1
|
Ankit, Malviya R, Sharma A. Sources, Properties and Pharmacological Effects of Quercetin. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220127140859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The present review aims to describe an overview of quercetin with its various pharmacological effects. Quercetin is used as antioxidant, anticancer, antibacterial and antimicrobial, anti-inflammatory, antidiabetic, antihypertensive, antifungal, anti-allergic and antiproliferative agents, which are described in the manuscript. It is mainly obtained from plant resources, which is also described in the manuscript. The manuscript also focuses on describing the various studies related to quercetin which shows various pharmacological activities. It is concluded from the study that quercetin has shown an efficacious effect on various diseases.
Collapse
Affiliation(s)
- Ankit
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University,
Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University,
Greater Noida, Uttar Pradesh, India
| | - Akanksha Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University,
Greater Noida, Uttar Pradesh, India
| |
Collapse
|
2
|
Chen MS, Lee RT, Garbern JC. Senescence mechanisms and targets in the heart. Cardiovasc Res 2021; 118:1173-1187. [PMID: 33963378 DOI: 10.1093/cvr/cvab161] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/27/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Cellular senescence is a state of irreversible cell cycle arrest associated with ageing. Senescence of different cardiac cell types can direct the pathophysiology of cardiovascular diseases such as atherosclerosis, myocardial infarction, and cardiac fibrosis. While age-related telomere shortening represents a major cause of replicative senescence, the senescent state can also be induced by oxidative stress, metabolic dysfunction, and epigenetic regulation, among other stressors. It is critical that we understand the molecular pathways that lead to cellular senescence and the consequences of cellular senescence in order to develop new therapeutic approaches to treat cardiovascular disease. In this review, we discuss molecular mechanisms of cellular senescence, explore how cellular senescence of different cardiac cell types (including cardiomyocytes, cardiac endothelial cells, cardiac fibroblasts, vascular smooth muscle cells, valve interstitial cells) can lead to cardiovascular disease, and highlight potential therapeutic approaches that target molecular mechanisms of cellular senescence to prevent or treat cardiovascular disease.
Collapse
Affiliation(s)
- Maggie S Chen
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA 02138
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA 02138.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115
| | - Jessica C Garbern
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA 02138.,Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115
| |
Collapse
|
3
|
Sanches-Silva A, Testai L, Nabavi SF, Battino M, Pandima Devi K, Tejada S, Sureda A, Xu S, Yousefi B, Majidinia M, Russo GL, Efferth T, Nabavi SM, Farzaei MH. Therapeutic potential of polyphenols in cardiovascular diseases: Regulation of mTOR signaling pathway. Pharmacol Res 2020; 152:104626. [PMID: 31904507 DOI: 10.1016/j.phrs.2019.104626] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases comprise of non-communicable disorders that involve the heart and/or blood vessels and have become the leading cause of death worldwide with increased prevalence by age. mTOR is a serine/threonine-specific protein kinase which plays a central role in many physiological processes including cardiovascular diseases, and also integrates various proliferative signals, nutrient and energy abundance and stressful situations. mTOR also acts as central regulator during chronic stress, mitochondrial dysfunction and deregulated autophagy which are associated with senescence. Under oxidative stress, mTOR has been reported to exert protective effects regulating apoptosis and autophagy processes and favoring tissue repair. On the other hand, inhibition of mTOR has been suggested to have beneficial effects against atherosclerosis, cardiac hypertrophy and heart failure, and also in extending the lifespan. In this aspect, the use of drugs or natural compounds, which can target mTOR is an interesting approach in order to reduce the number of deaths caused by cardiovascular disease. In the present review, we intend to shed light on the possible effects and molecular mechanism of natural agents like polyphenols via regulating mTOR.
Collapse
Affiliation(s)
- Ana Sanches-Silva
- National Institute for Agricultural and Veterinary Research (INIAV), Vairão, Vila do Conde, Portugal; Center for Study in Animal Science (CECA), ICETA, University of Porto, Porto, Portugal
| | - Lara Testai
- Department of Pharmacy, University of Pisa, via Bonanno 6 - 56126, Pisa, Italy
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maurizio Battino
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy; Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 003, Tamil Nadu, India
| | - Silvia Tejada
- Laboratory of Neurophysiology, Department of Biology, Institut d'Investigació Sanitària Illes Balears (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Palma de Mallorca, E-07122, Balearic Islands, Spain
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX), Institut d'Investigació Sanitària Illes Balears (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Palma de Mallorca, E-07122, Balearic Islands, Spain
| | - Suowen Xu
- University of Rochester, Aab Cardiovascular Research Institute, Rochester, NY, 14623, USA
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hossein Farzaei
- Pharmaceutical Sciences Research center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Vemuri SK, Banala RR, Mukherjee S, Uppula P, GPV S, A.V. GR, T. M. Novel biosynthesized gold nanoparticles as anti-cancer agents against breast cancer: Synthesis, biological evaluation, molecular modelling studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:417-429. [DOI: 10.1016/j.msec.2019.01.123] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 01/21/2019] [Accepted: 01/27/2019] [Indexed: 01/07/2023]
|
5
|
Takshak S, Agrawal SB. Defense potential of secondary metabolites in medicinal plants under UV-B stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 193:51-88. [PMID: 30818154 DOI: 10.1016/j.jphotobiol.2019.02.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 01/13/2023]
Abstract
Ultraviolet-B (UV-B) radiation has, for many decades now, been widely studied with respect to its consequences on plant and animal health. Though according to NASA, the ozone hole is on its way to recovery, it will still be a considerable time before UV-B levels reach pre-industrial limits. Thus, for the present, excessive UV-B reaching the Earth is a cause for concern, and UV-B related human ailments are on the rise. Plants produce various secondary metabolites as one of the defense strategies under UV-B. They provide photoprotection via their UV-B screening effects and by quenching the reactive oxygen- and nitrogen species produced under UV-B influence. These properties of plant secondary metabolites (PSMs) are being increasingly recognized and made use of in sunscreens and cosmetics, and pharma- and nutraceuticals are gradually becoming a part of the regular diet. Secondary metabolites derived from medicinal plants (alkaloids, terpenoids, and phenolics) are a source of pharmaceuticals, nutraceuticals, as well as more rigorously tested and regulated drugs. These metabolites have been implicated in providing protection not only to plants under the influence of UV-B, but also to animals/animal cell lines, when the innate defenses in the latter are not adequate under UV-B-induced damage. The present review focuses on the defense potential of secondary metabolites derived from medicinal plants in both plants and animals. In plants, the concentrations of the alkaloids, terpenes/terpenoids, and phenolics have been discussed under UV-B irradiation as well as the fate of the genes and enzymes involved in their biosynthetic pathways. Their role in providing protection to animal models subjected to UV-B has been subsequently elucidated. Finally, we discuss the possible futuristic scenarios and implications for plant, animal, and human health pertaining to the defense potential of these secondary metabolites under UV-B radiation-mediated damages.
Collapse
Affiliation(s)
- Swabha Takshak
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221 005, India
| | - S B Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
6
|
Diniz C, Suliburska J, Ferreira IMPLVO. New insights into the antiangiogenic and proangiogenic properties of dietary polyphenols. Mol Nutr Food Res 2017; 61. [PMID: 27981783 DOI: 10.1002/mnfr.201600912] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 12/14/2022]
Abstract
Polyphenols can be found in natural products of plant origin, including vegetables, fruits, and beverages. A large number of these plant origin compounds are an integral part of the human diet and in the past decade evidence has shown their beneficial properties in human health, by acting in several cell signaling pathways. Among other beneficial effects, polyphenols have been associated with angiogenesis. Increasing evidence highlighting the ability of dietary polyphenols to influence angiogenesis by interfering with multiple signaling pathways is debated. Particular emphasis is given to the mechanisms that ultimately may induce the formation of capillary-like structures (by increasing endothelial cell proliferation, migration, and invasion) or, conversely, may inhibit the steps of angiogenesis leading to the inhibition/regress of vascular development. Dietary polyphenols can, therefore, be viewed as promising nutraceuticals but important aspects have still to be further investigated, to deep knowledge concerning their concentration-mediated effects, effect of specific polyphenols, and respective metabolites, to ensure their appropriate and effective usefulness as proangiogenic or antiangiogenic nutraceuticals.
Collapse
Affiliation(s)
- Carmen Diniz
- LAQV/REQUIMTE-Departamento de Ciências do Medicamento, Laboratório de Farmacologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Joanna Suliburska
- Department of Human Nutrition and Hygiene, Poznan University of Life Sciences, Poznan, Poland
| | - Isabel M P L V O Ferreira
- LAQV/REQUIMTE-Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Montes de Oca MK, Pearlman RL, McClees SF, Strickland R, Afaq F. Phytochemicals for the Prevention of Photocarcinogenesis. Photochem Photobiol 2017; 93:956-974. [PMID: 28063168 DOI: 10.1111/php.12711] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022]
Abstract
Ultraviolet (UV) exposure has an array of damaging effects and is the main cause of skin cancer in humans. Nonmelanoma skin cancer (NMSC), including basal cell carcinoma and squamous cell carcinoma, is the most common type of cancer. Incidence of NMSC has increased due to greater UV radiation, increased life expectancy and other changes in lifestyle; the annual cost of skin cancer treatment in the United States has increased concurrently to around eight billion dollars. Because of these trends, novel approaches to skin cancer prevention have become an important area of research to decrease skin cancer morbidity and defray the costs associated with treatment. Chemoprevention aims to prevent or delay the development of skin cancer through the use of phytochemicals. Use of phytochemicals as chemopreventive agents has gained attention due to their low toxicity and anticarcinogenic properties. Phytochemicals also exhibit antioxidant, anti-inflammatory and antiproliferative effects which support their use as chemopreventive agents, particularly for skin cancer. Preclinical and human studies have shown that phytochemicals decrease UV-induced skin damage and photocarcinogenesis. In this review article, we discuss the selected phytochemicals that may prevent or delay UV-induced carcinogenesis and highlight their potential use for skin protection.
Collapse
Affiliation(s)
| | - Ross L Pearlman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL
| | - Sarah F McClees
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL
| | - Rebecca Strickland
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL
| | - Farrukh Afaq
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
8
|
Janda J, Burkett NB, Blohm-Mangone K, Huang V, Curiel-Lewandrowski C, Alberts DS, Petricoin EF, Calvert VS, Einspahr J, Dong Z, Bode AM, Wondrak GT, Dickinson SE. Resatorvid-based Pharmacological Antagonism of Cutaneous TLR4 Blocks UV-induced NF-κB and AP-1 Signaling in Keratinocytes and Mouse Skin. Photochem Photobiol 2016; 92:816-825. [PMID: 27859308 DOI: 10.1111/php.12659] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/03/2016] [Indexed: 12/21/2022]
Abstract
Cutaneous exposure to solar ultraviolet (UV) radiation is a major causative factor in skin carcinogenesis, and improved molecular strategies for efficacious chemoprevention of nonmelanoma skin cancer (NMSC) are urgently needed. Toll-like receptor 4 (TLR4) signaling has been shown to drive skin inflammation, photoimmunosuppression, and chemical carcinogenesis. Here we have examined the feasibility of genetic and pharmacological antagonism targeting cutaneous TLR4 for the suppression of UV-induced NF-κB and AP-1 signaling in keratinocytes and mouse skin. Using immunohistochemical and proteomic microarray analysis of human skin, we demonstrate for the first time that a significant increase in expression of TLR4 occurs in keratinocytes during the progression from normal skin to actinic keratosis, also detectible during further progression to squamous cell carcinoma. Next, we demonstrate that siRNA-based genetic TLR4 inhibition blocks UV-induced stress signaling in cultured keratinocytes. Importantly, we observed that resatorvid (TAK-242), a molecularly targeted clinical TLR4 antagonist, blocks UV-induced NF-κB and MAP kinase/AP-1 activity and cytokine expression (Il-6, Il-8, and Il-10) in cultured keratinocytes and in topically treated murine skin. Taken together, our data reveal that pharmacological TLR4 antagonism can suppress UV-induced cutaneous signaling, and future experiments will explore the potential of TLR4-directed strategies for prevention of NMSC.
Collapse
Affiliation(s)
| | | | | | - Vivian Huang
- The University of Arizona Cancer Center, Tucson, AZ
| | - Clara Curiel-Lewandrowski
- The University of Arizona Cancer Center, Tucson, AZ.,Department of Medicine, The University of Arizona, Tucson, AZ
| | - David S Alberts
- The University of Arizona Cancer Center, Tucson, AZ.,Department of Medicine, The University of Arizona, Tucson, AZ
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA
| | - Valerie S Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA
| | - Janine Einspahr
- The University of Arizona Cancer Center, Tucson, AZ.,Department of Medicine, The University of Arizona, Tucson, AZ
| | - Zigang Dong
- Department of Molecular Medicine and Biopharmaceutical Sciences, The Hormel Institute, The University of Minnesota, Austin, MN
| | - Ann M Bode
- Department of Molecular Medicine and Biopharmaceutical Sciences, The Hormel Institute, The University of Minnesota, Austin, MN
| | - Georg T Wondrak
- The University of Arizona Cancer Center, Tucson, AZ.,Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ
| | - Sally E Dickinson
- The University of Arizona Cancer Center, Tucson, AZ.,Department of Pharmacology, The University of Arizona, Tucson, AZ
| |
Collapse
|
9
|
McKay TB, Sarker-Nag A, Lyon D, Asara JM, Karamichos D. Quercetin modulates keratoconus metabolism in vitro. Cell Biochem Funct 2015; 33:341-50. [PMID: 26173740 DOI: 10.1002/cbf.3122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 12/12/2022]
Abstract
Corneal scarring is the result of a disease, infection or injury. The resulting scars cause significant loss of vision or even blindness. To-date, the most successful treatment is corneal transplantation, but it does not come without side effects. One of the corneal dystrophies that are correlated with corneal scarring is keratoconus (KC). The onset of the disease is still unknown; however, altered cellular metabolism has been linked to promoting the fibrotic phenotype and therefore scarring. We have previously shown that human keratoconus cells (HKCs) have altered metabolic activity when compared to normal human corneal fibroblasts (HCFs). In our current study, we present evidence that quercetin, a natural flavonoid, is a strong candidate for regulating metabolic activity of both HCFs and HKCs in vitro and therefore a potential therapeutic to target the altered cellular metabolism characteristic of HKCs. Targeted mass spectrometry-based metabolomics was performed on HCFs and HKCs with and without quercetin treatment in order to identify variations in metabolite flux. Overall, our study reveals a novel therapeutic target OF Quercetin on corneal stromal cell metabolism in both healthy and diseased states. Clearly, further studies are necessary in order to dissect the mechanism of action of quercetin.
Collapse
Affiliation(s)
- Tina B McKay
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Akhee Sarker-Nag
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Desiree' Lyon
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Dimitrios Karamichos
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
10
|
Kawabata K, Mukai R, Ishisaka A. Quercetin and related polyphenols: new insights and implications for their bioactivity and bioavailability. Food Funct 2015; 6:1399-417. [DOI: 10.1039/c4fo01178c] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The physiological functions and mechanisms of action of quercetin and its related polyphenols are highlighted, including their effects on brain, blood vessels, muscle, and intestinal microflora.
Collapse
Affiliation(s)
- Kyuichi Kawabata
- Department of Bioscience
- Fukui Prefectural University
- Eiheiji-cho, Yoshida-gun, Fukui 910-1195
- Japan
| | - Rie Mukai
- Department of Food Science
- Institute of Health Biosciences
- The University of Tokushima Graduate School
- Tokushima 770-8503
- Japan
| | - Akari Ishisaka
- School of Human Science and Environment
- University of Hyogo
- Himeji 670-0092
- Japan
| |
Collapse
|
11
|
Chinembiri TN, du Plessis LH, Gerber M, Hamman JH, du Plessis J. Review of natural compounds for potential skin cancer treatment. Molecules 2014; 19:11679-721. [PMID: 25102117 PMCID: PMC6271439 DOI: 10.3390/molecules190811679] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 02/07/2023] Open
Abstract
Most anti-cancer drugs are derived from natural resources such as marine, microbial and botanical sources. Cutaneous malignant melanoma is the most aggressive form of skin cancer, with a high mortality rate. Various treatments for malignant melanoma are available, but due to the development of multi-drug resistance, current or emerging chemotherapies have a relatively low success rates. This emphasizes the importance of discovering new compounds that are both safe and effective against melanoma. In vitro testing of melanoma cell lines and murine melanoma models offers the opportunity for identifying mechanisms of action of plant derived compounds and extracts. Common anti-melanoma effects of natural compounds include potentiating apoptosis, inhibiting cell proliferation and inhibiting metastasis. There are different mechanisms and pathways responsible for anti-melanoma actions of medicinal compounds such as promotion of caspase activity, inhibition of angiogenesis and inhibition of the effects of tumor promoting proteins such as PI3-K, Bcl-2, STAT3 and MMPs. This review thus aims at providing an overview of anti-cancer compounds, derived from natural sources, that are currently used in cancer chemotherapies, or that have been reported to show anti-melanoma, or anti-skin cancer activities. Phytochemicals that are discussed in this review include flavonoids, carotenoids, terpenoids, vitamins, sulforaphane, some polyphenols and crude plant extracts.
Collapse
Affiliation(s)
- Tawona N Chinembiri
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Lissinda H du Plessis
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Minja Gerber
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Josias H Hamman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Jeanetta du Plessis
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| |
Collapse
|
12
|
Phytochemical modulation of the Akt/mTOR pathway and its potential use in cutaneous disease. Arch Dermatol Res 2014; 306:861-71. [DOI: 10.1007/s00403-014-1480-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/04/2014] [Accepted: 05/10/2014] [Indexed: 10/25/2022]
|
13
|
Chen W, Becker T, Qian F, Ring J. Beer and beer compounds: physiological effects on skin health. J Eur Acad Dermatol Venereol 2013; 28:142-50. [DOI: 10.1111/jdv.12204] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/23/2013] [Accepted: 05/31/2013] [Indexed: 12/28/2022]
Affiliation(s)
- W. Chen
- Department of Dermatology and Allergy Biederstein; Technische Universität München; Christine Kühne Center for Allergy Research and Education (CK CARE); Munich Germany
| | - T. Becker
- Brewing and Beverage Technology; Department of Life Science Engineering; Center of Life and Food Sciences Weihenstephan; Technische Universitaet Muenchen; Freising Germany
| | - F. Qian
- Brewing and Beverage Technology; Department of Life Science Engineering; Center of Life and Food Sciences Weihenstephan; Technische Universitaet Muenchen; Freising Germany
| | - J. Ring
- Department of Dermatology and Allergy Biederstein; Technische Universität München; Christine Kühne Center for Allergy Research and Education (CK CARE); Munich Germany
| |
Collapse
|
14
|
Quercitrin protects skin from UVB-induced oxidative damage. Toxicol Appl Pharmacol 2013; 269:89-99. [PMID: 23545178 DOI: 10.1016/j.taap.2013.03.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 02/07/2023]
Abstract
Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin.
Collapse
|
15
|
Castillo-Pichardo L, Dharmawardhane SF. Grape polyphenols inhibit Akt/mammalian target of rapamycin signaling and potentiate the effects of gefitinib in breast cancer. Nutr Cancer 2013; 64:1058-69. [PMID: 23061908 DOI: 10.1080/01635581.2012.716898] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We recently reported that a combination of dietary grape polyphenols resveratrol, quercetin, and catechin (RQC), at low concentrations, was effective at inhibiting metastatic cancer progression. Herein, we investigate the molecular mechanisms of RQC in breast cancer and explore the potential of RQC as a potentiation agent for the epidermal growth factor receptor (EGFR) therapeutic gefitinib. Our in vitro experiments showed RQC induced apoptosis in gefitinib-resistant breast cancer cells via regulation of a myriad of proapoptotic proteins. Because the Akt/mammalian target of rapamycin (mTOR) signaling pathway is often elevated during development of anti-EGFR therapy resistance, the effect of RQC on the mTOR upstream effector Akt and the negative regulator AMP kinase (AMPK) was investigated. RQC was found to reduce Akt activity, induce the activation of AMPK, and inhibit mTOR signaling in breast cancer cells. Combined RQC and gefitinib decreased gefitinib resistant breast cancer cell viability to a greater extent than RQC or gefitinib alone. Moreover, RQC inhibited Akt and mTOR and activated AMPK even in the presence of gefitinib. Our in vivo experiments showed combined RQC and gefitinib was more effective than the individual treatments at inhibiting mammary tumor growth and metastasis in nude mice. Therefore, RQC treatment inhibits breast cancer progression and may potentiate anti-EGFR therapy by inhibition of Akt/mTOR signaling.
Collapse
Affiliation(s)
- Linette Castillo-Pichardo
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | | |
Collapse
|
16
|
Pratheeshkumar P, Sreekala C, Zhang Z, Budhraja A, Ding S, Son YO, Wang X, Hitron A, Hyun-Jung K, Wang L, Lee JC, Shi X. Cancer prevention with promising natural products: mechanisms of action and molecular targets. Anticancer Agents Med Chem 2012; 12:1159-84. [PMID: 22583402 PMCID: PMC4983770 DOI: 10.2174/187152012803833035] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 01/05/2012] [Accepted: 01/05/2012] [Indexed: 11/22/2022]
Abstract
Cancer is the second leading cause of death worldwide. There is greater need for more effective and less toxic therapeutic and preventive strategies. Natural products are becoming an important research area for novel and bioactive molecules for drug discovery. Phytochemicals and dietary compounds have been used for the treatment of cancer throughout history due to their safety, low toxicity, and general availability. Many active phytochemicals are in human clinical trials. Studies have indicated that daily consumption of dietary phytochemicals have cancer protective effects against carcinogens. They can inhibit, delay, or reverse carcinogenesis by inducing detoxifying and antioxidant enzymes systems, regulating inflammatory and proliferative signaling pathways, and inducing cell cycle arrest and apoptosis. Epidemiological studies have also revealed that high dietary intakes of fruits and vegetables reduce the risk of cancer. This review discusses potential natural cancer preventive compounds, their molecular targets, and their mechanisms of actions.
Collapse
Affiliation(s)
- Poyil Pratheeshkumar
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | | | - Zhuo Zhang
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Amit Budhraja
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Songze Ding
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Young-Ok Son
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Xin Wang
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Andrew Hitron
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Kim Hyun-Jung
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Lei Wang
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Jeong-Chae Lee
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Xianglin Shi
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
17
|
Maini S, Hodgson HL, Krol ES. The UVA and aqueous stability of flavonoids is dependent on B-ring substitution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6966-6976. [PMID: 22715887 DOI: 10.1021/jf3016128] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Flavonols such as kaempferol and quercetin are believed to provide protection against ultraviolet (UV)-induced damage to plants. Recent in vitro studies have examined the ability of flavonols to protect against UV-induced damage to mammalian cells. Stability of flavonols in cell culture media, however, has been problematic, especially for quercetin, one of the most widely studied flavonols. As part of our investigations into the potential for flavonols to protect skin against UV-induced damage, we have determined the stability of a series of flavonols that differ only in the number of substituents on the B-ring. We measured the stability of these flavonols over time to UVA radiation, Dulbecco's modified Eagle's medium (DMEM), and Dulbecco's phosphate-buffered saline (DPBS) using high performance liquid chromatography with UV detection (HPLC-UV). The identification of the breakdown products of flavonols was accomplished by using a hybrid quadrupole linear ion trap mass spectrometer coupled with liquid chromatography. Tandem mass spectrometric analysis (MS/MS) of flavonol photoproducts was confirmed by comparing with the known standard samples. We have determined that flavonol stability decreases with increasing B-ring substitution, suggesting that future investigation of potential photoprotective flavonols will need to be cognizant of this trend.
Collapse
Affiliation(s)
- Sabia Maini
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | |
Collapse
|
18
|
Yin J, Thomas F, Lang JC, Chaum E. Modulation of oxidative stress responses in the human retinal pigment epithelium following treatment with vitamin C. J Cell Physiol 2011; 226:2025-32. [PMID: 21520054 DOI: 10.1002/jcp.22532] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oxidative stress (OS) in the retina plays an important role in the development and progression of age-related macular degeneration (AMD). Our previous work has shown that OS can quantitatively regulate the expression of AP-1 family genes in the retinal pigment epithelium (RPE). In this study, we sought to determine whether AP-1 genes can be used as cellular biomarkers of OS to evaluate the efficacy of ascorbate, the major aqueous-phase antioxidant in the blood, in reducing OS in RPE cells in vitro. Human ARPE19 cells were pretreated with increasing levels of ascorbate (0-500 µM) for 3 days which was then removed from the medium. OS was induced 24 h later by the addition of hydrogen peroxide for 1-4 h, to bring the final media concentration of H(2)O(2) to 500 µM. FosB, c-Fos, and ATF3 gene expression was examined from 0 to 24 h after OS. Pretreatment with 200 µM ascorbate maximally reduced the transcriptional OS response of AP-1 genes by up to 87% after 1 and 4 h, compared to controls. One hundred micromolar of ascorbate provided a statistically significant, but far more modest effect. Ascorbate supplementation of 100-200 µM appears to strongly inhibit OS-induced activation of AP-1 in vitro, but pretreatment with higher levels of ascorbate conferred no additional advantage. These studies suggest that there are optimal levels of antioxidant supplementation to the RPE in vitro. Laboratory assays based upon transcription factor biomarkers may be useful to define beneficial molecular responses to new antioxidants, alternative dosing regimens, and to explore therapeutic efficacy in OS models in vitro.
Collapse
Affiliation(s)
- Jinggang Yin
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | | | |
Collapse
|
19
|
Afaq F. Natural agents: cellular and molecular mechanisms of photoprotection. Arch Biochem Biophys 2011; 508:144-51. [PMID: 21147060 PMCID: PMC3060948 DOI: 10.1016/j.abb.2010.12.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 12/02/2010] [Accepted: 12/03/2010] [Indexed: 12/21/2022]
Abstract
The skin is the largest organ of the body that produces a flexible and self-repairing barrier and protects the body from most common potentially harmful physical, environmental, and biological insults. Solar ultraviolet (UV) radiation is one of the major environmental insults to the skin and causes multi-tiered cellular and molecular events eventually leading to skin cancer. The past decade has seen a surge in the incidence of skin cancer due to changes in life style patterns that have led to a significant increase in the amount of UV radiation that people receive. Reducing excessive exposure to UV radiation is desirable; nevertheless this approach is not easy to implement. Therefore, there is an urgent need to develop novel strategies to reduce the adverse biological effects of UV radiation on the skin. A wide variety of natural agents have been reported to possess substantial skin photoprotective effects. Numerous preclinical and clinical studies have elucidated that natural agents act by several cellular and molecular mechanisms to delay or prevent skin cancer. In this review article, we have summarized and discussed some of the selected natural agents for skin photoprotection.
Collapse
Affiliation(s)
- Farrukh Afaq
- Department of Dermatology, University of Alabama, Birmingham, AL 35294, USA.
| |
Collapse
|
20
|
3,5-Di(-O-acetyl)-3′,4′,7-tri[-O-(2-O-acetylethyl)]quercetin. MOLBANK 2010. [DOI: 10.3390/m703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|