1
|
Ju Y, Dai F, Wang Y, Ye Z, Li Y, Ju S, Ge Y, Chen W. Oncolytic vaccinia virus armed with 4-1BBL elicits potent and safe antitumor immunity and enhances the therapeutic efficiency of PD-1/PD-L1 blockade in a pancreatic cancer model. Transl Oncol 2024; 50:102151. [PMID: 39388958 DOI: 10.1016/j.tranon.2024.102151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/06/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with a poor prognosis. Mono-immunotherapy, such as blockade of the PD-1/PD-L1 pathway, for PDAC has proven to be less effective. The systemic exertion of 4-1BB signaling enhanced antitumor immunity accompanied by hepatotoxicity, which is an obstacle for its clinical application. Our study exploits an oncolytic virus armed with 4-1BBL (VV-ΔTK-4L) to locally express 4-1BBL in the tumor microenvironment (TME), thus avoiding hepatotoxicity. VV-ΔTK-4L prolonged the survival time of a pancreatic tumor mouse model and modified the immune status of the TME and spleen. In the TME, the quantities of CD45+ cells, NK1.1+ cells, CD11c+ DCs, CD3+T, CD4+T, and CD8+T cells increased. Compared to VV-ΔTK treatment, VV-ΔTK-4L further increases the number of CD8+T cells with effector phenotypes, and downregulates exhaustion-related molecules on CD8+T cells, and does not increase the proportion of Foxp3+T cells. Thus, the TME of pancreatic cancer was converted from "cold" to "hot" by VV-ΔTK-4L. Blockade of the PD-1/PD-L1 pathway combined with VV-ΔTK-4L further significantly improves the survival ratio of a tumor-bearing mouse model. This study provides a systemic therapeutic strategy and approach for PDAC immunotherapy.
Collapse
Affiliation(s)
- Yushi Ju
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Feiyu Dai
- Department of Immunology, Basic Medical College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; Medical Biotechnology Institute, Soochow University, Suzhou, Jiangsu 215123, China; Collaborative Innovation Center of Bone and Immunology between Sihong Hospital and Soochow University, Suzhou 215123, China
| | - Yirong Wang
- Department of Immunology, Basic Medical College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; Medical Biotechnology Institute, Soochow University, Suzhou, Jiangsu 215123, China; Collaborative Innovation Center of Bone and Immunology between Sihong Hospital and Soochow University, Suzhou 215123, China
| | - Zhenyu Ye
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China
| | - Yang Li
- Department of Immunology, Basic Medical College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; Medical Biotechnology Institute, Soochow University, Suzhou, Jiangsu 215123, China; Collaborative Innovation Center of Bone and Immunology between Sihong Hospital and Soochow University, Suzhou 215123, China
| | - Songguang Ju
- Department of Immunology, Basic Medical College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; Medical Biotechnology Institute, Soochow University, Suzhou, Jiangsu 215123, China; Collaborative Innovation Center of Bone and Immunology between Sihong Hospital and Soochow University, Suzhou 215123, China.
| | - Yan Ge
- Department of Immunology, Basic Medical College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China; Medical Biotechnology Institute, Soochow University, Suzhou, Jiangsu 215123, China; Collaborative Innovation Center of Bone and Immunology between Sihong Hospital and Soochow University, Suzhou 215123, China.
| | - Wei Chen
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215004, China.
| |
Collapse
|
2
|
Zhao Y, Qin C, Lin C, Li Z, Zhao B, Li T, Zhang X, Wang W. Pancreatic ductal adenocarcinoma cells reshape the immune microenvironment: Molecular mechanisms and therapeutic targets. Biochim Biophys Acta Rev Cancer 2024; 1879:189183. [PMID: 39303859 DOI: 10.1016/j.bbcan.2024.189183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a digestive system malignancy characterized by challenging early detection, limited treatment alternatives, and generally poor prognosis. Although there have been significant advancements in immunotherapy for hematological malignancies and various solid tumors in recent decades, with impressive outcomes in recent preclinical and clinical trials, the effectiveness of these therapies in treating PDAC continues to be modest. The unique immunological microenvironment of PDAC, especially the abnormal distribution, complex composition, and variable activation states of tumor-infiltrating immune cells, greatly restricts the effectiveness of immunotherapy. Undoubtedly, integrating data from both preclinical models and human studies helps accelerate the identification of reliable molecules and pathways responsive to targeted biological therapies and immunotherapies, thereby continuously optimizing therapeutic combinations. In this review, we delve deeply into how PDAC cells regulate the immune microenvironment through complex signaling networks, affecting the quantity and functional status of immune cells to promote immune escape and tumor progression. Furthermore, we explore the multi-modal immunotherapeutic strategies currently under development, emphasizing the transformation of the immunosuppressive environment into an anti-tumor milieu by targeting specific molecular and cellular pathways, providing insights for the development of novel treatment strategies.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Chen Lin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Xiangyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| |
Collapse
|
3
|
Jeon SH, You G, Park J, Chung Y, Park K, Kim H, Jeon J, Kim Y, Son WC, Jeong DS, Shin EC, Lee JY, Han DH, Jung J, Park SH. Anti-4-1BB×PDL1 Bispecific Antibody Reinvigorates Tumor-Specific Exhausted CD8+ T Cells and Enhances the Efficacy of Anti-PD1 Blockade. Clin Cancer Res 2024; 30:4155-4166. [PMID: 38743752 DOI: 10.1158/1078-0432.ccr-23-2864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE To overcome the limited efficacy of immune checkpoint blockade, there is a need to find novel cancer immunotherapeutic strategies for the optimal treatment of cancer. The novel anti-4-1BB×PDL1 bispecific antibody-ABL503 (also known as TJ-L14B)-was designed to simultaneously target PDL1 and 4-1BB and demonstrated strong antitumor T-cell responses without considerable toxicity. In this study, we investigated the mechanisms by which the combination of ABL503 and anti-PD1 blockade affected the reinvigoration of exhausted tumor-infiltrating CD8+ T cells (CD8+ TIL) and antitumor efficacy. EXPERIMENTAL DESIGN Single-cell suspensions of hepatocellular carcinoma and ovarian cancer tissues from treatment-naïve patients were used for immunophenotyping of CD8+ TILs and in vitro functional assays. Humanized hPD1/hPDL1/h4-1BB triple-knock-in mice were used to evaluate the effects of ABL503 and anti-PD1 blockade in vivo. RESULTS We observed that ABL503 successfully restored the functions of 4-1BB+ exhausted CD8+ TILs, which were enriched for tumor-specific T cells but unresponsive to anti-PD1 blockade. Importantly, compared with anti-PD1 blockade alone, the combination of ABL503 and anti-PD1 blockade further enhanced the functional restoration of human CD8+ TILs in vitro. Consistently, the combination of ABL503 with anti-PD1 in vivo significantly alleviated tumor growth and induced enhanced infiltration and activation of CD8+ TILs. CONCLUSIONS ABL503, a PDL1 and 4-1BB dual-targeting bispecific antibody, elicits pronounced additive tumor growth inhibition, with increased infiltration and functionality of exhausted CD8+ T cells, which in turn enhances the anticancer effects of anti-PD1 blockade. These promising findings suggest that ABL503 (TJ-L14B) in combination with PD1 inhibitors will likely further enhance therapeutic benefit in clinical trials. See related commentary by Molero-Glez et al., p. 3971.
Collapse
MESH Headings
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/therapeutic use
- CD8-Positive T-Lymphocytes/immunology
- Animals
- Humans
- Mice
- Female
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/drug effects
- Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/immunology
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/therapy
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
Collapse
Affiliation(s)
- Seung Hyuck Jeon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Gihoon You
- ABL Bio Inc., Seongnam, Republic of Korea
| | - Junsik Park
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youseung Chung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | | | | | | | | | - Woo-Chan Son
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Da Som Jeong
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jung-Yun Lee
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dai Hoon Han
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaeho Jung
- ABL Bio Inc., Seongnam, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
4
|
Molero-Glez P, Azpilikueta A, Mosteo L, Glez-Vaz J, Palencia B, Melero I. CD137 (4-1BB) and T-Lymphocyte Exhaustion. Clin Cancer Res 2024; 30:3971-3973. [PMID: 39120463 DOI: 10.1158/1078-0432.ccr-24-1568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024]
Abstract
CD137 (4-1BB) costimulation results in the potent activation of antitumor T lymphocytes and elicits antitumor efficacy that is synergistic with anti-PD(L)1 checkpoint inhibitors, especially when using bispecific constructs. Emerging experimental evidence indicates that 4-1BB ligation prevents and may revert T-cell exhaustion. See related article by Jeon et al., p. 4155.
Collapse
Affiliation(s)
- Paula Molero-Glez
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Arantza Azpilikueta
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Laura Mosteo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Javier Glez-Vaz
- Department of Hematology/Oncology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Belen Palencia
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Xia H, Duan J, Li M, Chen N, Zhong W, Zhou Y, Chen R, Yuan W. CD137 Signaling Mediates Pulmonary Artery Endothelial Cell Proliferation Under Hypoxia By Regulating Mitochondrial Dynamics. J Cardiovasc Transl Res 2024; 17:859-869. [PMID: 38347336 DOI: 10.1007/s12265-024-10493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/31/2024] [Indexed: 09/04/2024]
Abstract
Altered mitochondrial dynamics affect pulmonary artery endothelial cells (PAECs) proliferation, contributing to the development of pulmonary hypertension. CD137 signaling promotes mitochondrial fission. We hypothesize CD137 signaling is involved in the excessive proliferation of PAECs. The levels of CD137 protein were increased in the lung tissue of hypoxic mice and hypoxic-stimulated PAECs. Activation of CD137 signal in hypoxic-PAECs upregulated the levels of hypoxia-inducible factor-2α (HIF-2α), glucose transporters type 4, the lactate transporter monocarboxylate transporter 4, key glycolysis rate-limiting enzymes and promoted mitochondrial division; moreover, increased glucose uptake, lactic acid and ATP production and proliferative cells were observed in these PAECs. Whereas, knockdown HIF-2α reversed CD137 signal-mediated effects in PAECs mentioned above. Compared with wild-type mice, the proliferation of PAECs and the percentage of vascular lateral wall thickness decreased in CD137 knockout mice. Together, CD137 signal participated in pulmonary vascular remodeling through the regulation of mitochondrial dynamics dependent on HIF-2α in PAECs.
Collapse
Affiliation(s)
- Hao Xia
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Junying Duan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Nan Chen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wei Zhong
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ye Zhou
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Rui Chen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
6
|
Ye QN, Zhu L, Liang J, Zhao DK, Tian TY, Fan YN, Ye SY, Liu H, Huang XY, Cao ZT, Shen S, Wang J. Orchestrating NK and T cells via tri-specific nano-antibodies for synergistic antitumor immunity. Nat Commun 2024; 15:6211. [PMID: 39043643 PMCID: PMC11266419 DOI: 10.1038/s41467-024-50474-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/08/2024] [Indexed: 07/25/2024] Open
Abstract
The functions of natural killer (NK) and T cells in innate and adaptive immunity, as well as their functions in tumor eradication, are complementary and intertwined. Here we show that utilization of multi-specific antibodies or nano-antibodies capable of simultaneously targeting both NK and T cells could be a valuable approach in cancer immunotherapy. Here, we introduce a tri-specific Nano-Antibody (Tri-NAb), generated by immobilizing three types of monoclonal antibodies (mAbs), using an optimized albumin/polyester composite nanoparticle conjugated with anti-Fc antibody. This Tri-NAb, targeting PDL1, 4-1BB, and NKG2A (or TIGIT) simultaneously, effectively binds to NK and CD8+ T cells, triggering their activation and proliferation, while facilitating their interaction with tumor cells, thereby inducing efficient tumor killing. Importantly, the antitumor efficacy of Tri-NAb is validated in multiple models, including patient-derived tumor organoids and humanized mice, highlighting the translational potential of NK and T cell co-targeting.
Collapse
Affiliation(s)
- Qian-Ni Ye
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, P. R. China
| | - Long Zhu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
| | - Jie Liang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
| | - Dong-Kun Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
| | - Tai-Yu Tian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
| | - Ya-Nan Fan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, P. R. China
| | - Si-Yi Ye
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
| | - Hua Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
| | - Xiao-Yi Huang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China
| | - Zhi-Ting Cao
- School of Biopharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Song Shen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, P. R. China.
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, P. R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, P. R. China.
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, P. R. China.
| |
Collapse
|
7
|
Hsu CY, Abdulrahim MN, Mustafa MA, Omar TM, Balto F, Pineda I, Khudair TT, Ubaid M, Ali MS. The multifaceted role of PCSK9 in cancer pathogenesis, tumor immunity, and immunotherapy. Med Oncol 2024; 41:202. [PMID: 39008137 DOI: 10.1007/s12032-024-02435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), a well-known regulator of cholesterol metabolism and cardiovascular diseases, has recently garnered attention for its emerging involvement in cancer biology. The multifunctional nature of PCSK9 extends beyond lipid regulation and encompasses a wide range of cellular processes that can influence cancer progression. Studies have revealed that PCSK9 can modulate signaling pathways, such as PI3K/Akt, MAPK, and Wnt/β-catenin, thereby influencing cellular proliferation, survival, and angiogenesis. Additionally, the interplay between PCSK9 and cholesterol homeostasis may impact membrane dynamics and cellular migration, further influencing tumor aggressiveness. The central role of the immune system in monitoring and controlling cancer is increasingly recognized. Recent research has demonstrated the ability of PCSK9 to modulate immune responses through interactions with immune cells and components of the tumor microenvironment. This includes effects on dendritic cell maturation, T cell activation, and cytokine production, suggesting a role in shaping antitumor immune responses. Moreover, the potential influence of PCSK9 on immune checkpoints such as PD1/PD-L1 lends an additional layer of complexity to its immunomodulatory functions. The growing interest in cancer immunotherapy has prompted exploration into the potential of targeting PCSK9 for therapeutic benefits. Preclinical studies have demonstrated synergistic effects between PCSK9 inhibitors and established immunotherapies, offering a novel avenue for combination treatments. The strategic manipulation of PCSK9 to enhance tumor immunity and improve therapeutic outcomes presents an exciting area for further investigations. Understanding the mechanisms by which PCSK9 influences cancer biology and immunity holds promise for the development of novel immunotherapeutic approaches. This review aims to provide a comprehensive analysis of the intricate connections between PCSK9, cancer pathogenesis, tumor immunity, and the potential implications for immunotherapeutic interventions.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan.
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, 85004, USA.
| | | | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Baghdad, Iraq
- Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Samarra, Iraq
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | - Franklin Balto
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Indira Pineda
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Teeba Thamer Khudair
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
8
|
Eguren-Santamaría I, Rodríguez I, Herrero-Martin C, Fernández de Piérola E, Azpilikueta A, Sánchez-Gregorio S, Bolaños E, Gomis G, Molero-Glez P, Chacón E, Mínguez JÁ, Chiva S, Diez-Caballero F, de Andrea C, Teijeira Á, Sanmamed MF, Melero I. Short-term cultured tumor fragments to study immunotherapy combinations based on CD137 (4-1BB) agonism. Oncoimmunology 2024; 13:2373519. [PMID: 38988823 PMCID: PMC11236292 DOI: 10.1080/2162402x.2024.2373519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
Biomarkers for cancer immunotherapy are an unmet medical need. The group of Daniela Thommen at the NKI recently reported on novel methodologies based on short-term cultures of patient-derived tumor fragments whose cytokine concentrations in the supernatants and activation markers on infiltrating T cells were associated with clinical response to PD-1 blockade. We set up a similar culture technology with tumor-derived fragments using mouse tumors transplanted into syngeneic immunocompetent mice to test an agonist anti-CD137 mAb and its combinations with anti-PD-1 and/or anti-TGF-β. Increases in IFNγ concentrations in the tissue culture supernatants were detected upon in-culture activation with the anti-CD137 and anti-PD-1 mAb combinations or concanavalin A as a positive control. No other cytokine from a wide array was informative of stimulation with these mAbs. Interestingly, increases in Ki67 and other activation markers were substantiated in lymphocytes from cell suspensions gathered at the end of 72 h cultures. In mice bearing bilateral tumors in which one was excised prior to in vivo anti-CD137 + anti-PD-1 treatment to perform the fragment culture evaluation, no association was found between IFNγ production from the fragments and the in vivo therapeutic outcome in the non-resected contralateral tumors. The experimental system permitted freezing and thawing of the fragments with similar functional outcomes. Using a series of patient-derived tumor fragments from excised solid malignancies, we showed IFNγ production in a fraction of the studied cases, that was conserved in frozen/thawed fragments. The small tumor fragment culture technique seems suitable to preclinically explore immunotherapy combinations.
Collapse
Affiliation(s)
- Iñaki Eguren-Santamaría
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Medical Oncology Department, Clínica Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Inmaculada Rodríguez
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Claudia Herrero-Martin
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Eva Fernández de Piérola
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Arantza Azpilikueta
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Sandra Sánchez-Gregorio
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Elixabet Bolaños
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Gabriel Gomis
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Paula Molero-Glez
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Enrique Chacón
- Gynecology & Obstetrics Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - José Ángel Mínguez
- Gynecology & Obstetrics Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Santiago Chiva
- Urology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Carlos de Andrea
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Pathology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Álvaro Teijeira
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
| | - Miguel F. Sanmamed
- Combination Strategies for Translational Immunotherapy, Immunology and Immunotherapy Program, Centro de Investigación Médica Aplicada (CIMA) Universidad de Navarra, Pamplona, Spain
- Medical Oncology Department, Clínica Universidad de Navarra, Pamplona, Spain
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Immunology, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Zhu X, Feng Y, Fan P, Dong D, Yuan J, Chang C, Wang R. Increased co-expression of 4-1BB with PD-1 on CD8+ tumor-infiltrating lymphocytes is associated with improved prognosis and immunotherapy response in cervical cancer. Front Oncol 2024; 14:1381381. [PMID: 38756662 PMCID: PMC11096482 DOI: 10.3389/fonc.2024.1381381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Background The combination of agonistic antibodies with immune checkpoint inhibitors presents a promising avenue for cancer immunotherapy. Our objective is to explore the co-expression of 4-1BB, ICOS, CD28, with PD-1 on CD8+ T cells in the peripheral blood and tumor tissue of cervical cancer(CC) patients, with a specific focus on the association between the co-expression levels of 4-1BB with PD-1 and clinical features, prognosis as well as immunotherapy response. The goal is to offer valuable insights into cervical cancer immunotherapy. Methods In this study, 50 treatment-naive patients diagnosed with CC were enrolled. Flow cytometry was used to detect PD-1/4-1BB, PD-1/ICOS and PD-1/CD28 co-expression on CD8+ T cells. Subsequent analysis aimed to investigate the differential co-expression between peripheral blood and cancer tissue, and also the correlation between co-expression and clinical features in these patients. Gene Expression Omnibus (GEO) datasets, The Cancer Genome Atlas (TCGA) cohort, The IMvigor210 cohort, The BMS038cohort and Immunophenoscores were utilized to investigate the correlation between PD-1/4-1BB and the immune microenvironment, prognosis, immunotherapy, and drug sensitivity in cervical cancer. Results The co-expression levels of PD-1/4-1BB, PD-1/ICOS, and PD-1/CD28 on CD8+ tumor-infiltrating lymphocytes (TILs) were significantly higher in cervical cancer patients compared to those in peripheral blood. Clinical feature analysis reveals that on CD8+ TILs, the co-expression of PD-1/4-1BB is more closely correlated with clinical characteristics compared to PD-1/ICOS, PD-1/CD28, PD-1, and 4-1BB. Pseudo-time analysis and cell communication profiling reveal close associations between the subgroups harboring 4-1BB and PD-1. The prognosis, tumor mutation burden, immune landscape, and immunotherapy response exhibit statistically significant variations between the high and low co-expression groups of PD-1/4-1BB. The high co-expression group of PD-1/4-1BB is more likely to benefit from immunotherapy. Conclusion PD-1/4-1BB, PD-1/ICOS, and PD-1/CD28 exhibit elevated co-expression on CD8+TILs of cervical cancer, while demonstrating lower expression in circulating T cells. The co-expression patterns of PD-1/4-1BB significantly contributed to the prediction of immune cell infiltration characteristics, prognosis, and tailored immunotherapy tactics. PD-1/4-1BB exhibits potential as a target for combination immunotherapy in cervical cancer.
Collapse
Affiliation(s)
- Xiaonan Zhu
- The Third Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yaning Feng
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang, China
| | - Peiwen Fan
- Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumqi, Xinjiang, China
| | - Danning Dong
- Department of Head and Neck Radiation Oncology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jianlin Yuan
- The Third Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Cheng Chang
- Nuclear Medicine Department, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ruozheng Wang
- Xinjiang Uygur Autonomous Region Radiotherapy Clinical Research and Training Center, Urumqi, Xinjiang, China
- Clinical Key Specialty of the Health Commission, Urumqi, Xinjiang, China
| |
Collapse
|
10
|
Klein C, Brinkmann U, Reichert JM, Kontermann RE. The present and future of bispecific antibodies for cancer therapy. Nat Rev Drug Discov 2024; 23:301-319. [PMID: 38448606 DOI: 10.1038/s41573-024-00896-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/08/2024]
Abstract
Bispecific antibodies (bsAbs) enable novel mechanisms of action and/or therapeutic applications that cannot be achieved using conventional IgG-based antibodies. Consequently, development of these molecules has garnered substantial interest in the past decade and, as of the end of 2023, 14 bsAbs have been approved: 11 for the treatment of cancer and 3 for non-oncology indications. bsAbs are available in different formats, address different targets and mediate anticancer function via different molecular mechanisms. Here, we provide an overview of recent developments in the field of bsAbs for cancer therapy. We focus on bsAbs that are approved or in clinical development, including bsAb-mediated dual modulators of signalling pathways, tumour-targeted receptor agonists, bsAb-drug conjugates, bispecific T cell, natural killer cell and innate immune cell engagers, and bispecific checkpoint inhibitors and co-stimulators. Finally, we provide an outlook into next-generation bsAbs in earlier stages of development, including trispecifics, bsAb prodrugs, bsAbs that induce degradation of tumour targets and bsAbs acting as cytokine mimetics.
Collapse
Affiliation(s)
- Christian Klein
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland.
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | | | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University Stuttgart, Stuttgart, Germany.
| |
Collapse
|
11
|
Zhang H, Wang Q, Yalavarthi S, Pekar L, Shamnoski S, Hu L, Helming L, Zielonka S, Xu C. Development of a c-MET x CD137 bispecific antibody for targeted immune agonism in cancer immunotherapy. Cancer Treat Res Commun 2024; 39:100805. [PMID: 38492435 DOI: 10.1016/j.ctarc.2024.100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Targeting the costimulatory receptor CD137 has shown promise as a therapeutic approach for cancer immunotherapy, resulting in anti-tumor efficacy demonstrated in clinical trials. However, the initial CD137 agonistic antibodies, urelumab and utomilumab, faced challenges in clinical trials due to the liver toxicity or lack of efficacy, respectively. Concurrently, c-MET has been identified as a highly expressed tumor-associated antigen (TAA) in various solid and soft tumors. METHODS In this study, we aimed to develop a bispecific antibody (BsAb) that targets both c-MET and CD137, optimizing the BsAb format and CD137 binder for efficient delivery of the CD137 agonist to the tumor microenvironment (TME). We employed a monovalent c-MET motif and a trimeric CD137 Variable Heavy domain of Heavy chain (VHH) for the BsAb design. RESULTS Our results demonstrate that the c-MET x CD137 BsAb provides co-stimulation to T cells through cross-linking by c-MET-expressing tumor cells. Functional immune assays confirmed the enhanced efficacy and potency of the c-MET x CD137 BsAb, as indicated by activation of CD137 signaling, target cell killing, and cytokine release in various tumor cell lines. Furthermore, the combination of c-MET x CD137 BsAb with Pembrolizumab showed a dose-dependent enhancement of target-induced T cell cytokine release. CONCLUSION Overall, the c-MET x CD137 BsAb exhibits a promising developability profile as a tumor-targeted immune agonist by minimizing off-target effects while effectively delivering immune agonism. It has the potential to overcome resistance to anti-PD-(L)1 therapies.
Collapse
Affiliation(s)
- Hong Zhang
- Research Unit Oncology, EMD Serono Research Center, 45 Middlesex Turnpike, Billerica, MA 01821, USA
| | - Qun Wang
- Research Unit Oncology, EMD Serono Research Center, 45 Middlesex Turnpike, Billerica, MA 01821, USA
| | - Sireesha Yalavarthi
- Research Unit Oncology, EMD Serono Research Center, 45 Middlesex Turnpike, Billerica, MA 01821, USA
| | - Lukas Pekar
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Steven Shamnoski
- Research Unit Oncology, EMD Serono Research Center, 45 Middlesex Turnpike, Billerica, MA 01821, USA
| | - Liufang Hu
- Research Unit Oncology, EMD Serono Research Center, 45 Middlesex Turnpike, Billerica, MA 01821, USA
| | - Laura Helming
- Research Unit Oncology, EMD Serono Research Center, 45 Middlesex Turnpike, Billerica, MA 01821, USA
| | - Stefan Zielonka
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Chunxiao Xu
- Research Unit Oncology, EMD Serono Research Center, 45 Middlesex Turnpike, Billerica, MA 01821, USA.
| |
Collapse
|
12
|
Khushalani NI, Ott PA, Ferris RL, Cascone T, Schadendorf D, Le DT, Sharma MR, Barlesi F, Sharfman W, Luke JJ, Melero I, Lathers D, Neely J, Suryawanshi S, Sanyal A, Holloway JL, Suryawanshi R, Ely S, Segal NH. Final results of urelumab, an anti-CD137 agonist monoclonal antibody, in combination with cetuximab or nivolumab in patients with advanced solid tumors. J Immunother Cancer 2024; 12:e007364. [PMID: 38458639 PMCID: PMC10921538 DOI: 10.1136/jitc-2023-007364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Resistance to immune checkpoint inhibitors and targeted treatments for cancer is common; thus, novel immunotherapy agents are needed. Urelumab is a monoclonal antibody agonist that binds to CD137 receptors expressed on T cells. Here, we report two studies that evaluated urelumab in combination with cetuximab or nivolumab in patients with select, advanced solid tumors. METHODS CA186-018: Patients with metastatic colorectal cancer or metastatic squamous cell carcinoma of the head and neck (SCCHN) were treated in a dose-evaluation phase with urelumab 0.1 mg/kg (urelumab-0.1) every 3 weeks (Q3W)+cetuximab 250 mg/m2 (cetuximab-250) weekly; and in a dose-expansion phase with urelumab 8 mg flat dose (urelumab-8) Q3W+cetuximab-250 weekly. CA186-107: The dose-escalation phase included patients with previously treated advanced solid tumors (or treated or treatment-naive melanoma); patients received urelumab 3 mg flat dose (urelumab-3) or urelumab-8 every 4 weeks+nivolumab 3 mg/kg (nivolumab-3) or 240 mg (nivolumab-240) every 2 weeks. In the expansion phase, patients with melanoma, non-small cell lung cancer, or SCCHN were treated with urelumab-8+nivolumab-240. Primary endpoints were safety and tolerability, and the secondary endpoint included efficacy assessments. RESULTS CA186-018: 66 patients received study treatment. The most frequent treatment-related adverse events (TRAEs) were fatigue (75%; n=3) with urelumab-0.1+cetuximab-250 and dermatitis (45%; n=28) with urelumab-8+cetuximab-250. Three patients (5%) discontinued due to TRAE(s) (with urelumab-8+cetuximab-250). One patient with SCCHN had a partial response (objective response rate (ORR) 5%, with urelumab-8+cetuximab-250).CA186-107: 134 patients received study treatment. Fatigue was the most common TRAE (32%; n=2 with urelumab-3+nivolumab-3; n=1 with urelumab-8+nivolumab-3; n=40 with urelumab-8+nivolumab-240). Nine patients (7%) discontinued due to TRAE(s) (n=1 with urelumab-3+nivolumab-3; n=8 with urelumab-8+nivolumab-240). Patients with melanoma naive to anti-PD-1 therapy exhibited the highest ORR (49%; n=21 with urelumab-8+nivolumab-240). Intratumoral gene expression in immune-related pathways (CD3, CD8, CXCL9, GZMB) increased on treatment with urelumab+nivolumab. CONCLUSIONS Although the addition of urelumab at these doses was tolerable, preliminary response rates did not indicate an evident additive benefit. Nevertheless, the positive pharmacodynamics effects observed with urelumab and the high response rate in treatment-naive patients with melanoma warrant further investigation of other anti-CD137 agonist agents for treatment of cancer. TRIAL REGISTRATION NUMBERS NCT02110082; NCT02253992.
Collapse
Affiliation(s)
- Nikhil I Khushalani
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Patrick A Ott
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Robert L Ferris
- Hillman Cancer Center, University of Pittsburgh Medical Center Health System, Pittsburgh, Pennsylvania, USA
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tina Cascone
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dirk Schadendorf
- Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie, University Hospital Essen, Essen, Germany
| | - Dung T Le
- Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Fabrice Barlesi
- Aix-Marseille University, Marseille, France
- Hopital de la Timone, Marseille, France
| | | | - Jason J Luke
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ignacio Melero
- CIBERONC, and Clinica Universidad de Navarra, Pamplona, Spain
| | - Deanne Lathers
- Bristol Meyers Squibb Lawrenceville, Lawrenceville, New Jersey, USA
| | - Jaclyn Neely
- Bristol Meyers Squibb Lawrenceville, Lawrenceville, New Jersey, USA
| | | | | | - James L Holloway
- Bristol Meyers Squibb Lawrenceville, Lawrenceville, New Jersey, USA
| | | | - Scott Ely
- Bristol Meyers Squibb Lawrenceville, Lawrenceville, New Jersey, USA
| | - Neil H Segal
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
13
|
Sanchez S, Dangi T, Awakoaiye B, Irani N, Fourati S, Richner J, Penaloza-MacMaster P. Time-dependent enhancement of mRNA vaccines by 4-1BB costimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582992. [PMID: 38496467 PMCID: PMC10942304 DOI: 10.1101/2024.03.01.582992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
mRNA vaccines have demonstrated efficacy against COVID-19. However, concerns regarding waning immunity and breakthrough infections have motivated the development of next-generation vaccines with enhanced efficacy. In this study, we investigated the impact of 4-1BB costimulation on immune responses elicited by mRNA vaccines in mice. We first vaccinated mice with an mRNA vaccine encoding the SARS-CoV-2 spike antigen like the Moderna and Pfizer-BioNTech vaccines, followed by administration of 4-1BB costimulatory antibodies at various times post-vaccination. Administering 4-1BB costimulatory antibodies during the priming phase did not enhance immune responses. However, administering 4-1BB costimulatory antibodies after 96 hours elicited a significant improvement in CD8 T cell responses, leading to enhanced protection against breakthrough infections. A similar improvement in immune responses was observed with multiple mRNA vaccines, including vaccines against common cold coronavirus, human immunodeficiency virus (HIV), and arenavirus. These findings demonstrate a time-dependent effect by 4-1BB costimulation and provide insights for developing improved mRNA vaccines.
Collapse
Affiliation(s)
- Sarah Sanchez
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tanushree Dangi
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Bakare Awakoaiye
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nahid Irani
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Slim Fourati
- Department of Medicine, Division of Allergy and Immunology, Feinberg School of Medicine and Center for Human Immunobiology, Northwestern University, Chicago, IL 60611, USA
| | - Justin Richner
- Department of Microbiology & Immunology, University of Illinois Chicago College of Medicine, Chicago, IL 60612, USA
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
14
|
Palmeri JR, Lax BM, Peters JM, Duhamel L, Stinson JA, Santollani L, Lutz EA, Pinney W, Bryson BD, Dane Wittrup K. CD8 + T cell priming that is required for curative intratumorally anchored anti-4-1BB immunotherapy is constrained by Tregs. Nat Commun 2024; 15:1900. [PMID: 38429261 PMCID: PMC10907589 DOI: 10.1038/s41467-024-45625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/30/2024] [Indexed: 03/03/2024] Open
Abstract
Although co-stimulation of T cells with agonist antibodies targeting 4-1BB (CD137) improves antitumor immune responses in preclinical studies, clinical success has been limited by on-target, off-tumor activity. Here, we report the development of a tumor-anchored ɑ4-1BB agonist (ɑ4-1BB-LAIR), which consists of a ɑ4-1BB antibody fused to the collagen-binding protein LAIR. While combination treatment with an antitumor antibody (TA99) shows only modest efficacy, simultaneous depletion of CD4+ T cells boosts cure rates to over 90% of mice. Mechanistically, this synergy depends on ɑCD4 eliminating tumor draining lymph node regulatory T cells, resulting in priming and activation of CD8+ T cells which then infiltrate the tumor microenvironment. The cytotoxic program of these newly primed CD8+ T cells is then supported by the combined effect of TA99 and ɑ4-1BB-LAIR. The combination of TA99 and ɑ4-1BB-LAIR with a clinically approved ɑCTLA-4 antibody known for enhancing T cell priming results in equivalent cure rates, which validates the mechanistic principle, while the addition of ɑCTLA-4 also generates robust immunological memory against secondary tumor rechallenge. Thus, our study establishes the proof of principle for a clinically translatable cancer immunotherapy.
Collapse
Affiliation(s)
- Joseph R Palmeri
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Brianna M Lax
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Joshua M Peters
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Lauren Duhamel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Jordan A Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Luciano Santollani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Emi A Lutz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - William Pinney
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Bryan D Bryson
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
| |
Collapse
|
15
|
Ma Y, Luo F, Zhang Y, Liu Q, Xue J, Huang Y, Zhao Y, Yang Y, Fang W, Zhou T, Chen G, Cao J, Chen Q, She X, Luo P, Liu G, Zhang L, Zhao H. Preclinical characterization and phase 1 results of ADG106 in patients with advanced solid tumors and non-Hodgkin's lymphoma. Cell Rep Med 2024; 5:101414. [PMID: 38330942 PMCID: PMC10897605 DOI: 10.1016/j.xcrm.2024.101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/13/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
ADG106, a ligand-blocking agonistic antibody targeting CD137 (4-1BB), exhibits promising results in preclinical studies, demonstrating tumor suppression in various animal models and showing a balanced profile between safety and efficacy. This phase 1 study enrolls 62 patients with advanced malignancies, revealing favorable tolerability up to the 5.0 mg/kg dose level. Dose-limiting toxicity occurs in only one patient (6.3%) at 10.0 mg/kg, resulting in grade 4 neutropenia. The most frequent treatment-related adverse events include leukopenia (22.6%), neutropenia (22.6%), elevated alanine aminotransferase (22.6%), rash (21.0%), itching (17.7%), and elevated aspartate aminotransferase (17.7%). The overall disease control rates are 47.1% for advanced solid tumors and 54.5% for non-Hodgkin's lymphoma. Circulating biomarkers suggest target engagement by ADG106 and immune modulation of circulating T, B, and natural killer cells and cytokines interferon γ and interleukin-6, which may affect the probability of clinical efficacy. ADG106 has a manageable safety profile and preliminary anti-tumor efficacy in patients with advanced cancers (this study was registered at ClinicalTrials.gov: NCT03802955).
Collapse
Affiliation(s)
- Yuxiang Ma
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Fan Luo
- Department of Intensive Care Unit, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yang Zhang
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Qianwen Liu
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jinhui Xue
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yan Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yuanyuan Zhao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yunpeng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Wenfeng Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Ting Zhou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Gang Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jiaxin Cao
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Qun Chen
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | | | | | | | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| | - Hongyun Zhao
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China.
| |
Collapse
|
16
|
Yang L, Sheets TP, Feng Y, Yu G, Bajgain P, Hsu KS, So D, Seaman S, Lee J, Lin L, Evans CN, Guest MR, Chari R, St. Croix B. Uncovering receptor-ligand interactions using a high-avidity CRISPR activation screening platform. SCIENCE ADVANCES 2024; 10:eadj2445. [PMID: 38354234 PMCID: PMC10866537 DOI: 10.1126/sciadv.adj2445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
The majority of clinically approved drugs target proteins that are secreted or cell surface bound. However, further advances in this area have been hindered by the challenging nature of receptor deorphanization, as there are still many secreted and cell-bound proteins with unknown binding partners. Here, we developed an advanced screening platform that combines CRISPR-CAS9 guide-mediated gene activation (CRISPRa) and high-avidity bead-based selection. The CRISPRa platform incorporates serial enrichment and flow cytometry-based monitoring, resulting in substantially improved screening sensitivity for well-known yet weak interactions of the checkpoint inhibitor family. Our approach has successfully revealed that siglec-4 exerts regulatory control over T cell activation through a low affinity trans-interaction with the costimulatory receptor 4-1BB. Our highly efficient screening platform holds great promise for identifying extracellular interactions of uncharacterized receptor-ligand partners, which is essential to develop next-generation therapeutics, including additional immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Liping Yang
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Timothy P. Sheets
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD 21702, USA
| | - Yang Feng
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Guojun Yu
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Pradip Bajgain
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Kuo-Sheng Hsu
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Daeho So
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Steven Seaman
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Jaewon Lee
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Ling Lin
- Proteomic Instability of Cancer Section, MCGP, NCI, NIH, Frederick, MD 21702, USA
| | - Christine N. Evans
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD 21702, USA
| | - Mary R. Guest
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD 21702, USA
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD 21702, USA
| | - Brad St. Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| |
Collapse
|
17
|
Liu PW, Lin J, Hou R, Cai Z, Gong Y, He PA, Yang J. Single-cell RNA-seq reveals the metabolic status of immune cells response to immunotherapy in triple-negative breast cancer. Comput Biol Med 2024; 169:107926. [PMID: 38183706 DOI: 10.1016/j.compbiomed.2024.107926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/09/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
Immune checkpoint blockade (ICB) therapy offers promise in the treatment of triple-negative breast cancer (TNBC); however, its limited efficacy in certain TNBC patients poses a challenge. In this study, we elucidated the metabolic mechanism at 'sub-subtype' resolution underlying the non-response to ICB therapy in TNBC. Here, an analytic pipeline was developed to reveal the metabolic heterogeneity, which is correlated with the ICB outcomes, within each immune cell subtype. First, we identified metabolic 'sub-subtypes' within certain cell subtypes, predominantly T cell subsets, which are enriched in ICB non-responders and named as non-responder-enriched (NR-E) clusters. Notably, most of NR-E T metabolic cells exhibit globally higher metabolic activities compared to other cells within the same individual subtype. Further, we investigated the extra-cellular signals that trigger the metabolic status of NR-E T cells. In detail, the prediction of cell-to-cell communication indicated that NR-E T cells are regulated by plasmatic dendritic cells (pDCs) through TNFSF9, as well as by macrophages expressing SIGLEC9. In addition, we also validate the communication between TNFSF9+ pDCs and NR-E T cells utilizing deconvolution of spatial transcriptomics analysis. In summary, our research identified specific metabolic 'sub-subtypes' associated with ICB non-response and uncovered the mechanisms of their regulation in TNBC. And the proposed analytical pipeline can be used to examine metabolic heterogeneity within cell types that correlate with diverse phenotypes.
Collapse
Affiliation(s)
- Pei-Wen Liu
- School of Science, Zhejiang Sci-Tech University, Hangzhou, China; Geneis Beijing Co., Ltd., Beijing, China
| | - Jun Lin
- Depatment of Pathology, The People's Hospital of QuZhou City, ZheJiang, China
| | - Rui Hou
- Geneis Beijing Co., Ltd., Beijing, China
| | - Zhe Cai
- Extendcity (Shanghai) Co., Ltd., Shanghai, China
| | - Yue Gong
- Geneis Beijing Co., Ltd., Beijing, China
| | - Ping-An He
- School of Science, Zhejiang Sci-Tech University, Hangzhou, China.
| | | |
Collapse
|
18
|
Enell Smith K, Fritzell S, Nilsson A, Barchan K, Rosén A, Schultz L, Varas L, Säll A, Rose N, Håkansson M, von Schantz L, Ellmark P. ATOR-1017 (evunzekibart), an Fc-gamma receptor conditional 4-1BB agonist designed for optimal safety and efficacy, activates exhausted T cells in combination with anti-PD-1. Cancer Immunol Immunother 2023; 72:4145-4159. [PMID: 37796298 PMCID: PMC10700433 DOI: 10.1007/s00262-023-03548-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND 4-1BB (CD137) is a co-stimulatory receptor highly expressed on tumor reactive effector T cells and NK cells, which upon stimulation prolongs persistence of tumor reactive effector T and NK cells within the tumor and induces long-lived memory T cells. 4-1BB agonistic antibodies have been shown to induce strong anti-tumor effects that synergize with immune checkpoint inhibitors. The first generation of 4-1BB agonists was, however, hampered by dose-limiting toxicities resulting in suboptimal dose levels or poor agonistic activity. METHODS ATOR-1017 (evunzekibart), a second-generation Fc-gamma receptor conditional 4-1BB agonist in IgG4 format, was designed to overcome the limitations of the first generation of 4-1BB agonists, providing strong agonistic effect while minimizing systemic immune activation and risk of hepatoxicity. The epitope of ATOR-1017 was determined by X-ray crystallography, and the functional activity was assessed in vitro and in vivo as monotherapy or in combination with anti-PD1. RESULTS ATOR-1017 binds to a unique epitope on 4-1BB enabling ATOR-1017 to activate T cells, including cells with an exhausted phenotype, and NK cells, in a cross-linking dependent, FcγR-conditional, manner. This translated into a tumor-directed and potent anti-tumor therapeutic effect in vivo, which was further enhanced with anti-PD-1 treatment. CONCLUSIONS These preclinical data demonstrate a strong safety profile of ATOR-1017, together with its potent therapeutic effect as monotherapy and in combination with anti-PD1, supporting further clinical development of ATOR-1017.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anna Säll
- Alligator Bioscience AB, Lund, Sweden
| | | | | | | | - Peter Ellmark
- Alligator Bioscience AB, Lund, Sweden.
- Department of Immunotechnology, Lund University, Lund, Sweden.
| |
Collapse
|
19
|
Jin X, Yi L, Wang X, Yan Z, Wei P, Yang B, Zhang H. Costimulatory capacity of CD137 mAbs on T cells depends on elaborate CRD structures but not on blocking ligand-receptor binding. Eur J Immunol 2023; 53:e2350493. [PMID: 37675596 DOI: 10.1002/eji.202350493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/17/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
CD137 is mainly a costimulatory receptor of CD8+ T cells. Two representative CD137 antibodies, utomilumab, and urelumab, show different costimulatory capacities in clinical trials. Balancing the antitumor effect and systemic toxicity of T cells activated by CD137 signaling is a challenge that requires clinical consideration. In this study, a panel of specific anti-human CD137 monoclonal antibodies (mAbs) were prepared and their affinities, isotypes, CD137-CRD (cysteine-rich domain) binding regions, cross-reactivity to mouse and rhesus CD137, inhibition of ligand-receptor binding and costimulatory activities were analyzed. The results showed that anti-human CD137 mAbs had high cross-reactivity with rhesus CD137. MAbs fell into three clusters according to their different binding regions of the CD137 extracellular domain. They bound to CRDI+CRDII, CRDIII or CRDIV+STP. CRDIII-binding mAbs had the strongest blocking activity. Highly costimulatory CD137 mAbs showed stronger abilities to promote CD8+ T-cell proliferation. However, the costimulatory capacity of mAbs on T cells was not closely related to their ability to block CD137L-CD137 binding and may be controlled by more elaborate CRD conformational structures. This study provides additional information for the development of next-generation CD137 mAbs to meet clinical needs.
Collapse
Affiliation(s)
- Xin Jin
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumour Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ling Yi
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumour Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xiaojue Wang
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumour Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zhuohong Yan
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumour Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Panjian Wei
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumour Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Bin Yang
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumour Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hongtao Zhang
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumour Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Fromm G, de Silva S, Schreiber TH. Reconciling intrinsic properties of activating TNF receptors by native ligands versus synthetic agonists. Front Immunol 2023; 14:1236332. [PMID: 37795079 PMCID: PMC10546206 DOI: 10.3389/fimmu.2023.1236332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023] Open
Abstract
The extracellular domain of tumor necrosis factor receptors (TNFR) generally require assembly into a homotrimeric quaternary structure as a prerequisite for initiation of signaling via the cytoplasmic domains. TNF receptor homotrimers are natively activated by similarly homo-trimerized TNF ligands, but can also be activated by synthetic agonists including engineered antibodies and Fc-ligand fusion proteins. A large body of literature from pre-clinical models supports the hypothesis that synthetic agonists targeting a diverse range of TNF receptors (including 4-1BB, CD40, OX40, GITR, DR5, TNFRSF25, HVEM, LTβR, CD27, and CD30) could amplify immune responses to provide clinical benefit in patients with infectious diseases or cancer. Unfortunately, however, the pre-clinical attributes of synthetic TNF receptor agonists have not translated well in human clinical studies, and have instead raised fundamental questions regarding the intrinsic biology of TNF receptors. Clinical observations of bell-shaped dose response curves have led some to hypothesize that TNF receptor overstimulation is possible and can lead to anergy and/or activation induced cell death of target cells. Safety issues including liver toxicity and cytokine release syndrome have also been observed in humans, raising questions as to whether those toxicities are driven by overstimulation of the targeted TNF receptor, a non-TNF receptor related attribute of the synthetic agonist, or both. Together, these clinical findings have limited the development of many TNF receptor agonists, and may have prevented generation of clinical data which reflects the full potential of TNF receptor agonism. A number of recent studies have provided structural insights into how different TNF receptor agonists bind and cluster TNF receptors, and these insights aid in deconvoluting the intrinsic biology of TNF receptors with the mechanistic underpinnings of synthetic TNF receptor agonist therapeutics.
Collapse
|
21
|
Cirella A, Bolaños E, Luri-Rey C, Di Trani CA, Olivera I, Gomis G, Glez-Vaz J, Pinci B, Garasa S, Sánchez-Gregorio S, Azpilikueta A, Eguren-Santamaria I, Valencia K, Palencia B, Alvarez M, Ochoa MC, Teijeira Á, Berraondo P, Melero I. Intratumoral immunotherapy with mRNAs encoding chimeric protein constructs encompassing IL-12, CD137 agonists, and TGF-β antagonists. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:668-682. [PMID: 37650116 PMCID: PMC10462790 DOI: 10.1016/j.omtn.2023.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023]
Abstract
Intratumoral immunotherapy strategies for cancer based on interleukin-12 (IL-12)-encoding cDNA and mRNA are under clinical development in combination with anti-PD-(L)1 monoclonal antibodies. To make the most of these approaches, we have constructed chimeric mRNAs encoding single-chain IL-12 fused to single-chain fragment variable (scFv) antibodies that bind to transforming growth factor β (TGF-β) and CD137 (4-1BB). Several neutralizing TGF-β agents and CD137 agonists are also undergoing early-phase clinical trials. To attain TGF-β and CD137 binding by the constructions, we used bispecific tandem scFv antibodies (taFvs) derived from the specific 1D11 and 1D8 monoclonal antibodies (mAbs), respectively. Transfection of mRNAs encoding the chimeric constructs achieved functional expression of the proteins able to act on their targets. Upon mRNA intratumoral injections in the transplantable mouse cancer models CT26, MC38, and B16OVA, potent therapeutic effects were observed following repeated injections into the tumors. Efficacy was dependent on the number of CD8+ T cells able to recognize tumor antigens that infiltrated the malignant tissue. Although the abscopal effects on concomitant uninjected lesions were modest, such distant effects on untreated lesions were markedly increased when combined with systemic PD-1 blockade.
Collapse
Affiliation(s)
- Assunta Cirella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Elixabet Bolaños
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Claudia Augusta Di Trani
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Irene Olivera
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Gabriel Gomis
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain
| | - Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Beatrice Pinci
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain
| | - Saray Garasa
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain
| | - Sandra Sánchez-Gregorio
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Arantza Azpilikueta
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Iñaki Eguren-Santamaria
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Karmele Valencia
- Program of Solid Tumors, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Belén Palencia
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain
| | - Maite Alvarez
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Maria C. Ochoa
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Department of Oncology, Clínica Universidad de Navarra, 28027 Madrid, Spain
- Centro Del Cancer de La Universidad de Navarra (CCUN), 31008 Pamplona, Spain
- Nuffield Department of Medicine (NDM), University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
22
|
Glez-Vaz J, Azpilikueta A, Ochoa MC, Olivera I, Gomis G, Cirella A, Luri-Rey C, Álvarez M, Pérez-Gracia JL, Ciordia S, Eguren-Santamaria I, Alexandru R, Berraondo P, de Andrea C, Teijeira Á, Corrales F, Zapata JM, Melero I. CD137 (4-1BB) requires physically associated cIAPs for signal transduction and antitumor effects. SCIENCE ADVANCES 2023; 9:eadf6692. [PMID: 37595047 PMCID: PMC11044178 DOI: 10.1126/sciadv.adf6692] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
CD137 (4-1BB) is a member of the TNFR family that mediates potent T cell costimulatory signals upon ligation by CD137L or agonist monoclonal antibodies (mAbs). CD137 agonists attain immunotherapeutic antitumor effects in cancer mouse models, and multiple agents of this kind are undergoing clinical trials. We show that cIAP1 and cIAP2 are physically associated with the CD137 signaling complex. Moreover, cIAPs are required for CD137 signaling toward the NF-κB and MAPK pathways and for costimulation of human and mouse T lymphocytes. Functional evidence was substantiated with SMAC mimetics that trigger cIAP degradation and by transfecting cIAP dominant-negative variants. Antitumor effects of agonist anti-CD137 mAbs are critically dependent on the integrity of cIAPs in cancer mouse models, and cIAPs are also required for signaling from CARs encompassing CD137's cytoplasmic tail.
Collapse
Affiliation(s)
- Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Arantza Azpilikueta
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - María C. Ochoa
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy, Pathology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Irene Olivera
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Gabriel Gomis
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Asunta Cirella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy, Pathology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Maite Álvarez
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Jose L. Pérez-Gracia
- Departments of Immunology-Immunotherapy, Pathology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sergio Ciordia
- Functional Proteomics Laboratory, CNB-CSIC, Proteored-ISCIII, Madrid, Spain
| | - Iñaki Eguren-Santamaria
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Departments of Immunology-Immunotherapy, Pathology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Raluca Alexandru
- Departments of Immunology-Immunotherapy, Pathology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Carlos de Andrea
- Departments of Immunology-Immunotherapy, Pathology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Fernando Corrales
- Functional Proteomics Laboratory, CNB-CSIC, Proteored-ISCIII, Madrid, Spain
| | - Juan M. Zapata
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm), CSIC-UAM, Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy, Pathology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Salek-Ardakani S, Zajonc DM, Croft M. Agonism of 4-1BB for immune therapy: a perspective on possibilities and complications. Front Immunol 2023; 14:1228486. [PMID: 37662949 PMCID: PMC10469789 DOI: 10.3389/fimmu.2023.1228486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Costimulatory receptors on immune cells represent attractive targets for immunotherapy given that these molecules can increase the frequency of individual protective immune cell populations and their longevity, as well as enhance various effector functions. 4-1BB, a member of the TNF receptor superfamily, also known as CD137 and TNFRSF9, is one such molecule that is inducible on several cell types, including T cells and NK cells. Preclinical studies in animal models have validated the notion that stimulating 4-1BB with agonist reagents or its natural ligand could be useful to augment conventional T cell and NK cell immunity to protect against tumor growth and against viral infection. Additionally, stimulating 4-1BB can enhance regulatory T cell function and might be useful in the right context for suppressing autoimmunity. Two human agonist antibodies to 4-1BB have been produced and tested in clinical trials for cancer, with variable results, leading to the production of a wealth of second-generation antibody constructs, including bi- and multi-specifics, with the hope of optimizing activity and selectivity. Here, we review the progress to date in agonism of 4-1BB, discuss the complications in targeting the immune system appropriately to elicit the desired activity, together with challenges in engineering agonists, and highlight the untapped potential of manipulating this molecule in infectious disease and autoimmunity.
Collapse
Affiliation(s)
| | - Dirk M. Zajonc
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Medicine, University of California (UC) San Diego, La Jolla, CA, United States
| |
Collapse
|
24
|
Tapia-Galisteo A, Álvarez-Vallina L, Sanz L. Bi- and trispecific immune cell engagers for immunotherapy of hematological malignancies. J Hematol Oncol 2023; 16:83. [PMID: 37501154 PMCID: PMC10373336 DOI: 10.1186/s13045-023-01482-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
Immune cell engagers are engineered antibodies with at least one arm binding a tumor-associated antigen and at least another one directed against an activating receptor in immune effector cells: CD3 for recruitment of T cells and CD16a for NK cells. The first T cell engager (the anti-CD19 blinatumomab) was approved by the FDA in 2014, but no other one hit the market until 2022. Now the field is gaining momentum, with three approvals in 2022 and 2023 (as of May): the anti-CD20 × anti-CD3 mosunetuzumab and epcoritamab and the anti-B cell maturation antigen (BCMA) × anti-CD3 teclistamab, and another three molecules in regulatory review. T cell engagers will likely revolutionize the treatment of hematological malignancies in the short term, as they are considerably more potent than conventional monoclonal antibodies recognizing the same tumor antigens. The field is thriving, with a plethora of different formats and targets, and around 100 bispecific T cell engagers more are already in clinical trials. Bispecific NK cell engagers are also in early-stage clinical studies and may offer similar efficacy with milder side effects. Trispecific antibodies (engaging either T cell or NK cell receptors) raise the game even further with a third binding moiety, which allows either the targeting of an additional tumor-associated antigen to increase specificity and avoid immune escape or the targeting of additional costimulatory receptors on the immune cell to improve its effector functions. Altogether, these engineered molecules may change the paradigm of treatment for relapsed or refractory hematological malignancies.
Collapse
Affiliation(s)
- Antonio Tapia-Galisteo
- Immuno-Oncology and Immunotherapy Group, Biomedical Research Institute Hospital Universitario, 12 de Octubre, Madrid, Spain
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario, 12 de Octubre, Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Luis Álvarez-Vallina
- Immuno-Oncology and Immunotherapy Group, Biomedical Research Institute Hospital Universitario, 12 de Octubre, Madrid, Spain.
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario, 12 de Octubre, Madrid, Spain.
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.
| | - Laura Sanz
- Molecular Immunology Unit, Biomedical Research Institute Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain.
| |
Collapse
|
25
|
Liu G, Luo P. Targeting CD137 (4-1BB) towards improved safety and efficacy for cancer immunotherapy. Front Immunol 2023; 14:1208788. [PMID: 37334375 PMCID: PMC10272836 DOI: 10.3389/fimmu.2023.1208788] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
T cells play a critical role in antitumor immunity, where T cell activation is regulated by both inhibitory and costimulatory receptor signaling that fine-tune T cell activity during different stages of T cell immune responses. Currently, cancer immunotherapy by targeting inhibitory receptors such as CTLA-4 and PD-1/L1, and their combination by antagonist antibodies, has been well established. However, developing agonist antibodies that target costimulatory receptors such as CD28 and CD137/4-1BB has faced considerable challenges, including highly publicized adverse events. Intracellular costimulatory domains of CD28 and/or CD137/4-1BB are essential for the clinical benefits of FDA-approved chimeric antigen receptor T cell (CAR-T) therapies. The major challenge is how to decouple efficacy from toxicity by systemic immune activation. This review focuses on anti-CD137 agonist monoclonal antibodies with different IgG isotypes in clinical development. It discusses CD137 biology in the context of anti-CD137 agonist drug discovery, including the binding epitope selected for anti-CD137 agonist antibody in competition or not with CD137 ligand (CD137L), the IgG isotype of antibodies selected with an impact on crosslinking by Fc gamma receptors, and the conditional activation of anti-CD137 antibodies for safe and potent engagement with CD137 in the tumor microenvironment (TME). We discuss and compare the potential mechanisms/effects of different CD137 targeting strategies and agents under development and how rational combinations could enhance antitumor activities without amplifying the toxicity of these agonist antibodies.
Collapse
Affiliation(s)
- Guizhong Liu
- Adagene Inc., San Diego, CA, United States
- Adagene (Suzhou) Limited., Suzhou, China
| | - Peter Luo
- Adagene Inc., San Diego, CA, United States
- Adagene (Suzhou) Limited., Suzhou, China
| |
Collapse
|
26
|
Gao X, Yi L, Jiang C, Li S, Wang X, Yang B, Li W, Che N, Wang J, Zhang H, Zhang S. PCSK9 regulates the efficacy of immune checkpoint therapy in lung cancer. Front Immunol 2023; 14:1142428. [PMID: 37025995 PMCID: PMC10070680 DOI: 10.3389/fimmu.2023.1142428] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) secreted by tumors was reported as a deleterious factor that led to the reduction of lymphocyte infiltration and the poorer efficacy of ICIs in vivo. This study aimed to explore whether PCSK9 expression in tumor tissue could predict the response of advanced non-small cell lung cancer (NSCLC) to anti-PD-1 immunotherapy and the synergistic antitumor effect of the combination of the PCSK9 inhibitor with the anti-CD137 agonist. One hundred fifteen advanced NSCLC patients who received anti-PD-1 immunotherapy were retrospectively studied with PCSK9 expression in baseline NSCLC tissues detected by immunohistochemistry (IHC). The mPFS of the PCSK9lo group was significantly longer than that of the PCSK9hi group [8.1 vs. 3.6 months, hazard ratio (HR): 3.450; 95% confidence interval (CI), 2.166-5.496]. A higher objective response rate (ORR) and a higher disease control rate (DCR) were observed in the PCSK9lo group than in the PCSK9hi group (54.4% vs. 34.5%, 94.7% vs. 65.5%). Reduction and marginal distribution of CD8+ T cells were observed in PCSK9hi NSCLC tissues. Tumor growth was retarded by the PCSK9 inhibitor and the anti-CD137 agonist alone in the Lewis lung carcinoma (LLC) mice model and further retarded by the PCSK9 inhibitor in combination with the CD137 agonist with long-term survival of the host mice with noticeable increases of CD8+ and GzmB+ CD8+ T cells and reduction of Tregs. Together, these results suggested that high PCSK9 expression in baseline tumor tissue was a deleterious factor for the efficacy of anti-PD-1 immunotherapy in advanced NSCLC patients. The PCSK9 inhibitor in combination with the anti-CD137 agonist could not only enhance the recruitment of CD8+ and GzmB+ CD8+ T cells but also deplete Tregs, which may be a novel therapeutic strategy for future research and clinical practice.
Collapse
Affiliation(s)
- Xiang Gao
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ling Yi
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Chang Jiang
- Department of Thoracic Oncology, Jiangxi Cancer Hospital, Nanchang, China
| | - Shuping Li
- Department of Cardiology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xiaojue Wang
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Bin Yang
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Weiying Li
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Nanying Che
- Department of Pathology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jinghui Wang
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hongtao Zhang
- Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Shucai Zhang
- Department of Medical Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Palmeri JR, Lax BM, Peters JM, Duhamel L, Stinson JA, Santollani L, Lutz EA, Pinney W, Bryson BD, Wittrup KD. Tregs constrain CD8 + T cell priming required for curative intratumorally anchored anti-4-1BB immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526116. [PMID: 36778460 PMCID: PMC9915483 DOI: 10.1101/2023.01.30.526116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although co-stimulation of T cells with agonist antibodies targeting 4-1BB (CD137) improves antitumor immune responses in preclinical studies, clinical development has been hampered by on-target, off-tumor toxicity. Here, we report the development of a tumor-anchored ɑ4-1BB agonist (ɑ4-1BB-LAIR), which consists of an ɑ4-1BB antibody fused to the collagen binding protein LAIR. While combination treatment with an antitumor antibody (TA99) displayed only modest efficacy, simultaneous depletion of CD4+ T cells boosted cure rates to over 90% of mice. We elucidated two mechanisms of action for this synergy: ɑCD4 eliminated tumor draining lymph node Tregs, enhancing priming and activation of CD8+ T cells, and TA99 + ɑ4-1BB-LAIR supported the cytotoxic program of these newly primed CD8+ T cells within the tumor microenvironment. Replacement of ɑCD4 with ɑCTLA-4, a clinically approved antibody that enhances T cell priming, produced equivalent cure rates while additionally generating robust immunological memory against secondary tumor rechallenge.
Collapse
Affiliation(s)
- Joseph R Palmeri
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Chemical Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Brianna M Lax
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Chemical Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Joshua M Peters
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
- Ragon Institute of MIT, MGH, and Harvard; Cambridge, MA
| | - Lauren Duhamel
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Jordan A Stinson
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Luciano Santollani
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Chemical Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Emi A Lutz
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - William Pinney
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Bryan D Bryson
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
- Ragon Institute of MIT, MGH, and Harvard; Cambridge, MA
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Chemical Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| |
Collapse
|