1
|
Munakata S, Watanabe T, Takahashi T, Kimuro S, Ishimori K, Hashizume T. Development of a micronucleus test using the EpiAirway™ organotypic human airway model. Genes Environ 2023; 45:14. [PMID: 37046355 PMCID: PMC10099928 DOI: 10.1186/s41021-023-00269-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/14/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND The use of organotypic human tissue models in genotoxicity has increased as an alternative to animal testing. Genotoxicity is generally examined using a battery of in vitro assays such as Ames and micronucleus (MN) tests that cover gene mutations and structural and numerical chromosome aberrations. At the 7th International Workshop on Genotoxicity Testing, working group members agreed that the skin models have reached an advanced stage of maturity, while further efforts in liver and airway models are needed [Pfuhler et al., Mutat. Res. 850-851 (2020) 503135]. Organotypic human airway model is composed of fully differentiated and functional respiratory epithelium. However, because cell proliferation in organotypic airway models is thought to be less active, assessing their MN-inducing potential is an issue, even in the cytokinesis-blocking approach using cytochalasin B (CB) [Wang et al., Environ. Mol. Mutagen. 62 (2021) 306-318]. Here, we developed a MN test using EpiAirway™ in which epidermal growth factor (EGF) was included as a stimulant of cell division. RESULTS By incubating EpiAirway™ tissue with medium containing various concentrations of CB, we found that the percentage of binucleated cells (%BNCs) almost plateaued at 3 μg/mL CB for 72 h incubation. Additionally, we confirmed that EGF stimulation with CB incubation produced an additional increase in %BNCs with a peak at 5 ng/mL EGF. Transepithelial electrical resistance measurement and tissue histology revealed that CB incubation caused the reduced barrier integrity and cyst formation in EpiAirway™. Adenylate kinase assay confirmed that the cytotoxicity increased with each day of culture in the CB incubation period with EGF stimulation. These results indicated that chemical treatment should be conducted prior to CB incubation. Under these experimental conditions, it was confirmed that the frequency of micronucleated cells was dose-dependently increased by apical applications of two clastogens, mitomycin C and methyl methanesulfonate, and an aneugen, colchicine, at the subcytotoxic concentrations assessed in %BNCs. CONCLUSIONS Well-studied genotoxicants demonstrated capability in an organotypic human airway model as a MN test system. For further utilization, investigations of aerosol exposure, repeating exposure protocol, and metabolic activation are required.
Collapse
Affiliation(s)
- Satoru Munakata
- Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan
| | - Taku Watanabe
- Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan
| | - Tomohiro Takahashi
- Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan
| | - Shiori Kimuro
- Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan
| | - Kanae Ishimori
- Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan
| | - Tsuneo Hashizume
- Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan.
| |
Collapse
|
2
|
Baldassi D, Gabold B, Merkel O. Air-liquid interface cultures of the healthy and diseased human respiratory tract: promises, challenges and future directions. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000111. [PMID: 34345878 PMCID: PMC7611446 DOI: 10.1002/anbr.202000111] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Air-liquid interface (ALI) culture models currently represent a valid instrument to recreate the typical aspects of the respiratory tract in vitro in both healthy and diseased state. They can help reducing the number of animal experiments, therefore, supporting the 3R principle. This review discusses ALI cultures and co-cultures derived from immortalized as well as primary cells, which are used to study the most common disorders of the respiratory tract, in terms of both pathophysiology and drug screening. The article displays ALI models used to simulate inflammatory lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, cystic fibrosis, lung cancer, and viral infections. It also includes a focus on ALI cultures described in literature studying respiratory viruses such as SARS-CoV-2 causing the global Covid-19 pandemic at the time of writing this review. Additionally, commercially available models of ALI cultures are presented. Ultimately, the aim of this review is to provide a detailed overview of ALI models currently available and to critically discuss them in the context of the most prevalent diseases of the respiratory tract.
Collapse
Affiliation(s)
- Domizia Baldassi
- Pharmaceutical Technology and Biopharmacy, LMU Munich Butenandtstr. 5-13, 81377 Munich, Germany
| | - Bettina Gabold
- Pharmaceutical Technology and Biopharmacy, LMU Munich Butenandtstr. 5-13, 81377 Munich, Germany
| | - Olivia Merkel
- Pharmaceutical Technology and Biopharmacy, LMU Munich Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
3
|
Ishikawa S, Matsumura K, Kitamura N, Takanami Y, Ito S. Multi-omics analysis: Repeated exposure of a 3D bronchial tissue culture to whole-cigarette smoke. Toxicol In Vitro 2019; 54:251-262. [PMID: 30291989 DOI: 10.1016/j.tiv.2018.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/09/2018] [Accepted: 10/01/2018] [Indexed: 02/02/2023]
Abstract
Cigarette smoke (CS) is a major risk factor in the development of chronic inflammatory lung diseases such as chronic obstructive pulmonary disease. A comprehensive investigation of the biological impacts of chronic CS exposure on lung tissue is therefore important for understanding the pathogenesis of lung disease. We used three-dimensional (3D) organotypic human bronchial tissue cultures and metabolomics, transcriptomics, and proteomics to investigate changes in biological processes affected by repeated whole-CS exposure. We found that CS perturbed central carbon metabolism in relation with oxidative stress responses. Epidermal growth factor receptor, which is involved in the early-stage pathogenesis of airway diseases, was identified as a key regulator of the perturbed processes. Proteomic analysis of proteins in the apical surface liquid of the 3D bronchial tissue cultures indicated that repeated whole-CS exposure induced alterations in the secretion of several known biomarkers of airway diseases, including mucins and matrix metalloproteinases. These findings are consistent with observations from lung disease patients. Overall, our results suggest that 3D bronchial tissue cultures can provide valuable information on tissue-specific alterations in biological processes induced by chronic exposure to CS.
Collapse
Affiliation(s)
- Shinkichi Ishikawa
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa 227-8512, Japan.
| | - Kazushi Matsumura
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa 227-8512, Japan.
| | - Nobumasa Kitamura
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa 227-8512, Japan.
| | - Yuichiro Takanami
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa 227-8512, Japan.
| | - Shigeaki Ito
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., 6-2 Umegaoka, Aoba-ku, Yokohama, Kanagawa 227-8512, Japan.
| |
Collapse
|
4
|
Correia LL, Johnson JA, McErlean P, Bauer J, Farah H, Rassl DM, Rintoul RC, Sethi T, Lavender P, Rawlins EL, Littlewood TD, Evan GI, McCaughan FM. SOX2 Drives Bronchial Dysplasia in a Novel Organotypic Model of Early Human Squamous Lung Cancer. Am J Respir Crit Care Med 2017; 195:1494-1508. [PMID: 28199128 PMCID: PMC5470746 DOI: 10.1164/rccm.201510-2084oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/15/2017] [Indexed: 12/25/2022] Open
Abstract
RATIONALE Improving the early detection and chemoprevention of lung cancer are key to improving outcomes. The pathobiology of early squamous lung cancer is poorly understood. We have shown that amplification of sex-determining region Y-box 2 (SOX2) is an early and consistent event in the pathogenesis of this disease, but its functional oncogenic potential remains uncertain. We tested the impact of deregulated SOX2 expression in a novel organotypic system that recreates the molecular and microenvironmental context in which squamous carcinogenesis occurs. OBJECTIVES (1) To develop an in vitro model of bronchial dysplasia that recapitulates key molecular and phenotypic characteristics of the human disease; (2) to test the hypothesis that SOX2 deregulation is a key early event in the pathogenesis of bronchial dysplasia; and (3) to use the model for studies on pathogenesis and chemoprevention. METHODS We engineered the inducible activation of oncogenes in immortalized bronchial epithelial cells. We used three-dimensional tissue culture to build an organotypic model of bronchial dysplasia. MEASUREMENTS AND MAIN RESULTS We recapitulated human bronchial dysplasia in vitro. SOX2 deregulation drives dysplasia, and loss of tumor promoter 53 is a cooperating genetic event that potentiates the dysplastic phenotype. Deregulated SOX2 alters critical genes implicated in hallmarks of cancer progression. Targeted inhibition of AKT prevents the initiation of the dysplastic phenotype. CONCLUSIONS In the appropriate genetic and microenvironmental context, acute deregulation of SOX2 drives bronchial dysplasia. This confirms its oncogenic potential in human cells and affords novel insights into the impact of SOX2 deregulation. This model can be used to test therapeutic agents aimed at chemoprevention.
Collapse
Affiliation(s)
| | | | - Peter McErlean
- Department of Asthma, Allergy, and Lung Biology, Guy’s Hospital, King’s College London, London, United Kingdom; and
| | - Julien Bauer
- Cambridge Genomic Services, Department of Pathology, and
| | - Hassan Farah
- Department of Asthma, Allergy, and Lung Biology, Guy’s Hospital, King’s College London, London, United Kingdom; and
| | | | - Robert C. Rintoul
- Department of Thoracic Oncology, Papworth Hospital Foundation National Health Service Trust, Papworth Everard, Cambridge, United Kingdom
| | - Tariq Sethi
- Department of Asthma, Allergy, and Lung Biology, Guy’s Hospital, King’s College London, London, United Kingdom; and
| | - Paul Lavender
- Department of Asthma, Allergy, and Lung Biology, Guy’s Hospital, King’s College London, London, United Kingdom; and
| | | | | | | | - Frank M. McCaughan
- Department of Biochemistry
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Asthma, Allergy, and Lung Biology, Guy’s Hospital, King’s College London, London, United Kingdom; and
| |
Collapse
|
5
|
Emura M, Aufderheide M. Challenge for 3D culture technology: Application in carcinogenesis studies with human airway epithelial cells. ACTA ACUST UNITED AC 2016; 68:255-61. [PMID: 26951634 DOI: 10.1016/j.etp.2016.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 11/18/2022]
Abstract
Lung cancer is still one of the major intractable diseases and we urgently need more efficient preventive and curative measures. Recent molecular studies have provided strong evidence that allows us to believe that classically well-known early airway lesions such as hyperplasia, metaplasia, dysplasia and carcinoma in situ are really precancerous lesions progressing toward cancer but not necessarily transient and reversible alteration. This suggests that adequate early control of the precancerous lesions may lead to improved prevention of lung cancer. This knowledge is encouraging in view of the imminent necessity for additional experimental systems to investigate the causal mechanisms of cancers directly in human cells and tissues. There are many questions with regard to various precancerous lesions of the airways. For example, should cells, before reaching a stage of invasive carcinoma, undergo all precancerous stages such as hyperplasia or metaplasia and dysplasia, or is there any shortcut to bypass one or more of the precancerous stages? For the study of such questions, the emerging 3-dimensional (3D) cell culture technology appears to provide an effective and valuable tool. Though a great challenge, it is expected that this in vitro technology will be rapidly and reliably improved to enable the cultures to be maintained in an in vivo-mimicking state of differentiation for much longer than a period of at best a few months, as is currently the case. With the help of a "causes recombination-Lox" (Cre-lox) technology, it has been possible to trace cells giving rise to specific lung tumor types. In this short review we have attempted to assess the future role of 3D technology in the study of lung carcinogenesis.
Collapse
Affiliation(s)
- M Emura
- Cultex(®) Laboratories GmbH, Feodor-Lynen-Str. 21, 30625 Hannover, Germany.
| | - M Aufderheide
- Cultex(®) Laboratories GmbH, Feodor-Lynen-Str. 21, 30625 Hannover, Germany.
| |
Collapse
|
6
|
Lee JW, Park HS, Park SA, Ryu SH, Meng W, Jürgensmeier JM, Kurie JM, Hong WK, Boyer JL, Herbst RS, Koo JS. A Novel Small-Molecule Inhibitor Targeting CREB-CBP Complex Possesses Anti-Cancer Effects along with Cell Cycle Regulation, Autophagy Suppression and Endoplasmic Reticulum Stress. PLoS One 2015; 10:e0122628. [PMID: 25897662 PMCID: PMC4405579 DOI: 10.1371/journal.pone.0122628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 02/23/2015] [Indexed: 12/19/2022] Open
Abstract
Lung adenocarcinoma, the most common subtype of lung cancer, is the leading cause of cancer death worldwide. Despite attempts for the treatment of lung cancer which have been accumulating, promising new therapies are still needed. Here, we found that cyclic-AMP response element-binding protein (CREB)-CREB binding protein (CBP) transcription factors complex inhibitor, Naphthol AS-TR phosphate (NASTRp), is a potential therapeutic agent for lung cancer. We show that NASTRp inhibited oncogenic cell properties through cell cycle arrest with concomitant suppression of tumor-promoting autophagy with down-regulations of Atg5-12 and Atg7, and accumulation of p62 in human lung cancer cell lines. In addition, NASTRp induced expression of endoplasmic reticulum stress markers such as DDIT3/CHOP, and led to apoptosis along with Bim induction. These findings suggest that transcription factor/co-activator complex, CREB-CBP, can be a potential therapeutic target and its inhibition could be a novel therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Jong Woo Lee
- Section of Medical Oncology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale School of Medicine, Yale University, New Haven, CT 06520, United States of America
| | - Hee Sun Park
- Section of Medical Oncology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale School of Medicine, Yale University, New Haven, CT 06520, United States of America
| | - Sin-Aye Park
- Section of Medical Oncology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale School of Medicine, Yale University, New Haven, CT 06520, United States of America
| | - Seung-Hee Ryu
- Department of Radiation Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Wuyi Meng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, United States of America
| | - Juliane M. Jürgensmeier
- Section of Medical Oncology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale School of Medicine, Yale University, New Haven, CT 06520, United States of America
| | - Jonathan M. Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Waun Ki Hong
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Julie L. Boyer
- Section of Medical Oncology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale School of Medicine, Yale University, New Haven, CT 06520, United States of America
| | - Roy S. Herbst
- Section of Medical Oncology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale School of Medicine, Yale University, New Haven, CT 06520, United States of America
- Translational Research Program, Yale Comprehensive Cancer Center, New Haven, CT 06520, United States of America
| | - Ja Seok Koo
- Section of Medical Oncology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale School of Medicine, Yale University, New Haven, CT 06520, United States of America
- Translational Research Program, Yale Comprehensive Cancer Center, New Haven, CT 06520, United States of America
| |
Collapse
|
7
|
Li LH, Wu P, Lee JY, Li PR, Hsieh WY, Ho CC, Ho CL, Chen WJ, Wang CC, Yen MY, Yang SM, Chen HW. Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib-resistant lung adenocarcinoma cells. PLoS One 2014; 9:e104203. [PMID: 25105411 PMCID: PMC4126702 DOI: 10.1371/journal.pone.0104203] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 07/07/2014] [Indexed: 12/28/2022] Open
Abstract
Despite good initial responses, drug resistance and disease recurrence remain major issues for lung adenocarcinoma patients with epidermal growth factor receptor (EGFR) mutations taking EGFR-tyrosine kinase inhibitors (TKI). To discover new strategies to overcome this issue, we investigated 40 essential oils from plants indigenous to Taiwan as alternative treatments for a wide range of illnesses. Here, we found that hinokitiol, a natural monoterpenoid from the heartwood of Calocedrus formosana, exhibited potent anticancer effects. In this study, we demonstrated that hinokitiol inhibited the proliferation and colony formation ability of lung adenocarcinoma cells as well as the EGFR-TKI-resistant lines PC9-IR and H1975. Transcriptomic analysis and pathway prediction algorithms indicated that the main implicated pathways included DNA damage, autophagy, and cell cycle. Further investigations confirmed that in lung cancer cells, hinokitiol inhibited cell proliferation by inducing the p53-independent DNA damage response, autophagy (not apoptosis), S-phase cell cycle arrest, and senescence. Furthermore, hinokitiol inhibited the growth of xenograft tumors in association with DNA damage and autophagy but exhibited fewer effects on lung stromal fibroblasts. In summary, we demonstrated novel mechanisms by which hinokitiol, an essential oil extract, acted as a promising anticancer agent to overcome EGFR-TKI resistance in lung cancer cells via inducing DNA damage, autophagy, cell cycle arrest, and senescence in vitro and in vivo.
Collapse
Affiliation(s)
- Lan-Hui Li
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory, Kunming Branch, Taipei City Hospital, Taipei, Taiwan
| | - Ping Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jen-Yi Lee
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Rong Li
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Yu Hsieh
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Chen-Lung Ho
- Division of Wood Cellulose, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Wan-Jiun Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Chun Wang
- Division of Infectious Diseases, Kunming Branch, Taipei City Hospital, Taipei, Taiwan
| | - Muh-Yong Yen
- Division of Infectious Diseases, Kunming Branch, Taipei City Hospital, Taipei, Taiwan
- Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shun-Min Yang
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
8
|
Hyder A, Ehnert S, Hinz H, Nüssler AK, Fändrich F, Ungefroren H. EGF and HB-EGF enhance the proliferation of programmable cells of monocytic origin (PCMO) through activation of MEK/ERK signaling and improve differentiation of PCMO-derived hepatocyte-like cells. Cell Commun Signal 2012; 10:23. [PMID: 22873932 PMCID: PMC3425323 DOI: 10.1186/1478-811x-10-23] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 06/22/2012] [Indexed: 12/13/2022] Open
Abstract
Background Hepatocyte-like cells (NeoHepatocytes) generated from a peripheral blood monocyte-derived stem cell-like cell (the PCMO) are a promising alternative for primary hepatocytes in cell transplantation studies to cure liver diseases. However, to be therapeutically effective NeoHepatocytes are needed in large quantities. It was the aim of the present study to investigate i) whether the proportion of actively proliferating NeoHepatocytes can be enhanced by supplementing the PCMO differentiation medium (containing M-CSF, IL-3, and human serum) with either EGF or HB-EGF and ii) which signaling pathway underlies the promitotic effect. Results EGF and HB-EGF enhanced cell proliferation of PCMOs as demonstrated by increased expression of cycle control genes (ABL, ANAPC2, CDC2, CDK4, CDK6), phosphorylation of the retinoblastoma protein, and increased PCMO cell numbers after stimulation with EGF or HB-EGF. EGF also raised the number of monocytes expressing the proliferation marker Ki67. PCMOs expressed the EGF receptors EGFR (ERBB1) and ERBB3, and expression of both increased during PCMO generation. Phosphoimmunoblotting of PCMOs indicated that both EGF and HB-EGF activated MEK-1/2 and ERK1/2 in a concentration-dependent fashion with the effect of EGF being more prominent. EGF treatment further decreased expression of p47phox and increased that of Nanog indicating enhanced dedifferentiation and pluripotency, respectively. Treatment with both EGF and HB-EGF resulted in NeoHepatocytes with improved functional parameters. Conclusions The results suggested that the addition of EGF or HB-EGF to PCMO differentiation medium superactivates MEK/ERK signaling which then increases both PCMO proliferation, number, and functional differentiation of PCMO-derived NeoHepatocytes.
Collapse
Affiliation(s)
- Ayman Hyder
- Clinic for Applied Cellular Medicine, UKSH, Campus Kiel, Arnold-Heller Strasse 3, Hs, 18, 24105, Kiel, Germany.
| | | | | | | | | | | |
Collapse
|
9
|
Shore SA, Williams ES, Chen L, Benedito LAP, Kasahara DI, Zhu M. Impact of aging on pulmonary responses to acute ozone exposure in mice: role of TNFR1. Inhal Toxicol 2011; 23:878-88. [PMID: 22066571 DOI: 10.3109/08958378.2011.622316] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CONTEXT Chamber studies in adult humans indicate reduced responses to acute ozone with increasing age. Age-related changes in TNFα have been observed. TNFα induced inflammation is predominantly mediated through TNFR1. OBJECTIVE To examine the impact of aging on inflammatory responses to acute ozone exposure in mice and determine the role of TNFR1 in age-related differences. MATERIALS AND METHODS Wildtype and TNFR1 deficient (TNFR1(-/-)) mice aged 7 or 39 weeks were exposed to ozone (2 ppm for 3 h). Four hours after exposure, bronchoalveolar lavage (BAL) was performed and BAL cells, cytokines, chemokines, and protein were examined. RESULTS Ozone-induced increases in BAL neutrophils and in neutrophil chemotactic factors were lower in 39- versus 7-week-old wildtype, but not (TNFR1(-/-)) mice. There was no effect of TNFR1 genotype in 7-week-old mice, but in 39-week-old mice, BAL neutrophils and BAL concentrations of MCP-1, KC, MIP-2, IL-6 and IP-10 were significantly greater following ozone exposure in TNFR1(-/-) versus wildtype mice. BAL concentrations of the soluble form of the TNFR1 receptor (sTNFR1) were substantially increased in 39-week-old versus 7-week-old mice, regardless of exposure. DISCUSSION AND CONCLUSION The data suggest that increased levels of sTNFR1 in the lungs of the 39-week-old mice may neutralize TNFα and protect these older mice against ozone-induced inflammation.
Collapse
Affiliation(s)
- Stephanie A Shore
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|