1
|
Tyagi S, Mani S. Combined Administration of Metformin and Vitamin D: A Futuristic Approach for Management of Hyperglycemia. Cardiovasc Hematol Agents Med Chem 2024; 22:258-275. [PMID: 37929731 DOI: 10.2174/0118715257261643231018102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/28/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
Diabetes is a series of metabolic disorders that can be categorized into three types depending on different aspects associated with age at onset, intensity of insulin resistance, and beta- cell dysfunction: Type 1 and 2 Diabetes, and Gestational Diabetes Mellitus. Type 2 Diabetes Mellitus (T2DM) has recently been found to account for more than 85% of diabetic cases. The current review intends to raise awareness among clinicians/researchers that combining vitamin D3 with metformin may pave the way for better T2DM treatment and management. An extensive literature survey was performed to analyze vitamin D's role in regulating insulin secretion, their action on the target cells and thus maintaining the normal glucose level. On the other side, the anti-hyperglycemic effect of metformin as well as its detailed mechanism of action was also studied. Interestingly both compounds are known to exhibit the antioxidant effect too. Literature supporting the correlation between diabetic phenotypes and deficiency of vitamin D was also explored further. To thoroughly understand the common/overlapping pathways responsible for the antidiabetic as well as antioxidant nature of metformin and vitamin D3, we compared their antihyperglycemic and antioxidant activities. With this background, we are proposing the hypothesis that it would be of great interest if these two compounds could work in synergy to better manage the condition of T2DM and associated disorders.
Collapse
Affiliation(s)
- Sakshi Tyagi
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
2
|
Metformin Can Enhance the Inhibitory Effect of Olaparib in Bladder Cancer Cells. DISEASE MARKERS 2022; 2022:5709259. [PMID: 35783012 PMCID: PMC9249502 DOI: 10.1155/2022/5709259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022]
Abstract
Background. Bladder cancer is a common urinary system tumor. In the treatment of clinical patients, it is particularly important to find an effective treatment method to inhibit tumor growth. The world’s first PARP inhibitor olaparib is mainly used for the treatment of BRCA1/BRCA2 mutated tumors. Metformin, an antidiabetic drug, has been reported to reduce cancer incidence in humans and improve survival in cancer patients. Methods. Cell viability and proliferation were detected by CCK-8 assay and colony formation assay; cell apoptosis was detected by flow cytometry; cell migration and invasion abilities were detected by scratch assay and Transwell assay; STAT3/C-MYC signaling pathway protein were detected by western blotting. Results. Olaparib combined with metformin has better effects on the proliferation, clone formation, migration, invasion, and apoptosis of bladder cancer cells than single drug, indicating that metformin can enhance the inhibitory effect of olaparib on tumor growth and regulate the expression of STAT3/C-MYC signaling pathway proteins. Conclusion. The results of this study showed that metformin could significantly enhance the antitumor effect of olaparib on bladder cancer cells, and these effects were mediated by downregulating STAT3/C-MYC signaling pathway proteins. This finding may have potential clinical application in the treatment of bladder cancer.
Collapse
|
3
|
Almaimani RA, Aslam A, Ahmad J, El-Readi MZ, El-Boshy ME, Abdelghany AH, Idris S, Alhadrami M, Althubiti M, Almasmoum HA, Ghaith MM, Elzubeir ME, Eid SY, Refaat B. In Vivo and In Vitro Enhanced Tumoricidal Effects of Metformin, Active Vitamin D 3, and 5-Fluorouracil Triple Therapy against Colon Cancer by Modulating the PI3K/Akt/PTEN/mTOR Network. Cancers (Basel) 2022; 14:1538. [PMID: 35326689 PMCID: PMC8946120 DOI: 10.3390/cancers14061538] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/21/2022] Open
Abstract
Chemoresistance to 5-fluorouracil (5-FU) is common during colorectal cancer (CRC) treatment. This study measured the chemotherapeutic effects of 5-FU, active vitamin D3 (VD3), and/or metformin single/dual/triple regimens as complementary/alternative therapies. Ninety male mice were divided into: negative and positive (PC) controls, and 5-FU, VD3, Met, 5-FU/VD3, 5-FU/Met, VD3/Met, and 5-FU/VD3/Met groups. Treatments lasted four weeks following CRC induction by azoxymethane. Similar regimens were also applied in the SW480 and SW620 CRC cell lines. The PC mice had abundant tumours, markedly elevated proliferation markers (survivin/CCND1) and PI3K/Akt/mTOR, and reduced p21/PTEN/cytochrome C/caspase-3 and apoptosis. All therapies reduced tumour numbers, with 5-FU/VD3/Met being the most efficacious regimen. All protocols decreased cell proliferation markers, inhibited PI3K/Akt/mTOR molecules, and increased proapoptotic molecules with an apoptosis index, and 5-FU/VD3/Met revealed the strongest effects. In vitro, all therapies equally induced G1 phase arrest in SW480 cells, whereas metformin-alone showed maximal SW620 cell numbers in the G0/G1 phase. 5-FU/Met co-therapy also showed the highest apoptotic SW480 cell numbers (13%), whilst 5-FU/VD3/Met disclosed the lowest viable SW620 cell percentages (81%). Moreover, 5-FU/VD3/Met revealed maximal inhibitions of cell cycle inducers (CCND1/CCND3), cell survival (BCL2), and the PI3K/Akt/mTOR molecules alongside the highest expression of cell cycle inhibitors (p21/p27), proapoptotic markers (BAX/cytochrome C/caspase-3), and PTEN in both cell lines. In conclusion, metformin monotherapy was superior to VD3, whereas the 5-FU/Met protocol showed better anticancer effects relative to the other dual therapies. However, the 5-FU/VD3/Met approach displayed the best in vivo and in vitro tumoricidal effects related to cell cycle arrest and apoptosis, justifiably by enhanced modulations of the PI3K/PTEN/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Riyad Adnan Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia; (R.A.A.); (M.Z.E.-R.); (M.A.); (M.E.E.); (S.Y.E.)
| | - Akhmed Aslam
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 24381, Saudi Arabia; (A.A.); (J.A.); (M.E.E.-B.); (A.H.A.); (S.I.); (H.A.A.); (M.M.G.)
| | - Jawwad Ahmad
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 24381, Saudi Arabia; (A.A.); (J.A.); (M.E.E.-B.); (A.H.A.); (S.I.); (H.A.A.); (M.M.G.)
| | - Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia; (R.A.A.); (M.Z.E.-R.); (M.A.); (M.E.E.); (S.Y.E.)
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assuit 71524, Egypt
| | - Mohamed E. El-Boshy
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 24381, Saudi Arabia; (A.A.); (J.A.); (M.E.E.-B.); (A.H.A.); (S.I.); (H.A.A.); (M.M.G.)
- Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Abdelghany H. Abdelghany
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 24381, Saudi Arabia; (A.A.); (J.A.); (M.E.E.-B.); (A.H.A.); (S.I.); (H.A.A.); (M.M.G.)
- Department of Anatomy, Faculty of Medicine, Alexandria University, Alexandria 21544, Egypt
| | - Shakir Idris
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 24381, Saudi Arabia; (A.A.); (J.A.); (M.E.E.-B.); (A.H.A.); (S.I.); (H.A.A.); (M.M.G.)
| | - Mai Alhadrami
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia;
| | - Mohammad Althubiti
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia; (R.A.A.); (M.Z.E.-R.); (M.A.); (M.E.E.); (S.Y.E.)
| | - Hussain A. Almasmoum
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 24381, Saudi Arabia; (A.A.); (J.A.); (M.E.E.-B.); (A.H.A.); (S.I.); (H.A.A.); (M.M.G.)
| | - Mazen M. Ghaith
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 24381, Saudi Arabia; (A.A.); (J.A.); (M.E.E.-B.); (A.H.A.); (S.I.); (H.A.A.); (M.M.G.)
| | - Mohamed E. Elzubeir
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia; (R.A.A.); (M.Z.E.-R.); (M.A.); (M.E.E.); (S.Y.E.)
| | - Safaa Yehia Eid
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia; (R.A.A.); (M.Z.E.-R.); (M.A.); (M.E.E.); (S.Y.E.)
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, P.O. Box 7607, Makkah 24381, Saudi Arabia; (A.A.); (J.A.); (M.E.E.-B.); (A.H.A.); (S.I.); (H.A.A.); (M.M.G.)
| |
Collapse
|
4
|
Lai Y, Masatoshi H, Ma Y, Guo Y, Zhang B. Role of Vitamin K in Intestinal Health. Front Immunol 2022; 12:791565. [PMID: 35069573 PMCID: PMC8769504 DOI: 10.3389/fimmu.2021.791565] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Intestinal diseases, such as inflammatory bowel diseases (IBDs) and colorectal cancer (CRC) generally characterized by clinical symptoms, including malabsorption, intestinal dysfunction, injury, and microbiome imbalance, as well as certain secondary intestinal disease complications, continue to be serious public health problems worldwide. The role of vitamin K (VK) on intestinal health has drawn growing interest in recent years. In addition to its role in blood coagulation and bone health, several investigations continue to explore the role of VK as an emerging novel biological compound with the potential function of improving intestinal health. This study aims to present a thorough review on the bacterial sources, intestinal absorption, uptake of VK, and VK deficiency in patients with intestinal diseases, with emphasis on the effect of VK supplementation on immunity, anti-inflammation, intestinal microbes and its metabolites, antioxidation, and coagulation, and promoting epithelial development. Besides, VK-dependent proteins (VKDPs) are another crucial mechanism for VK to exert a gastroprotection role for their functions of anti-inflammation, immunomodulation, and anti-tumorigenesis. In summary, published studies preliminarily show that VK presents a beneficial effect on intestinal health and may be used as a therapeutic drug to prevent/treat intestinal diseases, but the specific mechanism of VK in intestinal health has yet to be elucidated.
Collapse
Affiliation(s)
- Yujiao Lai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hori Masatoshi
- Department of Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yanbo Ma
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Gerstmeier J, Possmayer AL, Bozkurt S, Hoffmann ME, Dikic I, Herold-Mende C, Burger MC, Münch C, Kögel D, Linder B. Calcitriol Promotes Differentiation of Glioma Stem-Like Cells and Increases Their Susceptibility to Temozolomide. Cancers (Basel) 2021; 13:cancers13143577. [PMID: 34298790 PMCID: PMC8303292 DOI: 10.3390/cancers13143577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/13/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Cancer cells with a stem-like phenotype that are thought to be highly tumorigenic are commonly described in glioblastoma, the most common primary adult brain cancer. This phenotype comprises high self-renewal capacity and resistance against chemotherapy and radiation therapy, thereby promoting tumor progression and disease relapse. Here, we show that calcitriol, the hormonally active form of the “sun hormone” vitamin D3, effectively suppresses stemness properties in glioblastoma stem-like cells (GSCs), supporting the hypothesis that calcitriol sensitizes them to additional chemotherapy. Indeed, a physiological organotypic brain slice model was used to monitor tumor growth of GSCs, and the effectiveness of combined treatment with temozolomide, the current standard-of-care, and calcitriol was proven. These findings indicate that further research on applying calcitriol, a well-known and safe drug, as a potential adjuvant therapy for glioblastoma is both justified and necessary. Abstract Glioblastoma (GBM) is the most common and most aggressive primary brain tumor, with a very high rate of recurrence and a median survival of 15 months after diagnosis. Abundant evidence suggests that a certain sub-population of cancer cells harbors a stem-like phenotype and is likely responsible for disease recurrence, treatment resistance and potentially even for the infiltrative growth of GBM. GBM incidence has been negatively correlated with the serum levels of 25-hydroxy-vitamin D3, while the low pH within tumors has been shown to promote the expression of the vitamin D3-degrading enzyme 24-hydroxylase, encoded by the CYP24A1 gene. Therefore, we hypothesized that calcitriol can specifically target stem-like glioblastoma cells and induce their differentiation. Here, we show, using in vitro limiting dilution assays, quantitative real-time PCR, quantitative proteomics and ex vivo adult organotypic brain slice transplantation cultures, that therapeutic doses of calcitriol, the hormonally active form of vitamin D3, reduce stemness to varying extents in a panel of investigated GSC lines, and that it effectively hinders tumor growth of responding GSCs ex vivo. We further show that calcitriol synergizes with Temozolomide ex vivo to completely eliminate some GSC tumors. These findings indicate that calcitriol carries potential as an adjuvant therapy for a subgroup of GBM patients and should be analyzed in more detail in follow-up studies.
Collapse
Affiliation(s)
- Julia Gerstmeier
- Neuroscience Center, Experimental Neurosurgery, Department of Neurosurgery, Goethe University, 60590 Frankfurt am Main, Germany; (J.G.); (A.-L.P.); (D.K.)
| | - Anna-Lena Possmayer
- Neuroscience Center, Experimental Neurosurgery, Department of Neurosurgery, Goethe University, 60590 Frankfurt am Main, Germany; (J.G.); (A.-L.P.); (D.K.)
| | - Süleyman Bozkurt
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (S.B.); (M.E.H.); (I.D.); (C.M.)
| | - Marina E. Hoffmann
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (S.B.); (M.E.H.); (I.D.); (C.M.)
| | - Ivan Dikic
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (S.B.); (M.E.H.); (I.D.); (C.M.)
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, 69120 Heidelberg, Germany;
| | - Michael C. Burger
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, 60528 Frankfurt am Main, Germany;
| | - Christian Münch
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (S.B.); (M.E.H.); (I.D.); (C.M.)
| | - Donat Kögel
- Neuroscience Center, Experimental Neurosurgery, Department of Neurosurgery, Goethe University, 60590 Frankfurt am Main, Germany; (J.G.); (A.-L.P.); (D.K.)
- German Cancer Consortium DKTK Partner Site Frankfurt/Main, 60590 Frankfurt am Main, Germany
- German Cancer Research Center DKFZ, 69120 Heidelberg, Germany
| | - Benedikt Linder
- Neuroscience Center, Experimental Neurosurgery, Department of Neurosurgery, Goethe University, 60590 Frankfurt am Main, Germany; (J.G.); (A.-L.P.); (D.K.)
- Correspondence: ; Tel.: +49-69-6301-6930
| |
Collapse
|
6
|
Enhanced antitumor activity of doxorubicin by naringenin and metformin in breast carcinoma: an experimental study. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1949-1961. [PMID: 34125254 DOI: 10.1007/s00210-021-02104-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/11/2021] [Indexed: 12/31/2022]
Abstract
Breast cancer is the most common malignancy in women worldwide. Strategies for cancer chemotherapy commonly require the use of combination therapy for better outcomes of results. The present work is aimed to evaluate the potential of naringenin and metformin concomitant addition with doxorubicin chemotherapy against experimental breast carcinoma. The antitumor potential of drugs under the study was evaluated against methylnitrosourea (MNU)-induced breast cancer in rats and 4T1 cells-induced orthotopic breast cancer mouse model. Parameters like tumor growth, body weight, survival rate, blood glucose, hematology, and histology were determined. There was a marked reduction in tumor weight and an observed decrease in tumor multiplicity by naringenin and metformin concomitant addition with doxorubicin against MNU-induced breast carcinoma. Likewise, naringenin and metformin with doxorubicin showed a significant reduction of tumor volume and tumor weight (p < 0.01) in 4T1-induced orthotopic mouse model as compared to the same dose of doxorubicin alone, suggesting combination treatment enhanced antitumor activity in vivo. Furthermore, histology of tumor biopsies presented the improved antitumor activity of doxorubicin via increasing tumor necrosis. Hematological parameters, body weight, and survival data presented remarkable safety of combination treatment without compromising efficacy using 50% lower dose of doxorubicin as compared to the large dose of doxorubicin alone. These results demonstrate that naringenin and metformin enhanced the antitumor effect of doxorubicin in animal models of breast carcinoma, and therefore can be useful as an adjunct treatment with doxorubicin to increase its effectiveness at the lower dose level for the treatment of cancer.
Collapse
|
7
|
Cunha Júnior AD, Bragagnoli AC, Costa FO, Carvalheira JBC. Repurposing metformin for the treatment of gastrointestinal cancer. World J Gastroenterol 2021; 27:1883-1904. [PMID: 34007128 PMCID: PMC8108031 DOI: 10.3748/wjg.v27.i17.1883] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/13/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus type 2 and cancer share many risk factors. The pleiotropic insulin-dependent and insulin-independent effects of metformin might inhibit pathways that are frequently amplified in neoplastic tissue. Particularly, modulation of inflammation, metabolism, and cell cycle arrest are potential therapeutic cancer targets utilized by metformin to boost the anti-cancer effects of chemotherapy. Studies in vitro and in vivo models have demonstrated the potential of metformin as a chemo- and radiosensitizer, besides its chemopreventive and direct therapeutic activity in digestive system (DS) tumors. Hence, these aspects have been considered in many cancer clinical trials. Case-control and cohort studies and associated meta-analyses have evaluated DS cancer risk and metformin usage, especially in colorectal cancer, pancreatic cancer, and hepatocellular carcinoma. Most clinical studies have demonstrated the protective role of metformin in the risk for DS cancers and survival rates. On the other hand, the ability of metformin to enhance the actions of chemotherapy for gastric and biliary cancers is yet to be investigated. This article reviews the current findings on the anti-cancer mechanisms of metformin and its apparatus from pre-clinical and ongoing studies in DS malignancies.
Collapse
Affiliation(s)
- Ademar Dantas Cunha Júnior
- Department of Internal Medicine, Division of Oncology, University of Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil
| | | | - Felipe Osório Costa
- Department of Internal Medicine, Division of Oncology, University of Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil
| | | |
Collapse
|
8
|
Ge S, Zhang Q, Chen Y, Tian Y, Yang R, Chen X, Li F, Zhang B. Ribavirin inhibits colorectal cancer growth by downregulating PRMT5 expression and H3R8me2s and H4R3me2s accumulation. Toxicol Appl Pharmacol 2021; 415:115450. [PMID: 33577917 DOI: 10.1016/j.taap.2021.115450] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 12/25/2022]
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) and protein arginine methyltransferase 5 (PRMT5) are frequently overexpressed in colorectal cancer (CRC) tissues and associated with poor prognosis. Ribavirin, the only clinically approved drug known to target eIF4E, is an anti-viral molecule currently used in hepatitis C therapy. The potential of ribavirin to treat CRC remains largely unknown. Ribavirin treatment in CRC cell lines drastically inhibited cell proliferation and colony formation, induced S phase arrest and reduced cyclin D1, cyclin A/E and proliferating cell nuclear antigen (PCNA) levels in vitro, and suppressed tumorigenesis in mouse model of colitis-associated CRC. Mechanistically, ribavirin treatment significantly reduced PRMT5 and eIF4E protein levels and the accumulation of symmetric dimethylation of histone 3 at arginine 8 (H3R8me2s) and that of histone 4 at arginine 3 (H4R3me2s). Importantly, inhibition of PRMT5 by ribavirin resulted in promoted H3R8 methylation in eIF4E promoter region. Our results demonstrate the anti-cancer efficacy of ribavirin in CRC and suggest that the anti-cancer efficacy of ribavirin may be mediated by downregulating PRMT5 levels but not its enzymatic activity.
Collapse
Affiliation(s)
- Suyin Ge
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Qingqing Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Yonglin Chen
- Department of Pathology, First Hospital, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yizhen Tian
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Ruiying Yang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Xu Chen
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Fang Li
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Baolai Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
9
|
Guan X, Shao P, Li X. Chemoprotective effect of crocetin against 1,2 dimethyl hydrazine induced colorectal cancer in albino wistar rats through antioxidant pathway. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_311_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Story MJ. Zinc, ω-3 polyunsaturated fatty acids and vitamin D: An essential combination for prevention and treatment of cancers. Biochimie 2020; 181:100-122. [PMID: 33307154 DOI: 10.1016/j.biochi.2020.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 11/14/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Zinc, ω-3 polyunsaturated fatty acids (PUFAs) and vitamin D are essential nutrients for health, maturation and general wellbeing. Extensive literature searches have revealed the widespread similarity in molecular biological properties of zinc, ω-3 PUFAs and vitamin D, and their similar anti-cancer properties, even though they have different modes of action. These three nutrients are separately essential for good health, especially in the aged. Zinc, ω-3 PUFAs and vitamin D are inexpensive and safe as they are fundamentally natural and have the properties of correcting and inhibiting undesirable actions without disturbing the normal functions of cells or their extracellular environment. This review of the anticancer properties of zinc, ω-3 PUFAs and vitamin D is made in the context of the hallmarks of cancer. The anticancer properties of zinc, ω-3 PUFAs and vitamin D can therefore be used beneficially through combined treatment or supplementation. It is proposed that sufficiency of zinc, ω-3 PUFAs and vitamin D is a necessary requirement during chemotherapy treatment and that clinical trials can have questionable integrity if this sufficiency is not checked and maintained during efficacy trials.
Collapse
Affiliation(s)
- Michael J Story
- Story Pharmaceutics Pty Ltd, PO Box 6086, Linden Park, South Australia, 5065, Australia.
| |
Collapse
|
11
|
Negri M, Gentile A, de Angelis C, Montò T, Patalano R, Colao A, Pivonello R, Pivonello C. Vitamin D-Induced Molecular Mechanisms to Potentiate Cancer Therapy and to Reverse Drug-Resistance in Cancer Cells. Nutrients 2020; 12:nu12061798. [PMID: 32560347 PMCID: PMC7353389 DOI: 10.3390/nu12061798] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Increasing interest in studying the role of vitamin D in cancer has been provided by the scientific literature during the last years, although mixed results have been reported. Vitamin D deficiency has been largely associated with various types of solid and non-solid human cancers, and the almost ubiquitous expression of vitamin D receptor (VDR) has always led to suppose a crucial role of vitamin D in cancer. However, the association between vitamin D levels and the risk of solid cancers, such as colorectal, prostate and breast cancer, shows several conflicting results that raise questions about the use of vitamin D supplements in cancer patients. Moreover, studies on vitamin D supplementation do not always show improvements in tumor progression and mortality risk, particularly for prostate and breast cancer. Conversely, several molecular studies are in agreement about the role of vitamin D in inhibiting tumor cell proliferation, growth and invasiveness, cell cycle arrest and inflammatory signaling, through which vitamin D may also regulate cancer microenvironment through the activation of different molecular pathways. More recently, a role in the regulation of cancer stem cells proliferation and short non-coding microRNA (miRNAs) expression has emerged, conferring to vitamin D a more crucial role in cancer development and progression. Interestingly, it has been shown that vitamin D is able not only to potentiate the effects of traditional cancer therapy but can even contribute to overcome the molecular mechanisms of drug resistance—often triggering tumor-spreading. At this regard, vitamin D can act at various levels through the regulation of growth of cancer stem cells and the epithelial–mesenchymal transition (EMT), as well as through the modulation of miRNA gene expression. The current review reconsiders epidemiological and molecular literature concerning the role of vitamin D in cancer risk and tumor development and progression, as well as the action of vitamin D supplementation in potentiating the effects of drug therapy and overcoming the mechanisms of resistance often triggered during cancer therapies, by critically addressing strengths and weaknesses of available data from 2010 to 2020.
Collapse
Affiliation(s)
- Mariarosaria Negri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
| | - Annalisa Gentile
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
| | - Cristina de Angelis
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
| | - Tatiana Montò
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
| | - Roberta Patalano
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
- Dipartimento di Sanità Pubblica, Università Federico II di Napoli, 80131 Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
- Unesco Chair for Health Education and Sustainable Development, Federico II University, 80131 Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
| | - Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
- Correspondence:
| |
Collapse
|
12
|
Decrypting the Molecular Mechanistic Pathways Delineating the Chemotherapeutic Potential of Ruthenium-Phloretin Complex in Colon Carcinoma Correlated with the Oxidative Status and Increased Apoptotic Events. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7690845. [PMID: 32566099 PMCID: PMC7281810 DOI: 10.1155/2020/7690845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
To explore fresh strategies in colorectal cancer (CRC) chemotherapy, we evaluated the capability of the ruthenium-phloretin complex in exterminating colon cancer by effectively addressing multiple apoptotic mechanisms on HT-29 cancer cells together with an animal model of colorectal cancer activated by 1,2-dimethylhydrazine and dextran sulfate sodium. Our current approach offers tangible evidence of the application of the ruthenium-phloretin complex in future chemotherapy. The complex triggers intrinsic apoptosis triggered by p53 and modulates the Akt/mTOR pathway along with other inflammatory biomarkers. The ruthenium-phloretin complex has been synthesized and successfully characterized by numerous spectroscopic methodologies accompanied by DPPH, FRAP, and ABTS assays assessing its antioxidant potential. Studies conducted in human cell lines revealed that the complex improved levels of p53 and caspase-3 while diminishing the activities of VEGF and mTOR, triggers apoptosis, and induces fragmentation of DNA in the HT-29 cells. Toxicity studies were conducted to identify the therapeutic doses of the novel complex in animal models. The outcomes of the in vivo report suggest that the complex was beneficial in repressing multiplicity of aberrant crypt foci as well as hyperplastic lesions and also promoted increased levels of CAT, SOD, and glutathione. In addition, the ruthenium-phloretin complex was able to control cell proliferation and boosted apoptotic outbursts in cancer cells associated with the increase in cellular response towards Bax while diminishing responses towards Bcl-2, NF-κB, and MMP-9. Our observations from the experiments deliver testament that the ruthenium-phloretin complex has the potential to act as a promising chemotherapeutic agent in colorectal cancer because it can affect the growth of ACF and hyperplastic abrasions in the colon tissues by evoking cell death.
Collapse
|
13
|
Lai GR, Lee YF, Yan SJ, Ting HJ. Active vitamin D induces gene-specific hypomethylation in prostate cancer cells developing vitamin D resistance. Am J Physiol Cell Physiol 2020; 318:C836-C847. [PMID: 32159363 DOI: 10.1152/ajpcell.00522.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is a leading cause of cancer death in men. Despite the antiproliferative effects of 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] on PCa, accumulating evidence indicates that 1,25(OH)2D3 promotes cancer progression by increasing genome plasticity. Our investigation of epigenetic changes associated with vitamin D insensitivity found that 1,25(OH)2D3 treatment reduced the expression levels and activities of DNA methyltransferases 1 and 3B (DNMT1 and DNMT3B, respectively). In silico analysis and reporter assay confirmed that 1,25(OH)2D3 downregulated transcriptional activation of the DNMT3B promoter and upregulated microRNAs targeting the 3'-untranslated regions of DNMT3B. We then profiled DNA methylation in the vitamin D-resistant PC-3 cells and a resistant PCa cell model generated by long-term 1,25(OH)2D3 exposure. Several candidate genes were found to be hypomethylated and overexpressed in vitamin D-resistant PCa cells compared with vitamin D-sensitive cells. Most of the identified genes were associated with mammalian target of rapamycin (mTOR) signaling activation, which is known to promote cancer progression. Among them, we found that inhibition of ribosomal protein S6 kinase A1 (RPS6KA1) promoted vitamin D sensitivity in PC-3 cells. Furthermore, The Cancer Genome Atlas (TCGA) prostate cancer data set demonstrated that midline 1 (MID1) expression is positively correlated with tumor stage. Overall, our study reveals an inhibitory mechanism of 1,25(OH)2D3 on DNMT3B, which may contribute to vitamin D resistance in PCa.
Collapse
Affiliation(s)
- Guan-Rong Lai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Yi-Fen Lee
- Department of Urology, Pathology, and Wilmot Cancer Cancer, University of Rochester, Rochester, New York
| | - Shian-Jang Yan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Huei-Ju Ting
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan, Republic of China
| |
Collapse
|
14
|
Kamarudin MNA, Sarker MMR, Zhou JR, Parhar I. Metformin in colorectal cancer: molecular mechanism, preclinical and clinical aspects. J Exp Clin Cancer Res 2019; 38:491. [PMID: 31831021 PMCID: PMC6909457 DOI: 10.1186/s13046-019-1495-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
Growing evidence showed the increased prevalence of cancer incidents, particularly colorectal cancer, among type 2 diabetic mellitus patients. Antidiabetic medications such as, insulin, sulfonylureas, dipeptyl peptidase (DPP) 4 inhibitors and glucose-dependent insulinotropic peptide (GLP-1) analogues increased the additional risk of different cancers to diabetic patients. Conversely, metformin has drawn attention among physicians and researchers since its use as antidiabetic drug exhibited beneficial effect in the prevention and treatment of cancer in diabetic patients as well as an independent anticancer drug. This review aims to provide the comprehensive information on the use of metformin at preclinical and clinical stages among colorectal cancer patients. We highlight the efficacy of metformin as an anti-proliferative, chemopreventive, apoptosis inducing agent, adjuvant, and radio-chemosensitizer in various colorectal cancer models. This multifarious effects of metformin is largely attributed to its capability in modulating upstream and downstream molecular targets involved in apoptosis, autophagy, cell cycle, oxidative stress, inflammation, metabolic homeostasis, and epigenetic regulation. Moreover, the review highlights metformin intake and colorectal cancer risk based on different clinical and epidemiologic results from different gender and specific population background among diabetic and non-diabetic patients. The improved understanding of metformin as a potential chemotherapeutic drug or as neo-adjuvant will provide better information for it to be used globally as an affordable, well-tolerated, and effective anticancer agent for colorectal cancer.
Collapse
Affiliation(s)
- Muhamad Noor Alfarizal Kamarudin
- Brain Research Institute Monash Sunway (BRIMS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Malaysia
| | - Md. Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205 Bangladesh
- Health Med Science Research Limited, 3/1 Block F, Lalmatia, Mohammadpur, Dhaka, 1207 Bangladesh
| | - Jin-Rong Zhou
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Ishwar Parhar
- Brain Research Institute Monash Sunway (BRIMS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Malaysia
| |
Collapse
|
15
|
Laskar J, Sengupta M, Choudhury Y. Treatment with the anti-diabetic drug metformin ameliorates betel-nut induced carcinogenesis in a murine model. Pharmacol Rep 2019; 71:1115-1124. [PMID: 31645006 DOI: 10.1016/j.pharep.2019.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/10/2019] [Accepted: 06/28/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Metformin, a widely used anti-diabetic drug has gained enormous attention as an anticancer agent. This study seeks to investigate the efficacy of metformin in ameliorating aqueous extract of betel-nut (AEBN) and arecoline induced carcinogenesis in a murine model. METHODS Swiss albino mice were exposed to AEBN (2 mg ml-1) and arecoline (10 μg ml-1) in drinking water for 16 weeks followed by co-administration of metformin (75 mg kg-1 or 150 mg kg-1) for 4 or 8 weeks. Histological changes and oxidative stress were assessed by haematoxylin and eosin staining, TBARS assay and protein carbonylation assay respectively. Lipid profile was determined using an automated analyzer. Expression of total and phosphorylated AMPK, ACC and p53 were determined by immunoblotting. RESULTS AEBN and arecoline induced dyslipidemia by downregulating AMPK (Thr-172) and activating ACC (Ser-79); they also downregulated tumor suppressor p53 (Ser-15). Metformin treatment induced AMPK-dependent alleviation of dyslipidemia in a dose and time dependent manner, upregulated p53 (Ser-15), restored tissue architecture and reduced oxidative stress in tissues of AEBN and arecoline treated mice. CONCLUSION This study establishes that betel nut induces dyslipidemia through its alkaloid, arecoline by inhibition of AMPK (Thr-172) and activation of ACC (Ser-79) and highlights the therapeutic potential of metformin for treatment of betel-nut induced carcinogenesis, indicating the repurposing of the old drug in a new avenue.
Collapse
Affiliation(s)
- Jeny Laskar
- Department of Biotechnology, Assam University, Silchar, India
| | - Mahuya Sengupta
- Department of Biotechnology, Assam University, Silchar, India
| | | |
Collapse
|
16
|
Haidari F, Abiri B, Iravani M, Ahmadi-Angali K, Vafa M. Effects of Vitamin D and Omega-3 Fatty Acids Co-Supplementation on Inflammatory Factors and Tumor Marker CEA in Colorectal Cancer Patients Undergoing Chemotherapy: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutr Cancer 2019; 72:948-958. [PMID: 32441198 DOI: 10.1080/01635581.2019.1659380] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objectives: This study aimed to investigate the effects of vitamin D and omega-3 fatty acids co-supplementation on inflammatory factors and tumor marker CEA in colorectal cancer patients undergoing chemotherapy.Methods: In this study, 81 patients with stage ӀӀ or ӀӀӀ colorectal cancer were randomly assigned into four groups: (1) control: receiving a vitamin D placebo, weekly + two omega-3 fatty acid placebo capsules, daily; (2) omega-3 fatty acid, receiving two omega-3 fatty acid capsules (each capsule containing 330 mg of omega-3 fatty acids), daily + a vitamin D placebo, weekly; (3) vitamin D, receiving a 50,000 IU vitamin D soft gel, weekly + two omega-3 fatty acid placebo capsules, daily; (4) co-supplementation, receiving a 50,000 IU vitamin D soft gel, weekly + two omega-3 fatty acids capsules, for 8 weeks. Before and after the intervention, serum levels of 25(OH)D, TNF-α, IL-1β, IL-6, IL-8, NF-kB activity, and tumor marker CEA, were measured.Results: After 8 weeks of intervention, patients who received combined vitamin D and omega-3 fatty acids supplements compared with omega-3, vitamin D, and placebo had significantly decreased TNF-α, and IL-1β (P < .05). In addition, serum levels of TNF-α, IL-1β, IL-6, IL-8, and tumor marker CEA were decreased significantly in omega-3, vitamin D, and co-supplementation of them, compared with baseline. NF-kB activity was decreased significantly in vitamin D and co-supplementation groups, compared with baseline. Regarding CEA, there was no significant difference between the four groups at the end of intervention (P > .05).Conclusion: Results show that co-supplementation of vitamin D and omega-3 fatty acids co-supplementation, in colorectal cancer patients have beneficial impacts on inflammation and tumor marker CEA.
Collapse
Affiliation(s)
- Fatemeh Haidari
- Department of Nutrition, Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behnaz Abiri
- Department of Nutrition, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masood Iravani
- Department of Medical Oncology and Hematology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Ahmadi-Angali
- Faculty of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.,Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran Iran
| |
Collapse
|
17
|
Haidari F, Abiri B, Iravani M, Ahmadi-Angali K, Vafa M. Randomized Study of the Effect of Vitamin D and Omega-3 Fatty Acids Cosupplementation as Adjuvant Chemotherapy on Inflammation and Nutritional Status in Colorectal Cancer Patients. J Diet Suppl 2019; 17:384-400. [DOI: 10.1080/19390211.2019.1600096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Fatemeh Haidari
- Department of Nutrition, Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behnaz Abiri
- Department of Nutrition, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Kambiz Ahmadi-Angali
- Faculty of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Vafa
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Wculek SK, Khouili SC, Priego E, Heras-Murillo I, Sancho D. Metabolic Control of Dendritic Cell Functions: Digesting Information. Front Immunol 2019; 10:775. [PMID: 31073300 PMCID: PMC6496459 DOI: 10.3389/fimmu.2019.00775] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/25/2019] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) control innate and adaptive immunity by patrolling tissues to gather antigens and danger signals derived from microbes and tissue. Subsequently, DCs integrate those environmental cues, orchestrate immunity or tolerance, and regulate tissue homeostasis. Recent advances in the field of immunometabolism highlight the notion that immune cells markedly alter cellular metabolic pathways during differentiation or upon activation, which has important implications on their functionality. Previous studies showed that active oxidative phosphorylation in mitochondria is associated with immature or tolerogenic DCs, while increased glycolysis upon pathogen sensing can promote immunogenic DC functions. However, new results in the last years suggest that regulation of DC metabolism in steady state, after immunogenic activation and during tolerance in different pathophysiological settings, may be more complex. Moreover, ontogenically distinct DC subsets show different functional specializations to control T cell responses. It is, thus, relevant how metabolism influences DC differentiation and plasticity, and what potential metabolic differences exist among DC subsets. Better understanding of the emerging connection between metabolic adaptions and functional DC specification will likely allow the development of therapeutic strategies to manipulate immune responses.
Collapse
Affiliation(s)
- Stefanie K Wculek
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sofía C Khouili
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Elena Priego
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ignacio Heras-Murillo
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
19
|
Wang Y, Bian L, Chakraborty T, Ghosh T, Chanda P, Roy S. Construing the Biochemical and Molecular Mechanism Underlying the In Vivo and In Vitro Chemotherapeutic Efficacy of Ruthenium-Baicalein Complex in Colon Cancer. Int J Biol Sci 2019; 15:1052-1071. [PMID: 31182925 PMCID: PMC6535785 DOI: 10.7150/ijbs.31143] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/04/2019] [Indexed: 12/27/2022] Open
Abstract
In pursuit of a novel approach in colon cancer therapy, we explored the ability of ruthenium baicalein complex to eradicate colon cancer by efficiently targeting various apoptotic pathways on human colon cancer cell line and on a DMH and DSS induced murine model of colorectal cancer. In this study, we provide direct proof of the chemotherapeutic potential of the ruthenium baicalein complex by activating p-53 dependent intrinsic apoptosis and modulating the AKT/mTOR and WNT/β- catenin pathways. The ruthenium baicalein complex was synthesized and its characterizations were accomplished through various spectroscopic techniques followed by assessment of antioxidant potential by DPPH, FRAP, and ABTS methods. In vitro study established that the complex increased p53 and caspase-3 expressions while down regulating VEGF and mTOR expression, induced apoptosis, and DNA fragmentation in the HT-29 cells. Acute and sub-acute toxicity study was also considered and results from in vivo study revealed that complex was effective in suppressing ACF multiplicity and hyperplastic lesions and also raised the CAT, SOD, and glutathione levels. Furthermore, the complex decreased cell proliferation and increased apoptotic events in tumor cells correlated with the upregulation of Bax and downregulation of Bcl2, WNT and β- catenin expressions. Our findings from the in vitro and in vivo study provide robust confirmation that ruthenium baicalein complex possesses a potential chemotherapeutic activity against colon cancer and is competent in reducing ACF multiplicity, hyperplastic lesions in the colon tissues of rats by inducing apoptosis.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Li Bian
- Department of Radiotherapy, The Second Hospital of Jilin university, Changchun, Jilin, 130041, China
| | - Tania Chakraborty
- Department of Pharmaceutical Technology, NSHM Knowledge Campus- Kolkata, 124 B.L. Saha Road, Kolkata -700053, West Bengal, India
| | - Torsha Ghosh
- Department of Pharmaceutical Technology, NSHM Knowledge Campus- Kolkata, 124 B.L. Saha Road, Kolkata -700053, West Bengal, India
| | - Pallakhi Chanda
- Department of Pharmaceutical Technology, NSHM Knowledge Campus- Kolkata, 124 B.L. Saha Road, Kolkata -700053, West Bengal, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus- Kolkata, 124 B.L. Saha Road, Kolkata -700053, West Bengal, India
| |
Collapse
|
20
|
Abstract
Type 2 diabetes mellitus and cancer are correlated with changes in insulin signaling, a pathway that is frequently upregulated in neoplastic tissue but impaired in tissues that are classically targeted by insulin in type 2 diabetes mellitus. Many antidiabetes treatments, particularly metformin, enhance insulin signaling, but this pathway can be inhibited by specific cancer treatments. The modulation of cancer growth by metformin and of insulin sensitivity by anticancer drugs is so common that this phenomenon is being studied in hundreds of clinical trials on cancer. Many meta-analyses have consistently shown a moderate but direct effect of body mass index on the incidence of multiple myeloma and lymphoma and the elevated risk of leukemia in adults. Moreover, new epidemiological and preclinical studies indicate metformin as a therapeutic agent in patients with leukemia, lymphomas, and multiple myeloma. In this article, we review current findings on the anticancer activities of metformin and the underlying mechanisms from preclinical and ongoing studies in hematologic malignancies.
Collapse
|
21
|
Xiao Y, Wang S, Zong Q, Yin Z. Co-delivery of Metformin and Paclitaxel Via Folate-Modified pH-Sensitive Micelles for Enhanced Anti-tumor Efficacy. AAPS PharmSciTech 2018; 19:2395-2406. [PMID: 29869309 DOI: 10.1208/s12249-018-1070-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/29/2018] [Indexed: 01/07/2023] Open
Abstract
Single chemotherapeutic agent like paclitaxel (PTX) has shown some limitations in anti-tumor treatment, such as undesirable side effects, multidrug resistance, and high toxicity. In order to reduce the toxicity of PTX and increase the anti-tumor effect, folate-modified amphiphilic and biodegradable biomaterial was developed to co-deliver PTX and metformin (MET) for exerting the synergistic effect. PTX was physically entrapped in the hydrophobic inner core of the amphiphilic block copolymer by a solvent evaporation method, whereas MET was chemically conjugated to the hydrophilic terminals of copolymer via a pH-sensitive cis-aconityl linkage (Cis). The in vitro release behaviors of the drugs were analyzed by high-performance liquid chromatography (HPLC), and the synergistic effect of the drugs was evaluated by a Q value method. Results showed that drug-loaded micelles with an average size about 100 nm were successfully constructed. In acidic environments, the chemically conjugated MET was rapidly released after the breakage of sensitive bond between drug and copolymer. In vitro anti-tumor studies demonstrated that MET and PTX had a synergistic effect and co-delivery micelles induced higher cytotoxicity and apoptosis against 4T1 breast cancer cells than free drugs. Furthermore, folate-targeted co-delivery micelles increased the cellular uptake of drugs and were found to be effective for the treatment of solid tumor in vivo. These findings indicated that co-delivery of MET and PTX through the polymeric micelles is a promising strategy for cancer therapy.
Collapse
|
22
|
Finley J. Cellular stress and AMPK activation as a common mechanism of action linking the effects of metformin and diverse compounds that alleviate accelerated aging defects in Hutchinson-Gilford progeria syndrome. Med Hypotheses 2018; 118:151-162. [PMID: 30037605 DOI: 10.1016/j.mehy.2018.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder characterized by an accelerated aging phenotype that typically leads to death via stroke or myocardial infarction at approximately 14.6 years of age. Most cases of HGPS have been linked to the extensive use of a cryptic splice donor site located in the LMNA gene due to a de novo mutation, generating a truncated and toxic protein known as progerin. Progerin accumulation in the nuclear membrane and within the nucleus distorts the nuclear architecture and negatively effects nuclear processes including DNA replication and repair, leading to accelerated cellular aging and premature senescence. The serine-arginine rich splicing factor SRSF1 (also known as ASF/SF2) has recently been shown to modulate alternative splicing of the LMNA gene, with SRSF1 inhibition significantly reducing progerin at both the mRNA and protein levels. In 2014, we hypothesized for the first time that compounds including metformin that induce activation of AMP-activated protein kinase (AMPK), a master metabolic regulator activated by cellular stress (e.g. increases in intracellular calcium, reactive oxygen species, and/or an AMP(ADP)/ATP ratio increase, etc.), will beneficially alter gene splicing in progeria cells by inhibiting SRSF1, thus lowering progerin levels and altering the LMNA pre-mRNA splicing ratio. Recent evidence has substantiated this hypothesis, with metformin significantly reducing the mRNA and protein levels of both SRSF1 and progerin, activating AMPK, and alleviating pathological defects in HGPS cells. Metformin has also recently been shown to beneficially alter gene splicing in normal humans. Interestingly, several chemically distinct compounds, including rapamycin, methylene blue, all-trans retinoic acid, MG132, 1α,25-dihydroxyvitamin D3, sulforaphane, and oltipraz have each been shown to alleviate accelerated aging defects in patient-derived HGPS cells. Each of these compounds has also been independently shown to induce AMPK activation. Because these compounds improve accelerated aging defects in HGPS cells either by enhancing mitochondrial functionality, increasing Nrf2 activity, inducing autophagy, or by altering gene splicing and because AMPK activation beneficially modulates each of the aforementioned processes, it is our hypothesis that cellular stress-induced AMPK activation represents an indirect yet common mechanism of action linking such chemically diverse compounds with the beneficial effects of those compounds observed in HGPS cells. As normal humans also produce progerin at much lower levels through a similar mechanism, compounds that safely induce AMPK activation may have wide-ranging implications for both normal and pathological aging.
Collapse
|
23
|
Roy S, Chakraborty T. Deciphering the molecular mechanism and apoptosis underlying the in-vitro and in-vivo chemotherapeutic efficacy of vanadium luteolin complex in colon cancer. Cell Biochem Funct 2018; 36:116-128. [PMID: 29574863 DOI: 10.1002/cbf.3322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/23/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Souvik Roy
- Department of Pharmaceutical Technology; NSHM Knowledge Campus-Kolkata, Group of Institutions; Kolkata West Bengal India
| | - Tania Chakraborty
- Department of Pharmaceutical Technology; NSHM Knowledge Campus-Kolkata, Group of Institutions; Kolkata West Bengal India
| |
Collapse
|
24
|
Roy S, Das R, Ghosh B, Chakraborty T. Deciphering the biochemical and molecular mechanism underlying the in vitro and in vivo chemotherapeutic efficacy of ruthenium quercetin complex in colon cancer. Mol Carcinog 2018; 57:700-721. [PMID: 29442390 DOI: 10.1002/mc.22792] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/18/2018] [Accepted: 02/12/2018] [Indexed: 12/13/2022]
Abstract
Flavonoids are the most investigated phytochemicals due to their pharmacological and therapeutic activities. Their ability to chelate with metal ions has resulted in the emergence of a new category of molecules with a broader spectrum of pharmacological activities. In this study, the ruthenium quercetin complex has been synthesized and anticancer activity has been evaluated on a well-defined model of DMH followed by DSS induced rat colon cancer and on human colon cancer cell line HT-29. The characterizations accomplished through UV-visible, NMR, IR, Mass spectra and XRD techniques, and antioxidant activity was assessed by DPPH, FRAP, and ABTS methods. In vitro study confirmed that the complex increased p53 expression, reduced VEGF and mTOR expression, apoptosis induction, and DNA fragmentation in the HT-29 cells. Acute and subacute toxicity study was also assessed and results from in vivo study revealed that complex was efficient to suppress ACF multiplicity and hyperplastic lesions and elevated the CAT, SOD, and glutathione levels. Furthermore, the complex was found to decrease cell proliferation and increased apoptotic events in tumor cells correlates upregulation of p53 and Bax and downregulation of Bcl2 expression. Our findings from the in vitro and in vivo study support the continued investigation of ruthenium quercetin complex possesses a potential chemotherapeutic activity against colon cancer and was efficient in reducing ACF multiplicity, hyperplastic lesions in the colon tissues of rats by inducing apoptosis.
Collapse
Affiliation(s)
- Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus-Kolkata, Kolkata, West Bengal, India
| | - Rituparna Das
- Department of Pharmaceutical Technology, NSHM Knowledge Campus-Kolkata, Kolkata, West Bengal, India
| | - Balaram Ghosh
- Department of Clinical and Experimental Pharmacology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | - Tania Chakraborty
- Department of Pharmaceutical Technology, NSHM Knowledge Campus-Kolkata, Kolkata, West Bengal, India
| |
Collapse
|
25
|
Basson AR, Lam M, Cominelli F. Complementary and Alternative Medicine Strategies for Therapeutic Gut Microbiota Modulation in Inflammatory Bowel Disease and their Next-Generation Approaches. Gastroenterol Clin North Am 2017; 46:689-729. [PMID: 29173517 PMCID: PMC5909826 DOI: 10.1016/j.gtc.2017.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human gut microbiome exerts a major impact on human health and disease, and therapeutic gut microbiota modulation is now a well-advocated strategy in the management of many diseases, including inflammatory bowel disease (IBD). Scientific and clinical evidence in support of complementary and alternative medicine, in targeting intestinal dysbiosis among patients with IBD, or other disorders, has increased dramatically over the past years. Delivery of "artificial" stool replacements for fecal microbiota transplantation (FMT) could provide an effective, safer alternative to that of human donor stool. Nevertheless, optimum timing of FMT administration in IBD remains unexplored, and future investigations are essential.
Collapse
Affiliation(s)
- Abigail R Basson
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Minh Lam
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
26
|
Gong J, Kelekar G, Shen J, Shen J, Kaur S, Mita M. The expanding role of metformin in cancer: an update on antitumor mechanisms and clinical development. Target Oncol 2017; 11:447-67. [PMID: 26864078 DOI: 10.1007/s11523-016-0423-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metformin has been used for nearly a century to treat type 2 diabetes mellitus. Epidemiologic studies first identified the association between metformin and reduced risk of several cancers. The anticancer mechanisms of metformin involve both indirect or insulin-dependent pathways and direct or insulin-independent pathways. Preclinical studies have demonstrated metformin's broad anticancer activity across a spectrum of malignancies. Prospective clinical trials involving metformin in the chemoprevention and treatment of cancer now number in the hundreds. We provide an update on the anticancer mechanisms of metformin and review the results thus far available from prospective clinical trials investigating metformin's efficacy in cancer.
Collapse
Affiliation(s)
- Jun Gong
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Gauri Kelekar
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - James Shen
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John Shen
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sukhpreet Kaur
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Monica Mita
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA. .,Experimental Therapeutics Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, SCCT Mezzanine MS 35, Los Angeles, CA, 90048, USA.
| |
Collapse
|
27
|
Ikhlas S, Ahmad M. Metformin: Insights into its anticancer potential with special reference to AMPK dependent and independent pathways. Life Sci 2017; 185:53-62. [DOI: 10.1016/j.lfs.2017.07.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/15/2017] [Accepted: 07/26/2017] [Indexed: 12/19/2022]
|
28
|
Abu El Maaty MA, Strassburger W, Qaiser T, Dabiri Y, Wölfl S. Differences in p53 status significantly influence the cellular response and cell survival to 1,25-dihydroxyvitamin D3-metformin cotreatment in colorectal cancer cells. Mol Carcinog 2017; 56:2486-2498. [PMID: 28618116 DOI: 10.1002/mc.22696] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 06/08/2017] [Accepted: 06/13/2017] [Indexed: 12/20/2022]
Abstract
Mutations in the tumor suppressor p53 are highly prevalent in cancers and are known to influence the sensitivity of cells to various chemotherapeutics including the anti-cancer candidates 1,25-dihydrovitamin D3 [1,25D3] and metformin. Previous studies have demonstrated additive/synergistic anti-cancer effects of the 1,25D3-metformin combination in different models, however, the influence of p53 status on the efficacy of this regimen has not been investigated. The CRC colorectal cancer (CRC) cell lines HCT116 wild-type (wt), HCT116 p53-/-, and HT-29 (mutant; R273H) were employed, covering three different p53 variations. Synergistic effects of the combination were confirmed in all cell lines using MTT assay. Detailed evaluation of the combination's effects was performed, including on-line measurements of cellular metabolism (glycolysis/respiration) using a biosensor chip system, analyses of mitochondrial activity (membrane potential and ATP/ROS production), mRNA expression analysis of WNT/β-catenin pathway players, and a comprehensive proteomic screen using immunoblotting and ELISA microarrays. AMPK signaling was found to be more strongly induced in response to all treatments in HCT116 wt cells compared to other cell lines, an observation that was coupled to a stronger accumulation of intracellular ROS in response to metformin/combination, and finally an induction in autophagy, depicted by an increase in LC3II:LC3I ratio in combination-treated cells compared to mono-treatments. An induction in apoptotic signaling was observed in the other cell lines in response to the combination, illustrated by a decrease in expression of pro-survival Bcl2 family members. P53 status impacts cellular responses to the combination but does not hamper its anti-proliferative synergy.
Collapse
Affiliation(s)
- Mohamed A Abu El Maaty
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Wendy Strassburger
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Tooba Qaiser
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Yasamin Dabiri
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
29
|
Zhang Y, Ma C, Zhao J, Xu H, Hou Q, Zhang H. Lactobacillus casei Zhang and vitamin K2 prevent intestinal tumorigenesis in mice via adiponectin-elevated different signaling pathways. Oncotarget 2017; 8:24719-24727. [PMID: 28445967 PMCID: PMC5421882 DOI: 10.18632/oncotarget.15791] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/15/2017] [Indexed: 12/11/2022] Open
Abstract
The incidence of colon cancer has increased considerably and the intestinal microbiota participate in the development of colon cancer. We showed that the L. casei Zhang or vitamin K2 (Menaquinone-7) intervention significantly alleviated intestinal tumor burden in mice. This was associated with increased serum adiponectin levels in both treatments. But osteocalcin level was only increased by L. casei Zhang. Furthermore, the anti-carcinogenic actions of L. casei Zhang were mediated by hepatic Chloride channel-3(CLCN3)/Nuclear Factor Kappa B(NF-κB) and intestinal Claudin15/Chloride intracellular channel 4(CLIC4)/Transforming Growth Factor Beta(TGF-β) signaling, while the vitamin K2 effect involved a hepatic Vitamin D Receptor(VDR)-phosphorylated AMPK signaling pathway. Fecal DNA sequencing by the Pacbio RSII method revealed there was significantly lower Helicobacter apodemus, Helicobacter mesocricetorum, Allobaculum stercoricanis and Adlercreutzia equolifaciens following both interventions compared to the model group. Moreover, different caecum acetic acid and butyric acid levels and enrichment of other specific microbes also determined the activity of the different regulatory pathways. Together these data show that L. casei Zhang and Vitamin K2 can suppress gut risk microbes and promote beneficial microbial metabolites to reduce colonic tumor development in mice.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Chen Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Jie Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Haiyan Xu
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Qiangchuan Hou
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| |
Collapse
|
30
|
Bekusova VV, Patsanovskii VM, Nozdrachev AD, Trashkov AP, Artemenko MR, Anisimov VN. Metformin prevents hormonal and metabolic disturbances and 1,2-dimethylhydrazine-induced colon carcinogenesis in non-diabetic rats. Cancer Biol Med 2017; 14:100-107. [PMID: 28443209 PMCID: PMC5365186 DOI: 10.20892/j.issn.2095-3941.2016.0088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/28/2016] [Indexed: 12/26/2022] Open
Abstract
Effects of two doses of the anti-diabetic drug, metformin (MF), on hormonal and metabolic levels of serum of non-diabetic male Wistar rats with 1,2-dimethylhydrazine (DMH)-induced colon tumor adenocarcinomas were studied. Carcinogenesis in the animals was also observed. Rats with DMH-induced colon adenocarcinomas had elevated levels of serum glucose, insulin, insulin-like growth factor-1, total cholesterol, triglycerides, catalase, malonic dialdehyde, glycated hemoglobin, aspartate aminotransferase, and alanine aminotransferase and decreased hemoglobin. Treatment with two doses of MF normalized majority of these changes in DMH-treated rats, whereas the drug was ineffective in rats without DMH treatment. The only exception was the decreased triglyceride levels in MF-treated rats. A 100 mg/kg dose of MF increased DMH-induced exophytic colon carcinomas and decreased endophytic tumors compared with untreated rats. Moreover, both MF doses increased DMH-induced and highly differentiated tumors and decreased the invasiveness of colon carcinomas compared with rats provided with DMH and water. Therefore, effects of MF on metabolic homeostasis are critical for preventing colon cancer.
Collapse
Affiliation(s)
- Viktoria V. Bekusova
- Department of Physiology, St. Petersburg State University, St. Petersburg 197183, Russia
| | - Vasily M. Patsanovskii
- I.P.Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Alexander D. Nozdrachev
- Department of Physiology, St. Petersburg State University, St. Petersburg 197183, Russia
- I.P.Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Alexandr P. Trashkov
- Deparment of Experimental Pharmacology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Margarita R. Artemenko
- Deparment of Experimental Pharmacology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Vladimir N. Anisimov
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov Research Institute of Oncology, St. Petersburg 197758, Russia
| |
Collapse
|
31
|
Effects of 1,25(OH)₂D₃ on Cancer Cells and Potential Applications in Combination with Established and Putative Anti-Cancer Agents. Nutrients 2017; 9:nu9010087. [PMID: 28124999 PMCID: PMC5295131 DOI: 10.3390/nu9010087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/22/2016] [Accepted: 01/17/2017] [Indexed: 12/11/2022] Open
Abstract
The diverse effects of 1,25-dihydroxyvitamin D₃ (1,25(OH)₂D₃), the bio-active form of vitamin D, on cancer cell metabolism and proliferation has made it an interesting candidate as a supporting therapeutic option in cancer treatment. An important strategy in cancer therapy is the use of combination chemotherapy to overcome drug resistance associated with numerous anti-cancer agents and to provide better means of avoiding undesirable side effects. This complex strategy is widely adopted by oncologists and several established "cocktails" of chemotherapeutics are routinely administered to cancer patients. Among the principles followed in designing such treatment regimens is the use of drugs with different mechanisms of action to overcome the issue of tumor heterogeneity and to evade resistance. In light of the profound and diverse effects of 1,25(OH)₂D₃ reported by in vitro and in vivo studies, we discuss how these effects could support the use of this molecule in combination with "classical" cytotoxic drugs, such as platins and anti-metabolites, for the treatment of solid and hematological tumors. We also examine recent evidence supporting synergistic activities with other promising anti-cancer drug candidates, and postulate mechanisms through which 1,25(OH)₂D₃ may help evade chemoresistance.
Collapse
|
32
|
Abdelsatir AA, Husain NE, Hassan AT, Elmadhoun WM, Almobarak AO, Ahmed MH. Potential Benefit of Metformin as Treatment for Colon Cancer: the Evidence so Far. Asian Pac J Cancer Prev 2016; 16:8053-8. [PMID: 26745038 DOI: 10.7314/apjcp.2015.16.18.8053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Metformin is known as a hypoglycaemic agent that regulates glucose homeostasis by inhibiting liver glucose production and increasing muscle glucose uptake. Colorectal cancer (CRC) is one of the most common cancers worldwide, with about a million new cases diagnosed each year. The risk factors for CRC include advanced age, smoking, black race, obesity, low fibre diet, insulin resistance, and the metabolic syndrome. We have searched Medline for the metabolic syndrome and its relation to CRC, and metformin as a potential treatment of colorectal cancer. Administration of metformin alone or in combination with chemotherapy has been shown to suppress CRC. The mechanism that explains how insulin resistance is associated with CRC is complex and not fully understood. In this review we have summarised studies which showed an association with the metabolic syndrome as well as studies which tackled metformin as a potential treatment of CRC. In addition, we have also provided a summary of how metformin at the cellular level can induce changes that suppress the activity of cancer cells.
Collapse
|
33
|
Karrasch T, Schaeffler A. Adipokines and the role of visceral adipose tissue in inflammatory bowel disease. Ann Gastroenterol 2016; 29:424-438. [PMID: 27708507 PMCID: PMC5049548 DOI: 10.20524/aog.2016.0077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/22/2016] [Indexed: 12/20/2022] Open
Abstract
Recently, adipocytes have been recognized as actively participating in local and systemic immune responses via the secretion of peptides detectable in relevant levels in the systemic circulation, the so-called "adipo(cyto)kines". Multiple studies appearing within the last 10-15 years have focused on the possible impact of adipose tissue depots on inflammatory bowel disease (IBD). Consequently, various hypotheses regarding the role of different adipokines in inflammatory diseases in general and in intestinal inflammatory processes in particular have been developed and have been further refined in recent years. After a focused summary of the data reported concerning the impact of visceral adipose tissue on IBD, such as Crohn's disease and ulcerative colitis, our review focuses on recent developments indicating that adipocytes as part of the innate immune system actively participate in antimicrobial host defenses in the context of intestinal bacterial translocation, which are of utmost importance for the homeostasis of the whole organism. Modulators of adipose tissue function and regulators of adipokine secretion, as well as modifiers of adipocytic pattern recognition molecules, might represent future potential drug targets in IBD.
Collapse
Affiliation(s)
- Thomas Karrasch
- Department of Internal Medicine III, Giessen University Hospital, Germany
| | - Andreas Schaeffler
- Department of Internal Medicine III, Giessen University Hospital, Germany
| |
Collapse
|
34
|
Yang N, Sampathkumar K, Loo SCJ. Recent advances in complementary and replacement therapy with nutraceuticals in combating gastrointestinal illnesses. Clin Nutr 2016; 36:968-979. [PMID: 27654926 DOI: 10.1016/j.clnu.2016.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 08/17/2016] [Accepted: 08/20/2016] [Indexed: 12/14/2022]
Abstract
The digestive system provides nourishment to the whole body. Disorders in this system would result in many associated illnesses as the body is deprived of essential nutrients. Gastrointestinal diseases, in particular, gastric ulceration, inflammatory bowel diseases and colorectal cancer have become more prevalent in all population age groups. While this can be attributed to diet and lifestyle changes, the measures to combat these illnesses with conventional drugs is losing popularity owing to the harsh side effects, drug resistance and lack of patient compliance. The focus of this review is to endorse promising nutraceutical dietary components such as phytosterols, polyphenols, anthocyanins and polyunsaturated fatty acids and their synergistic value, in combination with conventional management of key gastrointestinal diseases. As most of these nutraceuticals are labile compounds, the need for protection and delivery using a carrier system is stressed and the methods for targeting to specific parts of the gastrointestinal tract are discussed. A section has also been devoted to perspectives on co-encapsulation methods of drugs and nutraceuticals using different particle systems. Multilayered carrier systems like double layered and core shell particles have been proposed as an exemplary system to co-encapsulate both drugs and nutrients while keeping them segregated.
Collapse
Affiliation(s)
- Natasha Yang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 693798, Singapore
| | - Kaarunya Sampathkumar
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 693798, Singapore
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 693798, Singapore; Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
35
|
Bekusova VV, Patsanovskii VM, Nozdrachev AD, Anisimov VN. Metformin inhibits development of colon malignant tumors induced by 1,2-dimethylhydrazine in rats. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2016; 468:97-100. [PMID: 27411816 DOI: 10.1134/s0012496616030017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Indexed: 12/25/2022]
Abstract
It has been shown that metformin dose-dependently inhibits the development of colon tumors induced by 1,2-dimethylhydrazine (DMH) in rats. The metformin effect manifested itself as a decrease in the amount and average size of tumors, increased degree of their differentiation, and reduction of invasion depth, which was more pronounced in the group of animals that received metformin at a dose of 100 mg/kg of body weight as compared with rats treated with metformin at a dose of 300 mg/kg.
Collapse
Affiliation(s)
- V V Bekusova
- St. Petersburg State University, St. Petersburg, 197183, Russia.
| | - V M Patsanovskii
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, 199034, Russia
| | - A D Nozdrachev
- St. Petersburg State University, St. Petersburg, 197183, Russia
| | - V N Anisimov
- Petrov Research Institute of Oncology, Ministry of Health of Russia, St. Petersburg, 197758, Russia
| |
Collapse
|
36
|
Zhang HH, Guo XL. Combinational strategies of metformin and chemotherapy in cancers. Cancer Chemother Pharmacol 2016; 78:13-26. [PMID: 27118574 DOI: 10.1007/s00280-016-3037-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/12/2016] [Indexed: 12/11/2022]
Abstract
Chemotherapeutic regimens are the most common treatment to inhibit tumor growth, but there is great variability in clinical responses of cancer patients; cancer cells often develop resistance to chemotherapeutics which results in tumor recurrence and further progression. Metformin, an extensively prescribed and well-tolerated first-line therapeutic drug for type 2 diabetes mellitus, has recently been identified as a potential and attractive anticancer adjuvant drug combined with chemotherapeutic drugs to improve treatment efficacy and lower doses. In this review, we summarized the molecular mechanisms underlying anticancer effects of metformin, which included insulin- and AMPK-dependent effects, selectively targeting cancer stem cells, reversing multidrug resistance, inhibition of the tumor metastasis and described the antineoplastic effects of metformin combined with chemotherapeutic agents in digestive system cancers (colorectal, gastric, hepatic and pancreatic cancer), reproductive system cancers (ovarian and endometrial cancer), prostate cancer, breast cancer, lung cancer, etc. Moreover, the clinical trials regarding metformin in combination of chemotherapeutic drugs were presented and the clinical obstacle or limitation related to the potential role of metformin in cancer treatment was also discussed in this review.
Collapse
Affiliation(s)
- Hui-Hui Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, No. 44 Wen Hua Xi Road, Jinan, 250012, People's Republic of China
| | - Xiu-Li Guo
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, No. 44 Wen Hua Xi Road, Jinan, 250012, People's Republic of China.
| |
Collapse
|
37
|
Metabolism Is Central to Tolerogenic Dendritic Cell Function. Mediators Inflamm 2016; 2016:2636701. [PMID: 26980944 PMCID: PMC4766347 DOI: 10.1155/2016/2636701] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 12/31/2015] [Indexed: 12/13/2022] Open
Abstract
Immunological tolerance is a fundamental tenant of immune homeostasis and overall health. Self-tolerance is a critical component of the immune system that allows for the recognition of self, resulting in hyporeactivity instead of immunogenicity. Dendritic cells are central to the establishment of dominant immune tolerance through the secretion of immunosuppressive cytokines and regulatory polarization of T cells. Cellular metabolism holds the key to determining DC immunogenic or tolerogenic cell fate. Recent studies have demonstrated that dendritic cell maturation leads to a shift toward a glycolytic metabolic state and preferred use of glucose as a carbon source. In contrast, tolerogenic dendritic cells favor oxidative phosphorylation and fatty acid oxidation. This dichotomous metabolic reprogramming of dendritic cells drives differential cellular function and plays a role in pathologies, such as autoimmune disease. Pharmacological alterations in metabolism have promising therapeutic potential.
Collapse
|
38
|
Vitamin D and the Epithelial to Mesenchymal Transition. Stem Cells Int 2016; 2016:6213872. [PMID: 26880977 PMCID: PMC4736588 DOI: 10.1155/2016/6213872] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/08/2015] [Indexed: 12/13/2022] Open
Abstract
Several studies support reciprocal regulation between the active vitamin D derivative 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) and the epithelial to mesenchymal transition (EMT). Thus, 1,25(OH)2D3 inhibits EMT via the induction of a variety of target genes that encode cell adhesion and polarity proteins responsible for the epithelial phenotype and through the repression of key EMT inducers. Both direct and indirect regulatory mechanisms mediate these effects. Conversely, certain master EMT inducers inhibit 1,25(OH)2D3 action by repressing the transcription of VDR gene encoding the high affinity vitamin D receptor that mediates 1,25(OH)2D3 effects. Consequently, the balance between the strength of 1,25(OH)2D3 signaling and the induction of EMT defines the cellular phenotype in each context. Here we review the current understanding of the genes and mechanisms involved in the interplay between 1,25(OH)2D3 and EMT.
Collapse
|
39
|
Anisimov VN. Metformin for cancer and aging prevention: is it a time to make the long story short? Oncotarget 2015; 6:39398-407. [PMID: 26583576 PMCID: PMC4741834 DOI: 10.18632/oncotarget.6347] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/17/2015] [Indexed: 12/30/2022] Open
Abstract
During the last decade, the burst of interest is observed to antidiabetic biguanide metformin as candidate drug for cancer chemoprevention. The analysis of the available data have shown that the efficacy of cancer preventive effect of metformin (MF) and another biguanides, buformin (BF) and phenformin (PF), has been studied in relation to total tumor incidence and to 17 target organs, in 21 various strains of mice, 4 strains of rats and 1 strain of hamsters (inbred, outbred, transgenic, mutant), spontaneous (non- exposed to any carcinogenic agent) or induced by 16 chemical carcinogens of different classes (polycycIic aromatic hydrocarbons, nitroso compounds, estrogen, etc.), direct or indirect (need metabolic transformation into proximal carcinogen), by total body X-rays and γ- irradiation, viruses, genetic modifications or special high fat diet, using one stage and two-stage protocols of carcinogenesis, 5 routes of the administration of antidiabetic biguanides (oral gavage, intraperitoneal or subcutaneous injections, with drinking water or with diet) in a wide ranks of doses and treatment regimens. In the majority of cases (86%) the treatment with biguanides leads to inhibition of carcinogenesis. In 14% of the cases inhibitory effect of the drugs was not observed. Very important that there was no any case of stimulation of carcinogenesis by antidiabetic biguanides. It was conclude that there is sufficient experimental evidence of anti-carcinogenic effect of antidiabetic biguanides.
Collapse
Affiliation(s)
- Vladimir N. Anisimov
- Department of Carcinogenesis and Oncogerontology, N.N.Petrov Research Institute of Oncology, St.Petersburg, Russian Federation
| |
Collapse
|