib (PARP1/2), ceralasertib (ATR), adavosertib (WEE1), AZD0156 (ATM), and KU-60648 (DNA-PK). We performed a radiotherapy combination screen and assessed how drug concentration and cellular DDR deficiencies influence the radiopotentiation ability of DDRi. We pre-selected six lung cancer cell lines with different genetic/signaling aberrations (including mutations in TP53 and ATM) and assessed multiple concentrations of DDRi in combination with a fixed radiotherapy dose by clonogenic assay. The effective concentration of DDRi in radiotherapy combinations is lower than that required for single-agent efficacy. This has the potential to be exploited further in the context of DDR deficiencies to increase therapeutic index and we demonstrate that low concentrations of AZD0156 preferentially sensitized p53-deficient cells. Moreover, testing multiple concentrations of DDRi in radiotherapy combinations indicated that olaparib, ceralasertib, and adavosertib have a desirable safety profile showing moderate increases in radiotherapy dose enhancement with increasing inhibitor concentration. Small increases in concentration of AZD0156 and particularly KU-60648, however, result in steep increases in dose enhancement. Radiopotentiation profiling can inform on effective drug doses required for radiosensitization in relation to biomarkers, providing an opportunity to increase therapeutic index. Moreover, multiple concentration testing demonstrates a relationship between drug concentration and radiotherapy effect that provides valuable insights that, with future in vivo validation, can guide dose-escalation strategies in clinical trials.
Collapse
Affiliation(s)
- Sonja J Gill
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | | - Rebecca L Lloyd
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jonathan Cairns
- Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Joshua Armenia
- Bioinformatics and Data Science, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jenni Nikkilä
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Alan Lau
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | | - Conchita Vens
- Department of Radiation Oncology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | | |
Collapse
|
45
|
Shen K, Yang L, Li FY, Zhang F, Ding LL, Yang J, Lu J, Wang NN, Wang Y. Research progress of PARP inhibitor monotherapy and combination therapy for endometrial cancer. Curr Drug Targets 2021; 23:145-155. [PMID: 34139979 DOI: 10.2174/1389450122666210617111304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/14/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Endometrial cancer is one of the three most common malignant tumors in the female reproductive system. Advanced and recurrent endometrial cancers have poor prognoses and lack effective treatments. Poly(ADP-ribose) polymerase (PARP) inhibitors have been applied to many different types of tumors, and they can selectively kill tumor cells that are defective in homologous recombination repair. Endometrial cancer is characterized by mutations in homologous recombination repair genes; accordingly, PARP inhibitors have achieved positive results in off-label treatments of endometrial cancer cases. Clinical trials of PARP inhibitors as monotherapies and within combination therapies for endometrial cancer are ongoing. For this review, we searched PubMed with "endometrial cancer" and "PARP inhibitor" as keywords, and we used "olaparib", "rucaparib", "niraparib" and "talazoparib" as search terms in clinicaltrials.gov for ongoing trials. The literature search ended in October 2020, and only English-language publications were selected. Multiple studies confirm that PARP inhibitors play an important role in killing tumor cells with defects in homologous recombination repair. Its combination with immune checkpoint inhibitors, PI3K/AKT/mTOR pathway inhibitors, cell cycle checkpoint inhibitors, and other drugs can improve the treatment of endometrial cancer.
Collapse
Affiliation(s)
- Ke Shen
- The Third Affiliated Hospital of Zhengzhou University, Obstetrics, and Gynecology, China
| | - Li Yang
- The Third Affiliated Hospital of Zhengzhou University, Obstetrics, and Gynecology, China
| | - Fei-Yan Li
- The Third Affiliated Hospital of Zhengzhou University, Obstetrics, and Gynecology, China
| | - Feng Zhang
- The Third Affiliated Hospital of Zhengzhou University, Obstetrics, and Gynecology, China
| | - Lei-Lei Ding
- The Third Affiliated Hospital of Zhengzhou University, Obstetrics, and Gynecology, China
| | - Jing Yang
- The Third Affiliated Hospital of Zhengzhou University, Obstetrics, and Gynecology, China
| | - Jie Lu
- The Third Affiliated Hospital of Zhengzhou University, Obstetrics, and Gynecology, China
| | - Nan-Nan Wang
- The Third Affiliated Hospital of Zhengzhou University, Obstetrics, and Gynecology, China
| | - Yan Wang
- The Third Affiliated Hospital of Zhengzhou University, Obstetrics, and Gynecology, China
| |
Collapse
|
46
|
Fernandes SG, Shah P, Khattar E. Recent Advances in Therapeutic Application of DNA Damage Response Inhibitors against Cancer. Anticancer Agents Med Chem 2021; 22:469-484. [PMID: 34102988 DOI: 10.2174/1871520621666210608105735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 11/22/2022]
Abstract
DNA integrity is continuously challenged by intrinsic cellular processes and environmental agents. To overcome this genomic damage, cells have developed multiple signaling pathways collectively named as DNA damage response (DDR) and composed of three components: (i) sensor proteins, which detect DNA damage, (ii) mediators that relay the signal downstream and recruit the repair machinery, and (iii) the repair proteins, which restore the damaged DNA. A flawed DDR and failure to repair the damage lead to the accumulation of genetic lesions and increased genomic instability, which is recognized as a hallmark of cancer. Cancer cells tend to harbor increased mutations in DDR genes and often have fewer DDR pathways than normal cells. This makes cancer cells more dependent on particular DDR pathways and thus become more susceptible to compounds inhibiting those pathways compared to normal cells, which have all the DDR pathways intact. Understanding the roles of different DDR proteins in the DNA damage response and repair pathways and identification of their structures have paved the way for the development of their inhibitors as targeted cancer therapy. In this review, we describe the major participants of various DDR pathways, their significance in carcinogenesis, and focus on the inhibitors developed against several key DDR proteins.
Collapse
Affiliation(s)
- Stina George Fernandes
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India
| | - Prachi Shah
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India
| |
Collapse
|
47
|
Harkenrider MM, Markham MJ, Dizon DS, Jhingran A, Salani R, Serour RK, Lynn J, Kohn EC. Moving Forward in Cervical Cancer: Enhancing Susceptibility to DNA Repair Inhibition and Damage, an NCI Clinical Trials Planning Meeting Report. J Natl Cancer Inst 2021; 112:1081-1088. [PMID: 32219419 DOI: 10.1093/jnci/djaa041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer is the fourth most common cancer in women worldwide, and prognosis is poor for those who experience recurrence or develop metastatic disease, in part due to the lack of active therapeutic directions. The National Cancer Institute convened a Cervical Cancer Clinical Trials Planning Meeting in October 2018 to facilitate the design of hypothesis-driven clinical trials focusing on locally advanced, metastatic, and recurrent cervical cancer around the theme of enhancing susceptibility to DNA repair inhibition and DNA damage. Before the meeting, a group of experts in the field summarized available preclinical and clinical data to identify potentially active inducers and inhibitors of DNA. The goals of the Clinical Trials Planning Meeting focused on identification of novel experimental strategies capitalizing on DNA damage and repair (DDR) regulators and cell cycle aberrations, optimization of radiotherapy as a DDR agent, and design of clinical trials incorporating DDR regulation into the primary and recurrent or metastatic therapies for cervical carcinoma. Meeting deliverables were novel clinical trial concepts to move into the National Clinical Trials Network. This report provides an overview for the rationale of this meeting and the state of the science related to DDR regulation in cervical cancer.
Collapse
Affiliation(s)
- Matthew M Harkenrider
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Chicago, IL, USA
| | - Merry Jennifer Markham
- Division of Hematology and Oncology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Don S Dizon
- Division of Hematology and Oncology, Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Anuja Jhingran
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ritu Salani
- The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Jean Lynn
- Coordinating Center for Clinical Trials, National Cancer Institute, Bethesda, MD, USA
| | - Elise C Kohn
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
48
|
Chen X, Yang D, Carey JPW, Karakas C, Albarracin C, Sahin AA, Arun BK, Guray Durak M, Li M, Kohansal M, Bui TN, Ha MJ, Hunt KK, Keyomarsi K. Targeting Replicative Stress and DNA Repair by Combining PARP and Wee1 Kinase Inhibitors Is Synergistic in Triple Negative Breast Cancers with Cyclin E or BRCA1 Alteration. Cancers (Basel) 2021; 13:cancers13071656. [PMID: 33916118 PMCID: PMC8036262 DOI: 10.3390/cancers13071656] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Triple-negative breast cancer (TNBC) is a subtype of invasive breast cancer with an aggressive phenotype that has decreased survival compared with other types of breast cancers, due in part to the lack of biomarker driven targeted therapies. Here, we show that breast cancer patients whose tumors show high levels of cyclin E expression have a higher prevalence of BRCA1/2 alterations and have the worst clinical outcomes. In vitro and in vivo studies revealed that combination therapies with poly (ADP-ribose) polymerase (PARP) and Wee1 kinase inhibitors in TNBC cells with either BRCA1 mutations or high levels of cyclin E results in synergistic cell death due to induction of replicative stress and downregulation of DNA repair. These studies suggest that by preselecting patients whose tumors have high cyclin E levels or harbor mutations in BRCA1, only those cases with the highest replicative stress properties will be subjected to combination treatment and likely result in synergistic activity of the two agents. Abstract The identification of biomarker-driven targeted therapies for patients with triple negative breast cancer (TNBC) remains a major clinical challenge, due to a lack of specific targets. Here, we show that cyclin E, a major regulator of G1 to S transition, is deregulated in TNBC and is associated with mutations in DNA repair genes (e.g., BRCA1/2). Breast cancers with high levels of cyclin E not only have a higher prevalence of BRCA1/2 mutations, but also are associated with the worst outcomes. Using several in vitro and in vivo model systems, we show that TNBCs that harbor either mutations in BRCA1/2 or overexpression of cyclin E are very sensitive to the growth inhibitory effects of AZD-1775 (Wee 1 kinase inhibitor) when used in combination with MK-4837 (PARP inhibitor). Combination treatment of TNBC cell lines with these two agents results in synergistic cell killing due to induction of replicative stress, downregulation of DNA repair and cytokinesis failure that results in increased apoptosis. These findings highlight the potential clinical application of using cyclin E and BRCA mutations as biomarkers to select only those patients with the highest replicative stress properties that may benefit from combination treatment with Wee 1 kinase and PARP inhibitors.
Collapse
Affiliation(s)
- Xian Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.C.); (D.Y.); (J.P.W.C.); (C.K.); (M.G.D.); (M.L.); (M.K.); (T.N.B.)
| | - Dong Yang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.C.); (D.Y.); (J.P.W.C.); (C.K.); (M.G.D.); (M.L.); (M.K.); (T.N.B.)
| | - Jason P. W. Carey
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.C.); (D.Y.); (J.P.W.C.); (C.K.); (M.G.D.); (M.L.); (M.K.); (T.N.B.)
| | - Cansu Karakas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.C.); (D.Y.); (J.P.W.C.); (C.K.); (M.G.D.); (M.L.); (M.K.); (T.N.B.)
| | - Constance Albarracin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.A.); (A.A.S.)
| | - Aysegul A. Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.A.); (A.A.S.)
| | - Banu K. Arun
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Merih Guray Durak
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.C.); (D.Y.); (J.P.W.C.); (C.K.); (M.G.D.); (M.L.); (M.K.); (T.N.B.)
| | - Mi Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.C.); (D.Y.); (J.P.W.C.); (C.K.); (M.G.D.); (M.L.); (M.K.); (T.N.B.)
| | - Mehrnoosh Kohansal
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.C.); (D.Y.); (J.P.W.C.); (C.K.); (M.G.D.); (M.L.); (M.K.); (T.N.B.)
| | - Tuyen N. Bui
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.C.); (D.Y.); (J.P.W.C.); (C.K.); (M.G.D.); (M.L.); (M.K.); (T.N.B.)
| | - Min-Jin Ha
- Department of Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Kelly K. Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (X.C.); (D.Y.); (J.P.W.C.); (C.K.); (M.G.D.); (M.L.); (M.K.); (T.N.B.)
- Correspondence: ; Tel.: +1-713-792-4845
| |
Collapse
|
49
|
Du R, Jiang F, Yin Y, Xu J, Li X, Hu L, Wang X. Knockdown of lncRNA X inactive specific transcript (XIST) radiosensitizes non-small cell lung cancer (NSCLC) cells through regulation of miR-16-5p/WEE1 G2 checkpoint kinase (WEE1) axis. Int J Immunopathol Pharmacol 2021; 35:2058738420966087. [PMID: 33583218 PMCID: PMC7890721 DOI: 10.1177/2058738420966087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNA (lncRNA) X inactive specific transcript (XIST) is reported to play an oncogenic role in non-small cell lung cancer (NSCLC). However, the role of XIST in regulating the radiosensitivity of NSCLC cells remains unclear. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expressions of XIST and miR-16-5p in NSCLC in tissues and cells, and Western blot was used to assess the expression of WEE1 G2 checkpoint kinase (WEE1). Cell counting kit-8 (CCK-8), colony formation and flow cytometry assays were used to determine cell viability and apoptosis after NSCLC cells were exposed to different doses of X-rays. The interaction between XIST and miR-16-5p was confirmed by StarBase database, qRT-PCR and dual-luciferase reporter gene assays. TargetScan database was used to predict WEE1 as a target of miR-16-5p, and their targeting relationship was further validated by Western blot, qRT-PCR and dual-luciferase reporter gene assays. XIST was highly expressed in both NSCLC tissue and cell lines, and knockdown of XIST repressed NSCLC cell viability and cell survival, and facilitated apoptosis under the irradiation. MiR-16-5p was a target of XIST, and rescue experiments demonstrated that miR-16-5p inhibitors could reverse the role of XIST knockdown on radiosensitivity in NSCLC cells. WEE1 was validated as a target gene of miR-16-5p, and WEE1 could be negatively regulated by XIST. XIST promotes the radioresistance of NSCLC cells by regulating the expressions of miR-16-5p and WEE1, which can be a novel target for NSCLC therapy.
Collapse
Affiliation(s)
- Ran Du
- Department of Pathology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Feng Jiang
- Department of Thoracic surgery, Liaocheng Tumor Hospital, Liaocheng, Shandong, China
| | - Yanhua Yin
- Department of Pathology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Jinfen Xu
- Department of Oncology, Laigang Hospital Affiliated to Taishan Medical University, Laiwu, Shandong, China
| | - Xia Li
- Department of Oncology, Laigang Hospital Affiliated to Taishan Medical University, Laiwu, Shandong, China
| | - Likuan Hu
- Department of Radiation and Oncology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiuyu Wang
- Department of Pathology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| |
Collapse
|
50
|
Targeting the DNA replication stress phenotype of KRAS mutant cancer cells. Sci Rep 2021; 11:3656. [PMID: 33574444 PMCID: PMC7878884 DOI: 10.1038/s41598-021-83142-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
Mutant KRAS is a common tumor driver and frequently confers resistance to anti-cancer treatments such as radiation. DNA replication stress in these tumors may constitute a therapeutic liability but is poorly understood. Here, using single-molecule DNA fiber analysis, we first characterized baseline replication stress in a panel of unperturbed isogenic and non-isogenic cancer cell lines. Correlating with the observed enhanced replication stress we found increased levels of cytosolic double-stranded DNA in KRAS mutant compared to wild-type cells. Yet, despite this phenotype replication stress-inducing agents failed to selectively impact KRAS mutant cells, which were protected by CHK1. Similarly, most exogenous stressors studied did not differentially augment cytosolic DNA accumulation in KRAS mutant compared to wild-type cells. However, we found that proton radiation was able to slow fork progression and preferentially induce fork stalling in KRAS mutant cells. Proton treatment also partly reversed the radioresistance associated with mutant KRAS. The cellular effects of protons in the presence of KRAS mutation clearly contrasted that of other drugs affecting replication, highlighting the unique nature of the underlying DNA damage caused by protons. Taken together, our findings provide insight into the replication stress response associated with mutated KRAS, which may ultimately yield novel therapeutic opportunities.
Collapse
|