1
|
Shukla S, Osumi T, Al-Toubat M, Serrano S, Singh PK, Mietzsch M, McKenna R, Chardon-Robles J, Krishnan S, Balaji KC. Protein kinase D1 mitigation against etoposide induced DNA damage in prostate cancer is associated with increased α-Catenin. Prostate 2025; 85:156-164. [PMID: 39428693 DOI: 10.1002/pros.24812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND The E-cadherin, α- and β-Catenin interaction at the cell adherens junction plays a key role in cell adhesion; alteration in the expression and function of these genes are associated with disease progression in several solid tumors including prostate cancer. The membranous β-Catenin is dynamically linked to the cellular cytoskeleton through interaction with α-Catenin at amino acid positions threonine 120 (T120) to 151 of β-Catenin. Nuclear presence of α-Catenin modulates the sensitivity of cells to DNA damage. The objective of this study is to determine the role of α-Catenin and protein kinase D1 (PrKD1) in DNA damage response. METHODS Prostate cancer cells; LNCaP, LNCaP (Sh-PrKD1; silenced PrKD1), C4-2 and C4-2 PrKD1 were used for various sets of experiments to determine the role of DNA damage in PrKD1 overexpression and silencing cells. These cells were treated with compound-10 (100 nM) and Etoposide (30 µM), total cell lysates, cytosolic and nuclear fractions were prepared to observe various protein expressions. We performed single cell gel electrophoresis (COMET assay) to determine the etoposide induce DNA damage in C4-2 and C4-2 PrKD1 cells. The animal experiments were carried out to determine the tolerability of compound-10 by mice and generate preliminary data on efficacy of compound-10 in modulating the α-Catenin and PrKD1 expressions in inhibiting tumor progression. RESULTS PrKD1, a novel serine threonine kinase, phosphorylates β-Catenin T120. In silico analysis, confirmed that T120 phosphorylation alters β- to α-Catenin binding. Forced expression of PrKD1 in prostate cancer cells increased β- and α-Catenin protein levels associated with reduced etoposide induced DNA damage. Downregulation of α-Catenin abrogates the PrKD1 mitigation of DNA damage. The in vitro results were corroborated in vivo using mouse prostate cancer patient derived xenograft model by inhibition of PrKD1 kinase activity with compound-10, a selective PrKD inhibitor, demonstrating decreased total β- and α-Catenin protein levels, and β-Catenin T120 phosphorylation. CONCLUSIONS Alteration in DNA damage response pathways play major role in prostate cancer progression. The study identifies a novel mechanism of α-Catenin dependent DNA damage mitigation role for PrKD1 in prostate cancer.
Collapse
Affiliation(s)
- Sanjeev Shukla
- Department of Urology, University of Florida, Jacksonville, Florida, USA
| | - Teruko Osumi
- Department of Urology, University of Florida, Jacksonville, Florida, USA
| | - Mohammed Al-Toubat
- Department of Urology, University of Florida, Jacksonville, Florida, USA
| | - Samuel Serrano
- Department of Urology, University of Florida, Jacksonville, Florida, USA
| | - Pankaj Kumar Singh
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | | | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - K C Balaji
- Department of Urology, University of Florida, Jacksonville, Florida, USA
| |
Collapse
|
2
|
Han X, Sui J, Nie K, Zhao Y, Lv X, Xie J, Tan L, Au-Yeung RKH, Ma J, Inghirami G, Elemento O, Tam W, Liu Z. Tumor evolution analysis uncovered immune-escape related mutations in relapse of diffuse large B-cell lymphoma. Leukemia 2024; 38:2276-2280. [PMID: 39080353 DOI: 10.1038/s41375-024-02349-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 09/29/2024]
Affiliation(s)
- Xueshuai Han
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingru Sui
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kui Nie
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Yang Zhao
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xuan Lv
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jindou Xie
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Leonard Tan
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Rex K H Au-Yeung
- Department of Pathology, the University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Jiao Ma
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| | - Zhaoqi Liu
- China National Center for Bioinformation, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Wang L, Tang C, Zhang Q, Pan Q. Ferroptosis as a molecular target of epigallocatechin gallate in diseases. Arch Physiol Biochem 2024:1-13. [PMID: 39264116 DOI: 10.1080/13813455.2024.2401892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/24/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
CONTEXT Ferroptosis is a novel form of cell death characterised by iron overload and lipid peroxidation. It is closely associated with many diseases, including cardiovascular diseases, tumours, and neurological diseases. The use of natural chemicals to modulate ferroptosis is of great concern because of the critical role ferroptosis plays in disease. The main active ingredient in green tea is epigallocatechin gallate (EGCG), which is the most abundant catechin in green tea. EGCG shows a wide range of biological and therapeutic effects in various diseases, including anti-inflammatory, antioxidant, anticancer, and cardioprotective. OBJECTIVE The purpose of this article is to summarise the existing information on the relationship between EGCG and ferroptosis. METHODS Articles related to EGCG and ferroptosis were searched in PubMed and Web of Science databases, and the literature was analysed. RESULTS AND CONCLUSION EGCG could improve ferroptosis-related diseases and affect the development of ferroptosis by regulating the nuclear factor erythroid 2-related factor 2, autophagy, microRNA, signal transducer and activator of transcription 1, and protein kinase D1 signalling pathways.
Collapse
Affiliation(s)
- Lili Wang
- Wuhan Wuchang Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Chunlian Tang
- Wuhan Wuchang Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Medical College of Wuhan University of Science and Technology, Wuhan, China
| | - Qizhi Zhang
- Medical College of Wuhan University of Science and Technology, Wuhan, China
| | - Qun Pan
- Wuhan Wuchang Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
de Jager VD, de Visscher SAHJ, Schuuring E, Doff JJ, van Kempen LC. A novel PPP2R2A::PRKD1 fusion in a cribriform adenocarcinoma of salivary gland. Genes Chromosomes Cancer 2023; 62:297-300. [PMID: 36625487 DOI: 10.1002/gcc.23122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 01/11/2023] Open
Abstract
Cribriform adenocarcinoma of salivary gland (CASG) is a rare, salivary gland tumor. In this report, we describe a case of CASG harboring a novel PPP2R2A::PRKD1 fusion. A 58-year-old female presented with an intraoral mass adjacent to the lower left third molar region. Morphological features at histological examination, immunohistochemical staining (p63+, p40-), and tumor location were indicative of CASG. However, due to the potential focal presence of a biphasic component within the tumor, RNA sequencing was performed to confirm the diagnosis. The subsequently found novel PPP2R2A::PRKD1 fusion adds to the rapidly evolving molecular landscape of salivary gland tumors. Additionally, we report that CASG may show some entrapment of pre-existent salivary gland ducts, which may be misinterpreted as tumor cells with myoepithelial differentiation.
Collapse
Affiliation(s)
- Vincent D de Jager
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sebastiaan A H J de Visscher
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ed Schuuring
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan J Doff
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Léon C van Kempen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Burciaga SD, Saavedra F, Fischer L, Johnstone K, Jensen ED. Protein kinase D3 conditional knockout impairs osteoclast formation and increases trabecular bone volume in male mice. Bone 2023; 172:116759. [PMID: 37044359 DOI: 10.1016/j.bone.2023.116759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Studies using kinase inhibitors have shown that the protein kinase D (PRKD) family of serine/threonine kinases are required for formation and function of osteoclasts in culture. However, the involvement of individual protein kinase D genes and their in vivo significance to skeletal dynamics remains unclear. In the current study we present data indicating that protein kinase D3 is the primary form of PRKD expressed in osteoclasts. We hypothesized that loss of PRKD3 would impair osteoclast formation, thereby decreasing bone resorption and increasing bone mass. Conditional knockout (cKO) of Prkd3 using a murine Cre/Lox system driven by cFms-Cre revealed that its loss in osteoclast-lineage cells reduced osteoclast differentiation and resorptive function in culture. Examination of the Prkd3 cKO mice showed that bone parameters were unaffected in the femur at 4 weeks of age, but consistent with our hypothesis, Prkd3 conditional knockout resulted in 18 % increased trabecular bone mass in male mice at 12 weeks and a similar increase at 6 months. These effects were not observed in female mice. As a further test of our hypothesis, we asked if Prkd3 cKO could protect against bone loss in a ligature-induced periodontal disease model but did not see any reduction in bone destruction in this system. Together, our data indicate that PRKD3 promotes osteoclastogenesis both in vitro and in vivo.
Collapse
Affiliation(s)
- Samuel D Burciaga
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Flavia Saavedra
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Lori Fischer
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Karen Johnstone
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Eric D Jensen
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA.
| |
Collapse
|
6
|
Potential role for protein kinase D inhibitors in prostate cancer. J Mol Med (Berl) 2023; 101:341-349. [PMID: 36843036 DOI: 10.1007/s00109-023-02298-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/28/2023]
Abstract
Protein kinase D (PrKD), a novel serine-threonine kinase, belongs to a family of calcium calmodulin kinases that consists of three isoforms: PrKD1, PrKD2, and PrKD3. The PrKD isoforms play a major role in pathologic processes such as cardiac hypertrophy and cancer progression. The charter member of the family, PrKD1, is the most extensively studied isoform. PrKD play a dual role as both a proto-oncogene and a tumor suppressor depending on the cellular context. The duplicity of PrKD can be highlighted in advanced prostate cancer (PCa) where expression of PrKD1 is suppressed whereas the expressions of PrKD2 and PrKD3 are upregulated to aid in cancer progression. As understanding of the PrKD signaling pathways has been better elucidated, interest has been garnered in the development of PrKD inhibitors. The broad-spectrum kinase inhibitor staurosporine acts as a potent PrKD inhibitor and is the most well-known; however, several other novel and more specific PrKD inhibitors have been developed over the last two decades. While there is tremendous potential for PrKD inhibitors to be used in a clinical setting, none has progressed beyond preclinical trials due to a variety of challenges. In this review, we focus on PrKD signaling in PCa and the potential role of PrKD inhibitors therein, and explore the possible clinical outcomes based on known function and expression of PrKD isoforms at different stages of PCa.
Collapse
|
7
|
Legay C, Doublier S, Babajko S, Ricort JM. Protein kinase D1 overexpression potentiates epidermal growth factor signaling pathway in MCF-7 cells. Mol Biol Rep 2023; 50:3641-3651. [PMID: 36800056 DOI: 10.1007/s11033-023-08300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/20/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Protein kinase D1, PKD1, is a serine-threonine kinase implicated in cell proliferation, migration, invasion, and/or apoptosis and its activation by several growth factors sets this enzyme as a key regulator of tumorigenesis and tumor progression. Despite many studies, its role in the regulation of intracellular signaling pathways remains widely disparate and needs to be clarified. METHODS AND RESULTS By using human breast cancer cells MCF-7, overexpressing or not PKD1, we demonstrated that PKD1 expression level modulated the tumor growth-promoting epidermal growth factor (EGF) signaling pathway. We also showed that EGF acutely stimulated PKD1 phosphorylation with similar time courses both in control and PKD1-overexpressing cells. However, PKD1 overexpression specifically and markedly increased EGF-induced phosphorylation of Akt (onto T308 and S473 residues) and extracellular-regulated protein kinase (ERK1/2). Finally, pharmacological inhibition of PKD1 activity or lowering its expression level using specific siRNAs drastically reduced EGF-stimulated Akt and ERK phosphorylation in PKD1overexpressing cells, but not in control cells. CONCLUSIONS Overall, these results identified the level of PKD1 expression as a key determinant in the regulation of the EGF signaling pathway highlighting its crucial role in a tumorigenic setting.
Collapse
Affiliation(s)
- Christine Legay
- Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, 91290, Gif-Sur-Yvette, France
| | - Sophie Doublier
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, 75006, Paris, France
| | - Sylvie Babajko
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, 75006, Paris, France
- Biomedical Research in Odontology, Université Paris Cité, 92120, Montrouge, France
| | - Jean-Marc Ricort
- Ecole Normale Supérieure Paris-Saclay, Université Paris-Saclay, 91290, Gif-Sur-Yvette, France.
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM, 75006, Paris, France.
- Biomedical Research in Odontology, Université Paris Cité, 92120, Montrouge, France.
| |
Collapse
|
8
|
Li C, Wang Y, Wu C, Zhou J, Zhou Y, Jiao Y, Li Y, Zhao L. Ebracteolatain A exerts anti-proliferation of breast cancer by inhibiting Protein kinase D 1 in MEK/ERK and PI3K/AKT signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154588. [PMID: 36610131 DOI: 10.1016/j.phymed.2022.154588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ebracteolatain A (EA) is an acetyl-phloroglucinol compound extracted from Euphorbiae Ebracteolatae Radix, which has been shown to have antitumor activity. PURPOSE Current research addressed the antitumor activity of EA in breast cancer and further clarified its mechanism. STUDY DESIGN Based on the pharmacodynamic evaluation in breast cancer cells and animal models, the antitumor effects of EA will be validated in vitro and in vivo. METHODS Breast cancer cells were processed with increasing concentrations of EA. CCK-8 and colony formation assays were employed to examine the effects of EA on proliferation and survival. Flow cytometry detected the blocking function of EA on the cell cycle. The specific mechanism of EA in breast cancer was studied by transfection experiments and Western Blot analysis. Finally, a nude mice xenograft tumor model was constructed to assess the therapeutic and potential mechanism of EA. RESULTS We proved that EA caused a dose-dependent inhibition on MCF-7 and MDA-MB-415 cells with IC50 of 6.164 and 6.623 μmol/l, respectively. While EA reduced cell proliferation and clone formation, and markedly arrested cells in the G0/G1 phase. In vivo, EA remarkably suppressed the tumor weight and volume in xenograft nude mice. Besides, PKD1 reversed the inhibition of EA on breast cancer cell proliferation, clone formation, and cycle arrest, and restored tumor growth in xenograft nude mice. Western Blot confirmed that EA regulates breast cancer by suppressing PKD1 in MEK/ERK and PI3K/AKT signaling pathways. CONCLUSION Herein, we first confirmed EA exerts anti-proliferation by inhibiting PKD1 in MEK/ERK and PI3K/AKT signaling pathways, indicating that EA is a prodigious breast cancer drug candidate.
Collapse
Affiliation(s)
- Chengjian Li
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Luoxi 121 Road, Shanghai, 201908, China; Luodian Clinical Drug Research Center, Institute for Translational Medicine Research, Shanghai University, Shanghai, 200444, China
| | - Ying Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Chenxi Wu
- College of Pharmaceutical Science, Guangxi Medical University, Nanning, 530021, China; Luodian Clinical Drug Research Center, Institute for Translational Medicine Research, Shanghai University, Shanghai, 200444, China
| | - Jin Zhou
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Luoxi 121 Road, Shanghai, 201908, China; Luodian Clinical Drug Research Center, Institute for Translational Medicine Research, Shanghai University, Shanghai, 200444, China
| | - Yanqing Zhou
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Luoxi 121 Road, Shanghai, 201908, China; Luodian Clinical Drug Research Center, Institute for Translational Medicine Research, Shanghai University, Shanghai, 200444, China
| | - Yang Jiao
- College of Pharmaceutical Science, Guangxi Medical University, Nanning, 530021, China
| | - Yamei Li
- Luodian Clinical Drug Research Center, Institute for Translational Medicine Research, Shanghai University, Shanghai, 200444, China.
| | - Liang Zhao
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Luoxi 121 Road, Shanghai, 201908, China; Luodian Clinical Drug Research Center, Institute for Translational Medicine Research, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
9
|
3JC48-3 (methyl 4'-methyl-5-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)-[1,1'-biphenyl]-3-carboxylate): a novel MYC/MAX dimerization inhibitor reduces prostate cancer growth. Cancer Gene Ther 2022; 29:1550-1557. [PMID: 35440696 DOI: 10.1038/s41417-022-00455-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/12/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023]
Abstract
The proto-oncogene cellular myelocytomatosis (c-Myc) is a transcription factor that is upregulated in several human cancers. Therapeutic targeting of c-Myc remains a challenge because of a disordered protein tertiary structure. The basic helical structure and zipper protein of c-Myc forms an obligate heterodimer with its partner MYC-associated factor X (MAX) to function as a transcription factor. An attractive strategy is to inhibit MYC/MAX dimerization to decrease c-Myc transcriptional function. Several methods have been described to inhibit MYC/MAX dimerization including small molecular inhibitors and proteomimetics. We studied the effect of a second-generation small molecular inhibitor 3JC48-3 on prostate cancer growth and viability. In our experimental studies, we found 3JC48-3 decreases prostate cancer cells' growth and viability in a dose-dependent fashion in vitro. We confirmed inhibition of MYC/MAX dimerization by 3JC48-3 using immunoprecipitation experiments. We have previously shown that the MYC/MAX heterodimer is a transcriptional repressor of a novel kinase protein kinase D1 (PrKD1). Treatment with 3JC48-3 upregulated PrKD1 expression and phosphorylation of known PrKD1 substrates: the threonine 120 (Thr-120) residue in beta-catenin and the serine 216 (Ser-216) in Cell Division Cycle 25 (CDC25C). The mining of gene expression in human metastatic prostate cancer samples demonstrated an inverse correlation between PrKD1 and c-Myc expression. Normal mice and mice with patient-derived prostate cancer xenografts (PDX) tolerated intraperitoneal injections of 3JC48-3 up to 100 mg/kg body weight without dose-limiting toxicity. Preliminary results in these PDX mouse models suggest that 3JC48-3 may be effective in decreasing the rate of tumor growth. In conclusion, our study demonstrates that 3JC48-3 is a potent MYC/MAX heterodimerization inhibitor that decreases prostate cancer growth and viability associated with upregulation of PrKD1 expression and kinase activity.
Collapse
|
10
|
Wang S, Wang Y, Zou S. A Glance at the Molecules That Regulate Oligodendrocyte Myelination. Curr Issues Mol Biol 2022; 44:2194-2216. [PMID: 35678678 PMCID: PMC9164040 DOI: 10.3390/cimb44050149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Oligodendrocyte (OL) myelination is a critical process for the neuronal axon function in the central nervous system. After demyelination occurs because of pathophysiology, remyelination makes repairs similar to myelination. Proliferation and differentiation are the two main stages in OL myelination, and most factors commonly play converse roles in these two stages, except for a few factors and signaling pathways, such as OLIG2 (Oligodendrocyte transcription factor 2). Moreover, some OL maturation gene mutations induce hypomyelination or hypermyelination without an obvious function in proliferation and differentiation. Herein, three types of factors regulating myelination are reviewed in sequence.
Collapse
Affiliation(s)
- Shunqi Wang
- Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang 330031, China; (S.W.); (Y.W.)
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| | - Yingxing Wang
- Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang 330031, China; (S.W.); (Y.W.)
| | - Suqi Zou
- Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang 330031, China; (S.W.); (Y.W.)
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
- Correspondence:
| |
Collapse
|
11
|
Shah K, Kazi JU. Phosphorylation-Dependent Regulation of WNT/Beta-Catenin Signaling. Front Oncol 2022; 12:858782. [PMID: 35359365 PMCID: PMC8964056 DOI: 10.3389/fonc.2022.858782] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/16/2022] [Indexed: 01/11/2023] Open
Abstract
WNT/β-catenin signaling is a highly complex pathway that plays diverse roles in various cellular processes. While WNT ligands usually signal through their dedicated Frizzled receptors, the decision to signal in a β-catenin-dependent or -independent manner rests upon the type of co-receptors used. Canonical WNT signaling is β-catenin-dependent, whereas non-canonical WNT signaling is β-catenin-independent according to the classical definition. This still holds true, albeit with some added complexity, as both the pathways seem to cross-talk with intertwined networks that involve the use of different ligands, receptors, and co-receptors. β-catenin can be directly phosphorylated by various kinases governing its participation in either canonical or non-canonical pathways. Moreover, the co-activators that associate with β-catenin determine the output of the pathway in terms of induction of genes promoting proliferation or differentiation. In this review, we provide an overview of how protein phosphorylation controls WNT/β-catenin signaling, particularly in human cancer.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Julhash U. Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- *Correspondence: Julhash U. Kazi,
| |
Collapse
|
12
|
Michaud D, Mirlekar B, Steward C, Bishop G, Pylayeva-Gupta Y. B Cell Receptor Signaling and Protein Kinase D2 Support Regulatory B Cell Function in Pancreatic Cancer. Front Immunol 2022; 12:745873. [PMID: 35046933 PMCID: PMC8761795 DOI: 10.3389/fimmu.2021.745873] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
B cells can act as potent suppressors of anti-tumor T cell immunity, presenting a mechanism of resistance to immunotherapy. In pancreatic ductal adenocarcinoma, B cells can display a T cell-suppressive or regulatory phenotype centered on the expression of the cytokine Interleukin 35 (IL-35). While B cell-mediated immunosuppression presents a barrier to anti-tumorigenic T cell function, it is not clear how regulatory B cell function could be targeted, and the signals that promote this suppressive phenotype in B cells are not well understood. Here we use a novel IL-35 reporter model to understand which signaling pathways are important for immunosuppressive properties in B cells. In vitro analysis of IL-35 reporter B cells revealed a synergy between the BCR and TLR4 signaling pathways is sufficient to induce IL-35 expression. However, in vivo, B cell receptor activation, as opposed to MyD88 signaling in B cells, is central to B cell-mediated suppression and promotion of pancreatic cancer growth. Further analysis identified protein kinase D2 (PKD2) as being a key downstream regulator of IL-35 expression in B cells. Regulatory B cells with an inactivating mutation in PKD2 failed to produce IL-35 or fully suppress effector T cell function in vitro. Furthermore, inhibition of PKD in B cells decreased tumor growth and promoted effector T cell function upon adoptive transfer into B cell-deficient mice. Collectively, these data provide insight into how regulatory B cell function is promoted in pancreatic cancer and identify potential therapeutic targets to restrain this function.
Collapse
Affiliation(s)
- Daniel Michaud
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Bhalchandra Mirlekar
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Colleen Steward
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Gail Bishop
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, United States
| | - Yuliya Pylayeva-Gupta
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Department of Genetics, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
13
|
Cao S, Liu H, Fan J, Yang K, Yang B, Wang J, Li J, Meng L, Li H. An Oxidative Stress-Related Gene Pair ( CCNB1/ PKD1), Competitive Endogenous RNAs, and Immune-Infiltration Patterns Potentially Regulate Intervertebral Disc Degeneration Development. Front Immunol 2021; 12:765382. [PMID: 34858418 PMCID: PMC8630707 DOI: 10.3389/fimmu.2021.765382] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
Oxidative stress (OS) irreversibly affects the pathogenesis of intervertebral disc degeneration (IDD). Certain non-coding RNAs act as competitive endogenous RNAs (ceRNAs) that regulate IDD progression. Analyzing the signatures of oxidative stress-related gene (OSRG) pairs and regulatory ceRNA mechanisms and immune-infiltration patterns associated with IDD may enable researchers to distinguish IDD and reveal the underlying mechanisms. In this study, OSRGs were downloaded and identified using the Gene Expression Omnibus database. Functional-enrichment analysis revealed the involvement of oxidative stress-related pathways and processes, and a ceRNA network was generated. Differentially expressed oxidative stress-related genes (De-OSRGs) were used to construct De-OSRG pairs, which were screened, and candidate De-OSRG pairs were identified. Immune cell-related gene pairs were selected via immune-infiltration analysis. A potential long non-coding RNA-microRNA-mRNA axis was determined, and clinical values were assessed. Eighteen De-OSRGs were identified that were primarily related to intricate signal-transduction pathways, apoptosis-related biological processes, and multiple kinase-related molecular functions. A ceRNA network consisting of 653 long non-coding RNA-microRNA links and 42 mRNA-miRNA links was constructed. Three candidate De-OSRG pairs were screened out from 13 De-OSRG pairs. The abundances of resting memory CD4+ T cells, resting dendritic cells, and CD8+ T cells differed between the control and IDD groups. CD8+ T cell infiltration correlated negatively with cyclin B1 (CCNB1) expression and positively with protein kinase D1 (PKD1) expression. CCNB1-PKD1 was the only pair that was differentially expressed in IDD, was correlated with CD8+ T cells, and displayed better predictive accuracy compared to individual genes. The PKD1-miR-20b-5p-AP000797 and CCNB1-miR-212-3p-AC079834 axes may regulate IDD. Our findings indicate that the OSRG pair CCNB1-PKD1, which regulates oxidative stress during IDD development, is a robust signature for identifying IDD. This OSRG pair and increased infiltration of CD8+ T cells, which play important roles in IDD, were functionally associated. Thus, the OSRG pair CCNB1-PKD1 is promising target for treating IDD.
Collapse
Affiliation(s)
- Shuai Cao
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hao Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiaxin Fan
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kai Yang
- Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Baohui Yang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jie Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jie Li
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Liesu Meng
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an, China
| | - Haopeng Li
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
14
|
Steinberg SF. Decoding the Cardiac Actions of Protein Kinase D Isoforms. Mol Pharmacol 2021; 100:558-567. [PMID: 34531296 DOI: 10.1124/molpharm.121.000341] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022] Open
Abstract
Protein kinase D (PKD) consists of a family of three structurally related enzymes that play key roles in a wide range of biological functions that contribute to the evolution of cardiac hypertrophy and heart failure. PKD1 (the founding member of this enzyme family) has been implicated in the phosphorylation of substrates that regulate cardiac hypertrophy, contraction, and susceptibility to ischemia/reperfusion injury, and de novo PRKD1 (protein kinase D1 gene) mutations have been identified in patients with syndromic congenital heart disease. However, cardiomyocytes coexpress all three PKDs. Although stimulus-specific activation patterns for PKD1, PKD2, and PKD3 have been identified in cardiomyocytes, progress toward identifying PKD isoform-specific functions in the heart have been hampered by significant gaps in our understanding of the molecular mechanisms that regulate PKD activity. This review incorporates recent conceptual breakthroughs in our understanding of various alternative mechanisms for PKD activation, with an emphasis on recent evidence that PKDs activate certain effector responses as dimers, to consider the role of PKD isoforms in signaling pathways that drive cardiac hypertrophy and ischemia/reperfusion injury. The focus is on whether the recently identified activation mechanisms that enhance the signaling repertoire of PKD family enzymes provide novel therapeutic strategies to target PKD enzymes and prevent or slow the evolution of cardiac injury and pathological cardiac remodeling. SIGNIFICANCE STATEMENT: PKD isoforms regulate a large number of fundamental biological processes, but the understanding of the biological actions of individual PKDs (based upon studies using adenoviral overexpression or gene-silencing methods) remains incomplete. This review focuses on dimerization, a recently identified mechanism for PKD activation, and the notion that this mechanism provides a strategy to develop novel PKD-targeted pharmaceuticals that restrict proliferation, invasion, or angiogenesis in cancer and prevent or slow the evolution of cardiac injury and pathological cardiac remodeling.
Collapse
|
15
|
Du Y, Lv D, Cui B, Li X, Chen H, Kang Y, Chen Q, Feng Y, Zhang P, Chen J, Zhou X. Protein kinase D1 induced epithelial-mesenchymal transition and invasion in salivary adenoid cystic carcinoma via E-cadherin/Snail regulation. Oral Dis 2021; 28:1539-1554. [PMID: 34351044 DOI: 10.1111/odi.13991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/29/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023]
Abstract
Salivary adenoid cystic carcinoma (SACC) is a malignant tumor, which is characterized by a higher incidence of distant metastasis. The aim of this study was to investigate the role and mechanism of protein kinase D1 (PKD1) in regulating the epithelial-mesenchymal transition (EMT) and promotes the metastasis in SACC. We analyzed the expression of PKD1 in 40 SACC patients and different metastatic potential cell lines. Then, we investigated whether the migration and growth of SACC were regulated by PKD1 using shRNA interference or inhibition of kinase active in vitro cell. Moreover, the mechanism by which PKD1 regulates the stability of Snail protein was determined. Finally, nude mice were used to testify the function of PKD1 via tail vein injection. PKD1 was correlated with metastasis and poor prognosis of SACC patients. PKD1 inhibition attenuated proliferation, migration, invasion, and EMT of SACC cells. Conversely, kinase active PKD1 could induce EMT and promoted cell migration in human HSG cell. Furthermore, downregulation of PKD1 regulated Snail via phosphorylation at Ser-11 on Snail protein and promotion of proteasome-mediated degradation, and reduced lung metastasis in vivo. Our results suggest that PKD1 induces the EMT and promotes the metastasis, which illustrate that PKD1 may be a potential prognostic biomarker and serve as a potential therapeutic target for SACC patients.
Collapse
Affiliation(s)
- Yue Du
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Die Lv
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bomiao Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoying Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongli Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingzhu Kang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Affiliated Stomatology Hospital, Zhejiang University School of Stomatology, Hangzhou, China
| | - Yun Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiao Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Lv D, Chen H, Feng Y, Cui B, Kang Y, Zhang P, Luo M, Chen J. Small-Molecule Inhibitor Targeting Protein Kinase D: A Potential Therapeutic Strategy. Front Oncol 2021; 11:680221. [PMID: 34249722 PMCID: PMC8263921 DOI: 10.3389/fonc.2021.680221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023] Open
Abstract
The protein kinase D (PKD) family is a family of serine-threonine kinases that are members of the calcium/calmodulin-dependent kinase (CaMK) superfamily. PKDs have been increasingly implicated in multiple pivotal cellular processes and pathological conditions. PKD dysregulation is associated with several diseases, including cancer, inflammation, and obesity. Over the past few years, small-molecule inhibitors have emerged as alternative targeted therapy with fewer adverse side effects than currently available chemotherapy, and these specifically targeted inhibitors limit non-specific toxicities. The successful development of PKD inhibitors would significantly suppress the growth and proliferation of various cancers and inhibit the progression of other diseases. Various PKD inhibitors have been studied in the preclinical setting. In this context, we summarize the PKD inhibitors under investigation and their application for different kinds of diseases.
Collapse
Affiliation(s)
- Die Lv
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongli Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yun Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bomiao Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingzhu Kang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Min Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiao Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Zhang X, Connelly J, Chao Y, Wang QJ. Multifaceted Functions of Protein Kinase D in Pathological Processes and Human Diseases. Biomolecules 2021; 11:biom11030483. [PMID: 33807058 PMCID: PMC8005150 DOI: 10.3390/biom11030483] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Protein kinase D (PKD) is a family of serine/threonine protein kinases operating in the signaling network of the second messenger diacylglycerol. The three family members, PKD1, PKD2, and PKD3, are activated by a variety of extracellular stimuli and transduce cell signals affecting many aspects of basic cell functions including secretion, migration, proliferation, survival, angiogenesis, and immune response. Dysregulation of PKD in expression and activity has been detected in many human diseases. Further loss- or gain-of-function studies at cellular levels and in animal models provide strong support for crucial roles of PKD in many pathological conditions, including cancer, metabolic disorders, cardiac diseases, central nervous system disorders, inflammatory diseases, and immune dysregulation. Complexity in enzymatic regulation and function is evident as PKD isoforms may act differently in different biological systems and disease models, and understanding the molecular mechanisms underlying these differences and their biological significance in vivo is essential for the development of safer and more effective PKD-targeted therapies. In this review, to provide a global understanding of PKD function, we present an overview of the PKD family in several major human diseases with more focus on cancer-associated biological processes.
Collapse
|
18
|
Qin X, Huang C, Wu K, Li Y, Liang X, Su M, Li R. Anti-coronavirus disease 2019 (COVID-19) targets and mechanisms of puerarin. J Cell Mol Med 2020; 25:677-685. [PMID: 33241658 PMCID: PMC7753316 DOI: 10.1111/jcmm.16117] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/29/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
The present study aimed to uncover the pharmacological function and underlying mechanism of puerarin as a potential treatment for COVID‐19, using an in silico methodology, including network pharmacology and molecular docking. The pivotal targets of puerarin to treat COVID‐19 were identified and included the epidermal growth factor receptor (EGFR), tumour necrosis factor (TNF), tumour protein p53 (TP53), caspase 3 (CASP3), RELA proto‐oncogene (RELA), Fos proto‐oncogene (FOS), caspase 8 (CASP8), prostaglandin‐endoperoxide synthase 2 (PTGS2), interleukin 2 (IL2), protein kinase CB (PRKCB), B cell lymphoma/leukaemia gene‐2 (BCL2), protein kinase CA (PRKCA), nitric oxide synthase 3 (NOS3) and peroxisome proliferator–activated receptor gamma (PPARG). Functionally, the anti–COVID‐19 action of puerarin was associated with the suppression of oxidative stress and inflammatory cascades, and cell apoptosis. The signalling pathways of puerarin to treat COVID‐19 included modulation of the pathways of apoptosis, IL‐17 signalling, mitogen‐activated protein kinase (MAPK) signalling and TNF signalling. Molecular docking data illustrated the binding capacity of puerarin with COVID‐19 and the effective anti–COVID‐19 activity of puerarin. Taken together, our current network pharmacology–based findings revealed the pharmacological role of puerarin in the treatment of COVID‐19. Furthermore, the bioinformatic findings elucidated that some of these pivotal targets might serve as potential molecular markers for detecting COVID‐19.
Collapse
Affiliation(s)
- Xingyue Qin
- Department of Neurology (Area Two), Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
| | - Chen Huang
- The Center for Data Science in Health and Medicine, Business School, Qingdao University, Qingdao, China
| | - Ka Wu
- Department of Pharmacy, The Second People's Hospital of Nanning City, The Third Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu Li
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Xiao Liang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Min Su
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Rong Li
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| |
Collapse
|
19
|
Motylewska E, Braun M, Kazimierczuk Z, Ławnicka H, Stępień H. IGF1R and MAPK15 Emerge as Potential Targets of Pentabromobenzylisothioureas in Lung Neuroendocrine Neoplasms. Pharmaceuticals (Basel) 2020; 13:ph13110354. [PMID: 33138224 PMCID: PMC7692632 DOI: 10.3390/ph13110354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 11/30/2022] Open
Abstract
Pentabromobenzylisothioureas are antitumor agents with diverse properties, including the inhibition of MAPK15, IGF1R and PKD1 kinases. Their dysregulation has been implicated in the pathogenesis of several cancers, including bronchopulmonary neuroendocrine neoplasms (BP-NEN). The present study assesses the antitumor potential of ZKKs, a series of pentabromobenzylisothioureas, on the growth of the lung carcinoid H727 cell line. It also evaluates the expression of MAPK15, IGF1R and PKD1 kinases in different BP-NENs. The viability of the H727 cell line was assessed by colorimetric MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) and its proliferation by BrdU (5-bromo-2′-deoxyuridine) assay. Tissue kinase expression was measured using TaqMan-based RT-PCR and immunohistochemistry. ZKKs (10−4 to 10−5 M) strongly inhibited H727 cell viability and proliferation and their antineoplastic effects correlated with their concentrations (p < 0.001). IGF1R and MAPK15 were expressed at high levels in all subtypes of BP-NENs. In addition, the SCLC (small cell lung carcinoma) patients demonstrated higher mRNA levels of IGF1R (p = 0.010) and MAPK15 (p = 0.040) than the other BP-NEN groups. BP-NENs were characterized by low PKD1 expression, and lung neuroendocrine cancers demonstrated lower PKD1 mRNA levels than carcinoids (p = 0.003). ZKKs may suppress BP-NEN growth by inhibiting protein kinase activity. Our results suggest also a possible link between high IGF1R and MAPK15 expression and the aggressive phenotype of BP-NEN tumors.
Collapse
Affiliation(s)
- Ewelina Motylewska
- Department of Immunoendocrinology, Chair of Endocrinology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; (E.M.); (H.Ł.)
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland;
| | - Zygmunt Kazimierczuk
- Department of Chemistry, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-787 Warsaw, Poland;
| | - Hanna Ławnicka
- Department of Immunoendocrinology, Chair of Endocrinology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; (E.M.); (H.Ł.)
| | - Henryk Stępień
- Department of Immunoendocrinology, Chair of Endocrinology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; (E.M.); (H.Ł.)
- Correspondence: ; Tel.: +48-42-201-4412
| |
Collapse
|
20
|
Metzendorf C, Wineberger K, Rausch J, Cigliano A, Peters K, Sun B, Mennerich D, Kietzmann T, Calvisi DF, Dombrowski F, Ribback S. Transcriptomic and Proteomic Analysis of Clear Cell Foci (CCF) in the Human Non-Cirrhotic Liver Identifies Several Differentially Expressed Genes and Proteins with Functions in Cancer Cell Biology and Glycogen Metabolism. Molecules 2020; 25:molecules25184141. [PMID: 32927708 PMCID: PMC7570661 DOI: 10.3390/molecules25184141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 01/06/2023] Open
Abstract
Clear cell foci (CCF) of the liver are considered to be pre-neoplastic lesions of hepatocellular adenomas and carcinomas. They are hallmarked by glycogen overload and activation of AKT (v-akt murine thymoma viral oncogene homolog)/mTOR (mammalian target of rapamycin)-signaling. Here, we report the transcriptome and proteome of CCF extracted from human liver biopsies by laser capture microdissection. We found 14 genes and 22 proteins differentially expressed in CCF and the majority of these were expressed at lower levels in CCF. Using immunohistochemistry, the reduced expressions of STBD1 (starch-binding domain-containing protein 1), USP28 (ubiquitin-specific peptidase 28), monad/WDR92 (WD repeat domain 92), CYB5B (Cytochrome b5 type B), and HSPE1 (10 kDa heat shock protein, mitochondrial) were validated in CCF in independent specimens. Knockout of Stbd1, the gene coding for Starch-binding domain-containing protein 1, in mice did not have a significant effect on liver glycogen levels, indicating that additional factors are required for glycogen overload in CCF. Usp28 knockout mice did not show changes in glycogen storage in diethylnitrosamine-induced liver carcinoma, demonstrating that CCF are distinct from this type of cancer model, despite the decreased USP28 expression. Moreover, our data indicates that decreased USP28 expression is a novel factor contributing to the pre-neoplastic character of CCF. In summary, our work identifies several novel and unexpected candidates that are differentially expressed in CCF and that have functions in glycogen metabolism and tumorigenesis.
Collapse
Affiliation(s)
- Christoph Metzendorf
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany; (C.M.); (K.W.); (J.R.); (A.C.); (K.P.); (D.F.C.); (F.D.)
| | - Katharina Wineberger
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany; (C.M.); (K.W.); (J.R.); (A.C.); (K.P.); (D.F.C.); (F.D.)
| | - Jenny Rausch
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany; (C.M.); (K.W.); (J.R.); (A.C.); (K.P.); (D.F.C.); (F.D.)
| | - Antonio Cigliano
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany; (C.M.); (K.W.); (J.R.); (A.C.); (K.P.); (D.F.C.); (F.D.)
| | - Kristin Peters
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany; (C.M.); (K.W.); (J.R.); (A.C.); (K.P.); (D.F.C.); (F.D.)
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA;
| | - Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90570 Oulu, Finland; (D.M.); (T.K.)
- Biocenter Oulu, University of Oulu, 90570 Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90570 Oulu, Finland; (D.M.); (T.K.)
- Biocenter Oulu, University of Oulu, 90570 Oulu, Finland
| | - Diego F. Calvisi
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany; (C.M.); (K.W.); (J.R.); (A.C.); (K.P.); (D.F.C.); (F.D.)
| | - Frank Dombrowski
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany; (C.M.); (K.W.); (J.R.); (A.C.); (K.P.); (D.F.C.); (F.D.)
| | - Silvia Ribback
- Institut fuer Pathologie, Universitaetsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475 Greifswald, Germany; (C.M.); (K.W.); (J.R.); (A.C.); (K.P.); (D.F.C.); (F.D.)
- Correspondence: ; Tel.: +49-383-486-5732; Fax: +49-383-486-5778
| |
Collapse
|
21
|
Merzoug-Larabi M, Youssef I, Bui AT, Legay C, Loiodice S, Lognon S, Babajko S, Ricort JM. Protein Kinase D1 (PKD1) Is a New Functional Non-Genomic Target of Bisphenol A in Breast Cancer Cells. Front Pharmacol 2020; 10:1683. [PMID: 32082170 PMCID: PMC7006487 DOI: 10.3389/fphar.2019.01683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 12/24/2019] [Indexed: 01/01/2023] Open
Abstract
Exposure to bisphenol A (BPA), one of the most widespread endocrine disruptors present in our environment, has been associated with the recent increased prevalence and severity of several diseases such as diabetes, obesity, autism, reproductive and neurological defects, oral diseases, and cancers such as breast tumors. BPA is suspected to act through genomic and non-genomic pathways. However, its precise molecular mechanisms are still largely unknown. Our goal was to identify and characterize a new molecular target of BPA in breast cancer cells in order to better understand how this compound may affect breast tumor growth and development. By using in vitro (MCF-7, T47D, Hs578t, and MDA-MB231 cell lines) and in vivo models, we demonstrated that PKD1 is a functional non-genomic target of BPA. PKD1 specifically mediates BPA-induced cell proliferation, clonogenicity, and anchorage-independent growth of breast tumor cells. Additionally, low-doses of BPA (≤10- 8 M) induced the phosphorylation of PKD1, a key signature of its activation state. Moreover, PKD1 overexpression increased the growth of BPA-exposed breast tumor xenografts in vivo in athymic female Swiss nude (Foxn1nu/nu ) mice. These findings further our understanding of the molecular mechanisms of BPA. By defining PKD1 as a functional target of BPA in breast cancer cell proliferation and tumor development, they provide new insights into the pathogenesis related to the exposure to BPA and other endocrine disruptors acting similarly.
Collapse
Affiliation(s)
- Messaouda Merzoug-Larabi
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Ilige Youssef
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Ai Thu Bui
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Laboratoire de Physiopathologie Orale Moléculaire, Paris, France
| | - Christine Legay
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Sophia Loiodice
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Laboratoire de Physiopathologie Orale Moléculaire, Paris, France
| | - Sophie Lognon
- École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Sylvie Babajko
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Laboratoire de Physiopathologie Orale Moléculaire, Paris, France
| | - Jean-Marc Ricort
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| |
Collapse
|
22
|
Yao J, Jiang Y, Geng S, Sun L. Protein Kinase D1 Is Increased in Tumor Tissue, Correlates With Advanced Tumor Features and Worse Prognosis of Non-Small Cell Lung Cancer. Technol Cancer Res Treat 2020; 19:1533033820934129. [PMID: 32985371 PMCID: PMC7534063 DOI: 10.1177/1533033820934129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE This study aimed to assess protein kinase D1 expression and its association with tumor characteristics as well as prognosis in patients with non-small cell lung cancer. METHODS Protein kinase D1 expression in tumor tissues and adjacent tissues from 172 patients with non-small cell lung cancer who underwent surgical resection were analyzed by immunohistochemical staining. Based on the total immunohistochemical score, protein kinase D1 expression was classified as protein kinase D1 high expression (further divided into protein kinase D1 high+++, protein kinase D1 high++, and protein kinase D1 high+ expressions) and protein kinase D1 low expression. Clinical characteristics of patients with non-small cell lung cancer were acquired from the database. Accumulating disease-free survival and overall survival were calculated based on patients' relapse/survival status. RESULTS Protein kinase D1 expression was increased in tumor tissues compared to adjacent tissues (P < .001). Tumor protein kinase D1 high expression correlated with poorer pathological differentiation (P = .041), increased tumor size (P = .003), the presence of lymph node metastasis (P = .001), and elevated tumor, nodes and metastases stage (P < .001). Besides, both accumulating disease-free survival and overall survival were decreased in patients with tumor protein kinase D1 high expression compared to patients with tumor protein kinase D1 low expression (P = .010 for disease-free survival and P = 0.005 for overall survival). Moreover, they were lowest in patients with tumor protein kinase D1 high+++ expression, followed by patients with tumor protein kinase D1 high++ expression, then patients with tumor protein kinase D1 high+ expression, and highest in patients with tumor protein kinase D1 low expression (P < .001 for disease-free survival and P = .001 for overall survival). Notably, higher tumor protein kinase D1 expression was an independent predictive factor for decreased disease-free survival (P = .001) and overall survival (P = .004). CONCLUSIONS Protein kinase D1 might be a potential marker to identify patients with non-small cell lung cancer with worse tumor features and prognosis.
Collapse
Affiliation(s)
- Jing Yao
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Jiang
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Geng
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Sun
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Kumari S, Khan S, Sekhri R, Mandil H, Behrman S, Yallapu MM, Chauhan SC, Jaggi M. Protein kinase D1 regulates metabolic switch in pancreatic cancer via modulation of mTORC1. Br J Cancer 2019; 122:121-131. [PMID: 31819177 PMCID: PMC6964700 DOI: 10.1038/s41416-019-0629-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/01/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Protein kinase D1 (PKD1) is a serine-threonine kinase that regulates various functions within the cell. Herein, we report the significance of PKD1 expression in glucose metabolism resulting in pancreatic cancer (PanCa) progression and chemo-resistance. METHODS PKD1 expression in PanCa was investigated by using immunohistochemistry. Functional and metabolic assays were utilised to analyse the effect of PKD1 expression/knockdown on associated cellular/molecular changes. RESULTS PKD1 expression was detected in human pancreatic intraepithelial neoplasia lesions (MCS = 12.9; P < 0.0001) and pancreatic ductal adenocarcinoma samples (MCS = 15, P < 0.0001) as compared with faint or no expression in normal pancreatic tissues (MCS = 1.54; P < 0.0001). Our results determine that PKD1 enhances glucose metabolism in PanCa cells, by triggering enhanced tumorigenesis and chemo-resistance. We demonstrate that mTORC1 activation by PKD1 regulates metabolic alterations in PanCa cells. siRNA knockdown of Raptor or treatment with rapamycin inhibited PKD1-accelerated lactate production as well as glucose consumption in cells, which confirms the association of mTORC1 with PKD1-induced metabolic alterations. CONCLUSION This study suggests a novel role of PKD1 as a key modulator of the glucose metabolism in PanCa cells accelerating tumorigenesis and chemo-resistance. The remodelling of PKD1-dysregulated glucose metabolism can be achieved by regulation of mTORC1 for development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sonam Kumari
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sheema Khan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA. .,Department of Immunology and Microbiology, University of Texas Rio Grande Valley, McAllen, TX, USA.
| | - Radhika Sekhri
- Department of Pathology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hassan Mandil
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Stephen Behrman
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Immunology and Microbiology, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Immunology and Microbiology, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA. .,Department of Immunology and Microbiology, University of Texas Rio Grande Valley, McAllen, TX, USA.
| |
Collapse
|