1
|
Park SM, Haam K, Heo H, Kim D, Kim MJ, Jung HJ, Cha S, Kim M, Lee H. Integrative transcriptomic analysis identifies emetine as a promising candidate for overcoming acquired resistance to ALK inhibitors in lung cancer. Mol Oncol 2024. [PMID: 39540457 DOI: 10.1002/1878-0261.13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/02/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024] Open
Abstract
Anaplastic lymphoma kinase (ALK; also known as ALK tyrosine kinase receptor) inhibitors (ALKi) are effective in treating lung cancer patients with chromosomal rearrangement of ALK. However, continuous treatment with ALKis invariably leads to acquired resistance in cancer cells. In this study, we propose an efficient strategy to suppress ALKi resistance through a meta-analysis of transcriptome data from various cell models of acquired resistance to ALKis. We systematically identified gene signatures that consistently showed altered expression during the development of resistance and conducted computational drug screening using these signatures. We identified emetine as a promising candidate compound to inhibit the growth of ALKi-resistant cells. We demonstrated that emetine exhibited effectiveness in inhibiting the growth of ALKi-resistant cells, and further interpreted its impact on the resistant signatures through drug-induced RNA-sequencing data. Our transcriptome-guided systematic approach paves the way for efficient drug discovery to overcome acquired resistance to cancer therapy.
Collapse
Affiliation(s)
- Sang-Min Park
- College of Pharmacy, Chungnam National University, Daejeon, Korea
| | - Keeok Haam
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Haejeong Heo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Korea
| | - Doyeong Kim
- College of Pharmacy, Chungnam National University, Daejeon, Korea
| | - Min-Ju Kim
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Korea
| | - Hyo-Jung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Seongwon Cha
- Korean Medicine (KM) Data Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Mirang Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Korea
| | - Haeseung Lee
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Korea
| |
Collapse
|
2
|
Stauffer PE, Brinkley J, Jacobson DA, Quaranta V, Tyson DR. Purinergic Ca 2+ Signaling as a Novel Mechanism of Drug Tolerance in BRAF-Mutant Melanoma. Cancers (Basel) 2024; 16:2426. [PMID: 39001489 PMCID: PMC11240618 DOI: 10.3390/cancers16132426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Drug tolerance is a major cause of relapse after cancer treatment. Despite intensive efforts, its molecular basis remains poorly understood, hampering actionable intervention. We report a previously unrecognized signaling mechanism supporting drug tolerance in BRAF-mutant melanoma treated with BRAF inhibitors that could be of general relevance to other cancers. Its key features are cell-intrinsic intracellular Ca2+ signaling initiated by P2X7 receptors (purinergic ligand-gated cation channels) and an enhanced ability for these Ca2+ signals to reactivate ERK1/2 in the drug-tolerant state. Extracellular ATP, virtually ubiquitous in living systems, is the ligand that can initiate Ca2+ spikes via P2X7 channels. ATP is abundant in the tumor microenvironment and is released by dying cells, ironically implicating treatment-initiated cancer cell death as a source of trophic stimuli that leads to ERK reactivation and drug tolerance. Such a mechanism immediately offers an explanation of the inevitable relapse after BRAFi treatment in BRAF-mutant melanoma and points to actionable strategies to overcome it.
Collapse
Affiliation(s)
- Philip E. Stauffer
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jordon Brinkley
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - David A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - Vito Quaranta
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Darren R. Tyson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
3
|
Stauffer PE, Brinkley J, Jacobson D, Quaranta V, Tyson DR. Purinergic Ca 2+ signaling as a novel mechanism of drug tolerance in BRAF mutant melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.03.565532. [PMID: 37961267 PMCID: PMC10635130 DOI: 10.1101/2023.11.03.565532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Drug tolerance is a major cause of relapse after cancer treatment. In spite of intensive efforts1-9, its molecular basis remains poorly understood, hampering actionable intervention. We report a previously unrecognized signaling mechanism supporting drug tolerance in BRAF-mutant melanoma treated with BRAF inhibitors that could be of general relevance to other cancers. Its key features are cell-intrinsic intracellular Ca2+ signaling initiated by P2X7 receptors (purinergic ligand-gated cation channels), and an enhanced ability for these Ca2+ signals to reactivate ERK1/2 in the drug-tolerant state. Extracellular ATP, virtually ubiquitous in living systems, is the ligand that can initiate Ca2+ spikes via P2X7 channels. ATP is abundant in the tumor microenvironment and is released by dying cells, ironically implicating treatment-initiated cancer cell death as a source of trophic stimuli that leads to ERK reactivation and drug tolerance. Such a mechanism immediately offers an explanation of the inevitable relapse after BRAFi treatment in BRAF-mutant melanoma, and points to actionable strategies to overcome it.
Collapse
Affiliation(s)
- Philip E Stauffer
- Department of Pharmacology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, USA
| | - Jordon Brinkley
- Department of Pharmacology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, USA
| | - David Jacobson
- Departments of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, USA
| | - Vito Quaranta
- Department of Pharmacology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, USA
| | - Darren R Tyson
- Department of Pharmacology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, USA
| |
Collapse
|
4
|
The Role of Proteomics and Phosphoproteomics in the Discovery of Therapeutic Targets and Biomarkers in Acquired EGFR-TKI-Resistant Non-Small Cell Lung Cancer. Int J Mol Sci 2023; 24:ijms24054827. [PMID: 36902280 PMCID: PMC10003401 DOI: 10.3390/ijms24054827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
The discovery of potent EGFR-tyrosine kinase inhibitors (EGFR-TKIs) has revolutionized the treatment of EGFR-mutated lung cancer. Despite the fact that EGFR-TKIs have yielded several significant benefits for lung cancer patients, the emergence of resistance to EGFR-TKIs has been a substantial impediment to improving treatment outcomes. Understanding the molecular mechanisms underlying resistance is crucial for the development of new treatments and biomarkers for disease progression. Together with the advancement in proteome and phosphoproteome analysis, a diverse set of key signaling pathways have been successfully identified that provide insight for the discovery of possible therapeutically targeted proteins. In this review, we highlight the proteome and phosphoproteomic analyses of non-small cell lung cancer (NSCLC) as well as the proteome analysis of biofluid specimens that associate with acquired resistance in response to different generations of EGFR-TKI. Furthermore, we present an overview of the targeted proteins and potential drugs that have been tested in clinical studies and discuss the challenges of implementing this discovery in future NSCLC treatment.
Collapse
|
5
|
Dewdney B, Ursich L, Fletcher EV, Johns TG. Anoctamins and Calcium Signalling: An Obstacle to EGFR Targeted Therapy in Glioblastoma? Cancers (Basel) 2022; 14:cancers14235932. [PMID: 36497413 PMCID: PMC9740065 DOI: 10.3390/cancers14235932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Glioblastoma is the most common form of high-grade glioma in adults and has a poor survival rate with very limited treatment options. There have been no significant advancements in glioblastoma treatment in over 30 years. Epidermal growth factor receptor is upregulated in most glioblastoma tumours and, therefore, has been a drug target in recent targeted therapy clinical trials. However, while many inhibitors and antibodies for epidermal growth factor receptor have demonstrated promising anti-tumour effects in preclinical models, they have failed to improve outcomes for glioblastoma patients in clinical trials. This is likely due to the highly plastic nature of glioblastoma tumours, which results in therapeutic resistance. Ion channels are instrumental in the development of many cancers and may regulate cellular plasticity in glioblastoma. This review will explore the potential involvement of a class of calcium-activated chloride channels called anoctamins in brain cancer. We will also discuss the integrated role of calcium channels and anoctamins in regulating calcium-mediated signalling pathways, such as epidermal growth factor signalling, to promote brain cancer cell growth and migration.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
- Correspondence: ; Tel.: +61-8-6319-1023
| | - Lauren Ursich
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Emily V. Fletcher
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
| | - Terrance G. Johns
- Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
6
|
Park H, Yamaguchi R, Imoto S, Miyano S. Uncovering Molecular Mechanisms of Drug Resistance via Network-Constrained Common Structure Identification. J Comput Biol 2022; 29:257-275. [DOI: 10.1089/cmb.2021.0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Heewon Park
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rui Yamaguchi
- Division of Cancer Systems Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Informatics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiya Imoto
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Kim MS, Kim SH, Yang SH, Kim MS. Afatinib mediates autophagic degradation of ORAI1, STIM1, and SERCA2, which inhibits proliferation of non-small cell lung cancer cells. Tuberc Respir Dis (Seoul) 2021; 85:147-154. [PMID: 34847639 PMCID: PMC8987670 DOI: 10.4046/trd.2021.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/24/2021] [Indexed: 11/24/2022] Open
Abstract
Background The expression of calcium signaling pathway molecules is altered in various carcinomas, which are related to the proliferation and altered characteristics of cancer cells. However, changes in calcium signaling in anti-cancer drug-resistant cells (bearing a T790M mutation in epidermal growth factor receptor [EGFR]) remain unclear. Methods Afatinib-mediated changes in the level of store-operated Ca2+ entry (SOCE)-related proteins and intracellular Ca2+ level in non–small cell lung cancer cells with T790M mutation in the EGFR gene were analyzed using western blot and ratiometric assays, respectively. Afatinib-mediated autophagic flux was evaluated by measuring the cleavage of LC3B-II. Flow cytometry and cell proliferation assays were conducted to assess cell apoptosis and proliferation. Results The levels of SOCE-mediating proteins (ORAI calcium release-activated calcium modulator 1 [ORAI1], stromal interaction molecule 1 [STIM1], and sarco/endoplasmic reticulum Ca2+ ATPase [SERCA2]) decreased after afatinib treatment in non–small cell lung cancer cells, whereas the levels of SOCE-related proteins did not change in gefitinibresistant non–small cell lung cancer cells (PC-9/GR; bearing a T790M mutation in EGFR). Notably, the expression level of SOCE-related proteins in PC-9/GR cells was reduced also responding to afatinib in the absence of extracellular Ca2+. Moreover, extracellular Ca2+ influx through the SOCE was significantly reduced in PC-9 cells pre-treated with afatinib than in the control group. Additionally, afatinib was found to decrease the level of SOCE-related proteins through autophagic degradation, and the proliferation of PC-9GR cells was significantly inhibited by a lack of extracellular Ca2+. Conclusion Extracellular Ca2+ plays important role in afatinib-mediated autophagic degradation of SOCE-related proteins in cells with T790M mutation in the EGFR gene and extracellular Ca2+ is essential for determining anti-cancer drug efficacy.
Collapse
Affiliation(s)
- Mi Seong Kim
- Department of Oral Physiology, Institute of Biomaterial-Implant, School of Dentistry, Wonkwang University, Iksan, Republic of Korea.,Wonkwang Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | - So Hui Kim
- Department of Carbon Convergence Engineering, College of Engineering, Wonkwang University, Iksan, Republic of Korea
| | - Sei-Hoon Yang
- Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Min Seuk Kim
- Department of Oral Physiology, Institute of Biomaterial-Implant, School of Dentistry, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
8
|
Jones CA, Hazlehurst LA. Role of Calcium Homeostasis in Modulating EMT in Cancer. Biomedicines 2021; 9:1200. [PMID: 34572386 PMCID: PMC8471317 DOI: 10.3390/biomedicines9091200] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Calcium is essential for cells to perform numerous physiological processes. In cancer, the augmentation of calcium signaling supports the more proliferative and migratory cells, which is a characteristic of the epithelial-to-mesenchymal transition (EMT). By genetically and epigenetically modifying genes, channels, and entire signaling pathways, cancer cells have adapted to survive with an extreme imbalance of calcium that allows them to grow and metastasize in an abnormal manner. This cellular remodeling also allows for the evasion of immune surveillance and the development of drug resistance, which lead to poor prognosis in patients. Understanding the role calcium flux plays in driving the phenotypes associated with invasion, immune suppression, metastasis, and drug resistance remains critical for determining treatments to optimize clinical outcomes and future drug discovery.
Collapse
Affiliation(s)
| | - Lori A. Hazlehurst
- Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA;
| |
Collapse
|
9
|
Kim MS, Kim SH, Yang SH, Kim MS. Restricting extracellular Ca2+ on gefitinib-resistant non-small cell lung cancer cells reverses altered epidermal growth factor-mediated Ca2+ response, which consequently enhances gefitinib sensitivity. PLoS One 2020; 15:e0238155. [PMID: 32841278 PMCID: PMC7447054 DOI: 10.1371/journal.pone.0238155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/10/2020] [Indexed: 11/20/2022] Open
Abstract
Non-small cell lung cancer (NSCLC), one of the leading causes of cancer-related death, has a low 5-year survival rate owing to the inevitable acquired resistance toward antitumor drugs, platinum-based chemotherapy, and targeted therapy. Epidermal growth factor (EGF)-EGF receptor (EGFR) signaling activates downstream events leading to phospholipase C/inositol trisphosphate (IP3)/Ca2+ release from IP3-sensitive Ca2+ stores to modulate cell proliferation, motility, and invasion. However, the role of EGFR-mediated Ca2+ signaling in acquired drug resistance is not fully understood. Here, we analyzed alterations of intracellular Ca2+ ([Ca2+]i) responses between gefitinib-sensitive NSCLC PC-9 cells and gefitinib-resistant NSCLC PC-9/GR cells, and we found that acute EGF treatment elicited intracellular Ca2+ ([Ca2+]i) oscillations in PC-9 cells but not in PC-9/GR cells. PC-9/GR cells presented a more sustained basal [Ca2+]i level, lower endoplasmic reticulum Ca2+ level, and higher spontaneous extracellular Ca2+ ([Ca2+]e) influx than PC-9 cells. Notably, restricting [Ca2+]e in both cell types induced identical [Ca2+]i oscillations, dependent on phospholipase C and EGFR activation. Consequently, restricting [Ca2+]e in PC-9/GR cells upregulated gefitinib-mediated poly (ADP-ribose) polymerase cleavage, an increase in Bax/Bcl-2 ratio, cytotoxicity, and apoptosis. In addition, nuclear factor of activated T cell (NFAT1) induction in response to EGF was inhibited by gefitinib in PC-9 cells, whereas EGF-mediated NFAT1 induction in PC-9/GR cells was sustained regardless of gefitinib treatment. Restricting [Ca2+]e in PC-9/GR cells significantly reduced EGF-mediated NFAT1 induction. These findings indicate that spontaneous [Ca2+]e influx in NSCLC cells plays a pivotal role in developing acquired drug resistance and suggest that restricting [Ca2+]e may be a potential strategy for modulating drug-sensitivity.
Collapse
Affiliation(s)
- Mi Seong Kim
- Department of Oral Physiology, Institute of Biomaterial-Implant, School of Dentistry, Wonkwang University, Iksan, Republic of Korea
- Wonkwang Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | - So Hui Kim
- Department of Carbon Convergence Engineering, College of Engineering, Wonkwang University, Iksan, Republic of Korea
| | - Sei Hoon Yang
- Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Min Seuk Kim
- Department of Oral Physiology, Institute of Biomaterial-Implant, School of Dentistry, Wonkwang University, Iksan, Republic of Korea
- * E-mail:
| |
Collapse
|
10
|
Rodríguez-Hernández MA, de la Cruz-Ojeda P, López-Grueso MJ, Navarro-Villarán E, Requejo-Aguilar R, Castejón-Vega B, Negrete M, Gallego P, Vega-Ochoa Á, Victor VM, Cordero MD, Del Campo JA, Bárcena JA, Padilla CA, Muntané J. Integrated molecular signaling involving mitochondrial dysfunction and alteration of cell metabolism induced by tyrosine kinase inhibitors in cancer. Redox Biol 2020; 36:101510. [PMID: 32593127 PMCID: PMC7322178 DOI: 10.1016/j.redox.2020.101510] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
Cancer cells have unlimited replicative potential, insensitivity to growth-inhibitory signals, evasion of apoptosis, cellular stress, and sustained angiogenesis, invasiveness and metastatic potential. Cancer cells adequately adapt cell metabolism and integrate several intracellular and redox signaling to promote cell survival in an inflammatory and hypoxic microenvironment in order to maintain/expand tumor phenotype. The administration of tyrosine kinase inhibitor (TKI) constitutes the recommended therapeutic strategy in different malignancies at advanced stages. There are important interrelationships between cell stress, redox status, mitochondrial function, metabolism and cellular signaling pathways leading to cell survival/death. The induction of apoptosis and cell cycle arrest widely related to the antitumoral properties of TKIs result from tightly controlled events involving different cellular compartments and signaling pathways. The aim of the present review is to update the most relevant studies dealing with the impact of TKI treatment on cell function. The induction of endoplasmic reticulum (ER) stress and Ca2+ disturbances, leading to alteration of mitochondrial function, redox status and phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) signaling pathways that involve cell metabolism reprogramming in cancer cells will be covered. Emphasis will be given to studies that identify key components of the integrated molecular pattern including receptor tyrosine kinase (RTK) downstream signaling, cell death and mitochondria-related events that appear to be involved in the resistance of cancer cells to TKI treatments.
Collapse
Affiliation(s)
- María A Rodríguez-Hernández
- Institute of Biomedicine of Seville (IBiS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - P de la Cruz-Ojeda
- Institute of Biomedicine of Seville (IBiS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Mª José López-Grueso
- Department of Biochemistry and Molecular Biology, University of Cordoba, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - Elena Navarro-Villarán
- Institute of Biomedicine of Seville (IBiS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Raquel Requejo-Aguilar
- Department of Biochemistry and Molecular Biology, University of Cordoba, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - Beatriz Castejón-Vega
- Research Laboratory, Oral Medicine Department, University of Seville, Seville, Spain
| | - María Negrete
- Institute of Biomedicine of Seville (IBiS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Paloma Gallego
- Unit for the Clinical Management of Digestive Diseases, Hospital University "Nuestra Señora de Valme", Sevilla, Spain
| | - Álvaro Vega-Ochoa
- Institute of Biomedicine of Seville (IBiS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Victor M Victor
- Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Service of Endocrinology and Nutrition, Hospital University "Doctor Peset", Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain
| | - Mario D Cordero
- Research Laboratory, Oral Medicine Department, University of Seville, Seville, Spain; Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center (CIBM), University of Granada, Armilla, Spain
| | - José A Del Campo
- Unit for the Clinical Management of Digestive Diseases, Hospital University "Nuestra Señora de Valme", Sevilla, Spain
| | - J Antonio Bárcena
- Department of Biochemistry and Molecular Biology, University of Cordoba, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - C Alicia Padilla
- Department of Biochemistry and Molecular Biology, University of Cordoba, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - Jordi Muntané
- Institute of Biomedicine of Seville (IBiS), IBiS/Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Department of General Surgery, Hospital University "Virgen del Rocío"/IBiS/CSIC/University of Seville, Seville, Spain.
| |
Collapse
|
11
|
Stepath M, Zülch B, Maghnouj A, Schork K, Turewicz M, Eisenacher M, Hahn S, Sitek B, Bracht T. Systematic Comparison of Label-Free, SILAC, and TMT Techniques to Study Early Adaption toward Inhibition of EGFR Signaling in the Colorectal Cancer Cell Line DiFi. J Proteome Res 2019; 19:926-937. [DOI: 10.1021/acs.jproteome.9b00701] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Birgit Zülch
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum 44892, Germany
| | | | | | | | | | | | | | | |
Collapse
|