1
|
Gambi G, Boccalatte F, Rodriguez Hernaez J, Lin Z, Nadorp B, Polyzos A, Tan J, Avrampou K, Inghirami G, Kentsis A, Apostolou E, Aifantis I, Tsirigos A. 3D chromatin hubs as regulatory units of identity and survival in human acute leukemia. Mol Cell 2025; 85:42-60.e7. [PMID: 39719705 DOI: 10.1016/j.molcel.2024.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/23/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024]
Abstract
Cancer progression involves genetic and epigenetic changes that disrupt chromatin 3D organization, affecting enhancer-promoter interactions and promoting growth. Here, we provide an integrative approach, combining chromatin conformation, accessibility, and transcription analysis, validated by in silico and CRISPR-interference screens, to identify relevant 3D topologies in pediatric T cell leukemia (T-ALL and ETP-ALL). We characterize 3D hubs as regulatory centers for oncogenes and disease markers, linking them to biological processes like cell division, inflammation, and stress response. Single-cell mapping reveals heterogeneous gene activation in discrete epigenetic clones, aiding in patient stratification for relapse risk after chemotherapy. Finally, we identify MYB as a 3D hub regulator in leukemia cells and show that the targeting of key regulators leads to hub dissolution, thereby providing a novel and effective anti-leukemic strategy. Overall, our work demonstrates the relevance of studying oncogenic 3D hubs to better understand cancer biology and tumor heterogeneity and to propose novel therapeutic strategies.
Collapse
Affiliation(s)
- Giovanni Gambi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Francesco Boccalatte
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy.
| | - Javier Rodriguez Hernaez
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA
| | - Ziyan Lin
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA
| | - Bettina Nadorp
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA
| | - Alexander Polyzos
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jimin Tan
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA
| | - Kleopatra Avrampou
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute and Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Departments of Pediatrics, Pharmacology, Physiology & Biophysics, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Iannis Aifantis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA; Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
| | - Aristotelis Tsirigos
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Tian M, Tang X, Ouyang Z, Li Y, Bai X, Chen B, Yue S, Hu P, Bo X, Ren C, Chen H, Lu M. Long-range transcription factor binding sites clustered regions may mediate transcriptional regulation through phase-separation interactions in early human embryo. Comput Struct Biotechnol J 2024; 23:3514-3526. [PMID: 39435341 PMCID: PMC11492133 DOI: 10.1016/j.csbj.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
In mammals, during the post-fertilization pre-implantation phase, the expression of cell type-specific genes is crucial for normal embryonic development, which is regulated by cis-regulatory elements (CREs). TFs control gene expression by interacting with CREs. Research shows that transcription factor binding sites (TFBSs) reflect the general characteristics of the regulatory genome. Here, we identified TFBSs from chromatin accessibility data in five stages of early human embryonic development, and quantified transcription factor binding sites-clustered regions (TFCRs) and their complexity (TC). Assigning TC values to TFCRs has made it possible to assess the functionality of these regulatory elements in a more quantitative way. Our findings reveal a robust correlation between TFCR complexity and gene expression starting from the 8Cell stage, which is when the zygotic genome is activated in humans. Furthermore, we have defined long-range TFCRs (LR-TFCRs) and conjecture that LR-TFCRs may regulate gene expression through phase-separation mechanisms during the early stages of human embryonic development.
Collapse
Affiliation(s)
- Mengge Tian
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Xiaohan Tang
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Zhangyi Ouyang
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Yaru Li
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Xuemei Bai
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Bijia Chen
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Shutong Yue
- Academy of Military Medical Sciences, Beijing 100850, China
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Pengzhen Hu
- Academy of Military Medical Sciences, Beijing 100850, China
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xiaochen Bo
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Chao Ren
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Hebing Chen
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Meisong Lu
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
3
|
Ming Y, Gong Y, Fu X, Ouyang X, Peng Y, Pu W. Small-molecule-based targeted therapy in liver cancer. Mol Ther 2024; 32:3260-3287. [PMID: 39113358 PMCID: PMC11489561 DOI: 10.1016/j.ymthe.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Liver cancer is one of the most prevalent malignant tumors worldwide. According to the Barcelona Clinic Liver Cancer staging criteria, clinical guidelines provide tutorials to clinical management of liver cancer at their individual stages. However, most patients diagnosed with liver cancer are at advanced stage; therefore, many researchers conduct investigations on targeted therapy, aiming to improve the overall survival of these patients. To date, small-molecule-based targeted therapies are highly recommended (first line: sorafenib and lenvatinib; second line: regorafenib and cabozantinib) by current the clinical guidelines of the American Society of Clinical Oncology, European Society for Medical Oncology, and National Comprehensive Cancer Network. Herein, we summarize the small-molecule-based targeted therapies in liver cancer, including the approved and preclinical therapies as well as the therapies under clinical trials, and introduce their history of discovery, clinical trials, indications, and molecular mechanisms. For drug resistance, the revealed mechanisms of action and the combination therapies are also discussed. In fact, the known small-molecule-based therapies still have limited clinical benefits to liver cancer patients. Therefore, we analyze the current status and give our ideas for the urgent issues and future directions in this field, suggesting clues for novel techniques in liver cancer treatment.
Collapse
Affiliation(s)
- Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuewen Fu
- Jinhua Huanke Environmental Technology Co., Ltd., Jinhua 321000, China
| | - Xinyu Ouyang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Hsu CY, Faisal A, Jumaa SS, Gilmanova NS, Ubaid M, Athab AH, Mirzaei R, Karampoor S. Exploring the impact of circRNAs on cancer glycolysis: Insights into tumor progression and therapeutic strategies. Noncoding RNA Res 2024; 9:970-994. [PMID: 38770106 PMCID: PMC11103225 DOI: 10.1016/j.ncrna.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024] Open
Abstract
Cancer cells exhibit altered metabolic pathways, prominently featuring enhanced glycolytic activity to sustain their rapid growth and proliferation. Dysregulation of glycolysis is a well-established hallmark of cancer and contributes to tumor progression and resistance to therapy. Increased glycolysis supplies the energy necessary for increased proliferation and creates an acidic milieu, which in turn encourages tumor cells' infiltration, metastasis, and chemoresistance. Circular RNAs (circRNAs) have emerged as pivotal players in diverse biological processes, including cancer development and metabolic reprogramming. The interplay between circRNAs and glycolysis is explored, illuminating how circRNAs regulate key glycolysis-associated genes and enzymes, thereby influencing tumor metabolic profiles. In this overview, we highlight the mechanisms by which circRNAs regulate glycolytic enzymes and modulate glycolysis. In addition, we discuss the clinical implications of dysregulated circRNAs in cancer glycolysis, including their potential use as diagnostic and prognostic biomarkers. All in all, in this overview, we provide the most recent findings on how circRNAs operate at the molecular level to control glycolysis in various types of cancer, including hepatocellular carcinoma (HCC), prostate cancer (PCa), colorectal cancer (CRC), cervical cancer (CC), glioma, non-small cell lung cancer (NSCLC), breast cancer, and gastric cancer (GC). In conclusion, this review provides a comprehensive overview of the significance of circRNAs in cancer glycolysis, shedding light on their intricate roles in tumor development and presenting innovative therapeutic avenues.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, 85004, USA
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Sally Salih Jumaa
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Nataliya Sergeevna Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia, Moscow
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Aya H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom & Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal & Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Picard LC, Rich FJ, Kenwright DN, Stevens AJ. Epigenetic changes associated with Bacillus Calmette-Guerin (BCG) treatment in bladder cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189123. [PMID: 38806074 DOI: 10.1016/j.bbcan.2024.189123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
Bacillus Calmette-Guérin (BCG) treatment for non-muscle invasive bladder cancer (NMIBC) is an established immunotherapeutic, however, a significant portion of patients do not respond to treatment. Despite extensive research into the therapeutic mechanism of BCG, gaps remain in our understanding. This review specifically focuses on the epigenomic contributions in the immune microenvironment, in the context of BCG treatment for NMIBC. We also summarise the current understanding of NMIBC epigenetic characteristics, and discuss how future targeted strategies for BCG therapy should incorporate epigenomic biomarkers in conjunction with genomic biomarkers.
Collapse
Affiliation(s)
- Lucy C Picard
- University of Otago, Wellington, Department of Pathology and Molecular Medicine, Wellington 6021, New Zealand
| | - Fenella J Rich
- University of Otago, Wellington, Department of Pathology and Molecular Medicine, Wellington 6021, New Zealand
| | - Diane N Kenwright
- University of Otago, Wellington, Department of Pathology and Molecular Medicine, Wellington 6021, New Zealand
| | - Aaron J Stevens
- University of Otago, Wellington, Department of Pathology and Molecular Medicine, Wellington 6021, New Zealand.
| |
Collapse
|
6
|
Yang XJ, Xu YF, Zhu Q. SPOP expression is associated with tumor-infiltrating lymphocytes in pancreatic cancer. PLoS One 2024; 19:e0306994. [PMID: 39074086 DOI: 10.1371/journal.pone.0306994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Speckle Type POZ Protein (SPOP), despite its tumor type-dependent role in tumorigenesis, primarily as a tumor suppressor gene is associated with a variety of different cancers. However, its function in pancreatic cancer remains uncertain. METHODS SPOP expression and the association between its expression and patient prognosis and immune function were evaluated using The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), The Tumor Immune Estimation Resource 2.0 (TIMER2.0) database, cBioportal, and various bioinformatic databases. Enrichment analysis of SPOP and the association between SPOP expression with clinical stage and grade were analyzed using the R software package. Then immunohistochemistry (IHC) was used to estimate the correlation between SPOP and tumor-infiltrating lymphocytes (TILs) in patients with pancreatic cancer. RESULTS As part of our study, we assessed that SPOP was anomalously expressed in kinds of cancers, associated with clinical stage and outcomes. Meanwhile, SPOP also played a crucial role in the tumor microenvironment (TME). The expression level of SPOP was significantly correlated to tumor-infiltrating immune cells (TICs) in pancreatic cancer. CONCLUSIONS Our study uncovered the potential corrections in SPOP with TICs, suggesting that SPOP may act as a biomarker for immunotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Xiao Juan Yang
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yong Feng Xu
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Qing Zhu
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
7
|
Zhang Y, Sun X, Li Z, Han X, Wang W, Xu P, Liu Y, Xue Y, Wang Z, Xu S, Wang X, Li G, Tian Y, Zhao Q. Interactions between miRNAs and the Wnt/β-catenin signaling pathway in endometriosis. Biomed Pharmacother 2024; 171:116182. [PMID: 38262146 DOI: 10.1016/j.biopha.2024.116182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024] Open
Abstract
Endometriosis is a disease characterized by the ectopic growth of endometrial tissue (glands and stroma) outside the confines of the uterus and often involves vital organs such as the intestines and urinary system. Endometriosis is considered a refractory disease owing to its enigmatic etiology, propensity for recurrence following conservative or surgical interventions, and the absence of radical treatment and long-term management. In recent years, the incidence of endometriosis has gradually increased, rendering it a pressing concern among women of childbearing age. A more profound understanding of its pathogenesis can significantly improve prognosis. Recent research endeavors have spotlighted the molecular mechanisms by which microRNAs (miRNAs) regulate the occurrence and progression of endometriosis. Many miRNAs have been reported to be aberrantly expressed in the affected tissues of both patients and animal models. These miRNAs actively participate in the regulation of inflammatory reactions, cellular proliferation, angiogenesis, and tissue remodeling. Their capacity to modulate crucial signaling pathways, such as the Wnt/β-catenin signaling pathway, reinforces their potential utility as diagnostic markers or therapeutic agents for endometriosis. In this review, we provide the latest insights into the role of miRNAs that interact with the Wnt/β-catenin pathway to regulate the biological behaviors of endometriosis cells and disease-related symptoms, such as pain and infertility. We hope that this review will provide novel insights and promising targets for innovative therapies addressing endometriosis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Xueyu Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China; Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China
| | - Zhongkang Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Xianhong Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Wenjun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Penglin Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Yangyang Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Yuna Xue
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Zhe Wang
- Department of Basic Medicine, Chengde Medical College, Chengde, Hebei 067000, PR China
| | - Shuling Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Xueying Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Gailing Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Yanpeng Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China.
| | - Qian Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China.
| |
Collapse
|
8
|
Hussain MS, Altamimi ASA, Afzal M, Almalki WH, Kazmi I, Alzarea SI, Saleem S, Prasher P, Oliver B, Singh SK, MacLoughlin R, Dua K, Gupta G. From carcinogenesis to therapeutic avenues: lncRNAs and mTOR crosstalk in lung cancer. Pathol Res Pract 2024; 253:155015. [PMID: 38103364 DOI: 10.1016/j.prp.2023.155015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to have a crucial function in the modulation of the activity of genes, impacting a variety of homeostatic processes involving growth, survival, movement, and genomic consistency. Certain lncRNAs' aberrant expression has been linked to carcinogenesis, tumor growth, and therapeutic resistance. They are beneficial for the management of malignancies since they can function as cancer-causing or cancer-suppressing genes and behave as screening or prognosis indicators. The modulation of the tumor microenvironment, metabolic modification, and spread have all been linked to lncRNAs in lung cancer. Recent research has indicated that lncRNAs may interact with various mTOR signalling systems to control expression in lung cancer. Furthermore, the route can affect how lncRNAs are expressed. Emphasizing the function of lncRNAs as crucial participants in the mTOR pathway, the current review intends to examine the interactions between the mTOR cascade and the advancement of lung cancer. The article will shed light on the roles and processes of a few lncRNAs associated with the development of lung cancer, as well as their therapeutic prospects.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- ōDepartment of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun 248007, India
| | - Brian Oliver
- Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia; Woolcock Institute of Medical Research, Macquarie university, Sydney, NSW, 2137
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ronan MacLoughlin
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster D02 YN77, Ireland; School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster D02 PN40, Ireland; Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, H91 HE94 Galway, Ireland
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India.
| |
Collapse
|
9
|
Alharthi NS, Al-Zahrani MH, Hazazi A, Alhuthali HM, Gharib AF, Alzahrani S, Altalhi W, Almalki WH, Khan FR. Exploring the lncRNA-VEGF axis: Implications for cancer detection and therapy. Pathol Res Pract 2024; 253:154998. [PMID: 38056133 DOI: 10.1016/j.prp.2023.154998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Cancer is a complicated illness that spreads indefinitely owing to epigenetic, genetic, and genomic alterations. Cancer cell multidrug susceptibility represents a severe barrier in cancer therapy. As a result, creating effective therapies requires a better knowledge of the mechanisms driving cancer development, progress, and resistance to medications. The human genome is predominantly made up of long non coding RNAs (lncRNAs), which are currently identified as critical moderators in a variety of biological functions. Recent research has found that changes in lncRNAs are closely related to cancer biology. The vascular endothelial growth factor (VEGF) signalling system is necessary for angiogenesis and vascular growth and has been related to an array of health illnesses, such as cancer. LncRNAs have been identified to alter a variety of cancer-related processes, notably the division of cells, movement, angiogenesis, and treatment sensitivity. Furthermore, lncRNAs may modulate immune suppression and are being investigated as possible indicators for early identification of cancer. Various lncRNAs have been associated with cancer development and advancement, serving as cancer-causing or suppressing genes. Several lncRNAs have been demonstrated through research to impact the VEGF cascade, resulting in changes in angiogenesis and tumor severity. For example, the lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been shown to foster the formation of oral squamous cell carcinoma and the epithelial-mesenchymal transition by stimulating the VEGF-A and Notch systems. Plasmacytoma variant translocation 1 (PVT1) promotes angiogenesis in non-small-cell lung cancer by affecting miR-29c and boosting the VEGF cascade. Furthermore, lncRNAs regulate VEGF production and angiogenesis by interacting with multiple downstream signalling networks, including Wnt, p53, and AKT systems. Identifying how lncRNAs engage with the VEGF cascade in cancer gives beneficial insights into tumor biology and possible treatment strategies. Exploring the complicated interaction between lncRNAs and the VEGF pathway certainly paves avenues for novel ways to detect better accurately, prognosis, and cure cancers. Future studies in this area could open avenues toward the creation of innovative cancer therapy regimens that enhance the lives of patients.
Collapse
Affiliation(s)
- Nahed S Alharthi
- Department of Medical Laboratory, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudia Arabia
| | | | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Hayaa Moeed Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amal F Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Shatha Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Wafa Altalhi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Farhan R Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences AlQuwayiyah, Shaqra University, Saudi Arabia.
| |
Collapse
|
10
|
Ng M, Verboon L, Issa H, Bhayadia R, Vermunt MW, Winkler R, Schüler L, Alejo O, Schuschel K, Regenyi E, Borchert D, Heuser M, Reinhardt D, Yaspo ML, Heckl D, Klusmann JH. Myeloid leukemia vulnerabilities embedded in long noncoding RNA locus MYNRL15. iScience 2023; 26:107844. [PMID: 37766974 PMCID: PMC10520325 DOI: 10.1016/j.isci.2023.107844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The noncoding genome presents a largely untapped source of new biological insights, including thousands of long noncoding RNA (lncRNA) loci. While lncRNA dysregulation has been reported in myeloid malignancies, their functional relevance remains to be systematically interrogated. We performed CRISPRi screens of lncRNA signatures from normal and malignant hematopoietic cells and identified MYNRL15 as a myeloid leukemia dependency. Functional dissection suggests an RNA-independent mechanism mediated by two regulatory elements embedded in the locus. Genetic perturbation of these elements triggered a long-range chromatin interaction and downregulation of leukemia dependency genes near the gained interaction sites, as well as overall suppression of cancer dependency pathways. Thus, this study describes a new noncoding myeloid leukemia vulnerability and mechanistic concept for myeloid leukemia. Importantly, MYNRL15 perturbation caused strong and selective impairment of leukemia cells of various genetic backgrounds over normal hematopoietic stem and progenitor cells in vitro, and depletion of patient-derived xenografts in vivo.
Collapse
Affiliation(s)
- Michelle Ng
- Department of Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Lonneke Verboon
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hasan Issa
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Raj Bhayadia
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marit Willemijn Vermunt
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Robert Winkler
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Leah Schüler
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oriol Alejo
- Department of Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Konstantin Schuschel
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eniko Regenyi
- Department of Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Dorit Borchert
- Department of Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Dirk Reinhardt
- Clinic for Pediatrics III, University Hospital Essen, 45147 Essen, Germany
| | - Marie-Laure Yaspo
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Dirk Heckl
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
| | - Jan-Henning Klusmann
- Department of Pediatrics, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60323 Frankfurt (Main), Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
11
|
Postwala H, Shah Y, Parekh PS, Chorawala MR. Unveiling the genetic and epigenetic landscape of colorectal cancer: new insights into pathogenic pathways. Med Oncol 2023; 40:334. [PMID: 37855910 DOI: 10.1007/s12032-023-02201-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023]
Abstract
Colorectal cancer (CRC) is a complex disease characterized by genetic and epigenetic alterations, playing a crucial role in its development and progression. This review aims to provide insights into the emerging landscape of these alterations in CRC pathogenesis to develop effective diagnostic tools and targeted therapies. Genetic alterations in signaling pathways such as Wnt/β-catenin, and PI3K/Akt/mTOR are pivotal in CRC development. Genetic profiling has identified distinct molecular subtypes, enabling personalized treatment strategies. Epigenetic modifications, including DNA methylation and histone modifications, also contribute to CRC pathogenesis by influencing critical cellular processes through gene silencing or activation. Non-coding RNAs have emerged as essential players in epigenetic regulation and CRC progression. Recent research highlights the interplay between genetic and epigenetic alterations in CRC. Genetic mutations can affect epigenetic modifications, leading to dysregulated gene expression and signaling cascades. Conversely, epigenetic changes can modulate genetic expression, amplifying or dampening the effects of genetic alterations. Advancements in understanding pathogenic pathways have potential clinical applications. Identifying genetic and epigenetic markers as diagnostic and prognostic biomarkers promises more accurate risk assessment and early detection. Challenges remain, including validating biomarkers and developing robust therapeutic strategies through extensive research and clinical trials. The dynamic nature of genetic and epigenetic alterations necessitates a comprehensive understanding of their temporal and spatial patterns during CRC progression. In conclusion, the genetic and epigenetic landscape of CRC is increasingly being unraveled, providing valuable insights into its pathogenesis. Integrating genetic and epigenetic knowledge holds great potential for improving diagnostics, prognostics, and personalized therapies in CRC. Continued research efforts are vital to translate these findings into clinical practice, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Priyajeet S Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, Florida, 32211, USA
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
12
|
Zhou L, Guo H, Liao Q, Zou J, Le Y, Fang Z, Xiong J, Huang S, Deng J, Xiang X. miR-3133 inhibits gastrointestinal cancer progression through activation of Hippo and p53 signalling pathways via multi-targets. J Cell Mol Med 2023; 27:3090-3106. [PMID: 37555915 PMCID: PMC10568676 DOI: 10.1111/jcmm.17880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Malignant cell growth and chemoresistance, the main obstacles in treating gastrointestinal cancer (GIC), rely on the Hippo and p53 signalling pathways. However, the upstream regulatory mechanisms of these pathways remain complex and poorly understood. METHODS Immunohistochemistry (IHC), western blot and RT-qPCR were used to analyse the expression of RNF146, miR-3133 and key components of Hippo and p53 pathway. CCK-8, colony formation, drug sensitivity assays and murine xenograft models were used to investigate the effect of RNF146 and miR-3133 in GIC. Further exploration of the upstream regulatory mechanism was performed using bioinformatics analysis, dual-luciferase reporter gene, immunoprecipitation assays and bisulfite sequencing PCR (BSP). RESULTS Clinical samples, in vitro and in vivo experiments demonstrated that RNF146 exerts oncogenic effects in GIC by regulating the Hippo pathway. Bioinformatics analysis identified a novel miRNA, miR-3133, as an upstream regulatory factor of RNF146. fluorescence in situ hybridization and RT-qPCR assays revealed that miR-3133 was less expressed in gastrointestinal tumour tissues and was associated with adverse pathological features. Functional assays and animal models showed that miR-3133 promoted the proliferation and chemotherapy sensitivity of GIC cells. miR-3133 affected YAP1 protein expression by targeting RNF146, AGK and CUL4A, thus activating the Hippo pathway. miR-3133 inhibited p53 protein degradation and extended p53's half-life by targeting USP15, SPIN1. BSP experiments confirmed that miR-3133 promoter methylation is an important reason for its low expression. CONCLUSION miR-3133 inhibits GIC progression by activating the Hippo and p53 signalling pathways via multi-targets, including RNF146, thereby providing prognostic factors and valuable potential therapeutic targets for GIC.
Collapse
Affiliation(s)
- Ling Zhou
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| | - Hui Guo
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| | - Quan Liao
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| | - Jianping Zou
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| | - Yi Le
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| | - Ziling Fang
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| | - Jianping Xiong
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| | - Shanshan Huang
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| | - Jun Deng
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| | - Xiaojun Xiang
- Department of OncologyThe First Affiliated Hospital of Nanchang UniversityNanchangChina
- Jiangxi Key Laboratory for Individualized Cancer TherapyNanchangChina
| |
Collapse
|
13
|
Yang X, Du Y, Luo L, Xu X, Xiong S, Yang X, Guo L, Liang T. Deciphering the Enigmatic Influence: Non-Coding RNAs Orchestrating Wnt/β-Catenin Signaling Pathway in Tumor Progression. Int J Mol Sci 2023; 24:13909. [PMID: 37762212 PMCID: PMC10530696 DOI: 10.3390/ijms241813909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Dysregulated expression of specific non-coding RNAs (ncRNAs) has been strongly linked to tumorigenesis, cancer progression, and therapeutic resistance. These ncRNAs can act as either oncogenes or tumor suppressors, thereby serving as valuable diagnostic and prognostic markers. Numerous studies have implicated the participation of ncRNAs in the regulation of diverse signaling pathways, including the pivotal Wnt/β-catenin signaling pathway that is widely acknowledged for its pivotal role in embryogenesis, cellular proliferation, and tumor biology control. Recent emerging evidence has shed light on the capacity of ncRNAs to interact with key components of the Wnt/β-catenin signaling pathway, thereby modulating the expression of Wnt target genes in cancer cells. Notably, the activity of this pathway can reciprocally influence the expression levels of ncRNAs. However, comprehensive analysis investigating the specific ncRNAs associated with the Wnt/β-catenin signaling pathway and their intricate interactions in cancer remains elusive. Based on these noteworthy findings, this review aims to unravel the intricate associations between ncRNAs and the Wnt/β-catenin signaling pathway during cancer initiation, progression, and their potential implications for therapeutic interventions. Additionally, we provide a comprehensive overview of the characteristics of ncRNAs and the Wnt/β-catenin signaling pathway, accompanied by a thorough discussion of their functional roles in tumor biology. Targeting ncRNAs and molecules associated with the Wnt/β-catenin signaling pathway may emerge as a promising and effective therapeutic strategy in future cancer treatments.
Collapse
Affiliation(s)
- Xinbing Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.); (L.L.); (X.X.)
| | - Yajing Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.); (L.L.); (X.X.)
| | - Lulu Luo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.); (L.L.); (X.X.)
| | - Xinru Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.); (L.L.); (X.X.)
| | - Shizheng Xiong
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (X.Y.)
| | - Xueni Yang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (X.Y.)
| | - Li Guo
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (X.Y.)
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.); (L.L.); (X.X.)
| |
Collapse
|
14
|
Hu J, Lin H, Wang C, Su Q, Cao B. METTL14‑mediated RNA methylation in digestive system tumors. Int J Mol Med 2023; 52:86. [PMID: 37539726 PMCID: PMC10555478 DOI: 10.3892/ijmm.2023.5289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
N6‑methyladenosine (m6A) RNA methylation is one of the most common post‑transcriptional modification mechanism in eukaryotes. m6A is involved in almost all stages of the mRNA life cycle, specifically regulating its stability, splicing, export and translation. Methyltransferase‑like 14 (METTL14) is a particularly important m6A methylation 'writer' that can recognize RNA substrates. METTL14 has been documented to improve the activity and catalytic efficiency of METTL3. However, as individual proteins they can also regulate different biological processes. Malignancies in the digestive system are some of the most common malignancies found in humans, which are typically associated with poor prognoses with limited clinical solutions. METTL14‑mediated methylation has been implicated in both the potentiation and inhibition of digestive system tumor growth, cell invasion and metastasis, in addition to drug resistance. In the present review, the research progress and regulatory mechanisms of METTL14‑mediated methylation in digestive system malignancies were summarized. In addition, future research directions and the potential for its clinical application were examined.
Collapse
Affiliation(s)
- Jiexuan Hu
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Haishan Lin
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Cong Wang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Qiang Su
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
15
|
Mahdi Khanifar M, Zafari Z, Sheykhhasan M. Crosstalk between long non-coding RNAs and p53 signaling pathway in colorectal cancer: A review study. Pathol Res Pract 2023; 249:154756. [PMID: 37611430 DOI: 10.1016/j.prp.2023.154756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide and the third leading cause of cancer-related fatalities. Long non-coding RNAs (lncRNAs) are key regulators of diverse physiological processes and are dysregulated in a wide range of pathophysiological circumstances such as CRC. Studies revealed that aberrant expressions of lncRNAs clearly modulate the expression level of p53 gene in CRC, thereby transactivating multiple downstream pathways. P53 is regarded as a crucial tumor suppressor gene which promotes cell-cycle arrest, DNA repair, senescence or apoptosis in response to cellular stresses. P53 is also mutated in CRC as well as various types of human malignancies. Therefore, lncRNAs interact with the p53 signaling pathway in numerus ways and significantly influence CRC-related processes. The current findings in the investigation of the crosstalk between lncRNAs and the P53 pathway in controlling CRC carcinogenesis, tumor progression, and therapeutic resistance are summarized in the this review. A deeper knowledge of CRC carcinogenesis may also have implications in CRC prevention and treatment through more research.
Collapse
Affiliation(s)
- Mohammad Mahdi Khanifar
- School of Molecular Science, University of Western Australia, Perth, Western Australia, Australia; Department of Biology, Shahed University, Tehran, Iran
| | - Zahra Zafari
- Department of Biology, Shahed University, Tehran, Iran.
| | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom, Iran.
| |
Collapse
|
16
|
Zhang Y, Zhang N. The role of RNA methyltransferase METTL3 in gynecologic cancers: Results and mechanisms. Front Pharmacol 2023; 14:1156629. [PMID: 37007040 PMCID: PMC10060645 DOI: 10.3389/fphar.2023.1156629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
N6-methyladenosine (m6A) methylation is the most prevalent mRNA modification in eukaryotes, and it is defined as the methylation of nitrogen atoms on the six adenine (A) bases of RNA in the presence of methyltransferases. Methyltransferase-like 3 (Mettl3), one of the components of m6A methyltransferase, plays a decisive catalytic role in m6A methylation. Recent studies have confirmed that m6A is associated with a wide spectrum of biological processes and it significantly affects disease progression and prognosis of patients with gynecologic tumors, in which the role of Mettl3 cannot be ignored. Mettl3 is involved in numerous pathophysiological functions, such as embryonic development, fat accumulation, and tumor progression. Moreover, Mettl3 may serve as a potential target for treating gynecologic malignancies, thus, it may benefit the patients and prolong survival. However, there is a need to further study the role and mechanism of Mettl3 in gynecologic malignancies. This paper reviews the recent progression on Mettl3 in gynecologic malignancies, hoping to provide a reference for further research.
Collapse
Affiliation(s)
- Yuxiang Zhang
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
- Department of Cancer Hospital, China Medical University, Shenyang, China
| | - Na Zhang
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
- *Correspondence: Na Zhang,
| |
Collapse
|
17
|
Lopes M, Louzada S, Ferreira D, Veríssimo G, Eleutério D, Gama-Carvalho M, Chaves R. Human Satellite 1A analysis provides evidence of pericentromeric transcription. BMC Biol 2023; 21:28. [PMID: 36755311 PMCID: PMC9909926 DOI: 10.1186/s12915-023-01521-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Pericentromeric regions of human chromosomes are composed of tandem-repeated and highly organized sequences named satellite DNAs. Human classical satellite DNAs are classified into three families named HSat1, HSat2, and HSat3, which have historically posed a challenge for the assembly of the human reference genome where they are misrepresented due to their repetitive nature. Although being known for a long time as the most AT-rich fraction of the human genome, classical satellite HSat1A has been disregarded in genomic and transcriptional studies, falling behind other human satellites in terms of functional knowledge. Here, we aim to characterize and provide an understanding on the biological relevance of HSat1A. RESULTS The path followed herein trails with HSat1A isolation and cloning, followed by in silico analysis. Monomer copy number and expression data was obtained in a wide variety of human cell lines, with greatly varying profiles in tumoral/non-tumoral samples. HSat1A was mapped in human chromosomes and applied in in situ transcriptional assays. Additionally, it was possible to observe the nuclear organization of HSat1A transcripts and further characterize them by 3' RACE-Seq. Size-varying polyadenylated HSat1A transcripts were detected, which possibly accounts for the intricate regulation of alternative polyadenylation. CONCLUSION As far as we know, this work pioneers HSat1A transcription studies. With the emergence of new human genome assemblies, acrocentric pericentromeres are becoming relevant characters in disease and other biological contexts. HSat1A sequences and associated noncoding RNAs will most certainly prove significant in the future of HSat research.
Collapse
Affiliation(s)
- Mariana Lopes
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Sandra Louzada
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Daniela Ferreira
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Gabriela Veríssimo
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Daniel Eleutério
- grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Margarida Gama-Carvalho
- grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Raquel Chaves
- CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal. .,BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisbon, Portugal.
| |
Collapse
|
18
|
Liu Y, Zhang J, Du Z, Huang J, Cheng Y, Yi W, Li T, Yang J, Chen C. Comprehensive analysis of PTPN family expression and prognosis in acute myeloid leukemia. Front Genet 2023; 13:1087938. [PMID: 36699453 PMCID: PMC9868563 DOI: 10.3389/fgene.2022.1087938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Tyrosyl phosphorylation is carried out by a group of enzymes known as non-receptor protein tyrosine phosphatases (PTPNs). In the current investigation, it is hoped to shed light on the relationships between the expression patterns of PTPN family members and the prognosis of acute myeloid leukemia (AML). Methods: PTPN expression was examined using GEPIA and GEO databases. To investigate the connection between PTPN expression and survival in AML patients, we downloaded data from the Broad TCGA Firehose and Clinical Proteomic Tumor Analysis (CPTAC) of the Cancer Genome Atlas (TCGA). We used quantitative real-time PCR (qRT-PCR) to confirm that essential genes were performed in clinical samples and cell lines. We then used western blot to verify that the genes expressed in the above databases were positive in normal tissues, AML patient samples, and AML cell lines. Next, we investigated associations between genome-wide expression profiles and PTPN6 expression using the GEO datasets. We investigated the interactive exploration of multidimensional cancer genomics using the cBioPortal datasets. Using the DAVID database, a study of gene ontology enrichment was performed. The protein-protein interaction (PPI) network was created using the STRING portal, and the gene-gene interaction network was performed using GeneMANIA. Results: Data from GEO and GEPIA revealed that most PTPN family members were linked to AML. Patients with leukemia have elevated levels of several PTPN members. All of the AML patients' poor overall survival (OS, p < .05) was significantly linked with higher expression of PTPN1, PTPN6, and PTPN7. Additionally, clinical samples showed that the expression of PTPN 6, PTPN 7, PTPN 13, and PTPN 14 was higher than normal in AML patients (p = .0116, p = .0034, p = .0092, and p = .0057, respectively) and AML cell lines (p = .0004, p = .0035, p = .0357, and p = .0177, respectively). Western blotting results showed that the expression of PTPN6 in AML samples and AML cell lines was significantly higher than that in normal control samples. Conclusion: Differentially expressed PTPN family members were found in AML. The prognosis of patients and PTPN gene expression were shown to be correlated. PTPN6 is one of these members and may be used as an AML diagnostic and prognostic marker.
Collapse
Affiliation(s)
- Yong Liu
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Jing Zhang
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Zefan Du
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Junbin Huang
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yucai Cheng
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Wenfang Yi
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Tianwen Li
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Jing Yang
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Chun Chen
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
19
|
Zhang X, Li Z, Wei C, Luo L, Li S, Zhou J, Liang H, Li Y, Han L. PLK4 initiates crosstalk between cell cycle, cell proliferation and macrophages infiltration in gliomas. Front Oncol 2022; 12:1055371. [PMID: 36620611 PMCID: PMC9815703 DOI: 10.3389/fonc.2022.1055371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
Tumor immune microenvironment plays an important role in tumorigenesis and metastasis. Polo-like kinases 4 (PLK4) is a crucial regulatory factor in the process of cell cycle, and its abnormal regulation often leads to a variety of diseases including tumorigenesis. We have previously explored the function of PLK4 in sensitizing chemotherapy in glioma, but there are few studies on the correlation between PLK4 and tumor immune microenvironment. PLK4 was found to be highly expressed in various types of cancers, including glioma and closely related to histological and genetic features in public databases. Kaplan-Meier survival analysis and Cox regression analysis revealed that higher PLK4 expression is associated with poorer prognosis. GO and KEGG functional enrichment analysis showed that PLK4 expression level was significantly correlated with regulation of immune microenvironment, cell cycle and genomic instability. Immune infiltration analysis showed that high expression of PLK4 resulted in reduced infiltration of macrophages. M1 macrophage infiltration assays showed that PLK4 knockdown GBM cell lines promoted the recruitment of M1-type macrophages via altering expression of chemokines. And in intracranial tumor mouse models, PLK4 inhibition increased tumor-infiltrating M1 macrophages. In summary, our results demonstrated the correlation between high PLK4 expression level and malignant progression of gliomas, and the possible involvement of PLK4 in regulation of cell cycle, cell proliferation and macrophages infiltration in gliomas.
Collapse
Affiliation(s)
- Xiaoyang Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Zesheng Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Cheng Wei
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Lin Luo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shenghui Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Junhu Zhou
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Liang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China,*Correspondence: Lei Han, ; Ying Li,
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China,*Correspondence: Lei Han, ; Ying Li,
| |
Collapse
|
20
|
The Analysis of Relevant Gene Networks Based on Driver Genes in Breast Cancer. Diagnostics (Basel) 2022; 12:diagnostics12112882. [PMID: 36428940 PMCID: PMC9689550 DOI: 10.3390/diagnostics12112882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The occurrence and development of breast cancer has a strong correlation with a person's genetics. Therefore, it is important to analyze the genetic factors of breast cancer for future development of potential targeted therapies from the genetic level. METHODS In this study, we complete an analysis of the relevant protein-protein interaction network relating to breast cancer. This includes three steps, which are breast cancer-relevant genes selection using mutual information method, protein-protein interaction network reconstruction based on the STRING database, and vital genes calculating by nodes centrality analysis. RESULTS The 230 breast cancer-relevant genes were chosen in gene selection to reconstruct the protein-protein interaction network and some vital genes were calculated by node centrality analyses. Node centrality analyses conducted with the top 10 and top 20 values of each metric found 19 and 39 statistically vital genes, respectively. In order to prove the biological significance of these vital genes, we carried out the survival analysis and DNA methylation analysis, inquired about the prognosis in other cancer tissues and the RNA expression level in breast cancer. The results all proved the validity of the selected genes. CONCLUSIONS These genes could provide a valuable reference in clinical treatment among breast cancer patients.
Collapse
|
21
|
Non-coding genome in small cell lung cancer between theoretical view and clinical applications. Semin Cancer Biol 2022; 86:237-250. [PMID: 35367369 DOI: 10.1016/j.semcancer.2022.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023]
Abstract
Small cell lung cancer (SCLC) is a highly aggressive cancer of the neuroendocrine system, characterized by poor differentiation, rapid growth, and poor overall survival (OS) of patients. Despite the recent advances in the treatment of SCLC recently, the 2-year survival rate of patients with the cancer is only 14-15%, occasioned by the acquired resistance to drugs and serious off-target effects. In humans, the coding region is only 2% of the total genome, and 20% of that is associated with human diseases. Beyond the coding genome are RNAs, promoters, enhancers, and other intricate elements. The non-coding regulatory regions, mainly the non-coding RNAs (ncRNAs), regulate numerous biological activities including cell proliferation, metastasis, and drug resistance. As such, they are potential diagnostic or prognostic biomarkers, and also potential therapeutic targets for SCLC. Therefore, understanding how non-coding elements regulate SCLC development and progression holds significant clinical implications. Herein, we summarized the recent discoveries on the relationship between the non-coding elements including long non-coding RNAs (lncRNA), microRNAs (miRNAs), circular RNA (circRNA), enhancers as well as promotors, and the pathogenesis of SCLC and their potential clinical applications.
Collapse
|
22
|
Bahl S, Carroll JS, Lupien M. Chromatin Variants Reveal the Genetic Determinants of Oncogenesis in Breast Cancer. Cold Spring Harb Perspect Med 2022; 12:a041322. [PMID: 36041880 PMCID: PMC9524388 DOI: 10.1101/cshperspect.a041322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Breast cancer presents as multiple distinct disease entities. Each tumor harbors diverse cell populations defining a phenotypic heterogeneity that impinges on our ability to treat patients. To date, efforts mainly focused on genetic variants to find drivers of inter- and intratumor phenotypic heterogeneity. However, these efforts have failed to fully capture the genetic basis of breast cancer. Through recent technological and analytical approaches, the genetic basis of phenotypes can now be decoded by characterizing chromatin variants. These variants correspond to polymorphisms in chromatin states at DNA sequences that serve a distinct role across cell populations. Here, we review the function and causes of chromatin variants as they relate to breast cancer inter- and intratumor heterogeneity and how they can guide the development of treatment alternatives to fulfill the goal of precision cancer medicine.
Collapse
Affiliation(s)
- Shalini Bahl
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| |
Collapse
|
23
|
Shi B, Liu WW, Yang K, Jiang GM, Wang H. The role, mechanism, and application of RNA methyltransferase METTL14 in gastrointestinal cancer. Mol Cancer 2022; 21:163. [PMID: 35974338 PMCID: PMC9380308 DOI: 10.1186/s12943-022-01634-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
Gastrointestinal cancer is the most common human malignancy characterized by high lethality and poor prognosis. Emerging evidences indicate that N6-methyladenosine (m6A), the most abundant post-transcriptional modification in eukaryotes, exerts important roles in regulating mRNA metabolism including stability, decay, splicing, transport, and translation. As the key component of the m6A methyltransferase complex, methyltransferase-like 14 (METTL14) catalyzes m6A methylation on mRNA or non-coding RNA to regulate gene expression and cell phenotypes. Dysregulation of METTL14 was deemed to be involved in various aspects of gastrointestinal cancer, such as tumorigenesis, progression, chemoresistance, and metastasis. Plenty of findings have opened up new avenues for exploring the therapeutic potential of gastrointestinal cancer targeting METTL14. In this review, we systematically summarize the recent advances regarding the biological functions of METTL14 in gastrointestinal cancer, discuss its potential clinical applications and propose the research forecast.
Collapse
Affiliation(s)
- Bin Shi
- Department of Anorectal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, China
| | - Wei-Wei Liu
- School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Ke Yang
- School of Clinical Medicine, Clinical College of Anhui Medical University, Hefei, China
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China.
| | - Hao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. .,Core Unit of National Clinical Research Center for Laboratory Medicine, Heifei, China.
| |
Collapse
|
24
|
Xue C, Li G, Zheng Q, Gu X, Bao Z, Lu J, Li L. The functional roles of the circRNA/Wnt axis in cancer. Mol Cancer 2022; 21:108. [PMID: 35513849 PMCID: PMC9074313 DOI: 10.1186/s12943-022-01582-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/22/2022] [Indexed: 01/09/2023] Open
Abstract
CircRNAs, covalently closed noncoding RNAs, are widely expressed in a wide range of species ranging from viruses to plants to mammals. CircRNAs were enriched in the Wnt pathway. Aberrant Wnt pathway activation is involved in the development of various types of cancers. Accumulating evidence indicates that the circRNA/Wnt axis modulates the expression of cancer-associated genes and then regulates cancer progression. Wnt pathway-related circRNA expression is obviously associated with many clinical characteristics. CircRNAs could regulate cell biological functions by interacting with the Wnt pathway. Moreover, Wnt pathway-related circRNAs are promising potential biomarkers for cancer diagnosis, prognosis evaluation, and treatment. In our review, we summarized the recent research progress on the role and clinical application of Wnt pathway-related circRNAs in tumorigenesis and progression.
Collapse
Affiliation(s)
- Chen Xue
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Ganglei Li
- grid.13402.340000 0004 1759 700XDepartment of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Qiuxian Zheng
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Xinyu Gu
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Zhengyi Bao
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Juan Lu
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| | - Lanjuan Li
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310003 Hangzhou, China
| |
Collapse
|
25
|
Wang R, Guo Y, Ma P, Song Y, Min J, Zhao T, Hua L, Zhang C, Yang C, Shi J, Zhu L, Gan D, Li S, Li J, Su H. Comprehensive Analysis of 5-Methylcytosine (m 5C) Regulators and the Immune Microenvironment in Pancreatic Adenocarcinoma to Aid Immunotherapy. Front Oncol 2022; 12:851766. [PMID: 35433474 PMCID: PMC9009261 DOI: 10.3389/fonc.2022.851766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) is one of the most malignant cancers and has a poor prognosis. As a critical RNA modification, 5-methylcytosine (m5C) has been reported to regulate tumor progression, including PAAD progression. However, a comprehensive analysis of m5C regulators in PAAD is lacking. Methods In the present study, PAAD datasets were obtained from the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), and ArrayExpress databases. The expression pattern of m5C regulators were analyzed and patients were divided into different m5C clusters according to consensus clustering based on m5C regulators. Additionally, m5C differentially expressed genes (DEGs) were determined using Limma package. Based on m5C DEGs, patients were divided into m5C gene clusters. Moreover, m5C gene signatures were derived from m5C DEGs and a quantitative indicator, the m5C score, was developed from the m5C gene signatures. Results Our study showed that m5C regulators were differentially expressed in patients with PAAD. The m5C clusters and gene clusters based on m5C regulators and m5C DEGs were related to immune cell infiltration, immune-related genes and patient survival status, indicating that m5C modification play a central role in regulating PAAD development partly by modulating immune microenvironment. Additionally, a quantitative indicator, the m5C score, was also developed and was related to a series of immune-related indicators. Moreover, the m5C score precisely predicted the immunotherapy response and prognosis of patients with PAAD. Conclusion In summary, we confirmed that m5C regulators regulate PAAD development by modulating the immune microenvironment. In addition, a quantitative indicator, the m5C score, was developed to predict immunotherapy response and prognosis and assisted in identifying PAAD patients suitable for tailored immunotherapy strategies.
Collapse
Affiliation(s)
- Ronglin Wang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yongdong Guo
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Peixiang Ma
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yang Song
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jie Min
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Ting Zhao
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Lei Hua
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Chao Zhang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Cheng Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jingjie Shi
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Liaoliao Zhu
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Dongxue Gan
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Shanshan Li
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Junqiang Li
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Haichuan Su
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
26
|
Abstract
Alterations to gene regulatory plexuses typify oncogenesis, and two recent studies from Hung, Yost, Xie et al. (Hung et al., 2021) and Yi et al. (2021) collectively reveal the competitive advantage of extrachromosomal DNAs (ecDNAs) to set their own rules to control transcription by clustering into ecDNA hubs through intermolecular interactions that forge hub-specific regulatory plexuses driving high-oncogene expression.
Collapse
Affiliation(s)
- Tina Keshavarzian
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
| |
Collapse
|
27
|
Gao C, Yu H, Li H, Liu C, Ma X, Zhuang J, Sun C. Analysis of the expression patterns and clinical relevance of m6A regulators in 33 cancer types. Future Oncol 2021; 18:565-577. [PMID: 34927443 DOI: 10.2217/fon-2021-0788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: The role of N6-methyladenine (m6A) RNA methylation in a variety of biological processes is gradually being revealed. Methods: Here, we systematically describe the correlation between the expression pattern of m6A RNA methylation regulatory factors and clinical phenotype, immunity, drug sensitivity, stem cells and prognosis in more than 10,000 samples of 33 types of cancer. Results: The results show that there are significant differences in the expression of 20 m6A RNA methylation regulatory factors in different cancers, and there was a significant correlation with the analysis indicators. Conclusion: In this study, the m6A RNA methylation regulatory factor was found not only to potentially assist in stratifying the prognosis but also to predict or improve the sensitivity of clinical drug therapy.
Collapse
Affiliation(s)
- Chundi Gao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, PR China
| | - Haiyang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, PR China
| | - Huayao Li
- College of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, PR China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, PR China
| | - Xiaoran Ma
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, PR China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261041, Shandong, PR China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261041, Shandong, PR China.,Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, PR China
| |
Collapse
|
28
|
Hawley JR, Zhou S, Arlidge C, Grillo G, Kron KJ, Hugh-White R, van der Kwast TH, Fraser M, Boutros PC, Bristow RG, Lupien M. Reorganization of the 3D genome pinpoints non-coding drivers of primary prostate tumors. Cancer Res 2021; 81:5833-5848. [PMID: 34642184 DOI: 10.1158/0008-5472.can-21-2056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/13/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022]
Abstract
Prostate cancer is a heterogeneous disease whose progression is linked to genome instability. However, the impact of this instability on the non-coding genome and its three-dimensional organization to aid progression is unclear. Using primary benign and tumor tissue, we find a high concordance in higher order three-dimensional genome organization. This concordance argues for constraints to the topology of prostate tumor genomes. Nonetheless, we identified changes in focal chromatin interactions, typical of loops bridging non-coding cis-regulatory elements, and showed how structural variants can induce these changes to guide cis-regulatory element hijacking. Such events resulted in opposing differential expression of genes found at antipodes of rearrangements. Collectively, these results argue that changes to focal chromatin interactions, as opposed to higher order genome organization, allow for aberrant gene regulation and are repeatedly mediated by structural variants in primary prostate cancer.
Collapse
Affiliation(s)
- James R Hawley
- Medical Biophysics, University of Toronto, Princess Margaret Cancer Center-University Health Network, Ontario Institute for Cancer Research
| | - Stanley Zhou
- Medical Biophysics, University of Toronto, Princess Margaret Cancer Center-University Health Network, Ontario Institute for Cancer Research
| | | | - Giacomo Grillo
- Medical Biophysics, University of Toronto, Princess Margaret Cancer Center-University Health Network, Ontario Institute for Cancer Research
| | | | | | | | | | | | | | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network
| |
Collapse
|
29
|
Aili A, Wen J, Xue L, Wang J. Mutational Analysis of PBRM1 and Significance of PBRM1 Mutation in Anti-PD-1 Immunotherapy of Clear Cell Renal Cell Carcinoma. Front Oncol 2021; 11:712765. [PMID: 34447697 PMCID: PMC8383204 DOI: 10.3389/fonc.2021.712765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/23/2021] [Indexed: 01/22/2023] Open
Abstract
Renal cell carcinoma is a common solid tumor. PBRM1 is one of the most mutation-prone genes in clear cell renal cell carcinoma (ccRCC) with the occurrence of mutation in 40% of ccRCC patients. Mutations in PBRM1 have been correlated with the efficacy of immunotherapy. However, the mutation types of PBRM1 are not well characterized. The effects of PBRM1 expression levels in the tumor microenvironment are not well studied. In addition, the mechanism and effect of anti-PD-1 immunotherapy in ccRCC tumor microenvironments are not well clarified. In this study, using bioinformatics methods we analyzed the alternation frequency and expression levels of PBRM1 in various tumors. Next, we experimentally validated their expression levels in ccRCC tissues from human and mouse models. We attempted to clarify the mechanisms of anti-PD-1 immunotherapy in ccRCC with various PBRM1 expression levels. Our results showed that deficiency of PBRM1 protein is correlated with CD4 T cell reduction in human and mouse ccRCC tissues. We also showed that anti-PD-1 Immunotherapy can increase the infiltration of T cells in both PBRM1 high and PBRM1 low tumors but to different degrees. Our study indicates that the reduction of CD4 cells in tumor tissues with low expression of PBRM1 may explain the compromised efficacy of anti-PD-1 immunotherapy in patients with PBRM1 mutated ccRCC. Our study sheds light on the potential of PBRM1 as a therapeutic target in ccRCC.
Collapse
Affiliation(s)
| | - Jie Wen
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Lixiang Xue
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China.,Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
30
|
Bioinformatics Analysis of GFAP as a Potential Key Regulator in Different Immune Phenotypes of Prostate Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1466255. [PMID: 34222466 PMCID: PMC8225431 DOI: 10.1155/2021/1466255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/26/2021] [Accepted: 06/05/2021] [Indexed: 11/24/2022]
Abstract
Tumor immune escape plays an essential role in both cancer progression and immunotherapy responses. For prostate cancer (PC), however, the molecular mechanisms that drive its different immune phenotypes have yet to be fully elucidated. Patient gene expression data were analyzed from The Cancer Genome Atlas-prostate adenocarcinoma (TCGA-PRAD) and the International Cancer Genome Consortium (ICGC) databases. We used a Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) analysis and an unsupervised clustering analysis to identify patient subgroups with distinct immune phenotypes. These distinct phenotypes were then explored for associations for differentially expressed genes (DEGs) and both epigenetic and genetic landscapes. Finally, we used a protein-protein interaction analysis to identify key hub genes. We identified two patient subgroups with independent immune phenotypes associated with the expression of Programmed death-ligand 1 (PD-L1). Patient samples in Cluster 1 (C1) had higher scores for immune-cell subsets compared to Cluster 2 (C2), and C2 samples had higher specific somatic mutations, MHC mutations, and genomic copy number variations compared to C1. We also found additional cluster phenotype differences for DNA methylation, microRNA (miRNA) expression, and long noncoding RNA (lncRNA) expression. Furthermore, we established a 4-gene model to distinguish between clusters by integrating analyses for DEGs, lncRNAs, miRNAs, and methylation. Notably, we found that glial fibrillary acidic protein (GFAP) might serve as a key hub gene within the genetic and epigenetic regulatory networks. These results improve our understanding of the molecular mechanisms underlying tumor immune phenotypes that are associated with tumor immune escape. In addition, GFAP may be a potential biomarker for both PC diagnosis and prognosis.
Collapse
|
31
|
Ni P, Su Z. Accurate prediction of cis-regulatory modules reveals a prevalent regulatory genome of humans. NAR Genom Bioinform 2021; 3:lqab052. [PMID: 34159315 PMCID: PMC8210889 DOI: 10.1093/nargab/lqab052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/01/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
cis-regulatory modules(CRMs) formed by clusters of transcription factor (TF) binding sites (TFBSs) are as important as coding sequences in specifying phenotypes of humans. It is essential to categorize all CRMs and constituent TFBSs in the genome. In contrast to most existing methods that predict CRMs in specific cell types using epigenetic marks, we predict a largely cell type agonistic but more comprehensive map of CRMs and constituent TFBSs in the gnome by integrating all available TF ChIP-seq datasets. Our method is able to partition 77.47% of genome regions covered by available 6092 datasets into a CRM candidate (CRMC) set (56.84%) and a non-CRMC set (43.16%). Intriguingly, the predicted CRMCs are under strong evolutionary constraints, while the non-CRMCs are largely selectively neutral, strongly suggesting that the CRMCs are likely cis-regulatory, while the non-CRMCs are not. Our predicted CRMs are under stronger evolutionary constraints than three state-of-the-art predictions (GeneHancer, EnhancerAtlas and ENCODE phase 3) and substantially outperform them for recalling VISTA enhancers and non-coding ClinVar variants. We estimated that the human genome might encode about 1.47M CRMs and 68M TFBSs, comprising about 55% and 22% of the genome, respectively; for both of which, we predicted 80%. Therefore, the cis-regulatory genome appears to be more prevalent than originally thought.
Collapse
Affiliation(s)
- Pengyu Ni
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| |
Collapse
|
32
|
Wu J, Lin D, Jiu L, Liu Q, Gu Z, Luo J, Zhao Y. Exploring epigenetic biomarkers of universal specificities and commonalities among pan-cancer cohorts in The Cancer Genome Atlas. Epigenomics 2021; 13:599-612. [PMID: 33787302 DOI: 10.2217/epi-2021-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To explore the mechanism of cancer by employing a comprehensive analysis of DNA methylation patterns and variations among pan-cancer cohorts. Materials & methods: This research focused on the discovery of universally specific or common biomarkers by mathematical statistics and machine learning methods in The Cancer Genome Atlas. Results: We found 138 differently methylated CpGs (DMCs) with a common methylation trend and eight common differently methylated regions in different cancer cohorts. Additionally, we found 99 DMCs to distinguish 32 different cancer cohorts in random forest analysis because of the specificity mechanism, but each DMC still had high instability. Conclusion: Our results could facilitate the development of biomarkers that are universally specific and common features across pan-cancer cohorts.
Collapse
Affiliation(s)
- Jie Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.,Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China
| | - Deng Lin
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China
| | - Liandi Jiu
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China
| | - Qi Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.,Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China
| | - Zhenglong Gu
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China.,Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Junjie Luo
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China
| | - Yiqiang Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.,Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
33
|
Carter JM, Ang DA, Sim N, Budiman A, Li Y. Approaches to Identify and Characterise the Post-Transcriptional Roles of lncRNAs in Cancer. Noncoding RNA 2021; 7:19. [PMID: 33803328 PMCID: PMC8005986 DOI: 10.3390/ncrna7010019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
It is becoming increasingly evident that the non-coding genome and transcriptome exert great influence over their coding counterparts through complex molecular interactions. Among non-coding RNAs (ncRNA), long non-coding RNAs (lncRNAs) in particular present increased potential to participate in dysregulation of post-transcriptional processes through both RNA and protein interactions. Since such processes can play key roles in contributing to cancer progression, it is desirable to continue expanding the search for lncRNAs impacting cancer through post-transcriptional mechanisms. The sheer diversity of mechanisms requires diverse resources and methods that have been developed and refined over the past decade. We provide an overview of computational resources as well as proven low-to-high throughput techniques to enable identification and characterisation of lncRNAs in their complex interactive contexts. As more cancer research strategies evolve to explore the non-coding genome and transcriptome, we anticipate this will provide a valuable primer and perspective of how these technologies have matured and will continue to evolve to assist researchers in elucidating post-transcriptional roles of lncRNAs in cancer.
Collapse
Affiliation(s)
- Jean-Michel Carter
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore; (D.A.A.); (N.S.); (A.B.)
| | - Daniel Aron Ang
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore; (D.A.A.); (N.S.); (A.B.)
| | - Nicholas Sim
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore; (D.A.A.); (N.S.); (A.B.)
| | - Andrea Budiman
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore; (D.A.A.); (N.S.); (A.B.)
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore; (D.A.A.); (N.S.); (A.B.)
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore 138673, Singapore
| |
Collapse
|
34
|
Affiliation(s)
- Seung Hun Han
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea
| | - Junho Choe
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
35
|
Han SH, Choe J. Deciphering the molecular mechanisms of epitranscriptome regulation in cancer. BMB Rep 2021; 54:89-97. [PMID: 33298243 PMCID: PMC7907739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 11/25/2020] [Indexed: 08/08/2024] Open
Abstract
Post-transcriptional regulation is an indispensable cellular mechanism of gene expression control that dictates various cellular functions and cell fate decisions. Recently, various chemical RNA modifications, termed the "epitranscriptome," have been proposed to play crucial roles in the regulation of post-transcriptional gene expression. To date, more than 170 RNA modifications have been identified in almost all types of RNA. As with DNA modification-mediated control of gene expression, regulation of gene expression via RNA modification is also accomplished by three groups of proteins: writers, readers, and erasers. Several emerging studies have revealed that dysregulation in RNA modification is closely associated with tumorigenesis. Notably, the molecular outcomes of specific RNA modifications often have opposite cellular consequences. In this review, we highlight the current progress in the elucidation of the mechanisms of cancer development due to chemical modifications of various RNA species. [BMB Reports 2021; 54(2): 89-97].
Collapse
Affiliation(s)
- Seung Hun Han
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea
| | - Junho Choe
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
36
|
Shui L, Ren H, Yang X, Li J, Chen Z, Yi C, Zhu H, Shui P. The Era of Radiogenomics in Precision Medicine: An Emerging Approach to Support Diagnosis, Treatment Decisions, and Prognostication in Oncology. Front Oncol 2021; 10:570465. [PMID: 33575207 PMCID: PMC7870863 DOI: 10.3389/fonc.2020.570465] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/08/2020] [Indexed: 02/05/2023] Open
Abstract
With the rapid development of new technologies, including artificial intelligence and genome sequencing, radiogenomics has emerged as a state-of-the-art science in the field of individualized medicine. Radiogenomics combines a large volume of quantitative data extracted from medical images with individual genomic phenotypes and constructs a prediction model through deep learning to stratify patients, guide therapeutic strategies, and evaluate clinical outcomes. Recent studies of various types of tumors demonstrate the predictive value of radiogenomics. And some of the issues in the radiogenomic analysis and the solutions from prior works are presented. Although the workflow criteria and international agreed guidelines for statistical methods need to be confirmed, radiogenomics represents a repeatable and cost-effective approach for the detection of continuous changes and is a promising surrogate for invasive interventions. Therefore, radiogenomics could facilitate computer-aided diagnosis, treatment, and prediction of the prognosis in patients with tumors in the routine clinical setting. Here, we summarize the integrated process of radiogenomics and introduce the crucial strategies and statistical algorithms involved in current studies.
Collapse
Affiliation(s)
- Lin Shui
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haoyu Ren
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Xi Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Li
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Ziwei Chen
- Department of Nephrology, Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, China
| | - Cheng Yi
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Pixian Shui
- School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
37
|
Gao C, Zhuang J, Li H, Liu C, Zhou C, Liu L, Feng F, Sun C. Gene signatures of 6-methyladenine regulators in women with lung adenocarcinoma and development of a risk scoring system: a retrospective study using the cancer genome atlas database. Aging (Albany NY) 2021; 13:3957-3968. [PMID: 33428597 PMCID: PMC7906130 DOI: 10.18632/aging.202364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/23/2020] [Indexed: 01/22/2023]
Abstract
Although the emergence of new treatments has improved the prognosis of women with lung adenocarcinoma (LUAD), the emergence of drug resistance limits their clinical efficacy. Therefore, there is an urgent need to identify new targets and develop a risk scoring system to evaluate the prognosis of patients. 6-methyladenine (M6A), as the most common methyl modification in RNA modification, its clinicopathological features, diagnosis and prognostic value in lung cancer, especially in LUAD remain to be discussed. We analyzed the clinical and sequencing data of the female LUAD cohort from The Cancer Genome Atlas (TCGA), evaluated the expression profiles of 16 M6A regulation-related genes in the cohort and the relationships between genetic changes and clinical characteristics, developed an M6A-related risk scoring system using Cox analysis. Finally, the copy number variations (CNVs) of the related genes in the samples were analyzed and verified using the cBioPortal platform. Compared with other clinical factors, this risk scoring system showed a higher predictive sensitivity and specificity. The M6A-related risk scoring system developed in this study may help to improve the screening of female patients at high risk of LUAD and provides important theoretical bioinformatics support for evaluating the prognosis of such patients.
Collapse
Affiliation(s)
- Chundi Gao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, PR China
| | - Jing Zhuang
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, PR China
| | - Huayao Li
- College of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, PR China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, PR China
| | - Chao Zhou
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, PR China
| | - Lijuan Liu
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, PR China
| | - Fubin Feng
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, PR China
| | - Changgang Sun
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, PR China.,Cancer and Immunology Institute, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| |
Collapse
|
38
|
Qiao P, Zhang D, Zeng S, Wang Y, Wang B, Hu X. Using machine learning method to identify MYLK as a novel marker to predict biochemical recurrence in prostate cancer. Biomark Med 2021; 15:29-41. [PMID: 33427497 DOI: 10.2217/bmm-2020-0495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/20/2020] [Indexed: 01/16/2023] Open
Abstract
Aim: This study aims to identify novel marker to predict biochemical recurrence (BCR) in prostate cancer patients after radical prostatectomy with negative surgical margin. Materials & methods: The Cancer Genome Atlas database, Gene Expression Omnibus database and Cancer Cell Line Encyclopedia database were employed. The ensemble support vector machine-recursive feature elimination method was performed to select crucial gene for BCR. Results: We identified MYLK as a novel and independent biomarker for BCR in The Cancer Genome Atlas training cohort and confirmed in four independent Gene Expression Omnibus validation cohorts. Multi-omic analysis suggested that MYLK was a DNA methylation-driven gene. Additionally, MYLK had significant positive correlations with immune infiltrations. Conclusion:MYLK was identified and validated as a novel, robust and independent biomarker for BCR in prostate cancer.
Collapse
Affiliation(s)
- Peng Qiao
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Di Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Song Zeng
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Yicun Wang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Biao Wang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Xiaopeng Hu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| |
Collapse
|
39
|
Zheng Y, Ling Y, Zhang DY, Tan CP, Zhang H, Yang GG, Wang H, Ji LN, Mao ZW. Regulating Tumor N 6 -Methyladenosine Methylation Landscape using Hypoxia-Modulating OsS x Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005086. [PMID: 33284508 DOI: 10.1002/smll.202005086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/09/2020] [Indexed: 06/12/2023]
Abstract
The epigenetic dysregulation and hypoxia are two important factors that drive tumor malignancy, and N6 -methyladenosine (m6 A) in mRNA is involved in the regulation of gene expression. Herein, a nanocatalyst OsSx -PEG (PEG = poly(ethylene glycol)) nanoparticles (NPs) as O2 modulator is developed to improve tumor hypoxia. OsSx -PEG NPs can significantly downregulate genes involved in hypoxia pathway. Interestingly, OsSx -PEG NPs elevate RNA m6 A methylation levels to cause the m6 A-dependent mRNA degradation of the hypoxia-related genes. Moreover, OsSx -PEG NPs can regulate the expression of RNA m6 A methyltransferases and demethylases. Finally, DOX@OsSx -PEG (DOX = doxorubicin; utilized as a model drug) NPs modulate tumor hypoxia and regulate mRNA m6 A methylation of hypoxia-related genes in vivo. As the first report about relationship between catalytic nanomaterials and RNA modifications, the research opens a new avenue for unveiling the underlying action mechanisms of hypoxia-modulating nanomaterials and shows potential of regulating RNA modification to overcome chemoresistance.
Collapse
Affiliation(s)
- Yue Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yuyi Ling
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Dong-Yang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Gang-Gang Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hongsheng Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
40
|
Pioneer of prostate cancer: past, present and the future of FOXA1. Protein Cell 2020; 12:29-38. [PMID: 32946061 PMCID: PMC7815845 DOI: 10.1007/s13238-020-00786-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/18/2020] [Indexed: 01/27/2023] Open
Abstract
Prostate cancer is the most commonly diagnosed non-cutaneous cancers in North American men. While androgen deprivation has remained as the cornerstone of prostate cancer treatment, resistance ensues leading to lethal disease. Forkhead box A1 (FOXA1) encodes a pioneer factor that induces open chromatin conformation to allow the binding of other transcription factors. Through direct interactions with the Androgen Receptor (AR), FOXA1 helps to shape AR signaling that drives the growth and survival of normal prostate and prostate cancer cells. FOXA1 also possesses an AR-independent role of regulating epithelial-to-mesenchymal transition (EMT). In prostate cancer, mutations converge onto the coding sequence and cis-regulatory elements (CREs) of FOXA1, leading to functional alterations. In addition, FOXA1 activity in prostate cancer can be modulated post-translationally through various mechanisms such as LSD1-mediated protein demethylation. In this review, we describe the latest discoveries related to the function and regulation of FOXA1 in prostate cancer, pointing to their relevance to guide future clinical interventions.
Collapse
|
41
|
Zhang D, Zeng S, Hu X. Identification of a three-long noncoding RNA prognostic model involved competitive endogenous RNA in kidney renal clear cell carcinoma. Cancer Cell Int 2020; 20:319. [PMID: 32694941 PMCID: PMC7367230 DOI: 10.1186/s12935-020-01423-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Background Long noncoding RNA (lncRNA) is generally identified as competing endogenous RNA (ceRNA) that plays a vital role in the pathogenesis of kidney renal clear cell carcinoma (KIRC), the most common subtype of renal cell carcinoma with poor prognosis and unclear pathogenesis. This study established a novel ceRNA network and thus identified a three-lncRNA prognostic model in KIRC patients. Methods Differentially expressed genes (DEGs) were screened out from The Cancer Genome Atlas (TCGA) database. The lncATLAS was applied to determine the differentially expressed lncRNAs (DElncRNAs) of the cytoplasm. The miRcode, miRDB, miRTarBase, and TargetScan databases were utilized to predict the interactions of DElncRNAs, DEmiRNAs, and DEmRNAs. Cytoscape was used to construct the ceRNA network. Then, a lncRNA prognostic model (LPM) was constructed based on ceRNA-related lncRNA that was significantly related to overall survival (OS), and its predictive ability was evaluated. Moreover, an LPM-based nomogram model was constructed. The significantly different expression of genes in the LPM was validated in an independent clinical cohort (N = 21) by quantitative RT-PCR. Results A novel ceRNA regulatory network, including 73 lncRNAs, 8 miRNAs, and 21 mRNAs was constructed. Functional enrichment analysis indicated that integral components of membrane and PI3K-Akt signaling pathway represented the most significant GO terms and pathway, respectively. The LPM established based on three lncRNAs (MIAT, LINC00460, and LINC00443) of great prognostic value from the ceRNA network was proven to be independent of conventional clinical parameters to differentiate patients with low or high risk of poor survival, with the AUC of 1-, 5- and 10-year OS were 0.723, 0.714 and 0.826 respectively. Furthermore, the nomogram showed a better predictive value in KIRC patients than individual prognostic parameters. The expression of MIAT and LINC00460 was significantly upregulated in the KIRC samples, while the expression of LINC00443 was significantly downregulated compared with the adjacent normal samples in the clinical cohort, TCGA, and GTEx. Conclusion This LPM based on three-lncRNA could serve as an independent prognostic factor with a tremendous predictive ability for KIRC patients, and the identified novel ceRNA network may provide insight into the prognostic biomarkers and therapeutic targets of KIRC.
Collapse
Affiliation(s)
- Di Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 GongTi South Road, 100020 Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Song Zeng
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 GongTi South Road, 100020 Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Xiaopeng Hu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 GongTi South Road, 100020 Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| |
Collapse
|
42
|
Zhang S, Zeng T, Hu B, Zhang YH, Feng K, Chen L, Niu Z, Li J, Huang T, Cai YD. Discriminating Origin Tissues of Tumor Cell Lines by Methylation Signatures and Dys-Methylated Rules. Front Bioeng Biotechnol 2020; 8:507. [PMID: 32528944 PMCID: PMC7264161 DOI: 10.3389/fbioe.2020.00507] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
DNA methylation is an essential epigenetic modification for multiple biological processes. DNA methylation in mammals acts as an epigenetic mark of transcriptional repression. Aberrant levels of DNA methylation can be observed in various types of tumor cells. Thus, DNA methylation has attracted considerable attention among researchers to provide new and feasible tumor therapies. Conventional studies considered single-gene methylation or specific loci as biomarkers for tumorigenesis. However, genome-scale methylated modification has not been completely investigated. Thus, we proposed and compared two novel computational approaches based on multiple machine learning algorithms for the qualitative and quantitative analyses of methylation-associated genes and their dys-methylated patterns. This study contributes to the identification of novel effective genes and the establishment of optimal quantitative rules for aberrant methylation distinguishing tumor cells with different origin tissues.
Collapse
Affiliation(s)
- Shiqi Zhang
- School of Life Sciences, Shanghai University, Shanghai, China.,Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Tao Zeng
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Bin Hu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yu-Hang Zhang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic, Guangzhou, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Zhibin Niu
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Jianhao Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
43
|
Wang Q, Geng W, Guo H, Wang Z, Xu K, Chen C, Wang S. Emerging role of RNA methyltransferase METTL3 in gastrointestinal cancer. J Hematol Oncol 2020; 13:57. [PMID: 32429972 PMCID: PMC7238608 DOI: 10.1186/s13045-020-00895-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal cancer, the most common solid tumor, has a poor prognosis. With the development of high-throughput sequencing and detection technology, recent studies have suggested that many chemical modifications of human RNA are involved in the development of human diseases, including cancer. m6A, the most abundant modification, was revealed to participate in a series of aspects of cancer progression. Recent evidence has shown that methyltransferase-like 3 (METTL3), the first identified and a critical methyltransferase, catalyzes m6A methylation on mRNA or non-coding RNA in mammals, affecting RNA metabolism. Abnormal m6A levels caused by METTL3 have been reported to be involved in different aspects of cancer development, including proliferation, apoptosis, and metastasis. In this review, we will shed light on recent findings regarding the biological function of METTL3 in gastrointestinal cancer and discuss future research directions and potential clinical applications of METTL3 for gastrointestinal cancer.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China.
| | - Wei Geng
- The Affiliated Yancheng No. 1 People's Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
| | - Huimin Guo
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Zhangding Wang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Kaiyue Xu
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chen Chen
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shouyu Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China. .,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, China. .,Center for Public Health Research, Medical School of Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
44
|
Wu Y, Xu Y. Integrated bioinformatics analysis of expression and gene regulation network of COL12A1 in colorectal cancer. Cancer Med 2020; 9:4743-4755. [PMID: 32356618 PMCID: PMC7333847 DOI: 10.1002/cam4.2899] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) is reported to be involved in tumorigenesis and progression. Collagen IIX is a major ECM protein. Abnormal COL12A1 expression is associated with carcinogenesis of colorectal cancer (CRC), but its clinical value and function have not yet been analyzed. Expression, methylation, and survival were analyzed by using Oncomine, UNCLA, and GEPIA, while COL12A1 alterations and related functional networks were identified using cBioPortal. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathways(KEGG)of COL12A1 in CRC were explored using LinkOmics. Gene set enrichment analysis (GSEA) examined target networks of kinases, miRNAs, and transcription factors. We found that COL12A1 was overexpressed in CRC and the COL12A1 gene was often amplified in CRC. Survival analysis revealed that patients with higher COL12A1 expression had a poor prognosis. Expression of COL12A1 was linked to functional networks via regulating pathways involving focal adhesion, PI3K‐Akt signaling pathway, and ECM‐receptor interaction. Functional network analysis suggested that COL12A1 regulated integrin binding, collage binding, and extracellular matrix structural constituent via pathways involving some several cancer‐related kinases, miRNAs, and transcription factor. Furthermore, other FACITs genes (COL1A2, COL3A1, COL5A1, COL5A2, and COL6A3) for ECM in correlation with COL12A1 were identified to be related with the prognosis in CRC. These results suggested that the distinct fibril‐associated collagens with interrupted triple helices (FACITs) genes may serve as prognostic and therapeutic biomarkers of CRC in the future.
Collapse
Affiliation(s)
- Yibin Wu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
45
|
Criqui M, Qamra A, Chu TW, Sharma M, Tsao J, Henry DA, Barsyte-Lovejoy D, Arrowsmith CH, Winegarden N, Lupien M, Harrington L. Telomere dysfunction cooperates with epigenetic alterations to impair murine embryonic stem cell fate commitment. eLife 2020; 9:47333. [PMID: 32297856 PMCID: PMC7192583 DOI: 10.7554/elife.47333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
The precise relationship between epigenetic alterations and telomere dysfunction is still an extant question. Previously, we showed that eroded telomeres lead to differentiation instability in murine embryonic stem cells (mESCs) via DNA hypomethylation at pluripotency-factor promoters. Here, we uncovered that telomerase reverse transcriptase null (Tert-/-) mESCs exhibit genome-wide alterations in chromatin accessibility and gene expression during differentiation. These changes were accompanied by an increase of H3K27me3 globally, an altered chromatin landscape at the Pou5f1/Oct4 promoter, and a refractory response to differentiation cues. Inhibition of the Polycomb Repressive Complex 2 (PRC2), an H3K27 tri-methyltransferase, exacerbated the impairment in differentiation and pluripotency gene repression in Tert-/-mESCs but not wild-type mESCs, whereas inhibition of H3K27me3 demethylation led to a partial rescue of the Tert-/- phenotype. These data reveal a new interdependent relationship between H3K27me3 and telomere integrity in stem cell lineage commitment that may have implications in aging and cancer.
Collapse
Affiliation(s)
- Mélanie Criqui
- Institut de Recherche en Immunologie et Cancérologie (IRIC), Département de biologie moléculaire, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Aditi Qamra
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Tsz Wai Chu
- Institut de Recherche en Immunologie et Cancérologie (IRIC), Département de biologie moléculaire, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Monika Sharma
- Princess Margaret Genomics Centre, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Julissa Tsao
- Princess Margaret Genomics Centre, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Danielle A Henry
- Institut de Recherche en Immunologie et Cancérologie (IRIC), Département de biologie moléculaire, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, Princess Margaret Cancer Centre, University of Toronto, Department of Medical Biophysics, Toronto, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, Princess Margaret Cancer Centre, University of Toronto, Department of Medical Biophysics, Toronto, Canada
| | - Neil Winegarden
- Princess Margaret Genomics Centre, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Lea Harrington
- Institut de Recherche en Immunologie et Cancérologie (IRIC), Département de biologie moléculaire, Faculté de Médecine, Université de Montréal, Montréal, Canada
| |
Collapse
|
46
|
Niu N, Lu P, Yang Y, He R, Zhang L, Shi J, Wu J, Yang M, Zhang ZG, Wang LW, Gao WQ, Habtezion A, Xiao GG, Sun Y, Li L, Xue J. Loss of Setd2 promotes Kras-induced acinar-to-ductal metaplasia and epithelia-mesenchymal transition during pancreatic carcinogenesis. Gut 2020; 69:715-726. [PMID: 31300513 DOI: 10.1136/gutjnl-2019-318362] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/18/2019] [Accepted: 06/30/2019] [Indexed: 01/04/2023]
Abstract
OBJECTIVE SETD2, the sole histone H3K36 trimethyltransferase, is frequently mutated or deleted in human cancer, including pancreatic ductal adenocarcinoma (PDAC). However, whether SETD2/H3K36me3 alteration results in PDAC remains largely unknown. DESIGN TCGA(PAAD) public database and PDAC tissue array with SETD2/H3K36me3 staining were used to investigate the clinical relevance of SETD2 in PDAC. Furthermore, to define the role of SETD2 in the carcinogenesis of PDAC, we crossed conditional Setd2 knockout mice (PdxcreSetd2flox/flox) together with KrasG12D mice. Moreover, to examine the role of SETD2 after ductal metaplasia, Crisp/cas9 was used to deplete Setd2 in PDAC cells. RNA-seq and H3K36me3 ChIP-seq were performed to uncover the mechanism. RESULTS SETD2 mutant/low expression was correlated with poor prognosis in patients with PDAC. Next, we found that Setd2 acted as a putative tumour suppressor in Kras-driven pancreatic carcinogenesis. Mechanistically, Setd2 loss in acinar cells facilitated Kras-induced acinar-to-ductal reprogramming, mainly through epigenetic dysregulation of Fbxw7. Moreover, Setd2 ablation in pancreatic cancer cells enhanced epithelia-mesenchymal transition (EMT) through impaired epigenetic regulation of Ctnna1. In addition, Setd2 deficiency led to sustained Akt activation via inherent extracellular matrix (ECM) production, which would favour their metastasis. CONCLUSION Together, our findings highlight the function of SETD2 during pancreatic carcinogenesis, which would advance our understanding of epigenetic dysregulation in PDAC. Moreover, it may also pave the way for development of targeted, patients-tailored therapies for PDAC patients with SETD2 deficiency.
Collapse
Affiliation(s)
- Ningning Niu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Ping Lu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Yanlin Yang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Ruizhe He
- Department of Biliary-Pancreatic Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Juanjuan Shi
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Jinghua Wu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Minwei Yang
- Department of Biliary-Pancreatic Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Wei Wang
- Department of Oncology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - Gary Guishan Xiao
- School of pharmaceutical Science and Technology, Dalian University of Technology, Dalian, China
| | - Yongwei Sun
- Department of Biliary-Pancreatic Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Li Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China.,School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| |
Collapse
|
47
|
Li K, Zhang Y, Liu X, Liu Y, Gu Z, Cao H, Dickerson KE, Chen M, Chen W, Shao Z, Ni M, Xu J. Noncoding Variants Connect Enhancer Dysregulation with Nuclear Receptor Signaling in Hematopoietic Malignancies. Cancer Discov 2020; 10:724-745. [PMID: 32188707 DOI: 10.1158/2159-8290.cd-19-1128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/27/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Abstract
Mutations in protein-coding genes are well established as the basis for human cancer, yet how alterations within noncoding genome, a substantial fraction of which contain cis-regulatory elements (CRE), contribute to cancer pathophysiology remains elusive. Here, we developed an integrative approach to systematically identify and characterize noncoding regulatory variants with functional consequences in human hematopoietic malignancies. Combining targeted resequencing of hematopoietic lineage-associated CREs and mutation discovery, we uncovered 1,836 recurrently mutated CREs containing leukemia-associated noncoding variants. By enhanced CRISPR/dCas9-based CRE perturbation screening and functional analyses, we identified 218 variant-associated oncogenic or tumor-suppressive CREs in human leukemia. Noncoding variants at KRAS and PER2 enhancers reside in proximity to nuclear receptor (NR) binding regions and modulate transcriptional activities in response to NR signaling in leukemia cells. NR binding sites frequently colocalize with noncoding variants across cancer types. Hence, recurrent noncoding variants connect enhancer dysregulation with nuclear receptor signaling in hematopoietic malignancies. SIGNIFICANCE: We describe an integrative approach to identify noncoding variants in human leukemia, and reveal cohorts of variant-associated oncogenic and tumor-suppressive cis-regulatory elements including KRAS and PER2 enhancers. Our findings support a model in which noncoding regulatory variants connect enhancer dysregulation with nuclear receptor signaling to modulate gene programs in hematopoietic malignancies.See related commentary by van Galen, p. 646.This article is highlighted in the In This Issue feature, p. 627.
Collapse
Affiliation(s)
- Kailong Li
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yuannyu Zhang
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xin Liu
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yuxuan Liu
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhimin Gu
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hui Cao
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kathryn E Dickerson
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mingyi Chen
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Weina Chen
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zhen Shao
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Ni
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jian Xu
- Children's Medical Center Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas. .,Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
48
|
Zhou S, Hawley JR, Soares F, Grillo G, Teng M, Madani Tonekaboni SA, Hua JT, Kron KJ, Mazrooei P, Ahmed M, Arlidge C, Yun HY, Livingstone J, Huang V, Yamaguchi TN, Espiritu SMG, Zhu Y, Severson TM, Murison A, Cameron S, Zwart W, van der Kwast T, Pugh TJ, Fraser M, Boutros PC, Bristow RG, He HH, Lupien M. Noncoding mutations target cis-regulatory elements of the FOXA1 plexus in prostate cancer. Nat Commun 2020; 11:441. [PMID: 31974375 PMCID: PMC6978390 DOI: 10.1038/s41467-020-14318-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 12/20/2019] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is the second most commonly diagnosed malignancy among men worldwide. Recurrently mutated in primary and metastatic prostate tumors, FOXA1 encodes a pioneer transcription factor involved in disease onset and progression through both androgen receptor-dependent and androgen receptor-independent mechanisms. Despite its oncogenic properties however, the regulation of FOXA1 expression remains unknown. Here, we identify a set of six cis-regulatory elements in the FOXA1 regulatory plexus harboring somatic single-nucleotide variants in primary prostate tumors. We find that deletion and repression of these cis-regulatory elements significantly decreases FOXA1 expression and prostate cancer cell growth. Six of the ten single-nucleotide variants mapping to FOXA1 regulatory plexus significantly alter the transactivation potential of cis-regulatory elements by modulating the binding of transcription factors. Collectively, our results identify cis-regulatory elements within the FOXA1 plexus mutated in primary prostate tumors as potential targets for therapeutic intervention. FOXA1 pioneer transcription factor is recurrently mutated in primary and metastatic prostate tumors. Here, authors identify a set of six cis-regulatory elements in the FOXA1 regulatory plexus harboring somatic SNVs in primary prostate tumors and characterize their role in regulating FOXA1 expression and prostate cancer cell growth.
Collapse
Affiliation(s)
- Stanley Zhou
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - James R Hawley
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Fraser Soares
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Giacomo Grillo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mona Teng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Seyed Ali Madani Tonekaboni
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Junjie Tony Hua
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Ken J Kron
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Parisa Mazrooei
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Musaddeque Ahmed
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Christopher Arlidge
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Hwa Young Yun
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Vincent Huang
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | | | | | - Yanyun Zhu
- Division of Oncogenomics, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tesa M Severson
- Division of Oncogenomics, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sarina Cameron
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, The Netherlands.,Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Theodorus van der Kwast
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Michael Fraser
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Ontario Institute for Cancer Research, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, CA, Canada.,Department of Human Genetics, University of California, Los Angeles, CA, USA.,Department of Urology, University of California, Los Angeles, CA, USA.,Institute for Precision Health, University of California, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Robert G Bristow
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada.,CRUK Manchester Institute and Manchester Cancer Research Centre, Manchester, UK.,Division of Cancer Sciences, Faculty of Biology, Health and Medicine, University of Manchester, Manchester, UK.,The Christie NHS Foundation Trust, Manchester, UK
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,Ontario Institute for Cancer Research, Toronto, ON, Canada.
| |
Collapse
|
49
|
Mazrooei P, Kron KJ, Zhu Y, Zhou S, Grillo G, Mehdi T, Ahmed M, Severson TM, Guilhamon P, Armstrong NS, Huang V, Yamaguchi TN, Fraser M, van der Kwast T, Boutros PC, He HH, Bergman AM, Bristow RG, Zwart W, Lupien M. Cistrome Partitioning Reveals Convergence of Somatic Mutations and Risk Variants on Master Transcription Regulators in Primary Prostate Tumors. Cancer Cell 2019; 36:674-689.e6. [PMID: 31735626 DOI: 10.1016/j.ccell.2019.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 08/02/2019] [Accepted: 10/17/2019] [Indexed: 12/26/2022]
Abstract
Thousands of noncoding somatic single-nucleotide variants (SNVs) of unknown function are reported in tumors. Partitioning the genome according to cistromes reveals the enrichment of somatic SNVs in prostate tumors as opposed to adjacent normal tissue cistromes of master transcription regulators, including AR, FOXA1, and HOXB13. This parallels enrichment of prostate cancer genetic predispositions over these transcription regulators' tumor cistromes, exemplified at the 8q24 locus harboring both risk variants and somatic SNVs in cis-regulatory elements upregulating MYC expression. However, Massively Parallel Reporter Assays reveal that few SNVs can alter the transactivation potential of individual cis-regulatory elements. Instead, similar to inherited risk variants, SNVs accumulate in cistromes of master transcription regulators required for prostate cancer development.
Collapse
Affiliation(s)
- Parisa Mazrooei
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Ken J Kron
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Yanyun Zhu
- Division of Oncogenomics, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Stanley Zhou
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Giacomo Grillo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Tahmid Mehdi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Musaddeque Ahmed
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Tesa M Severson
- Division of Oncogenomics, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Paul Guilhamon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | | | - Vincent Huang
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | | | - Michael Fraser
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Theodorus van der Kwast
- Department of Pathology and Laboratory Medicine, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Andries M Bergman
- Division of Oncogenomics, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Robert G Bristow
- CRUK Manchester Institute and Manchester Cancer Research Centre, University of Manchester, Manchester M20 4GJ, UK
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, The Netherlands; Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada.
| |
Collapse
|
50
|
Dong H, Lu B, Wang J, Xie J, Liu K, Jia L, Zhuang J. Polymerization-driven successive collapse of DNA dominoes enabling highly sensitive cancer gene diagnosis. Chem Commun (Camb) 2019; 55:14797-14800. [PMID: 31761905 DOI: 10.1039/c9cc07508a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We propose a novel fluorescence assay method by designing a polymerization-driven DNA dominoes collapse (PDDC) strategy, enabling highly sensitive detection of p53 gene (as a model analyte) and single nucleotide polymorphism analysis.
Collapse
Affiliation(s)
- Haiyan Dong
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, Fujian 350108, China.
| | | | | | | | | | | | | |
Collapse
|