1
|
Zhan XZ, Wei TH, Huang C, Yu H, Chen XL, Kong XT, Shang ZH, Sun SL, Lu MY, Ni HW. Modulating JAK2/STAT3 signaling by quercetin in Qiling Baitouweng Tang: a potential therapeutic approach for diffuse large B-cell lymphoma. Mol Divers 2024:10.1007/s11030-024-10999-2. [PMID: 39369170 DOI: 10.1007/s11030-024-10999-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
Qiling Baitouweng Tang (QLBTWT) is a traditional clinical formula for treating diffuse large B-cell lymphoma (DLBCL), but its molecular action is not fully understood. This research is utilized in silico analysis and liquid chromatography tandem mass spectrometry (LC‒MS/MS) to identify the active constituents of QLBTWT with anti-DLBCL properties and their targets. The study identified 14 compounds, including quercetin, naringenin, and astilbin, as potentially effective against DLBCL. Molecular modeling highlighted the favorable interaction of quercetin with the JAK2 protein. In vitro studies confirmed the ability of quercetin to inhibit DLBCL cell growth and migration while inducing apoptosis and causing G2/M phase cell cycle arrest. Molecular dynamics simulations revealed that quercetin binds to JAK2 as a type II inhibitor. In vivo studies in U2932 xenograft models demonstrated that QLBTWT inhibited tumor growth in a dose-dependent manner, which was associated with the JAK2/STAT3 signaling pathway. Overall, this study elucidates the therapeutic effect of QLBTWT on DLBCL through quercetin-mediated suppression of the JAK2/STAT3 pathway, offering novel therapeutic insights for DLBCL.
Collapse
Affiliation(s)
- Xin-Zhuo Zhan
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chen Huang
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Hui Yu
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Xiao-Li Chen
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Xiang-Tu Kong
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Zhi-Hao Shang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China.
| | - Meng-Yi Lu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China.
| | - Hai-Wen Ni
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
2
|
Gurevic I, Meudec L, Mariette X, Nocturne G, McCoy SS. 0JAK Inhibitor Withdrawal Causes a Transient Proinflammatory Cascade: A Potential Mechanism for Major Adverse Cardiac Events. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615051. [PMID: 39386576 PMCID: PMC11463359 DOI: 10.1101/2024.09.25.615051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Objective Our objective was to define the effect of JAK1/2 inhibitor (JAKinib) withdrawal on JAK/STAT biochemical response in the context of systemic rheumatic diseases. Methods We tested Type I (bind kinase active conformation) and Type II (bind kinase inactive conformation) JAKinibs in vitro using mesenchymal stromal cells and endothelial cells. We translated our findings in vivo studying NK cells from rheumatoid arthritis (RA) patients treated with Type I JAKinibs or methotrexate. Results Type I JAKinibs (ruxolitinib and baricitinib) increased phosphoJAK1 (pJAK1) and pJAK2 of IFNγ-stimulated MSCs and HUVECs in a time- and dose- dependent manner, with effect peaking after 24 hours. As expected, pSTAT1 was completely suppressed by JAKinibs. We found a marked and rapid increase of pSTATs upon discontinuation of Type I JAKinibs, that occurred to a lesser extent after Type II JAKinib withdrawal. Type I JAKinib withdrawal increased interferon and urokinase expression when compared to Type II JAKinib withdrawal. We found NK cells from RA patients taking Type I JAKinibs had a pro-inflammatory profile after JAKinib withdrawal compared to patients on methotrexate. Conclusions Type I JAKinibs paradoxically accumulate functionally defective pJAK. Upon withdrawal, the primed pJAKs are de-repressed and initiate a pSTAT signaling cascade, resulting in high interferon and urokinase. Type II JAKinibs do not cause pJAK accumulation, pSTAT cascade, and subsequent pro-inflammatory transcripts. The resultant cytokines and proteins produced from this cascade might be associated with adverse cardiac outcomes. Thus, JAKinib withdrawal is a possible mechanism contributing to the major adverse cardiac events described with JAKinib therapy.
Collapse
Affiliation(s)
- Ilya Gurevic
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Loic Meudec
- Center for Immunology of Viral Infections and Autoimmune Diseases, INSERM UMR 1184, Université Paris-Saclay, Le Kremlin-Bicêtre, Paris, France
| | - Xavier Mariette
- Université Paris-Saclay, Center for Immunology of Viral Infections and Auto-immune Diseases (IMVA), Institut pour la Santé et la Recherche Médicale (INSERM) UMR 1184, Le Kremlin-Bicêtre, Paris, France
- Assistance Publique – Hôpitaux de Paris, Hôpital Bicêtre, Department of Rheumatology, Le Kremlin Bicêtre, France
| | - Gaetane Nocturne
- Université Paris-Saclay, Center for Immunology of Viral Infections and Auto-immune Diseases (IMVA), Institut pour la Santé et la Recherche Médicale (INSERM) UMR 1184, Le Kremlin-Bicêtre, Paris, France
- Assistance Publique – Hôpitaux de Paris, Hôpital Bicêtre, Department of Rheumatology, Le Kremlin Bicêtre, France
| | - Sara S. McCoy
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
3
|
Gorantla SP, Prince G, Osius J, Dinesh DC, Boddu V, Duyster J, von Bubnoff N. Type II mode of JAK2 inhibition and destabilization are potential therapeutic approaches against the ruxolitinib resistance driven myeloproliferative neoplasms. Front Oncol 2024; 14:1430833. [PMID: 39091915 PMCID: PMC11291247 DOI: 10.3389/fonc.2024.1430833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Background Ruxolitinib has been approved by the US FDA for the treatment of myeloproliferative neoplasms such as polycythemia vera and primary myelofibrosis. Ruxolitinib will remain a main stay in the treatment of MPN patients due to its effective therapeutic benefits. However, there have been instances of ruxolitinib resistance in MPN patients. As JAK2 is a direct target of ruxolitinib, we generated ruxolitinib-resistant clones to find out the mechanism of resistance. Methods Cell-based screening strategy was used to detect the ruxolitinib-resistant mutations in JAK2. The Sanger sequencing method was used to detect the point mutations in JAK2. Mutations were re-introduced using the site-directed mutagenesis method and stably expressed in Ba/F3 cells. Drug sensitivities against the JAK2 inhibitors were measured using an MTS-based assay. JAK2 and STAT5 activation levels and total proteins were measured using immunoblotting. Computational docking studies were performed using the Glide module of Schrodinger Maestro software. Results In this study, we have recovered seven residues in the kinase domain of JAK2 that affect ruxolitinib sensitivity. All these mutations confer cross-resistance across the panel of JAK2 kinase inhibitors except JAK2-L983F. JAK2-L983F reduces the sensitivity towards ruxolitinib. However, it is sensitive towards fedratinib indicating that our screen identifies the drug-specific resistance profiles. All the ruxolitinib-resistant JAK2 variants displayed sensitivity towards type II JAK2 inhibitor CHZ-868. In this study, we also found that JAK1-L1010F (homologous JAK2-L983F) is highly resistant towards ruxolitinib suggesting the possibility of JAK1 escape mutations in JAK2-driven MPNs and JAK1 mutated ALL. Finally, our study also shows that HSP90 inhibitors are potent against ruxolitinib-resistant variants through the JAK2 degradation and provides the rationale for clinical evaluation of potent HSP90 inhibitors in genetic resistance driven by JAK2 inhibitors. Conclusion Our study identifies JAK1 and JAK2 resistance variants against the type I JAK2 inhibitors ruxolitinib, fedratinib, and lestaurtinib. The sensitivity of these resistant variants towards the type II JAK2 inhibitor CHZ-868 indicates that this mode of type II JAK2 inhibition is a potential therapeutic approach against ruxolitinib refractory leukemia. This also proposes the development of potent and specific type II JAK2 inhibitors using ruxolitinib-resistance variants as a prototype.
Collapse
Affiliation(s)
- Sivahari P. Gorantla
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
- Department of Internal Medicine I, University Medical Center Freiburg, Freiburg, Germany
| | - Gerin Prince
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | - Jasmin Osius
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | - Dhurvas Chandrasekaran Dinesh
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Vijay Boddu
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | - Justus Duyster
- Department of Internal Medicine I, University Medical Center Freiburg, Freiburg, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
4
|
Miao Y, Virtanen A, Zmajkovic J, Hilpert M, Skoda RC, Silvennoinen O, Haikarainen T. Functional and Structural Characterization of Clinical-Stage Janus Kinase 2 Inhibitors Identifies Determinants for Drug Selectivity. J Med Chem 2024; 67:10012-10024. [PMID: 38843875 PMCID: PMC11215726 DOI: 10.1021/acs.jmedchem.4c00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/10/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Janus kinase 2 (JAK2) plays a critical role in orchestrating hematopoiesis, and its deregulation leads to various blood disorders, most importantly myeloproliferative neoplasms (MPNs). Ruxolitinib, fedratinib, momelotinib, and pacritinib are FDA-/EMA-approved JAK inhibitors effective in relieving symptoms in MPN patients but show variable clinical profiles due to poor JAK selectivity. The development of next-generation JAK2 inhibitors is hampered by the lack of comparative functional analysis and knowledge of the molecular basis of their selectivity. Here, we provide mechanistic profiling of the four approved and six clinical-stage JAK2 inhibitors and connect selectivity data with high-resolution structural and thermodynamic analyses. All of the JAK inhibitors potently inhibited JAK2 activity. Inhibitors differed in their JAK isoform selectivity and potency for erythropoietin signaling, but their general cytokine inhibition signatures in blood cells were comparable. Structural data indicate that high potency and moderate JAK2 selectivity can be obtained by targeting the front pocket of the adenosine 5'-triphosphate-binding site.
Collapse
Affiliation(s)
- Ya Miao
- Faculty
of Medicine and Health Technology, Tampere
University, 33520 Tampere, Finland
| | - Anniina Virtanen
- Faculty
of Medicine and Health Technology, Tampere
University, 33520 Tampere, Finland
- Institute
of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Jakub Zmajkovic
- Experimental
Hematology, Department of Biomedicine, University
Hospital Basel and University of Basel, 4056 Basel, Switzerland
| | - Morgane Hilpert
- Experimental
Hematology, Department of Biomedicine, University
Hospital Basel and University of Basel, 4056 Basel, Switzerland
| | - Radek C. Skoda
- Experimental
Hematology, Department of Biomedicine, University
Hospital Basel and University of Basel, 4056 Basel, Switzerland
| | - Olli Silvennoinen
- Faculty
of Medicine and Health Technology, Tampere
University, 33520 Tampere, Finland
- Institute
of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Teemu Haikarainen
- Faculty
of Medicine and Health Technology, Tampere
University, 33520 Tampere, Finland
- Fimlab
Laboratories, 33520 Tampere, Finland
| |
Collapse
|
5
|
Abraham BG, Haikarainen T, Vuorio J, Girych M, Virtanen AT, Kurttila A, Karathanasis C, Heilemann M, Sharma V, Vattulainen I, Silvennoinen O. Molecular basis of JAK2 activation in erythropoietin receptor and pathogenic JAK2 signaling. SCIENCE ADVANCES 2024; 10:eadl2097. [PMID: 38457493 PMCID: PMC10923518 DOI: 10.1126/sciadv.adl2097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
Janus kinase 2 (JAK2) mediates type I/II cytokine receptor signaling, but JAK2 is also activated by somatic mutations that cause hematological malignancies by mechanisms that are still incompletely understood. Quantitative superresolution microscopy (qSMLM) showed that erythropoietin receptor (EpoR) exists as monomers and dimerizes upon Epo stimulation or through the predominant JAK2 pseudokinase domain mutations (V617F, K539L, and R683S). Crystallographic analysis complemented by kinase activity analysis and atomic-level simulations revealed distinct pseudokinase dimer interfaces and activation mechanisms for the mutants: JAK V617F activity is driven by dimerization, K539L involves both increased receptor dimerization and kinase activity, and R683S prevents autoinhibition and increases catalytic activity and drives JAK2 equilibrium toward activation state through a wild-type dimer interface. Artificial intelligence-guided modeling and simulations revealed that the pseudokinase mutations cause differences in the pathogenic full-length JAK2 dimers, particularly in the FERM-SH2 domains. A detailed molecular understanding of mutation-driven JAK2 hyperactivation may enable novel therapeutic approaches to selectively target pathogenic JAK2 signaling.
Collapse
Affiliation(s)
| | - Teemu Haikarainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Joni Vuorio
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Anniina T. Virtanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Antti Kurttila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Christos Karathanasis
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Olli Silvennoinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Sk MF, Samanta S, Poddar S, Kar P. Deciphering the molecular choreography of Janus kinase 2 inhibition via Gaussian accelerated molecular dynamics simulations: a dynamic odyssey. J Comput Aided Mol Des 2024; 38:8. [PMID: 38324213 DOI: 10.1007/s10822-023-00548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/24/2023] [Indexed: 02/08/2024]
Abstract
The Janus kinases (JAK) are crucial targets in drug development for several diseases. However, accounting for the impact of possible structural rearrangements on the binding of different kinase inhibitors is complicated by the extensive conformational variability of their catalytic kinase domain (KD). The dynamic KD contains mainly four prominent mobile structural motifs: the phosphate-binding loop (P-loop), the αC-helix within the N-lobe, the Asp-Phe-Gly (DFG) motif, and the activation loop (A-loop) within the C-lobe. These distinct structural orientations imply a complex signal transmission path for regulating the A-loop's flexibility and conformational preference for optimal JAK function. Nevertheless, the precise dynamical features of the JAK induced by different types of inhibitors still remain elusive. We performed comparative, microsecond-long, Gaussian accelerated molecular dynamics simulations in triplicate of three phosphorylated JAK2 systems: the KD alone, type-I ATP-competitive inhibitor (CI) bound KD in the catalytically active DFG-in conformation, and the type-II inhibitor (AI) bound KD in the catalytically inactive DFG-out conformation. Our results indicate significant conformational variations observed in the A-loop and αC helix motions upon inhibitor binding. Our studies also reveal that the DFG-out inactive conformation is characterized by the closed A-loop rearrangement, open catalytic cleft of N and C-lobe, the outward movement of the αC helix, and open P-loop states. Moreover, the outward positioning of the αC helix impacts the hallmark salt bridge formation between Lys882 and Glu898 in an inactive conformation. Finally, we compared their ligand binding poses and free energy by the MM/PBSA approach. The free energy calculations suggested that the AI's binding affinity is higher than CI against JAK2 due to an increased favorable contribution from the total non-polar interactions and the involvement of the αC helix. Overall, our study provides the structural and energetic insights crucial for developing more promising type I/II JAK2 inhibitors for treating JAK-related diseases.
Collapse
Affiliation(s)
- Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, MP, 453552, India
- Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, NIH Resource for Macromolecular Modeling and Visualization, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sunanda Samanta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, MP, 453552, India
| | - Sayan Poddar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, MP, 453552, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, MP, 453552, India.
| |
Collapse
|
7
|
Codilupi T, Szybinski J, Arunasalam S, Jungius S, Dunbar AC, Stivala S, Brkic S, Albrecht C, Vokalova L, Yang JL, Buczak K, Ghosh N, Passweg JR, Rovo A, Angelillo-Scherrer A, Pankov D, Dirnhofer S, Levine RL, Koche R, Meyer SC. Development of Resistance to Type II JAK2 Inhibitors in MPN Depends on AXL Kinase and Is Targetable. Clin Cancer Res 2024; 30:586-599. [PMID: 37992313 PMCID: PMC10831334 DOI: 10.1158/1078-0432.ccr-23-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/21/2023] [Accepted: 11/20/2023] [Indexed: 11/24/2023]
Abstract
PURPOSE Myeloproliferative neoplasms (MPN) dysregulate JAK2 signaling. Because clinical JAK2 inhibitors have limited disease-modifying effects, type II JAK2 inhibitors such as CHZ868 stabilizing inactive JAK2 and reducing MPN clones, gain interest. We studied whether MPN cells escape from type ll inhibition. EXPERIMENTAL DESIGN MPN cells were continuously exposed to CHZ868. We used phosphoproteomic analyses and ATAC/RNA sequencing to characterize acquired resistance to type II JAK2 inhibition, and targeted candidate mediators in MPN cells and mice. RESULTS MPN cells showed increased IC50 and reduced apoptosis upon CHZ868 reflecting acquired resistance to JAK2 inhibition. Among >2,500 differential phospho-sites, MAPK pathway activation was most prominent, while JAK2-STAT3/5 remained suppressed. Altered histone occupancy promoting AP-1/GATA binding motif exposure associated with upregulated AXL kinase and enriched RAS target gene profiles. AXL knockdown resensitized MPN cells and combined JAK2/AXL inhibition using bemcentinib or gilteritinib reduced IC50 to levels of sensitive cells. While resistant cells induced tumor growth in NOD/SCID gamma mice despite JAK2 inhibition, JAK2/AXL inhibition largely prevented tumor progression. Because inhibitors of MAPK pathway kinases such as MEK are clinically used in other malignancies, we evaluated JAK2/MAPK inhibition with trametinib to interfere with AXL/MAPK-induced resistance. Tumor growth was halted similarly to JAK2/AXL inhibition and in a systemic cell line-derived mouse model, marrow infiltration was decreased supporting dependency on AXL/MAPK. CONCLUSIONS We report on a novel mechanism of AXL/MAPK-driven escape from type II JAK2 inhibition, which is targetable at different nodes. This highlights AXL as mediator of acquired resistance warranting inhibition to enhance sustainability of JAK2 inhibition in MPN.
Collapse
Affiliation(s)
- Tamara Codilupi
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jakub Szybinski
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stefanie Arunasalam
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sarah Jungius
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andrew C. Dunbar
- Human Oncology and Pathogenesis Program and Leukemia service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Simona Stivala
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Sime Brkic
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Camille Albrecht
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lenka Vokalova
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Julie L. Yang
- Human Oncology and Pathogenesis Program and Leukemia service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Katarzyna Buczak
- Proteomics Core Facility Biozentrum, University of Basel, Basel, Switzerland
| | - Nilabh Ghosh
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jakob R. Passweg
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| | - Alicia Rovo
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Anne Angelillo-Scherrer
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dmitry Pankov
- Immunology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Stefan Dirnhofer
- Department of Pathology, University Hospital Basel, Basel, Switzerland
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program and Leukemia service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard Koche
- Human Oncology and Pathogenesis Program and Leukemia service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sara C. Meyer
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Nair PC, Piehler J, Tvorogov D, Ross DM, Lopez AF, Gotlib J, Thomas D. Next-Generation JAK2 Inhibitors for the Treatment of Myeloproliferative Neoplasms: Lessons from Structure-Based Drug Discovery Approaches. Blood Cancer Discov 2023; 4:352-364. [PMID: 37498362 PMCID: PMC10472187 DOI: 10.1158/2643-3230.bcd-22-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/20/2023] [Accepted: 06/07/2023] [Indexed: 07/28/2023] Open
Abstract
Selective inhibitors of Janus kinase (JAK) 2 have been in demand since the discovery of the JAK2 V617F mutation present in patients with myeloproliferative neoplasms (MPN); however, the structural basis of V617F oncogenicity has only recently been elucidated. New structural studies reveal a role for other JAK2 domains, beyond the kinase domain, that contribute to pathogenic signaling. Here we evaluate the structure-based approaches that led to recently-approved type I JAK2 inhibitors (fedratinib and pacritinib), as well as type II (BBT594 and CHZ868) and pseudokinase inhibitors under development (JNJ7706621). With full-length JAK homodimeric structures now available, superior selective and mutation-specific JAK2 inhibitors are foreseeable. SIGNIFICANCE The JAK inhibitors currently used for the treatment of MPNs are effective for symptom management but not for disease eradication, primarily because they are not strongly selective for the mutant clone. The rise of computational and structure-based drug discovery approaches together with the knowledge of full-length JAK dimer complexes provides a unique opportunity to develop better targeted therapies for a range of conditions driven by pathologic JAK2 signaling.
Collapse
Affiliation(s)
- Pramod C. Nair
- Cancer Program, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, Australia
- Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Discipline of Clinical Pharmacology, Flinders Health and Medical Research Institute (FHMRI) Cancer Program, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Jacob Piehler
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Denis Tvorogov
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - David M. Ross
- Cancer Program, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, Australia
- Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
- Department of Hematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Angel F. Lopez
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Jason Gotlib
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Daniel Thomas
- Cancer Program, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, Australia
- Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Department of Hematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Henry SP, Jorgensen WL. Progress on the Pharmacological Targeting of Janus Pseudokinases. J Med Chem 2023; 66:10959-10990. [PMID: 37578217 DOI: 10.1021/acs.jmedchem.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The Janus kinases (JAKs) are key components of the JAK-STAT signaling pathway and are involved in myriad physiological processes. Though they are the molecular targets of many FDA-approved drugs, these drugs manifest adverse effects due in part to their inhibition of the requisite JAK kinase activity. However, the JAKs uniquely possess an integrated pseudokinase domain (JH2) that regulates the adjacent kinase domain (JH1). The therapeutic targeting of JH2 domains has been less thoroughly explored and may present an avenue to modulate the JAKs without the adverse effects associated with targeting the adjacent JH1 domain. The potential of this strategy was recently demonstrated with the FDA approval of the TYK2 JH2 ligand deucravacitinib for treating plaque psoriasis. In this light, the structure and targetability of the JAK pseudokinases are discussed, in conjunction with the state of development of ligands that bind to these domains.
Collapse
Affiliation(s)
- Sean P Henry
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - William L Jorgensen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
10
|
Majumdar S, Di Palma F, Spyrakis F, Decherchi S, Cavalli A. Molecular Dynamics and Machine Learning Give Insights on the Flexibility-Activity Relationships in Tyrosine Kinome. J Chem Inf Model 2023; 63:4814-4826. [PMID: 37462363 PMCID: PMC10428216 DOI: 10.1021/acs.jcim.3c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 08/15/2023]
Abstract
Tyrosine kinases are a subfamily of kinases with critical roles in cellular machinery. Dysregulation of their active or inactive forms is associated with diseases like cancer. This study aimed to holistically understand their flexibility-activity relationships, focusing on pockets and fluctuations. We studied 43 different tyrosine kinases by collecting 120 μs of molecular dynamics simulations, pocket and residue fluctuation analysis, and a complementary machine learning approach. We found that the inactive forms often have increased flexibility, particularly at the DFG motif level. Noteworthy, thanks to these long simulations combined with a decision tree, we identified a semiquantitative fluctuation threshold of the DGF+3 residue over which the kinase has a higher probability to be in the inactive form.
Collapse
Affiliation(s)
- Sarmistha Majumdar
- Computational
& Chemical Biology, Fondazione Istituto
Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Francesco Di Palma
- Computational
& Chemical Biology, Fondazione Istituto
Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Francesca Spyrakis
- Department
of Drug Science and Technology, University
of Turin, via Giuria
9, I-10125 Turin, Italy
| | - Sergio Decherchi
- Data
Science and Computation, Fondazione Istituto
Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Andrea Cavalli
- Computational
& Chemical Biology, Fondazione Istituto
Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
- Department
of Pharmacy and Biotechnology, University
of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| |
Collapse
|
11
|
Arwood ML, Liu Y, Harkins SK, Weinstock DM, Yang L, Stevenson KE, Plana OD, Dong J, Cirka H, Jones KL, Virtanen AT, Gupta DG, Ceas A, Lawney B, Yoda A, Leahy C, Hao M, He Z, Choi HG, Wang Y, Silvennoinen O, Hubbard SR, Zhang T, Gray NS, Li LS. New scaffolds for type II JAK2 inhibitors overcome the acquired G993A resistance mutation. Cell Chem Biol 2023; 30:618-631.e12. [PMID: 37290440 PMCID: PMC10495080 DOI: 10.1016/j.chembiol.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 02/07/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023]
Abstract
Recurrent JAK2 alterations are observed in myeloproliferative neoplasms, B-cell acute lymphoblastic leukemia, and other hematologic malignancies. Currently available type I JAK2 inhibitors have limited activity in these diseases. Preclinical data support the improved efficacy of type II JAK2 inhibitors, which lock the kinase in the inactive conformation. By screening small molecule libraries, we identified a lead compound with JAK2 selectivity. We highlight analogs with on-target biochemical and cellular activity and demonstrate in vivo activity using a mouse model of polycythemia vera. We present a co-crystal structure that confirms the type II binding mode of our compounds with the "DFG-out" conformation of the JAK2 activation loop. Finally, we identify a JAK2 G993A mutation that confers resistance to the type II JAK2 inhibitor CHZ868 but not to our analogs. These data provide a template for identifying novel type II kinase inhibitors and inform further development of agents targeting JAK2 that overcome resistance.
Collapse
Affiliation(s)
- Matthew L Arwood
- Molecular and Translational Cancer Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Yao Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shannon K Harkins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Cancer Biology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA
| | - Lei Yang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kristen E Stevenson
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Olivia D Plana
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jingyun Dong
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Haley Cirka
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kristen L Jones
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Anniina T Virtanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Dikshat G Gupta
- Molecular and Translational Cancer Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Amanda Ceas
- Molecular and Translational Cancer Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Brian Lawney
- Center for Cancer Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Akinori Yoda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Catharine Leahy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Mingfeng Hao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Zhixiang He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Hwan Geun Choi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yaning Wang
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olli Silvennoinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Stevan R Hubbard
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Loretta S Li
- Molecular and Translational Cancer Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Department of Pediatrics, Division of Hematology, Oncology, and Stem Cell Transplantation, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
12
|
He L, Liu J, Zhao HL, Zhang LC, Yu RL, Kang CM. De novo design of dual-target JAK2, SMO inhibitors based on deep reinforcement learning, molecular docking and molecular dynamics simulations. Biochem Biophys Res Commun 2023; 638:23-27. [PMID: 36436338 DOI: 10.1016/j.bbrc.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/20/2022]
Abstract
Triple-negative breast cancer (TNBC) and HER2-positive breast cancer are particularly aggressive and the effectiveness of current therapies for them is limited. TNBC lacks effective therapies and HER2-positive cancer is often resistant to HER2-targeted drugs after an initial response. The recent studies have demonstrated that the combination of JAK2 inhibitors and SMO inhibitors can effectively inhibit the growth and metastasis of TNBC and HER2-positive drug resistant breast cancer cells. In this study, deep reinforcement learning was used to learn the characteristics of existing small molecule inhibitors of JAK2 and SMO, and to generate a novel library of small molecule compounds that may be able to inhibit both JAK2 and SMO. Subsequently, the molecule library was screened by molecular docking and a total of 7 compounds were selected out as dual inhibitors of JAK2 and SMO. Molecular dynamics simulations and binding free energies showed that the top three compounds stably bound to both JAK2 and SMO proteins. The binding free energies and hydrogen bond occupancy of key amino acids indicate that A8976 and A10625 has good properties and could be a potential dual-target inhibitor of JAK2 and SMO.
Collapse
Affiliation(s)
- Lei He
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jin Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Hui-Lin Zhao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Li-Chuan Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Ri-Lei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Cong-Min Kang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
13
|
Ge H, Wang C, Tian C, Diao Y, Wang W, Ma X, Zhang J, Li H, Zhao Z, Zhu L. Efficacy of WWQ-131, a highly selective JAK2 inhibitor, in mouse models of myeloproliferative neoplasms. Biomed Pharmacother 2022; 156:113884. [DOI: 10.1016/j.biopha.2022.113884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/02/2022] Open
|
14
|
Downes CEJ, McClure BJ, McDougal DP, Heatley SL, Bruning JB, Thomas D, Yeung DT, White DL. JAK2 Alterations in Acute Lymphoblastic Leukemia: Molecular Insights for Superior Precision Medicine Strategies. Front Cell Dev Biol 2022; 10:942053. [PMID: 35903543 PMCID: PMC9315936 DOI: 10.3389/fcell.2022.942053] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, arising from immature lymphocytes that show uncontrolled proliferation and arrested differentiation. Genomic alterations affecting Janus kinase 2 (JAK2) correlate with some of the poorest outcomes within the Philadelphia-like subtype of ALL. Given the success of kinase inhibitors in the treatment of chronic myeloid leukemia, the discovery of activating JAK2 point mutations and JAK2 fusion genes in ALL, was a breakthrough for potential targeted therapies. However, the molecular mechanisms by which these alterations activate JAK2 and promote downstream signaling is poorly understood. Furthermore, as clinical data regarding the limitations of approved JAK inhibitors in myeloproliferative disorders matures, there is a growing awareness of the need for alternative precision medicine approaches for specific JAK2 lesions. This review focuses on the molecular mechanisms behind ALL-associated JAK2 mutations and JAK2 fusion genes, known and potential causes of JAK-inhibitor resistance, and how JAK2 alterations could be targeted using alternative and novel rationally designed therapies to guide precision medicine approaches for these high-risk subtypes of ALL.
Collapse
Affiliation(s)
- Charlotte EJ. Downes
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Barbara J. McClure
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Daniel P. McDougal
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Susan L. Heatley
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| | - John B. Bruning
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Daniel Thomas
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - David T. Yeung
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, SA, Australia
| | - Deborah L. White
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| |
Collapse
|
15
|
Liosi ME, Ippolito JA, Henry SP, Krimmer SG, Newton AS, Cutrona KJ, Olivarez RA, Mohanty J, Schlessinger J, Jorgensen WL. Insights on JAK2 Modulation by Potent, Selective, and Cell-Permeable Pseudokinase-Domain Ligands. J Med Chem 2022; 65:8380-8400. [PMID: 35653642 PMCID: PMC9939005 DOI: 10.1021/acs.jmedchem.2c00283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
JAK2 is a non-receptor tyrosine kinase that regulates hematopoiesis through the JAK-STAT pathway. The pseudokinase domain (JH2) is an important regulator of the activity of the kinase domain (JH1). V617F mutation in JH2 has been associated with the pathogenesis of various myeloproliferative neoplasms, but JAK2 JH2 has been poorly explored as a pharmacological target. In light of this, we aimed to develop JAK2 JH2 binders that could selectively target JH2 over JH1 and test their capacity to modulate JAK2 activity in cells. Toward this goal, we optimized a diaminotriazole lead compound into potent, selective, and cell-permeable JH2 binders leveraging computational design, synthesis, binding affinity measurements for the JH1, JH2 WT, and JH2 V617F domains, permeability measurements, crystallography, and cell assays. Optimized diaminotriazoles are capable of inhibiting STAT5 phosphorylation in both WT and V617F JAK2 in cells.
Collapse
Affiliation(s)
- Maria-Elena Liosi
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | | | - Sean P. Henry
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Stefan G. Krimmer
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA,Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Ana S. Newton
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Kara J. Cutrona
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Rene A. Olivarez
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | - Jyotidarsini Mohanty
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - William L. Jorgensen
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA,Corresponding author. William L. Jorgensen.
| |
Collapse
|
16
|
A Comprehensive Overview of Globally Approved JAK Inhibitors. Pharmaceutics 2022; 14:pharmaceutics14051001. [PMID: 35631587 PMCID: PMC9146299 DOI: 10.3390/pharmaceutics14051001] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Janus kinase (JAK) is a family of cytoplasmic non-receptor tyrosine kinases that includes four members, namely JAK1, JAK2, JAK3, and TYK2. The JAKs transduce cytokine signaling through the JAK-STAT pathway, which regulates the transcription of several genes involved in inflammatory, immune, and cancer conditions. Targeting the JAK family kinases with small-molecule inhibitors has proved to be effective in the treatment of different types of diseases. In the current review, eleven of the JAK inhibitors that received approval for clinical use have been discussed. These drugs are abrocitinib, baricitinib, delgocitinib, fedratinib, filgotinib, oclacitinib, pacritinib, peficitinib, ruxolitinib, tofacitinib, and upadacitinib. The aim of the current review was to provide an integrated overview of the chemical and pharmacological data of the globally approved JAK inhibitors. The synthetic routes of the eleven drugs were described. In addition, their inhibitory activities against different kinases and their pharmacological uses have also been explained. Moreover, their crystal structures with different kinases were summarized, with a primary focus on their binding modes and interactions. The proposed metabolic pathways and metabolites of these drugs were also illustrated. To sum up, the data in the current review could help in the design of new JAK inhibitors with potential therapeutic benefits in inflammatory and autoimmune diseases.
Collapse
|
17
|
Bochicchio MT, Di Battista V, Poggio P, Carrà G, Morotti A, Brancaccio M, Lucchesi A. Understanding Aberrant Signaling to Elude Therapy Escape Mechanisms in Myeloproliferative Neoplasms. Cancers (Basel) 2022; 14:cancers14040972. [PMID: 35205715 PMCID: PMC8870427 DOI: 10.3390/cancers14040972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
Aberrant signaling in myeloproliferative neoplasms may arise from alterations in genes coding for signal transduction proteins or epigenetic regulators. Both mutated and normal cells cooperate, altering fragile balances in bone marrow niches and fueling persistent inflammation through paracrine or systemic signals. Despite the hopes placed in targeted therapies, myeloid proliferative neoplasms remain incurable diseases in patients not eligible for stem cell transplantation. Due to the emergence of drug resistance, patient management is often very difficult in the long term. Unexpected connections among signal transduction pathways highlighted in neoplastic cells suggest new strategies to overcome neoplastic cell adaptation.
Collapse
Affiliation(s)
- Maria Teresa Bochicchio
- Biosciences Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Valeria Di Battista
- Hematology Unit, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Pietro Poggio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy;
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy;
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy;
- Correspondence: (A.M.); (M.B.); (A.L.)
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy;
- Correspondence: (A.M.); (M.B.); (A.L.)
| | - Alessandro Lucchesi
- Hematology Unit, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
- Correspondence: (A.M.); (M.B.); (A.L.)
| |
Collapse
|
18
|
Stivala S, Meyer SC. Recent Advances in Molecular Diagnostics and Targeted Therapy of Myeloproliferative Neoplasms. Cancers (Basel) 2021; 13:cancers13205035. [PMID: 34680185 PMCID: PMC8534234 DOI: 10.3390/cancers13205035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Myeloproliferative neoplasms (MPN) are clonal hematologic malignancies with dysregulated myeloid blood cell production driven by JAK2, calreticulin, and MPL gene mutations. Technological advances have revealed a heterogeneous genomic landscape with additional mutations mainly in epigenetic regulators and splicing factors, which are of diagnostic and prognostic value and may inform treatment decisions. Thus, genetic testing has become an integral part of the state-of-the-art work-up for MPN. The finding that JAK2, CALR, and MPL mutations activate JAK2 signaling has promoted the development of targeted JAK2 inhibitor therapies. However, their disease-modifying potential remains limited and investigations of additional molecular vulnerabilities in MPN are imperative to advance the development of new therapeutic options. Here, we summarize the current insights into the genetic basis of MPN, its use as diagnostic and prognostic tool in clinical settings, and recent advances in targeted therapies for MPN. Abstract Somatic mutations in JAK2, calreticulin, and MPL genes drive myeloproliferative neoplasms (MPN), and recent technological advances have revealed a heterogeneous genomic landscape with additional mutations in MPN. These mainly affect genes involved in epigenetic regulation and splicing and are of diagnostic and prognostic value, predicting the risk of progression and informing decisions on therapeutic management. Thus, genetic testing has become an integral part of the current state-of-the-art laboratory work-up for MPN patients and has been implemented in current guidelines for disease classification, tools for prognostic risk assessment, and recommendations for therapy. The finding that JAK2, CALR, and MPL driver mutations activate JAK2 signaling has provided a rational basis for the development of targeted JAK2 inhibitor therapies and has fueled their translation into clinical practice. However, the disease-modifying potential of JAK2 inhibitors remains limited and is further impeded by loss of therapeutic responses in a substantial proportion of patients over time. Therefore, the investigation of additional molecular vulnerabilities involved in MPN pathogenesis is imperative to advance the development of new therapeutic options. Combination of novel compounds with JAK2 inhibitors are of specific interest to enhance therapeutic efficacy of molecularly targeted treatment approaches. Here, we summarize the current insights into the genetic basis of MPN, its use as a diagnostic and prognostic tool in clinical settings, and the most recent advances in targeted therapies for MPN.
Collapse
Affiliation(s)
- Simona Stivala
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland;
| | - Sara C. Meyer
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland;
- Division of Hematology, University Hospital Basel, 4031 Basel, Switzerland
- Correspondence: ; Tel.: +41-61-556-5965; Fax: +41-61-265-4568
| |
Collapse
|
19
|
Levy G, Mambet C, Pecquet C, Bailly S, Havelange V, Diaconu CC, Constantinescu SN. Targets in MPNs and potential therapeutics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 366:41-81. [PMID: 35153006 DOI: 10.1016/bs.ircmb.2021.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Philadelphia-negative classical Myeloproliferative Neoplasms (MPNs), including Polycythemia Vera (PV), Essential Thrombocythemia (ET) and Primary Myelofibrosis (PMF), are clonal hemopathies that emerge in the hematopoietic stem cell (HSC) compartment. MPN driver mutations are restricted to specific exons (14 and 12) of Janus kinase 2 (JAK2), thrombopoietin receptor (MPL/TPOR) and calreticulin (CALR) genes, are involved directly in clonal myeloproliferation and generate the MPN phenotype. As a result, an increased number of fully functional erythrocytes, platelets and leukocytes is observed in the peripheral blood. Nevertheless, the complexity and heterogeneity of MPN clinical phenotypes cannot be solely explained by the type of driver mutation. Other factors, such as additional somatic mutations affecting epigenetic regulators or spliceosomes components, mutant allele burdens and modifiers of signaling by driver mutants, clonal architecture and the order of mutation acquisition, signaling events that occur downstream of a driver mutation, the presence of specific germ-line variants, the interaction of the neoplastic clone with bone marrow microenvironment and chronic inflammation, all can modulate the disease phenotype, influence the MPN clinical course and therefore, might be useful therapeutic targets.
Collapse
Affiliation(s)
- Gabriel Levy
- Ludwig Institute for Cancer Research, Brussels, Belgium; SIGN Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; Department of Pediatric Hematology and Oncology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Cristina Mambet
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest, Romania; Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Christian Pecquet
- Ludwig Institute for Cancer Research, Brussels, Belgium; SIGN Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium
| | - Sarah Bailly
- Ludwig Institute for Cancer Research, Brussels, Belgium; SIGN Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; Department of Hematology, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Violaine Havelange
- SIGN Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; Department of Hematology, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Carmen C Diaconu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research, Brussels, Belgium; SIGN Unit, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium; Ludwig Institute for Cancer Research, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom.
| |
Collapse
|
20
|
Small molecule ERK5 kinase inhibitors paradoxically activate ERK5 signalling: be careful what you wish for…. Biochem Soc Trans 2021; 48:1859-1875. [PMID: 32915196 PMCID: PMC7609025 DOI: 10.1042/bst20190338] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
ERK5 is a protein kinase that also contains a nuclear localisation signal and a transcriptional transactivation domain. Inhibition of ERK5 has therapeutic potential in cancer and inflammation and this has prompted the development of ERK5 kinase inhibitors (ERK5i). However, few ERK5i programmes have taken account of the ERK5 transactivation domain. We have recently shown that the binding of small molecule ERK5i to the ERK5 kinase domain stimulates nuclear localisation and paradoxical activation of its transactivation domain. Other kinase inhibitors paradoxically activate their intended kinase target, in some cases leading to severe physiological consequences highlighting the importance of mitigating these effects. Here, we review the assays used to monitor ERK5 activities (kinase and transcriptional) in cells, the challenges faced in development of small molecule inhibitors to the ERK5 pathway, and classify the molecular mechanisms of paradoxical activation of protein kinases by kinase inhibitors.
Collapse
|
21
|
Yang J, Weisberg EL, Liu X, Magin RS, Chan WC, Hu B, Schauer NJ, Zhang S, Lamberto I, Doherty L, Meng C, Sattler M, Cabal-Hierro L, Winer E, Stone R, Marto JA, Griffin JD, Buhrlage SJ. Small molecule inhibition of deubiquitinating enzyme JOSD1 as a novel targeted therapy for leukemias with mutant JAK2. Leukemia 2021; 36:210-220. [PMID: 34326465 DOI: 10.1038/s41375-021-01336-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 01/30/2023]
Abstract
Mutations in the Janus Kinase 2 (JAK2) gene resulting in constitutive kinase activation represent the most common genetic event in myeloproliferative neoplasms (MPN), a group of diseases involving overproduction of one or more kinds of blood cells, including red cells, white cells, and platelets. JAK2 kinase inhibitors, such as ruxolitinib, provide clinical benefit, but inhibition of wild-type (wt) JAK2 limits their clinical utility due to toxicity to normal cells, and small molecule inhibition of mutated JAK2 kinase activity can lead to drug resistance. Here, we present a strategy to target mutated JAK2 for degradation, using the cell's intracellular degradation machinery, while sparing non-mutated JAK2. We employed a chemical genetics screen, followed by extensive selectivity profiling and genetic studies, to identify the deubiquitinase (DUB), JOSD1, as a novel regulator of mutant JAK2. JOSD1 interacts with and stabilizes JAK2-V617F, and inactivation of the DUB leads to JAK2-V617F protein degradation by increasing its ubiquitination levels, thereby shortening its protein half-life. Moreover, targeting of JOSD1 leads to the death of JAK2-V617F-positive primary acute myeloid leukemia (AML) cells. These studies provide a novel therapeutic approach to achieving selective targeting of mutated JAK2 signaling in MPN.
Collapse
Affiliation(s)
- Jing Yang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ellen L Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Xiaoxi Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Robert S Magin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Wai Cheung Chan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Bin Hu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nathan J Schauer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Shengzhe Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ilaria Lamberto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Laura Doherty
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Chengcheng Meng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Lucia Cabal-Hierro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Eric Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Richard Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Sara J Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA. .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Tavakoli Shirazi P, Eadie LN, Page EC, Heatley SL, Bruning JB, White DL. Constitutive JAK/STAT signaling is the primary mechanism of resistance to JAKi in TYK2-rearranged acute lymphoblastic leukemia. Cancer Lett 2021; 512:28-37. [PMID: 33971281 DOI: 10.1016/j.canlet.2021.04.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/14/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022]
Abstract
Activating TYK2-rearrangements have recently been identified and implicated in the leukemogenesis of high-risk acute lymphoblastic leukemia (HR-ALL) cases. Pre-clinical studies indicated the JAK/TYK2 inhibitor (JAKi), cerdulatinib, as a promising therapeutic against TYK2-rearranged ALL, attenuating the constitutive JAK/STAT signaling resulting from the TYK2 fusion protein. However, following a period of clinical efficacy, JAKi resistance often occurs resulting in relapse. In this study, we modeled potential mechanisms of JAKi resistance in TYK2-rearranged ALL cells in vitro in order to recapitulate possible clinical scenarios and provide a rationale for alternative therapies. Cerdulatinib resistant B-cells, driven by the MYB-TYK2 fusion oncogene, were generated by long-term exposure to the drug. Sustained treatment of MYB-TYK2-rearranged ALL cells with cerdulatinib led to enhanced and persistent JAK/STAT signaling, co-occurring with JAK1 overexpression. Hyperactivation of JAK/STAT signaling and JAK1 overexpression was reversible as cerdulatinib withdrawal resulted in re-sensitization to the drug. Importantly, histone deacetylase inhibitor (HDACi) therapies were efficacious against cerdulatinib-resistant cells demonstrating a potential alternative therapy for use in TYK2-rearranged B-ALL patients who have lost response to JAKi treatment regimens.
Collapse
Affiliation(s)
- Paniz Tavakoli Shirazi
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia; Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia.
| | - Laura N Eadie
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia; Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia.
| | - Elyse C Page
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia; Faculty of Sciences, University of Adelaide, Adelaide, Australia.
| | - Susan L Heatley
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia; Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia.
| | - John B Bruning
- Faculty of Sciences, University of Adelaide, Adelaide, Australia.
| | - Deborah L White
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia; Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Faculty of Sciences, University of Adelaide, Adelaide, Australia; Australian Genomics Health Alliance (AGHA), Australia.
| |
Collapse
|
23
|
Ross DM, Babon JJ, Tvorogov D, Thomas D. Persistence of myelofibrosis treated with ruxolitinib: biology and clinical implications. Haematologica 2021; 106:1244-1253. [PMID: 33472356 PMCID: PMC8094080 DOI: 10.3324/haematol.2020.262691] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Activation of JAK-STAT signaling is one of the hallmarks of myelofibrosis, a myeloproliferative neoplasm that leads to inflammation, progressive bone marrow failure, and a risk of leukemic transformation. Around 90% of patients with myelofibrosis have a mutation in JAK2, MPL, or CALR: so-called 'driver' mutations that lead to activation of JAK2. Ruxolitinib, and other JAK2 inhibitors in clinical use, provide clinical benefit but do not have a major impact on the abnormal hematopoietic clone. This phenomenon is termed 'persistence', in contrast to usual patterns of resistance. Multiple groups have shown that type 1 inhibitors of JAK2, which bind the active conformation of the enzyme, lead to JAK2 becoming resistant to degradation with consequent accumulation of phospho-JAK2. In turn, this can lead to exacerbation of inflammatory manifestations when the JAK inhibitor is discontinued, and it may also contribute to disease persistence. The ways in which JAK2 V617F and CALR mutations lead to activation of JAK-STAT signaling are incompletely understood. We summarize what is known about pathological JAK-STAT activation in myelofibrosis and how this might lead to future novel therapies for myelofibrosis with greater disease-modifying potential.
Collapse
Affiliation(s)
- David M Ross
- Department of Hematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide; Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide; Precision Medicine Theme, South Australian Health and Medical Research Institute, and Adelaide Medical School, University of Adelaide.
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne, Parkville
| | - Denis Tvorogov
- Centre for Cancer Biology, University of South Australia and SA Pathology
| | - Daniel Thomas
- Precision Medicine Theme, South Australian Health and Medical Research Institute, and Adelaide Medical School, University of Adelaide
| |
Collapse
|
24
|
da Costa MOL, Pavani TFA, Lima AN, Scott AL, Ramos DFV, Lazarini M, Rando DGG. Nifuroxazide as JAK2 inhibitor: A binding mode proposal and Hel cell proliferation assay. Eur J Pharm Sci 2021; 162:105822. [PMID: 33775828 DOI: 10.1016/j.ejps.2021.105822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/01/2021] [Accepted: 03/21/2021] [Indexed: 12/23/2022]
Abstract
Nifuroxazide has been employed as an anti-diarrheic agent since 1966, but in the last decade has brought to the research spotlight again due to its recently described antitumoral activity through the JAK2 inhibitory potential. Since 2008, more than 70 papers have been published about the issue and more are expected to the following years. Herein we discuss the findings of molecular modelling studies which were performed to elucidate the potential binding mode of this drug into the JAK2 ATP recognition site and also into the allosteric region near the catalytic site. Molecular modelling followed by dynamics simulations indicated the NFZ could bind at both sites, such as a Type II kinase inhibitor since residues from both ATP and modulatory site would exhibit contacts with the drug when in a stable complex. Synthesis of NFZ and its sulfur bioisosteric analogue GPQF-63 were performed and experimental assays against HEL cells indicate the potential of NFZ and, mainly of its analogue GPQF-63 in acting as inhibitors of cell growth. HEL-cells present the JAK2 V617F mutation which leads to an enhanced JAK/STAT pathway and they have never been tested by the NFZ activity before. A mechanistic approach was also performed and revealed that both compounds induce cell apoptosis.Taken together, both the theoretical and experimental approaches point out the N-acylhydrazones as good starting points in the search for JAK2 modulatory small molecules which could then, be studied as promising leads toward new alternatives to control the JAK-STAT pathway related pathologies. This is the first study, as far as we have known, to propose a potential binding mode for NFZ as well as reporting the activity of this drug against HEL cells, which are a usual cellular model to human erythroleukemia and other myeloproliferative diseases.
Collapse
Affiliation(s)
- Marcela Oliveira Legramanti da Costa
- Grupo de Pesquisas Químico-Farmacêuticas, Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema
| | - Thais Fernanda Amorim Pavani
- Grupo de Pesquisas Químico-Farmacêuticas, Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema
| | - Angélica Nakagawa Lima
- Laboratório de Biologia Computacional e Bioinformática, Universidade Federal do ABC; Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC
| | - Ana Lígia Scott
- Laboratório de Biologia Computacional e Bioinformática, Universidade Federal do ABC
| | - Débora Felicia Vieira Ramos
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema
| | - Mariana Lazarini
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema
| | - Daniela Gonçales Galasse Rando
- Grupo de Pesquisas Químico-Farmacêuticas, Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema.
| |
Collapse
|
25
|
Lee HC, Hamzah H, Leong MPY, Md Yusof H, Habib O, Zainal Abidin S, Seth EA, Lim SM, Vidyadaran S, Mohd Moklas MA, Abdullah MA, Nordin N, Hassan Z, Cheah PS, Ling KH. Transient prenatal ruxolitinib treatment suppresses astrogenesis during development and improves learning and memory in adult mice. Sci Rep 2021; 11:3847. [PMID: 33589712 PMCID: PMC7884429 DOI: 10.1038/s41598-021-83222-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 01/20/2021] [Indexed: 01/08/2023] Open
Abstract
Ruxolitinib is the first janus kinase 1 (JAK1) and JAK2 inhibitor that was approved by the United States Food and Drug Administration (FDA) agency for the treatment of myeloproliferative neoplasms. The drug targets the JAK/STAT signalling pathway, which is critical in regulating the gliogenesis process during nervous system development. In the study, we assessed the effect of non-maternal toxic dosages of ruxolitinib (0-30 mg/kg/day between E7.5-E20.5) on the brain of the developing mouse embryos. While the pregnant mice did not show any apparent adverse effects, the Gfap protein marker for glial cells and S100β mRNA marker for astrocytes were reduced in the postnatal day (P) 1.5 pups' brains. Gfap expression and Gfap+ cells were also suppressed in the differentiating neurospheres culture treated with ruxolitinib. Compared to the control group, adult mice treated with ruxolitinib prenatally showed no changes in motor coordination, locomotor function, and recognition memory. However, increased explorative behaviour within an open field and improved spatial learning and long-term memory retention were observed in the treated group. We demonstrated transplacental effects of ruxolitinib on astrogenesis, suggesting the potential use of ruxolitinib to revert pathological conditions caused by gliogenic-shift in early brain development such as Down and Noonan syndromes.
Collapse
Affiliation(s)
- Han-Chung Lee
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Hamizun Hamzah
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Melody Pui-Yee Leong
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Hadri Md Yusof
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biotechnology, Faculty of Science, Technology, Engineering and Mathematics, International University of Malaya-Wales, 50480, Kuala Lumpur, Malaysia
| | - Omar Habib
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Shahidee Zainal Abidin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Eryse Amira Seth
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Siong-Meng Lim
- Collaborative Drug Discovery Research, Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor, Malaysia
| | - Sharmili Vidyadaran
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohamad Aris Mohd Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Maizaton Atmadini Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Institute of Biosciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Norshariza Nordin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
26
|
Janus Kinases in Leukemia. Cancers (Basel) 2021; 13:cancers13040800. [PMID: 33672930 PMCID: PMC7918039 DOI: 10.3390/cancers13040800] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 01/12/2023] Open
Abstract
Janus kinases (JAKs) transduce signals from dozens of extracellular cytokines and function as critical regulators of cell growth, differentiation, gene expression, and immune responses. Deregulation of JAK/STAT signaling is a central component in several human diseases including various types of leukemia and other malignancies and autoimmune diseases. Different types of leukemia harbor genomic aberrations in all four JAKs (JAK1, JAK2, JAK3, and TYK2), most of which are activating somatic mutations and less frequently translocations resulting in constitutively active JAK fusion proteins. JAKs have become important therapeutic targets and currently, six JAK inhibitors have been approved by the FDA for the treatment of both autoimmune diseases and hematological malignancies. However, the efficacy of the current drugs is not optimal and the full potential of JAK modulators in leukemia is yet to be harnessed. This review discusses the deregulation of JAK-STAT signaling that underlie the pathogenesis of leukemia, i.e., mutations and other mechanisms causing hyperactive cytokine signaling, as well as JAK inhibitors used in clinic and under clinical development.
Collapse
|
27
|
Brkic S, Meyer SC. Challenges and Perspectives for Therapeutic Targeting of Myeloproliferative Neoplasms. Hemasphere 2021; 5:e516. [PMID: 33403355 PMCID: PMC7773330 DOI: 10.1097/hs9.0000000000000516] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are hematopoietic stem cell disorders with dysregulated myeloid blood cell production and propensity for transformation to acute myeloid leukemia, thrombosis, and bleeding. Acquired mutations in JAK2, MPL, and CALR converge on hyperactivation of Janus kinase 2 (JAK2) signaling as a central feature of MPN. Accordingly, JAK2 inhibitors have held promise for therapeutic targeting. After the JAK1/2 inhibitor ruxolitinib, similar JAK2 inhibitors as fedratinib are entering clinical use. While patients benefit with reduced splenomegaly and symptoms, disease-modifying effects on MPN clone size and clonal evolution are modest. Importantly, response to ruxolitinib may be lost upon treatment suggesting the MPN clone acquires resistance. Resistance mutations, as seen with other tyrosine kinase inhibitors, have not been described in MPN patients suggesting that functional processes reactivate JAK2 signaling. Compensatory signaling, which bypasses JAK2 inhibition, and other processes contribute to intrinsic resistance of MPN cells restricting efficacy of JAK2 inhibition overall. Combinations of JAK2 inhibition with pegylated interferon-α, a well-established therapy of MPN, B-cell lymphoma 2 inhibition, and others are in clinical development with the potential to enhance therapeutic efficacy. Novel single-agent approaches targeting other molecules than JAK2 are being investigated clinically. Special focus should be placed on myelofibrosis patients with anemia and thrombocytopenia, a delicate patient population at high need for options. The extending range of new treatment approaches will increase the therapeutic options for MPN patients. This calls for concomitant improvement of our insight into MPN biology to inform tailored therapeutic strategies for individual MPN patients.
Collapse
Affiliation(s)
- Sime Brkic
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
| | - Sara C. Meyer
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
- Division of Hematology, University Hospital Basel, Switzerland
| |
Collapse
|
28
|
Rummelt C, Gorantla SP, Meggendorfer M, Charlet A, Endres C, Döhner K, Heidel FH, Fischer T, Haferlach T, Duyster J, von Bubnoff N. Activating JAK-mutations confer resistance to FLT3 kinase inhibitors in FLT3-ITD positive AML in vitro and in vivo. Leukemia 2020; 35:2017-2029. [PMID: 33149267 DOI: 10.1038/s41375-020-01077-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/13/2020] [Accepted: 10/21/2020] [Indexed: 01/07/2023]
Abstract
An important limitation of FLT3 tyrosine kinase inhibitors (TKIs) in FLT3-ITD positive AML is the development of resistance. To better understand resistance to FLT3 inhibition, we examined FLT3-ITD positive cell lines which had acquired resistance to midostaurin or sorafenib. In 6 out of 23 TKI resistant cell lines we were able to detect a JAK1 V658F mutation, a mutation that led to reactivation of the CSF2RB-STAT5 pathway. Knockdown of JAK1, or treatment with a JAK inhibitor, resensitized cells to FLT3 inhibition. Out of 136 patients with FLT3-ITD mutated AML and exposed to FLT3 inhibitor, we found seven different JAK family mutations in six of the cases (4.4%), including five bona fide, activating mutations. Except for one patient, the JAK mutations occurred de novo (n = 4) or displayed increasing variant allele frequency after exposure to FLT3 TKI (n = 1). In vitro each of the five activating variants were found to induce resistance to FLT3-ITD inhibition, which was then overcome by dual FLT3/JAK inhibition. In conclusion, our data characterize a novel mechanism of resistance to FLT3-ITD inhibition and may offer a potential therapy, using dual JAK and FLT3 inhibition.
Collapse
Affiliation(s)
- Christoph Rummelt
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sivahari P Gorantla
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | | | - Anne Charlet
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelia Endres
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Florian H Heidel
- Innere Medizin 2, Universitätsklinikum Jena, Jena, Germany.,Innere Medizin C, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Thomas Fischer
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Justus Duyster
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany
| | - Nikolas von Bubnoff
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany. .,German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany.
| |
Collapse
|
29
|
MPN: The Molecular Drivers of Disease Initiation, Progression and Transformation and their Effect on Treatment. Cells 2020; 9:cells9081901. [PMID: 32823933 PMCID: PMC7465511 DOI: 10.3390/cells9081901] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) constitute a group of disorders identified by an overproduction of cells derived from myeloid lineage. The majority of MPNs have an identifiable driver mutation responsible for cytokine-independent proliferative signalling. The acquisition of coexisting mutations in chromatin modifiers, spliceosome complex components, DNA methylation modifiers, tumour suppressors and transcriptional regulators have been identified as major pathways for disease progression and leukemic transformation. They also confer different sensitivities to therapeutic options. This review will explore the molecular basis of MPN pathogenesis and specifically examine the impact of coexisting mutations on disease biology and therapeutic options.
Collapse
|
30
|
Hua Y, Wang W, Zheng X, Yang L, Wu H, Hu Z, Li Y, Yue J, Jiang Z, Zhang X, Hou Q, Wu S. NVP-BSK805, an Inhibitor of JAK2 Kinase, Significantly Enhances the Radiosensitivity of Esophageal Squamous Cell Carcinoma in vitro and in vivo. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:745-755. [PMID: 32158193 PMCID: PMC7047839 DOI: 10.2147/dddt.s203048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 01/10/2020] [Indexed: 01/22/2023]
Abstract
Purpose Radiotherapy is one major curative treatment modality for esophageal squamous cell carcinoma (ESCC) patients. This study aimed to find out small-molecular kinase inhibitors, which can significantly enhance the radiosensitivity of ESCC in vitro and in vivo. Materials and Methods Ninety-three kinase inhibitors were tested for their radiosensitizing effect in ESCC cells through high-content screening. The radiosensitizing effect of kinase inhibitors was investigated in vitro by detection of DNA double-strand breaks (DSBs) and clonogenic survival assay. By the establishment of xenograft tumor models in BALB/c nude mice, the radiosensitizing effect of kinase inhibitors was investigated in vivo. Results Among the 93 kinase inhibitors tested, we found NVP-BSK805, an inhibitor of JAK2 kinase, significantly radiosensitized ESCC cells through enhancing DSBs, inhibiting DNA damage repair and arresting cell cycle in G2/M or G0/G1 phase. After treatment with NVP-BSK805, ESCC cells showed decreased clonogenic survival and delayed tumor growth in vivo. JAK2 kinase was highly expressed in tumor tissues of ESCC patients, while rarely expressed in matched normal esophageal epithelial tissues. Survival analysis revealed JAK2 kinase as a prognostic factor of ESCC patients treated with chemoradiotherapy. Conclusion Our study discovered JAK2 kinase as an attractive target to enhance the radiosensitivity of ESCC cells in vitro and in vivo.
Collapse
Affiliation(s)
- Yuhui Hua
- Department of Pharmacy, Hangzhou Cancer Hospital, Hangzhou 310002, People's Republic of China
| | - Weijia Wang
- Department of Pharmacy, Hangzhou Cancer Hospital, Hangzhou 310002, People's Republic of China
| | - Xiaoli Zheng
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou 310002, People's Republic of China
| | - Ling Yang
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou 310002, People's Republic of China
| | - Hongjin Wu
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou 310002, People's Republic of China
| | - Zhaoyang Hu
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou 310002, People's Republic of China
| | - Ying Li
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou 310002, People's Republic of China
| | - Jing Yue
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou 310002, People's Republic of China
| | - Zhenzhen Jiang
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou 310002, People's Republic of China
| | - Xiaoyan Zhang
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou 310002, People's Republic of China
| | - Qiang Hou
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou 310002, People's Republic of China
| | - Shixiu Wu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, People's Republic of China
| |
Collapse
|
31
|
Akiyama H, Umezawa Y, Watanabe D, Okada K, Ishida S, Nogami A, Miura O. Inhibition of USP9X Downregulates JAK2-V617F and Induces Apoptosis Synergistically with BH3 Mimetics Preferentially in Ruxolitinib-Persistent JAK2-V617F-Positive Leukemic Cells. Cancers (Basel) 2020; 12:cancers12020406. [PMID: 32050632 PMCID: PMC7072561 DOI: 10.3390/cancers12020406] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 01/17/2023] Open
Abstract
JAK2-V617F plays a key role in the pathogenesis of myeloproliferative neoplasm. However, its inhibitor ruxolitinib has shown limited clinical efficacies because of the ruxolitinib-persistent proliferation of JAK2-V617F-positive cells. We here demonstrate that the USP9X inhibitor WP1130 or EOAI3402143 (G9) inhibited proliferation and induced apoptosis more efficiently in cells dependent on JAK2-V617F than on cytokine-activated JAK2. WP1130 preferentially downregulated activated and autophosphorylated JAK2-V617F by enhancing its K63-linked polyubiquitination and inducing its aggresomal translocation to block downstream signaling. Furthermore, JAK2-V617F associated physically with USP9X in leukemic HEL cells. Induction of apoptosis by inhibition of USP9X was mediated through the intrinsic mitochondria-mediated pathway, synergistically enhanced by BH3 mimetics, prevented by overexpression of Bcl-xL, and required oxidative stress to activate stress-related MAP kinases p38 and JNK as well as DNA damage responses in HEL cells. Although autophosphorylated JAK2-V617F was resistant to WP1130 in the ruxolitinib-persistent HEL-R cells, these cells expressed Bcl-2 and Bcl-xL at lower levels and showed an increased sensitivity to WP1130 as well as BH3 mimetics as compared with ruxolitinib-naive HEL cells. Thus, USP9X represents a promising target along with anti-apoptotic Bcl-2 family members for novel therapeutic strategies against JAK2-V617F-positive myeloproliferative neoplasms, particularly under the ruxolitinib persistence conditions.
Collapse
Affiliation(s)
- Hiroki Akiyama
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
| | - Yoshihiro Umezawa
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
| | - Daisuke Watanabe
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
| | - Keigo Okada
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
| | - Shinya Ishida
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
| | - Ayako Nogami
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
- Department of Clinical Laboratory, Medical Hospital, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| | - Osamu Miura
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
- Correspondence:
| |
Collapse
|
32
|
Held MA, Greenfest-Allen E, Su S, Stoeckert CJ, Stokes MP, Wojchowski DM. Phospho-PTM proteomic discovery of novel EPO- modulated kinases and phosphatases, including PTPN18 as a positive regulator of EPOR/JAK2 Signaling. Cell Signal 2020; 69:109554. [PMID: 32027948 DOI: 10.1016/j.cellsig.2020.109554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023]
Abstract
The formation of erythroid progenitor cells depends sharply upon erythropoietin (EPO), its cell surface receptor (erythropoietin receptor, EPOR), and Janus kinase 2 (JAK2). Clinically, recombinant human EPO (rhEPO) additionally is an important anti-anemia agent for chronic kidney disease (CKD), myelodysplastic syndrome (MDS) and chemotherapy, but induces hypertension, and can exert certain pro-tumorigenic effects. Cellular signals transduced by EPOR/JAK2 complexes, and the nature of EPO-modulated signal transduction factors, therefore are of significant interest. By employing phospho-tyrosine post-translational modification (p-Y PTM) proteomics and human EPO- dependent UT7epo cells, we have identified 22 novel kinases and phosphatases as novel EPO targets, together with their specific sites of p-Y modification. New kinases modified due to EPO include membrane palmitoylated protein 1 (MPP1) and guanylate kinase 1 (GUK1) guanylate kinases, together with the cytoskeleton remodeling kinases, pseudopodium enriched atypical kinase 1 (PEAK1) and AP2 associated kinase 1 (AAK1). Novel EPO- modified phosphatases include protein tyrosine phosphatase receptor type A (PTPRA), phosphohistidine phosphatase 1 (PHPT1), tensin 2 (TENC1), ubiquitin associated and SH3 domain containing B (UBASH3B) and protein tyrosine phosphatase non-receptor type 18 (PTPN18). Based on PTPN18's high expression in hematopoietic progenitors, its novel connection to JAK kinase signaling, and a unique EPO- regulated PTPN18-pY389 motif which is modulated by JAK2 inhibitors, PTPN18's actions in UT7epo cells were investigated. Upon ectopic expression, wt-PTPN18 promoted EPO dose-dependent cell proliferation, and survival. Mechanistically, PTPN18 sustained the EPO- induced activation of not only mitogen-activated protein kinases 1 and 3 (ERK1/2), AKT serine/threonine kinase 1-3 (AKT), and signal transducer and activator of transcription 5A and 5B (STAT5), but also JAK2. Each effect further proved to depend upon PTPN18's EPO- modulated (p)Y389 site. In analyses of the EPOR and the associated adaptor protein RHEX (regulator of hemoglobinization and erythroid cell expansion), wt-PTPN18 increased high molecular weight EPOR forms, while sharply inhibiting the EPO-induced phosphorylation of RHEX-pY141. Each effect likewise depended upon PTPN18-Y389. PTPN18 thus promotes signals for EPO-dependent hematopoietic cell growth, and may represent a new druggable target for myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Matthew A Held
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States of America
| | - Emily Greenfest-Allen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Su Su
- Molecular Medicine Department, Maine Medical Center Research Institute, Scarborough, ME, 04074, United States of America
| | - Christian J Stoeckert
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Matthew P Stokes
- Proteomics Division, Cell Signaling Technology, Danvers, MA, 01923., United States of America
| | - Don M Wojchowski
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States of America.
| |
Collapse
|
33
|
Balupuri A, Balasubramanian PK, Cho SJ. 3D-QSAR, docking, molecular dynamics simulation and free energy calculation studies of some pyrimidine derivatives as novel JAK3 inhibitors. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
34
|
Thilakasiri PS, Dmello RS, Nero TL, Parker MW, Ernst M, Chand AL. Repurposing of drugs as STAT3 inhibitors for cancer therapy. Semin Cancer Biol 2019; 68:31-46. [PMID: 31711994 DOI: 10.1016/j.semcancer.2019.09.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
Drug repurposing is a valuable approach in delivering new cancer therapeutics rapidly into the clinic. Existing safety and patient tolerability data for drugs already in clinical use represent an untapped resource in terms of identifying therapeutic agents for off-label protein targets. The multicellular effects of STAT3 mediated by a range of various upstream signaling pathways make it an attractive therapeutic target with utility in a range of diseases including cancer, and has led to the development of a variety of STAT3 inhibitors. Moreover, heightened STAT3 transcriptional activation in tumor cells and within the cells of the tumor microenvironment contribute to disease progression. Consequently, there are many STAT3 inhibitors in preclinical development or under evaluation in clinical trials for their therapeutic efficacy predominantly in inflammatory diseases and cancer. Despite these advances, many challenges remain in ultimately providing STAT3 inhibitors to patients as cancer treatments, highlighting the need not only for a better understanding of the mechanisms associated with STAT3 activation, but also how various pharmaceutical agents suppress STAT3 activity in various cancers. In this review we discuss the importance of STAT3-dependent functions in cancer, review the status of compounds designed as direct-acting STAT3 inhibitors, and describe some of the strategies for repurposing of drugs as STAT3 inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Pathum S Thilakasiri
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Rhynelle S Dmello
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Tracy L Nero
- ACRF Rational Drug Discovery Centre, St Vincent's Institute, Melbourne, Vic., Australia; Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Vic., Australia
| | - Michael W Parker
- ACRF Rational Drug Discovery Centre, St Vincent's Institute, Melbourne, Vic., Australia; Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Vic., Australia
| | - Matthias Ernst
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Ashwini L Chand
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia.
| |
Collapse
|
35
|
Ruxolitinib binding to human serum albumin: bioinformatics, biochemical and functional characterization in JAK2V617F + cell models. Sci Rep 2019; 9:16379. [PMID: 31704999 PMCID: PMC6841977 DOI: 10.1038/s41598-019-52852-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022] Open
Abstract
Ruxolitinib is a type I JAK inhibitor approved by FDA for targeted therapy of Philadelphia-negative myeloproliferative neoplasms (MPNs), all characterized by mutations activating the JAK2/STAT signaling pathway. Treatment with ruxolitinib improves constitutional symptoms and splenomegaly. However, patients can become resistant to treatment and chronic therapy has only a mild effect on molecular/pathologic remissions. Drugs interaction with plasma proteins, i.e. human serum albumin (HSA), is an important factor affecting the intensity and duration of their pharmacological actions. Here, the ruxolitinib recognition by the fatty acid binding sites (FAs) 1, 6, 7, and 9 of HSA has been investigated from the bioinformatics, biochemical and/or biological viewpoints. Docking simulations indicate that ruxolitinib binds to multiple sites of HSA. Ruxolitinib binds to the FA1 and FA7 sites of HSA with high affinity (Kr = 3.1 μM and 4.6 μM, respectively, at pH 7.3 and 37.0 °C). Moreover, HSA selectively blocks, in a dose dependent manner, the cytotoxic activity of ruxolitinib in JAK2V617F+ cellular models for MPN, in vitro. Furthermore this event is accompanied by changes in the cell cycle, p27Kip1 and cyclin D3 levels, and JAK/STAT signaling. Given the high plasma concentration of HSA, ruxolitinib trapping may be relevant in vivo.
Collapse
|
36
|
Liau NPD, Laktyushin A, Morris R, Sandow JJ, Nicola NA, Kershaw NJ, Babon JJ. Enzymatic Characterization of Wild-Type and Mutant Janus Kinase 1. Cancers (Basel) 2019; 11:E1701. [PMID: 31683831 PMCID: PMC6896158 DOI: 10.3390/cancers11111701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 01/12/2023] Open
Abstract
Janus kinases (JAKs) are found constitutively associated with cytokine receptors and are present in an inactive state prior to cytokine exposure. Activating mutations of JAKs are causative for a number of leukemias, lymphomas, and myeloproliferative diseases. In particular, the JAK2V617F mutant is found in most human cases of polycythemia vera, a disease characterized by over-production of erythrocytes. The V617F mutation is found in the pseudokinase domain of JAK2 and it leads to cytokine-independent activation of the kinase, as does the orthologous mutation in other JAK-family members. The mechanism whereby this mutation hyperactivates these kinases is not well understood, primarily due to the fact that the full-length JAK proteins are difficult to produce for structural and kinetic studies. Here we have overcome this limitation to perform a series of enzymatic analyses on full-length JAK1 and its constitutively active mutant form (JAK1V658F). Consistent with previous studies, we show that the presence of the pseudokinase domain leads to a dramatic decrease in enzymatic activity with no further decrease from the presence of the FERM or SH2 domains. However, we find that the mutant kinase, in vitro, is indistinguishable from the wild-type enzyme in every measurable parameter tested: KM (ATP), KM (substrate), kcat, receptor binding, thermal stability, activation rate, dephosphorylation rate, and inhibitor affinity. These results show that the V658F mutation does not enhance the intrinsic enzymatic activity of JAK. Rather this data is more consistent with a model in which there are cellular processes and interactions that prevent JAK from being activated in the absence of cytokine and it is these constraints that are affected by disease-causing mutations.
Collapse
Affiliation(s)
- Nicholas P D Liau
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville 3052, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville 3050, VIC, Australia.
| | - Artem Laktyushin
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville 3052, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville 3050, VIC, Australia.
| | - Rhiannon Morris
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville 3052, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville 3050, VIC, Australia.
| | - Jarrod J Sandow
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville 3052, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville 3050, VIC, Australia.
| | - Nicos A Nicola
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville 3052, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville 3050, VIC, Australia.
| | - Nadia J Kershaw
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville 3052, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville 3050, VIC, Australia.
| | - Jeffrey J Babon
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville 3052, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville 3050, VIC, Australia.
| |
Collapse
|
37
|
Cui W, Liu CX, Wang J, Zhang YC, Shen Q, Feng ZH, Wu J, Li JX. An oleanolic acid derivative reduces denervation-induced muscle atrophy via activation of CNTF-mediated JAK2/STAT3 signaling pathway. Eur J Pharmacol 2019; 861:172612. [PMID: 31421088 DOI: 10.1016/j.ejphar.2019.172612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/10/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
Abstract
Denervation caused by sciatic nerve injury has brought great harm to the patients, especially denervation-induced muscle atrophy. The body stress produces a large number of Schwann cells when the sciatic nerve is injured, and the cells secrete some cytokines including ciliary neurotrophic factor (CNTF) that not only play a role in promoting the repair of sciatic nerve, but also maintain the normal physiological function of the muscles surrounding the damaged nerves. CNTF upregulates janus kinase 2 (JAK2) and signal transducers and activators of transcription 3 (STAT3) signals in myoblasts, and consequently accelerates the proliferation and differentiation of myoblasts. This effect on myoblasts is the most effective way to relieve muscle atrophy. Therefore, increasing CNTF is a promising direction to improve muscle atrophy. In the present study, an oleanolic acid derivative, HA-19, increased the proliferation of Schwann cells, and elevated CNTF production of the cells. HA-19 up-regulated the phosphorylation of JAK2 and STAT3 not only by directly acting on myoblasts, but also by increasing the secretion of CNTF of Schwann cells; and consequently, promoted the proliferation and differentiation of myoblasts. In denervation-induced muscle atrophy mice model, treatment with HA-19 significantly increased the weights of tibialis anterior (TA), gastrocnemius (Gastroc.), extensor digitorum longus (EDL), soleus and quadriceps (Quad.) under atrophied state. And, very interestingly, these muscles under normal condition were also strengthened by HA-19. Our finding demonstrated that HA-19 has a great potential as a lead compound for the drug discovery of anti-denervation-induced muscle atrophy.
Collapse
Affiliation(s)
- Wei Cui
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chen-Xi Liu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yu-Chao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qi Shen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhen-Hua Feng
- The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, 210008, China
| | - Jing Wu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Jian-Xin Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
38
|
Li B, Rampal RK, Xiao Z. Targeted therapies for myeloproliferative neoplasms. Biomark Res 2019; 7:15. [PMID: 31346467 PMCID: PMC6636147 DOI: 10.1186/s40364-019-0166-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/10/2019] [Indexed: 01/02/2023] Open
Abstract
The discovery of JAK2V617F and the demonstration that BCR-ABL-negative myeloproliferative neoplasms (MPNs) are driven by abnormal JAK2 activation have led to advances in diagnostic algorithms, prognosis and ultimately also treatment strategies. The JAK 1/2 inhibitor ruxolitinib was a pivotal moment in the treatment of MPNs, representing the first targeted treatment in this field. Despite a weak effect on the cause of the disease itself in MPNs, ruxolitinib improves the clinical state of patients and increases survival in myelofibrosis. In parallel, other JAK inhibitors with potential for pathologic and molecular remissions, less myelosuppression, and with greater selectivity for JAK1 or JAK2, and the ability to overcome JAK inhibitor persistence are in various stages of development. Moreover, many novel classes of targeted agents continue to be investigated in efforts to build on the progress made with ruxolitinib. This article will discuss some of the advances in the targeted therapy in this field in recent years and explore in greater detail some of the most advanced emerging agents as well as those with greatest potential.
Collapse
Affiliation(s)
- Bing Li
- 1MDS and MPN Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China.,2State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Raajit K Rampal
- 3Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Zhijian Xiao
- 1MDS and MPN Centre, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020 China.,2State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
39
|
Kuepper MK, Bütow M, Herrmann O, Ziemons J, Chatain N, Maurer A, Kirschner M, Maié T, Costa IG, Eschweiler J, Koschmieder S, Brümmendorf TH, Müller-Newen G, Schemionek M. Stem cell persistence in CML is mediated by extrinsically activated JAK1-STAT3 signaling. Leukemia 2019; 33:1964-1977. [PMID: 30842608 DOI: 10.1038/s41375-019-0427-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/14/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023]
Abstract
Tyrosine kinase inhibitor (TKI) therapy effectively blocks oncogenic Bcr-Abl signaling and induces molecular remission in the majority of CML patients. However, the disease-driving stem cell population is not fully targeted by TKI therapy in the majority of patients, and leukemic stem cells (LSCs) capable of re-inducing the disease can persist. In TKI-resistant CML, STAT3 inhibition was previously shown to reduce malignant cell survival. Here, we show therapy-resistant cell-extrinsic STAT3 activation in TKI-sensitive CML cells, using cell lines, HoxB8-immortalized murine BM cells, and primary human stem cells. Moreover, we identified JAK1 but not JAK2 as the STAT3-activating kinase by applying JAK1/2 selective inhibitors and genetic inactivation. Employing an IL-6-blocking peptide, we identified IL-6 as a mediator of STAT3 activation. Combined inhibition of Bcr-Abl and JAK1 further reduced CFUs from murine CML BM, human CML MNCs, as well as CD34+ CML cells, and similarly decreased LT-HSCs in a transgenic CML mouse model. In line with these observations, proliferation of human CML CD34+ cells was strongly reduced upon combined Bcr-Abl and JAK1 inhibition. Remarkably, the combinatory therapy significantly induced apoptosis even in quiescent LSCs. Our findings suggest JAK1 as a potential therapeutic target for curative CML therapies.
Collapse
Affiliation(s)
- Maja Kim Kuepper
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Marlena Bütow
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Oliver Herrmann
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Janine Ziemons
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Angela Maurer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Martin Kirschner
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Tiago Maié
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Jörg Eschweiler
- Department of Orthopedics, Aachen University Hospital, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Mirle Schemionek
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
40
|
Stivala S, Codilupi T, Brkic S, Baerenwaldt A, Ghosh N, Hao-Shen H, Dirnhofer S, Dettmer MS, Simillion C, Kaufmann BA, Chiu S, Keller M, Kleppe M, Hilpert M, Buser AS, Passweg JR, Radimerski T, Skoda RC, Levine RL, Meyer SC. Targeting compensatory MEK/ERK activation increases JAK inhibitor efficacy in myeloproliferative neoplasms. J Clin Invest 2019; 129:1596-1611. [PMID: 30730307 DOI: 10.1172/jci98785] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/29/2019] [Indexed: 12/18/2022] Open
Abstract
Constitutive JAK2 signaling is central to myeloproliferative neoplasm (MPN) pathogenesis and results in activation of STAT, PI3K/AKT, and MEK/ERK signaling. However, the therapeutic efficacy of current JAK2 inhibitors is limited. We investigated the role of MEK/ERK signaling in MPN cell survival in the setting of JAK inhibition. Type I and II JAK2 inhibition suppressed MEK/ERK activation in MPN cell lines in vitro, but not in Jak2V617F and MPLW515L mouse models in vivo. JAK2 inhibition ex vivo inhibited MEK/ERK signaling, suggesting that cell-extrinsic factors maintain ERK activation in vivo. We identified PDGFRα as an activated kinase that remains activated upon JAK2 inhibition in vivo, and PDGF-AA/PDGF-BB production persisted in the setting of JAK inhibition. PDGF-BB maintained ERK activation in the presence of ruxolitinib, consistent with its function as a ligand-induced bypass for ERK activation. Combined JAK/MEK inhibition suppressed MEK/ERK activation in Jak2V617F and MPLW515L mice with increased efficacy and reversal of fibrosis to an extent not seen with JAK inhibitors. This demonstrates that compensatory ERK activation limits the efficacy of JAK2 inhibition and dual JAK/MEK inhibition provides an opportunity for improved therapeutic efficacy in MPNs and in other malignancies driven by aberrant JAK-STAT signaling.
Collapse
Affiliation(s)
- Simona Stivala
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Tamara Codilupi
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Sime Brkic
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Anne Baerenwaldt
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Nilabh Ghosh
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Hui Hao-Shen
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stephan Dirnhofer
- Department of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Cedric Simillion
- Department of BioMedical Research, University of Berne, Berne, Switzerland
| | - Beat A Kaufmann
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Sophia Chiu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Matthew Keller
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Maria Kleppe
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Morgane Hilpert
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Andreas S Buser
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| | - Jakob R Passweg
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| | | | - Radek C Skoda
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sara C Meyer
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.,Division of Hematology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
41
|
Feng L, Sun Y, Song P, Xu L, Wu X, Wu X, Shen Y, Sun Y, Kong L, Wu X, Xu Q. Seselin ameliorates inflammation via targeting Jak2 to suppress the proinflammatory phenotype of macrophages. Br J Pharmacol 2019; 176:317-333. [PMID: 30338847 PMCID: PMC6295420 DOI: 10.1111/bph.14521] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/23/2018] [Accepted: 09/24/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Sepsis is a serious clinical condition with a high mortality rate. Anti inflammatory agents have been found to be beneficial for the treatment of sepsis. Here, we have evaluated the anti-inflammatory activity of seselin in models of sepsis and investigated the underlying molecular mechanism(s). EXPERIMENTAL APPROACH In vivo therapeutic effects of seselin was evaluated in two models of sepsis, caecal ligation and puncture or injection of LPS, in C57BL/6 mice. In vitro, anti-inflammatory activity of seselin was assessed with macrophages stimulated with LPS and IFN-γ. Anti inflammatory actions were analysed with immunohistochemical methods, ELISA and Western blotting. Flow cytometry was used to assess markers of macrophage phenotype (pro- or anti-inflammatory). Other methods used included co-immunoprecipitation, cellular thermal shift assay and molecular docking. KEY RESULTS In vivo, seselin clearly ameliorated sepsis induced by caecal ligation and puncture. In lung tissue from septic mice and in cultured macrophages, seselin down-regulated levels of proinflammatory factors and activity of STAT1 and p65, the master signal pathway molecules for polarization of macrophages into the proinflammatory phenotype. Importantly, adoptive transfer of bone marrow-derived macrophages, pretreated with seselin, lowered systemic proinflammatory factors in mice challenged with LPS. The underlying mechanism was that seselin targeted Jak2 to block interaction with IFNγ receptors and downstream STAT1. CONCLUSIONS AND IMPLICATIONS Seselin exhibited anti-inflammatory activity through its action on Jak2. These results indicated a possible application of seselin to the treatment of inflammatory disease via blocking the development of the proinflammatory phenotype of macrophages.
Collapse
Affiliation(s)
- Lili Feng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Life SciencesNanjing UniversityNanjingChina
| | - Yi Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Life SciencesNanjing UniversityNanjingChina
| | - Pingping Song
- Jiangsu Centre for Research and Development of Medicinal Plants, Institute of Botany Jiangsu ProvinceChinese Academy of SciencesNanjingChina
| | - Lisha Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Life SciencesNanjing UniversityNanjingChina
| | - Xingxin Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Life SciencesNanjing UniversityNanjingChina
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Life SciencesNanjing UniversityNanjingChina
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Life SciencesNanjing UniversityNanjingChina
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Life SciencesNanjing UniversityNanjingChina
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Life SciencesNanjing UniversityNanjingChina
| | - Xudong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Life SciencesNanjing UniversityNanjingChina
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Life SciencesNanjing UniversityNanjingChina
| |
Collapse
|
42
|
JAK2V617F but not CALR mutations confer increased molecular responses to interferon-α via JAK1/STAT1 activation. Leukemia 2018; 33:995-1010. [PMID: 30470838 DOI: 10.1038/s41375-018-0295-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023]
Abstract
Pegylated interferon-α (peg-IFNa) treatment induces molecular responses (MR) in patients with myeloproliferative neoplasms (MPNs), including partial MR (PMR) in 30-40% of patients. Here, we compared the efficacy of IFNa treatment in JAK2V617F- vs. calreticulin (CALR)-mutated cells and investigated the mechanisms of differential response. Retrospective analysis of MPN patients treated with peg-IFNa demonstrated that patients harboring the JAK2V617F mutation were more likely to achieve PMR than those with mutated CALR (p = 0.004), while there was no significant difference in hematological response. In vitro experiments confirmed an upregulation of IFN-stimulated genes in JAK2V617F-positive 32D cells as well as patient samples (peripheral blood mononuclear cells and CD34+ hematopoietic stem cells) compared to their CALR-mutated counterparts, and higher IFNa doses were needed to achieve the same IFNa response in CALR- as in JAK2V617F-mutant 32D cells. Additionally, Janus-activated kinase-1 (JAK1) and signal transducers and activators of transcription 1 (STAT1) showed constitutive phosphorylation in JAK2V617F-mutated but not CALR-mutated cells, indicating priming towards an IFNa response. Moreover, IFN-induced growth arrest was counteracted by selective JAK1 inhibition but enhanced by JAK2 inhibition. In conclusion, our data suggest that, clinically, higher doses of IFNa are needed in CALR-mutated vs. JAK2V617F-positive patients and we suggest a model of JAK2V617F-JAK1/STAT1 crosstalk leading to a priming of JAK2V617F-positive cells to IFNa resulting in differential sensitivity.
Collapse
|
43
|
Tvorogov D, Thomas D, Liau NPD, Dottore M, Barry EF, Lathi M, Kan WL, Hercus TR, Stomski F, Hughes TP, Tergaonkar V, Parker MW, Ross DM, Majeti R, Babon JJ, Lopez AF. Accumulation of JAK activation loop phosphorylation is linked to type I JAK inhibitor withdrawal syndrome in myelofibrosis. SCIENCE ADVANCES 2018; 4:eaat3834. [PMID: 30498775 PMCID: PMC6261652 DOI: 10.1126/sciadv.aat3834] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 10/24/2018] [Indexed: 05/13/2023]
Abstract
Treatment of patients with myelofibrosis with the type I JAK (Janus kinase) inhibitor ruxolitinib paradoxically induces JAK2 activation loop phosphorylation and is associated with a life-threatening cytokine-rebound syndrome if rapidly withdrawn. We developed a time-dependent assay to mimic ruxolitinib withdrawal in primary JAK2V617F and CALR mutant myelofibrosis patient samples and observed notable activation of spontaneous STAT signaling in JAK2V617F samples after drug washout. Accumulation of ruxolitinib-induced JAK2 phosphorylation was dose dependent and correlated with rebound signaling and the presence of a JAK2V617F mutation. Ruxolitinib prevented dephosphorylation of a cryptic site involving Tyr1007/1008 in JAK2 blocking ubiquitination and degradation. In contrast, a type II JAK inhibitor, CHZ868, did not induce JAK2 phosphorylation, was not associated with withdrawal signaling, and was superior in the eradication of flow-purified JAK2V617F mutant CD34+ progenitors after drug washout. Type I inhibitor-induced loop phosphorylation may act as a pathogenic signaling node released upon drug withdrawal, especially in JAK2V617F patients.
Collapse
Affiliation(s)
- Denis Tvorogov
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Daniel Thomas
- Division of Hematology, Department of Medicine, Stanford University, Institute for Stem Cell and Regenerative Medicine, Stanford Cancer Institute, Stanford, CA, USA
| | - Nicholas P. D. Liau
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Mara Dottore
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Emma F. Barry
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Maya Lathi
- Division of Hematology, Department of Medicine, Stanford University, Institute for Stem Cell and Regenerative Medicine, Stanford Cancer Institute, Stanford, CA, USA
| | - Winnie L. Kan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Timothy R. Hercus
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Frank Stomski
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Timothy P. Hughes
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute and University of Adelaide, Adelaide, South Australia, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Vinay Tergaonkar
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore
| | - Michael W. Parker
- ACRF Rational Drug Discovery Centre, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - David M. Ross
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute and University of Adelaide, Adelaide, South Australia, Australia
- Flinders University and Medical Centre, Adelaide, South Australia, Australia
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Stanford University, Institute for Stem Cell and Regenerative Medicine, Stanford Cancer Institute, Stanford, CA, USA
| | - Jeffrey J. Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Angel F. Lopez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Corresponding author.
| |
Collapse
|
44
|
Ishida S, Akiyama H, Umezawa Y, Okada K, Nogami A, Oshikawa G, Nagao T, Miura O. Mechanisms for mTORC1 activation and synergistic induction of apoptosis by ruxolitinib and BH3 mimetics or autophagy inhibitors in JAK2-V617F-expressing leukemic cells including newly established PVTL-2. Oncotarget 2018; 9:26834-26851. [PMID: 29928488 PMCID: PMC6003557 DOI: 10.18632/oncotarget.25515] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/13/2018] [Indexed: 11/25/2022] Open
Abstract
The activated JAK2-V617F mutant is very frequently found in myeloproliferative neoplasms (MPNs), and its inhibitor ruxolitinib has been in clinical use, albeit with limited efficacies. Here, we examine the signaling mechanisms from JAK2-V617F and responses to ruxolitinib in JAK2-V617F-positive leukemic cell lines, including PVTL-2, newly established from a patient with post-MPN secondary acute myeloid leukemia, and the widely used model cell line HEL. We have found that ruxolitinib downregulated the mTORC1/S6K/4EBP1 pathway at least partly through inhibition of the STAT5/Pim-2 pathway with concomitant downregulation of c-Myc, MCL-1, and BCL-xL as well as induction of autophagy in these cells. Ruxolitinib very efficiently inhibited proliferation but only modestly induced apoptosis. However, inhibition of BCL-xL/BCL-2 by the BH3 mimetics ABT-737 and navitoclax or BCL-xL by A-1331852 induced caspase-dependent apoptosis involving activation of Bak and Bax synergistically with ruxolitinib in HEL cells. On the other hand, the putative pan-BH3 mimetic obatoclax as well as chloroquine and bafilomycin A1 inhibited autophagy at its late stage and induced apoptosis in PVTL-2 cells synergistically with ruxolitinib. The present study suggests that autophagy as well as the anti-apoptotic BCL-2 family members, regulated at least partly by the mTORC1 pathway downstream of STAT5/Pim-2, protects JAK2-V617F-positive leukemic cells from ruxolitinib-induced apoptosis depending on cell types and may contribute to development of new strategies against JAK2-V617F-positive neoplasms.
Collapse
Affiliation(s)
- Shinya Ishida
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroki Akiyama
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihiro Umezawa
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keigo Okada
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ayako Nogami
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Gaku Oshikawa
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshikage Nagao
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Osamu Miura
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
45
|
Liau NPD, Laktyushin A, Lucet IS, Murphy JM, Yao S, Whitlock E, Callaghan K, Nicola NA, Kershaw NJ, Babon JJ. The molecular basis of JAK/STAT inhibition by SOCS1. Nat Commun 2018. [PMID: 29674694 DOI: 10.1038/s41467‐018‐04013‐1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The SOCS family of proteins are negative-feedback inhibitors of signalling induced by cytokines that act via the JAK/STAT pathway. SOCS proteins can act as ubiquitin ligases by recruiting Cullin5 to ubiquitinate signalling components; however, SOCS1, the most potent member of the family, can also inhibit JAK directly. Here we determine the structural basis of both these modes of inhibition. Due to alterations within the SOCS box domain, SOCS1 has a compromised ability to recruit Cullin5; however, it is a direct, potent and selective inhibitor of JAK catalytic activity. The kinase inhibitory region of SOCS1 targets the substrate binding groove of JAK with high specificity and thereby blocks any subsequent phosphorylation. SOCS1 is a potent inhibitor of the interferon gamma (IFNγ) pathway, however, it does not bind the IFNγ receptor, making its mode-of-action distinct from SOCS3. These findings reveal the mechanism used by SOCS1 to inhibit signalling by inflammatory cytokines.
Collapse
Affiliation(s)
- Nicholas P D Liau
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Artem Laktyushin
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Isabelle S Lucet
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Shenggen Yao
- The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Eden Whitlock
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Kimberley Callaghan
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Nicos A Nicola
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Nadia J Kershaw
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia.
| | - Jeffrey J Babon
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia.
| |
Collapse
|
46
|
Liau NPD, Laktyushin A, Lucet IS, Murphy JM, Yao S, Whitlock E, Callaghan K, Nicola NA, Kershaw NJ, Babon JJ. The molecular basis of JAK/STAT inhibition by SOCS1. Nat Commun 2018; 9:1558. [PMID: 29674694 PMCID: PMC5908791 DOI: 10.1038/s41467-018-04013-1] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/27/2018] [Indexed: 12/22/2022] Open
Abstract
The SOCS family of proteins are negative-feedback inhibitors of signalling induced by cytokines that act via the JAK/STAT pathway. SOCS proteins can act as ubiquitin ligases by recruiting Cullin5 to ubiquitinate signalling components; however, SOCS1, the most potent member of the family, can also inhibit JAK directly. Here we determine the structural basis of both these modes of inhibition. Due to alterations within the SOCS box domain, SOCS1 has a compromised ability to recruit Cullin5; however, it is a direct, potent and selective inhibitor of JAK catalytic activity. The kinase inhibitory region of SOCS1 targets the substrate binding groove of JAK with high specificity and thereby blocks any subsequent phosphorylation. SOCS1 is a potent inhibitor of the interferon gamma (IFNγ) pathway, however, it does not bind the IFNγ receptor, making its mode-of-action distinct from SOCS3. These findings reveal the mechanism used by SOCS1 to inhibit signalling by inflammatory cytokines. Cytokines are key molecules in controlling haematopoiesis that signal via the JAK/STAT pathway. Here the authors present the structures of SOCS1 bound to its JAK1 target as well as in complex with elonginB and elonginC, providing a molecular explanation for the potent JAK- inhibitory activity of SOCS1.
Collapse
Affiliation(s)
- Nicholas P D Liau
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Artem Laktyushin
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Isabelle S Lucet
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Shenggen Yao
- The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Eden Whitlock
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Kimberley Callaghan
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Nicos A Nicola
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia
| | - Nadia J Kershaw
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia.
| | - Jeffrey J Babon
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia. .,The University of Melbourne, Royal Parade, Parkville, VIC, 3050, Australia.
| |
Collapse
|
47
|
Affiliation(s)
- Bogos Agianian
- Department of Biochemistry and Department of Medicine, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Evripidis Gavathiotis
- Department of Biochemistry and Department of Medicine, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
48
|
Nairismägi ML, Gerritsen ME, Li ZM, Wijaya GC, Chia BKH, Laurensia Y, Lim JQ, Yeoh KW, Yao XS, Pang WL, Bisconte A, Hill RJ, Bradshaw JM, Huang D, Song TLL, Ng CCY, Rajasegaran V, Tang T, Tang QQ, Xia XJ, Kang TB, Teh BT, Lim ST, Ong CK, Tan J. Oncogenic activation of JAK3-STAT signaling confers clinical sensitivity to PRN371, a novel selective and potent JAK3 inhibitor, in natural killer/T-cell lymphoma. Leukemia 2018; 32:1147-1156. [PMID: 29434279 PMCID: PMC5940653 DOI: 10.1038/s41375-017-0004-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/17/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023]
Abstract
Aberrant activation of the JAK3-STAT signaling pathway is a characteristic feature of many hematological malignancies. In particular, hyperactivity of this cascade has been observed in natural killer/T-cell lymphoma (NKTL) cases. Although the first-in-class JAK3 inhibitor tofacitinib blocks JAK3 activity in NKTL both in vitro and in vivo, its clinical utilization in cancer therapy has been limited by the pan-JAK inhibition activity. To improve the therapeutic efficacy of JAK3 inhibition in NKTL, we have developed a highly selective and durable JAK3 inhibitor PRN371 that potently inhibits JAK3 activity over the other JAK family members JAK1, JAK2, and TYK2. PRN371 effectively suppresses NKTL cell proliferation and induces apoptosis through abrogation of the JAK3-STAT signaling. Moreover, the activity of PRN371 has a more durable inhibition on JAK3 compared to tofacitinib in vitro, leading to significant tumor growth inhibition in a NKTL xenograft model harboring JAK3 activating mutation. These findings provide a novel therapeutic approach for the treatment of NKTL.
Collapse
Affiliation(s)
- M -L Nairismägi
- Lymphoma Genomic Translational Research Laboratory, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | | | - Z M Li
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - G C Wijaya
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - B K H Chia
- Lymphoma Genomic Translational Research Laboratory, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Y Laurensia
- Lymphoma Genomic Translational Research Laboratory, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - J Q Lim
- Lymphoma Genomic Translational Research Laboratory, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - K W Yeoh
- Department of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - X S Yao
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - W L Pang
- Lymphoma Genomic Translational Research Laboratory, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - A Bisconte
- Principia Biopharma, South San Francisco, CA, USA
| | - R J Hill
- Principia Biopharma, South San Francisco, CA, USA
| | - J M Bradshaw
- Principia Biopharma, South San Francisco, CA, USA
| | - D Huang
- Lymphoma Genomic Translational Research Laboratory, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - T L L Song
- Lymphoma Genomic Translational Research Laboratory, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - C C Y Ng
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - V Rajasegaran
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - T Tang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Q Q Tang
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - X J Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - T B Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - B T Teh
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - S T Lim
- Lymphoma Genomic Translational Research Laboratory, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Office of Education, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - C K Ong
- Lymphoma Genomic Translational Research Laboratory, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore. .,Genome Institute of Singapore, A*STAR, Singapore, Singapore.
| | - J Tan
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore. .,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
49
|
Zhang Q, Shi C, Han L, Jain N, Roberts KG, Ma H, Cai T, Cavazos A, Tabe Y, Jacamo RO, Mu H, Zhao Y, Wang J, Wu SC, Cao F, Zeng Z, Zhou J, Mi Y, Jabbour EJ, Levine R, Tasian SK, Mullighan CG, Weinstock DM, Fruman DA, Konopleva M. Inhibition of mTORC1/C2 signaling improves anti-leukemia efficacy of JAK/STAT blockade in CRLF2 rearranged and/or JAK driven Philadelphia chromosome-like acute B-cell lymphoblastic leukemia. Oncotarget 2018; 9:8027-8041. [PMID: 29487712 PMCID: PMC5814279 DOI: 10.18632/oncotarget.24261] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/09/2018] [Indexed: 12/20/2022] Open
Abstract
Patients with cytokine receptor-like factor 2 rearranged (CRLF2-re) subgroup Philadelphia chromosome-like B-cell acute lymphoblastic leukemia (Ph-like B-ALL) have a high relapse rate and poor clinical outcomes. CRFL2-re Ph-like B-ALL is characterized by heightened activation of multiple signaling pathways, including the JAK/STAT and PI3K/AKT/mTOR pathways. We hypothesized that the combined inhibition by JAK2 and mTOR inhibitors would induce an additive antileukemia effect in CRLF2-re Ph-like B-ALL. In this study, we tested the antileukemia efficacy of the type I JAK inhibitor ruxolitinib and type II JAK inhibitor NVP-BBT594 (hereafter abbreviated BBT594) [1] alone and combined with allosteric mTOR inhibitor rapamycin and a second generation ATP-competitive mTOR kinase inhibitor AZD2014. We found that BBT594/AZD2014 combination produced robust anti-leukemic effects in Ph-like cell lines in vitro and in patient-derived xenograft (PDX) cells cultured ex vivo. JAK2/mTOR inhibition arrested the cell cycle and reduced cell survival to a greater extent in Ph-like B-ALL cells with CRLF2-re and JAK2 mutation. Synergistic cell killing was associated with the greater inhibition of JAK2 phosphorylation by BBT594 than by ruxolitinib and the greater inhibition of AKT and 4E-BP1 phosphorylation by AZD2014 than by rapamycin. In vivo, BBT594/AZD2014 co-treatment was most efficacious in reducing spleen size in three Ph-like PDX models, and markedly depleted bone marrow and spleen ALL cells in an ATF7IP-JAK2 fusion PDX. In summary, combined inhibition of JAK/STAT and mTOR pathways by next-generation inhibitors had promising antileukemia efficacy in preclinical models of CRFL2-re Ph-like B-ALL.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Ce Shi
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,Department of Hematology, The First Hospital Affiliated Harbin Medical University, Harbin, China
| | - Lina Han
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.,Department of Hematology, The First Hospital Affiliated Harbin Medical University, Harbin, China
| | - Nitin Jain
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Helen Ma
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Tianyu Cai
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Antonio Cavazos
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Yoko Tabe
- Department of Next Generation Hematology Laboratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Rodrigo O Jacamo
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Hong Mu
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Yang Zhao
- Department of Bioinformatics & Comp Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics & Comp Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Shuo-Chieh Wu
- Department of Medical Oncology/Hematologic Neoplasia, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Fenglin Cao
- Department of Hematology, The First Hospital Affiliated Harbin Medical University, Harbin, China
| | - Zhihong Zeng
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jin Zhou
- Department of Hematology, The First Hospital Affiliated Harbin Medical University, Harbin, China
| | - Yingchang Mi
- Department of Leukemia, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Elias J Jabbour
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Ross Levine
- Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David M Weinstock
- Department of Medical Oncology/Hematologic Neoplasia, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David A Fruman
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
50
|
Vainchenker W, Leroy E, Gilles L, Marty C, Plo I, Constantinescu SN. JAK inhibitors for the treatment of myeloproliferative neoplasms and other disorders. F1000Res 2018; 7:82. [PMID: 29399328 PMCID: PMC5773931 DOI: 10.12688/f1000research.13167.1] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2018] [Indexed: 01/04/2023] Open
Abstract
JAK inhibitors have been developed following the discovery of the
JAK2V617F in 2005 as the driver mutation of the majority of non-
BCR-ABL1 myeloproliferative neoplasms (MPNs). Subsequently, the search for JAK2 inhibitors continued with the discovery that the other driver mutations (
CALR and
MPL) also exhibited persistent JAK2 activation. Several type I ATP-competitive JAK inhibitors with different specificities were assessed in clinical trials and exhibited minimal hematologic toxicity. Interestingly, these JAK inhibitors display potent anti-inflammatory activity. Thus, JAK inhibitors targeting preferentially JAK1 and JAK3 have been developed to treat inflammation, autoimmune diseases, and graft-versus-host disease. Ten years after the beginning of clinical trials, only two drugs have been approved by the US Food and Drug Administration: one JAK2/JAK1 inhibitor (ruxolitinib) in intermediate-2 and high-risk myelofibrosis and hydroxyurea-resistant or -intolerant polycythemia vera and one JAK1/JAK3 inhibitor (tofacitinib) in methotrexate-resistant rheumatoid arthritis. The non-approved compounds exhibited many off-target effects leading to neurological and gastrointestinal toxicities, as seen in clinical trials for MPNs. Ruxolitinib is a well-tolerated drug with mostly anti-inflammatory properties. Despite a weak effect on the cause of the disease itself in MPNs, it improves the clinical state of patients and increases survival in myelofibrosis. This limited effect is related to the fact that ruxolitinib, like the other type I JAK2 inhibitors, inhibits equally mutated and wild-type JAK2 (JAK2WT) and also the JAK2 oncogenic activation. Thus, other approaches need to be developed and could be based on either (1) the development of new inhibitors specifically targeting
JAK2V617F or (2) the combination of the actual JAK2 inhibitors with other therapies, in particular with molecules targeting pathways downstream of JAK2 activation or the stability of JAK2 molecule. In contrast, the strong anti-inflammatory effects of the JAK inhibitors appear as a very promising therapeutic approach for many inflammatory and auto-immune diseases.
Collapse
Affiliation(s)
- William Vainchenker
- INSERM UMR 1170, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, UMR1170, Gustave Roussy, Villejuif, France.,UMR 1170, Gustave Roussy, Villejuif, France
| | - Emilie Leroy
- Signal Transduction & Molecular Hematology Unit, Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Laure Gilles
- Institut National de la Transfusion Sanguine, Paris, France
| | - Caroline Marty
- INSERM UMR 1170, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, UMR1170, Gustave Roussy, Villejuif, France.,UMR 1170, Gustave Roussy, Villejuif, France
| | - Isabelle Plo
- INSERM UMR 1170, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, UMR1170, Gustave Roussy, Villejuif, France.,UMR 1170, Gustave Roussy, Villejuif, France
| | - Stefan N Constantinescu
- Signal Transduction & Molecular Hematology Unit, Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|