1
|
Gao W, Karsa M, Xiao L, Spurling D, Karsa A, Ronca E, Bongers A, Guo X, Mayoh C, Azfar M, Verhelst SHL, Tanaka K, Cheung LC, Kotecha RS, Lock RB, Burns MR, Vangheluwe P, Norris MD, Haber M, Somers K. Polyamine depletion limits progression of acute leukaemia. Int J Cancer 2025; 156:2360-2376. [PMID: 39985426 DOI: 10.1002/ijc.35362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/12/2025] [Accepted: 01/24/2025] [Indexed: 02/24/2025]
Abstract
Cancer cells are addicted to polyamines, polycations essential for cellular function. While dual targeting of cellular polyamine biosynthesis and polyamine uptake is under clinical investigation in solid cancers, preclinical and clinical studies into its potential in haematological malignancies are lacking. Here we investigated the preclinical efficacy of polyamine depletion in acute leukaemia. The polyamine biosynthesis inhibitor difluoromethylornithine (DFMO) inhibited growth of a molecularly diverse panel of acute leukaemia cell lines, while non-malignant cells were unaffected. Responsiveness to DFMO was linked to decreased levels of its molecular target, the rate-limiting polyamine biosynthesis enzyme ODC1, and of the polyamine transporters ATP13A2 and ATP13A3. DFMO increased polyamine uptake and upregulated expression of polyamine transporters in acute leukaemia cells, a compensatory effect abolished by treatment with the polyamine transport inhibitor AMXT 1501. This drug, currently in a phase 1 clinical trial in solid tumours in combination with DFMO, potentiated the inhibitory effects of DFMO, and their combination synergistically inhibited the growth of acute leukaemia cell lines by inducing apoptosis. DFMO and AMXT 1501 limited disease progression in highly aggressive xenograft models of infant KMT2A-rearranged leukaemia, even when treatment was initiated at high disease burden. Increased expression of c-MYC was associated with enhanced sensitivity to the combination of DFMO and AMXT 1501, suggesting this oncoprotein as a potential predictive marker of response to the drug combination. In conclusion, targeting polyamine biosynthesis and polyamine uptake limits disease progression in models of acute leukaemia, supporting further preclinical and clinical investigation into this approach for acute leukaemia.
Collapse
Affiliation(s)
- Weiman Gao
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Mawar Karsa
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Lin Xiao
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Dayna Spurling
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ayu Karsa
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Emma Ronca
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Angelika Bongers
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Xinyi Guo
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Mujahid Azfar
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Steven H L Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Katsunori Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Laurence C Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Rishi S Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia
- Curtin Medical School, Curtin University, Perth, Western Australia, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, Western Australia, Australia
- Division of Paediatrics, School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Mark R Burns
- Aminex Therapeutics, Aminex Therapeutics Inc., Kirkland, Washington, DC, USA
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer research, UNSW Sydney, Sydney, New South Wales, Australia
| | - Klaartje Somers
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer research, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Ionescu VA, Diaconu CC, Gheorghe G, Mihai MM, Diaconu CC, Bostan M, Bleotu C. Gut Microbiota and Colorectal Cancer: A Balance Between Risk and Protection. Int J Mol Sci 2025; 26:3733. [PMID: 40332367 PMCID: PMC12028331 DOI: 10.3390/ijms26083733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
The gut microbiome, a complex community of microorganisms residing in the intestinal tract, plays a dual role in colorectal cancer (CRC) development, acting both as a contributing risk factor and as a protective element. This review explores the mechanisms by which gut microbiota contribute to CRC, emphasizing inflammation, oxidative stress, immune evasion, and the production of genotoxins and microbial metabolites. Fusobacterium nucleatum, Escherichia coli (pks+), and Bacteroides fragilis promote tumorigenesis by inducing chronic inflammation, generating reactive oxygen species, and producing virulence factors that damage host DNA. These microorganisms can also evade the antitumor immune response by suppressing cytotoxic T cell activity and increasing regulatory T cell populations. Additionally, microbial-derived metabolites such as secondary bile acids and trimethylamine-N-oxide (TMAO) have been linked to carcinogenic processes. Conversely, protective microbiota, including Lactobacillus, Bifidobacterium, and Faecalibacterium prausnitzii, contribute to intestinal homeostasis by producing short-chain fatty acids (SCFAs) like butyrate, which exhibit anti-inflammatory and anti-carcinogenic properties. These beneficial microbes enhance gut barrier integrity, modulate immune responses, and inhibit tumor cell proliferation. Understanding the dynamic interplay between pathogenic and protective microbiota is essential for developing microbiome-based interventions, such as probiotics, prebiotics, and fecal microbiota transplantation, to prevent or treat CRC. Future research should focus on identifying microbial biomarkers for early CRC detection and exploring personalized microbiome-targeted therapies. A deeper understanding of host-microbiota interactions may lead to innovative strategies for CRC management and improved patient outcomes.
Collapse
Affiliation(s)
- Vlad Alexandru Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (G.G.); (M.-M.M.)
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Camelia Cristina Diaconu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (G.G.); (M.-M.M.)
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
- Academy of Romanian Scientists, 050085 Bucharest, Romania;
| | - Gina Gheorghe
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (G.G.); (M.-M.M.)
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Mara-Madalina Mihai
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (G.G.); (M.-M.M.)
- Department of Oncologic Dermathology, “Elias” University Emergency Hospital, 010024 Bucharest, Romania
| | - Carmen Cristina Diaconu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.C.D.); (M.B.)
| | - Marinela Bostan
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.C.D.); (M.B.)
- Department of Immunology, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
| | - Coralia Bleotu
- Academy of Romanian Scientists, 050085 Bucharest, Romania;
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.C.D.); (M.B.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060023 Bucharest, Romania
| |
Collapse
|
3
|
Pan Y, Zeng F, Luan X, He G, Qin S, Lu Q, He B, Han X, Song Y. Polyamine-Depleting Hydrogen-Bond Organic Frameworks Unleash Dendritic Cell and T Cell Vigor for Targeted CRISPR/Cas-Assisted Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411886. [PMID: 39972681 DOI: 10.1002/adma.202411886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/26/2025] [Indexed: 02/21/2025]
Abstract
Polyamines have tantalized cancer researchers as a potential means to rein in the rampant growth of cancer cells. However, clinical trials in recent decades have disappointed in delivering notable progress. Herein, a microfluidic-assisted synthetic hydrogen-bond organic framework (HOF) as a polyamine-depleting nanoplatforms designed to unleash the vigor of both dendritic cells (DCs) and T cells for precision cancer immunotherapy is reported. Upon internalization by tumor cells, the loaded plasma amine oxidase (PAO) in HOF efficiently depletes polyamines, remolding the tumor microenvironment and alleviating T-cell immunosuppression. This process also generates acrolein and H2O2, triggering CRISPR-assisted neoantigen generation. Specifically, Acrolein induces carbonyl stress, increasing mutational burdens. Simultaneously, HOF leverages the energy from the bis[2,4,5-trichloro-6-(pentyloxycarbonyl)phenyl] oxalate (CPPO)-H2O2 reaction for CRET-triggered singlet oxygen production, leading to thioether bond cleavage and release CRISPR-Cas9. Once released, CRISPR-Cas9 knocks out the DNA mismatch repair (MMR)-related MLH1 gene, further elevating mutational burdens and generating neoantigens, ideal targets for DCs. This dual-action strategy not only corrects T-cell immunosuppression but also enhances DC efficacy, presenting a powerful approach for tumor immunotherapy.
Collapse
Affiliation(s)
- Yongchun Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210023, China
| | - Fei Zeng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210023, China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210023, China
| | - Guanzhong He
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210023, China
| | - Shurong Qin
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210023, China
| | - Qianglan Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210023, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xin Han
- School of Medicine & Holistic Integrative Medicine, JiangsuCollaborative Innovation Canter of Chinese Medicinal ResourcesIndustrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
4
|
Sharma V, Fernando V, Zheng X, Choi ES, Sweef O, Thomas V, Szpendyk J, Furuta S. Immunogenic shift of arginine metabolism triggers systemic metabolic and immunological reprogramming to suppress HER2 + breast cancer. Cancer Metab 2025; 13:15. [PMID: 40114277 PMCID: PMC11927160 DOI: 10.1186/s40170-025-00384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/07/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Arginine metabolism in tumors is often shunted into the pathway producing pro-tumor and immune suppressive polyamines (PAs), while downmodulating the alternative nitric oxide (NO) synthesis pathway. Aiming to correct arginine metabolism in tumors, arginine deprivation therapy and inhibitors of PA synthesis have been developed. Despite some therapeutic advantages, these approaches have often yielded severe side effects, making it necessary to explore an alternative strategy. We previously reported that supplementing sepiapterin (SEP), the endogenous precursor of tetrahydrobiopterin (BH4, the essential NO synthase cofactor), could correct arginine metabolism in tumor cells and tumor-associated macrophages (TAMs) and induce their metabolic and phenotypic reprogramming. We saw that oral SEP treatment effectively suppressed the growth of HER2-positive mammary tumors in animals. SEP also has no reported dose-dependent toxicity in clinical trials for metabolic disorders. In the present study, we tested our hypothesis that a long-term administration of SEP to individuals susceptible to HER2-positive mammary tumor would protect them against tumor occurrence. METHODS We administered SEP, in comparison to control DMSO, to MMTV-neu mice susceptible to HER2-positive mammary tumors for 8 months starting at their pre-pubertal stage. We monitored tumor onsets to determine the rate of tumor-free survival. After 8 months of treatment, we grouped animals into DMSO treatment with or without tumors and SEP treatment with or without tumors. We analyzed blood metabolites, PBMC, and bone marrow of DMSO vs. SEP treated animals. RESULTS We found that a long-term use of SEP in animals susceptible to HER2-positive mammary tumors effectively suppressed tumor occurrence. These SEP-treated animals had undergone reprogramming of the systemic metabolism and immunity, elevating total T cell counts in the circulation and bone marrow. Given that bone marrow-resident T cells are mostly memory T cells, it is plausible that chronic SEP treatment promoted memory T cell formation, leading to a potent tumor prevention. CONCLUSIONS These findings suggest the possible roles of the SEP/BH4/NO axis in promoting memory T cell formation and its potential therapeutic utility for preventing HER2-positive breast cancer.
Collapse
Affiliation(s)
- Vandana Sharma
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH, 43614, USA
- Department of Zoology and Physiology, University of Wyoming, 1000 E. University Ave, Biological Science Building, Room 319F, Laramie, WY, 82071, USA
| | - Veani Fernando
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH, 43614, USA
- Division of Rheumatology, University of Colorado, Anschutz Medical Campus Barbara Davis Center, Mail Stop B115, 1775 Aurora Court, Aurora, CO, 80045, USA
| | - Xunzhen Zheng
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH, 43614, USA
| | - Eun-Seok Choi
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, 2500 MetroHealth Drive, Cleveland, OH, 44109, USA
| | - Osama Sweef
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, 2500 MetroHealth Drive, Cleveland, OH, 44109, USA
| | - Venetia Thomas
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, 2500 MetroHealth Drive, Cleveland, OH, 44109, USA
| | - Justin Szpendyk
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, 2500 MetroHealth Drive, Cleveland, OH, 44109, USA
| | - Saori Furuta
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH, 43614, USA.
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, 2500 MetroHealth Drive, Cleveland, OH, 44109, USA.
| |
Collapse
|
5
|
Liu H, Liu Y, Wang X, Xiao Z, Ni Q, Yu X, Luo G. Antitumor potential of polyamines in cancer. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40103487 DOI: 10.3724/abbs.2025030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
The dysregulation of polyamines in tumors has made polyamine metabolism an appealing target for cancer therapy. Gene mutations drive the reprogramming of polyamine metabolism in tumors, presenting promising opportunities for clinical treatment. The proposed strategies involve inhibiting polyamine biosynthesis while also targeting the polyamine transport system as antitumor approaches. A growing number of drugs aimed at polyamine biosynthesis and transport systems are undergoing clinical trials. Polyamine metabolism plays a role in regulating cancer signaling pathways, suggesting potential combination therapies for cancer treatment. Furthermore, supplemental polyamine substances have demonstrated antitumor activity, indicating that combining polyamines with downstream targets or immunotherapy could offer significant clinical benefits. These discoveries open new avenues for leveraging polyamine metabolism in anticancer therapy.
Collapse
Affiliation(s)
- He Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Yi Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xinyue Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Zhiwen Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Bunea A, Phanstiel O. Polyamine transport inhibitors: Methods and caveats associated with measuring polyamine uptake in mammalian cells. Methods Enzymol 2025; 715:65-91. [PMID: 40382155 DOI: 10.1016/bs.mie.2025.01.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Combination therapies which target both polyamine biosynthesis and polyamine transport have shown promise as anti-cancer strategies and as potentiators of the immune response. While polyamine biosynthesis inhibitors like difluoromethylornithine (DFMO) exist, cancers often escape via upregulated polyamine import. As a result, polyamine transport inhibitors (PTIs) are needed to inhibit polyamine uptake and create a 'full-court press' on polyamine metabolism. As new PTIs are developed, they need to be ranked for their ability to inhibit polyamine uptake. This paper describes three polyamine transport assays to evaluate polyamine transport inhibition. The first tests the ability of the PTI to inhibit the uptake of an anthracene-containing polyamine poison (Ant44). The second assay evaluates the ability of the PTI to inhibit the uptake of a rescuing dose of spermidine into DFMO-treated cells. The final assay is the gold standard for the field and involves determining the concentration of PTI needed to inhibit 50 % of the uptake of each of the radiolabeled native polyamines: 3H-putrescine, 3H-spermidine or 14C-spermine. These assays provide EC50 and IC50 values which allow a formal ranking of transport inhibition potency to aid in PTI selection.
Collapse
Affiliation(s)
- Alexandra Bunea
- College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Otto Phanstiel
- College of Medicine, University of Central Florida, Orlando, FL, United States.
| |
Collapse
|
7
|
Azfar M, Gao W, Van den Haute C, Xiao L, Karsa M, Pandher R, Karsa A, Spurling D, Ronca E, Bongers A, Guo X, Mayoh C, Fayt Y, Schoofs A, Burns MR, Verhelst SHL, Norris MD, Haber M, Vangheluwe P, Somers K. The polyamine transporter ATP13A3 mediates difluoromethylornithine-induced polyamine uptake in neuroblastoma. Mol Oncol 2025; 19:913-936. [PMID: 39981745 PMCID: PMC11887671 DOI: 10.1002/1878-0261.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 10/24/2024] [Accepted: 12/11/2024] [Indexed: 02/22/2025] Open
Abstract
High-risk neuroblastomas, often associated with MYCN protooncogene amplification, are addicted to polyamines, small polycations vital for cellular functioning. We have previously shown that neuroblastoma cells increase polyamine uptake when exposed to the polyamine biosynthesis inhibitor difluoromethylornithine (DFMO), and this mechanism is thought to limit the efficacy of the drug in clinical trials. This finding resulted in the clinical development of polyamine transport inhibitors, including AMXT 1501, which is presently under clinical investigation in combination with DFMO. However, the mechanisms and transporters involved in DFMO-induced polyamine uptake are unknown. Here, we report that knockdown of ATPase 13A3 (ATP13A3), a member of the P5B-ATPase polyamine transporter family, limited basal and DFMO-induced polyamine uptake, attenuated MYCN-amplified and non-MYCN-amplified neuroblastoma cell growth, and potentiated the inhibitory effects of DFMO. Conversely, overexpression of ATP13A3 in neuroblastoma cells increased polyamine uptake, which was inhibited by AMXT 1501, highlighting ATP13A3 as a key target of the drug. An association between high ATP13A3 expression and poor survival in neuroblastoma further supports a role of this transporter in neuroblastoma progression. Thus, this study identified ATP13A3 as a critical regulator of basal and DFMO-induced polyamine uptake and a novel therapeutic target for neuroblastoma.
Collapse
Affiliation(s)
- Mujahid Azfar
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular MedicineKU LeuvenBelgium
| | - Weiman Gao
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyAustralia
- School of Clinical Medicine, UNSW Medicine & HealthUNSW SydneyAustralia
| | - Chris Van den Haute
- Group for Neurobiology and Gene TherapyKU LeuvenBelgium
- Leuven Viral Vector CoreKU LeuvenBelgium
| | - Lin Xiao
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyAustralia
- School of Clinical Medicine, UNSW Medicine & HealthUNSW SydneyAustralia
| | - Mawar Karsa
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyAustralia
- School of Clinical Medicine, UNSW Medicine & HealthUNSW SydneyAustralia
| | - Ruby Pandher
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyAustralia
- School of Clinical Medicine, UNSW Medicine & HealthUNSW SydneyAustralia
| | - Ayu Karsa
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyAustralia
| | - Dayna Spurling
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyAustralia
| | - Emma Ronca
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyAustralia
| | - Angelika Bongers
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyAustralia
| | - Xinyi Guo
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyAustralia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyAustralia
- School of Clinical Medicine, UNSW Medicine & HealthUNSW SydneyAustralia
| | - Youri Fayt
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular MedicineKU LeuvenBelgium
| | - Arthur Schoofs
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular MedicineKU LeuvenBelgium
| | - Mark R. Burns
- Aminex TherapeuticsAminex Therapeutics Inc.KirklandWAUSA
| | - Steven H. L. Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular MedicineKU LeuvenBelgium
| | - Murray D. Norris
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyAustralia
- School of Clinical Medicine, UNSW Medicine & HealthUNSW SydneyAustralia
- UNSW Centre for Childhood Cancer ResearchUNSW SydneyAustralia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyAustralia
- School of Clinical Medicine, UNSW Medicine & HealthUNSW SydneyAustralia
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular MedicineKU LeuvenBelgium
| | - Klaartje Somers
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneyAustralia
- School of Clinical Medicine, UNSW Medicine & HealthUNSW SydneyAustralia
| |
Collapse
|
8
|
Wu JY, Zeng Y, You YY, Chen QY. Polyamine metabolism and anti-tumor immunity. Front Immunol 2025; 16:1529337. [PMID: 40040695 PMCID: PMC11876390 DOI: 10.3389/fimmu.2025.1529337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/27/2025] [Indexed: 03/06/2025] Open
Abstract
Growing attention has been directed toward the critical role of polyamines in the tumor microenvironment and immune regulation. Polyamines, primarily comprising putrescine, spermidine, and spermine, are tightly regulated through coordinated biosynthesis, catabolism, and transport, with distinct metabolic patterns between normal and cancerous tissues. Emerging evidence highlights the pivotal role of polyamine metabolism in tumor initiation, progression, and metastasis. This review aims to elucidate the differences in polyamine biosynthesis, transport, and catabolism between normal and cancerous tissues, as well as the associated alterations in tumor epigenetic modifications and resistance to immune checkpoint blockade driven by polyamine metabolism. Polyamine metabolism influences both tumor cells and the tumor microenvironment by modulating immune cell phenotypes-shifting them towards either tumor suppression or immune evasion within the tumor immune microenvironment. Additionally, polyamine metabolism impacts immunotherapy through its regulation of key enzymes. This review also explores potential therapeutic targets and summarizes the roles of polyamine inhibitors in combination with immunotherapy for cancer treatment, offering a novel perspective on therapeutic strategies.
Collapse
Affiliation(s)
- Jing-Yi Wu
- Fujian Medical University, Fuzhou, Fujian, China
| | - Yan Zeng
- Fujian Medical University, Fuzhou, Fujian, China
| | - Yu-Yang You
- Fujian Medical University, Fuzhou, Fujian, China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
9
|
Ma M, Zhang Y, Pu K, Tang W. Nanomaterial-enabled metabolic reprogramming strategies for boosting antitumor immunity. Chem Soc Rev 2025; 54:653-714. [PMID: 39620588 DOI: 10.1039/d4cs00679h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Immunotherapy has become a crucial strategy in cancer treatment, but its effectiveness is often constrained. Most cancer immunotherapies focus on stimulating T-cell-mediated immunity by driving the cancer-immunity cycle, which includes tumor antigen release, antigen presentation, T cell activation, infiltration, and tumor cell killing. However, metabolism reprogramming in the tumor microenvironment (TME) supports the viability of cancer cells and inhibits the function of immune cells within this cycle, presenting clinical challenges. The distinct metabolic needs of tumor cells and immune cells require precise and selective metabolic interventions to maximize therapeutic outcomes while minimizing adverse effects. Recent advances in nanotherapeutics offer a promising approach to target tumor metabolism reprogramming and enhance the cancer-immunity cycle through tailored metabolic modulation. In this review, we explore cutting-edge nanomaterial strategies for modulating tumor metabolism to improve therapeutic outcomes. We review the design principles of nanoplatforms for immunometabolic modulation, key metabolic pathways and their regulation, recent advances in targeting these pathways for the cancer-immunity cycle enhancement, and future prospects for next-generation metabolic nanomodulators in cancer immunotherapy. We expect that emerging immunometabolic modulatory nanotechnology will establish a new frontier in cancer immunotherapy in the near future.
Collapse
Affiliation(s)
- Muye Ma
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Dr 2, Singapore, 117545, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, 28 Medical Dr, Singapore, 117597, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Wei Tang
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
- Department of Pharmacy and Pharmaceutic Sciences, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
10
|
Tan H, Hu Z, Miao J, Chen B, Li H, Gao J, Ye Y, Xu W, Jiang J, Qin H, Tian H, Peng F, Tu Y. Enzymatic nanomotors with chemotaxis for product-based cancer therapy. J Control Release 2025; 377:288-300. [PMID: 39571653 DOI: 10.1016/j.jconrel.2024.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
The development of an intelligent nanomotor system holds great promise for enhancing the efficiency and effectiveness of antitumor therapy. Leveraging the overexpressed substances in the tumor microenvironment as propellants and chemotactic factors for enzyme-powered nanomotors represents a versatile and compelling approach. Herein, a plasma amine oxidase (PAO)-based chemotactic nanomotor system has been successfully developed, with the ability to enzymatically produce toxic acrolein and H2O2 from the upregulated polyamines (PAs) in the tumor microenvironment for active tumor therapy. Zwitterionic polymeric nanoparticles with superior biocompatibility are synthesized, followed by PAO modification via electrostatic interactions. As expected, the resulting nanomotor system exhibits positive chemotaxis toward PAs concentration gradient. Upon reaching the tumor region, our nanomotors, actuated by the tumor microenvironmental PAs, effectively enhance diffusion and enable deep penetration into the tumor site. This leads to the induction of tumor apoptosis and simultaneous inhibition of tumor invasion and migration by decomposing PAs into toxic products. By smartly utilizing the consumption of these local chemotactic factors and their enzymatic products, our nanomotor system provides a versatile and intelligent platform for active and enhanced tumor therapy.
Collapse
Affiliation(s)
- Haixin Tan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ziwei Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiajun Miao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bin Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Huaan Li
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junbin Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yicheng Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenxin Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiamiao Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hanfeng Qin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hao Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
11
|
Heuser SK, Li J, Pudewell S, LoBue A, Li Z, Cortese-Krott MM. Biochemistry, pharmacology, and in vivo function of arginases. Pharmacol Rev 2025; 77:100015. [PMID: 39952693 DOI: 10.1124/pharmrev.124.001271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 01/22/2025] Open
Abstract
The enzyme arginase catalyzes the hydrolysis of l-arginine into l-ornithine and urea. The 2 existing isoforms Arg1 and Arg2 exhibit different cellular localizations and metabolic functions. Arginase activity is crucial for nitrogen detoxification in the urea cycle, synthesis of polyamines, and control of l-arginine bioavailability and nitric oxide (NO) production. Despite significant progress in the understanding of the biochemistry and function of arginases, several open questions remain. Recent studies have revealed that the regulation and function of Arg1 and Arg2 are cell type-specific, species-specific, and profoundly different in mice and humans. The main differences are in the distribution and function of Arg1 and Arg2 in immune and erythroid cells. Contrary to what was previously thought, Arg1 activity appears to be only partially related to vascular NO signaling under homeostatic conditions in the vascular wall, but its expression is increased under disease conditions and may be targeted by treatment with arginase inhibitors. Arg2 appears to be mainly a catabolic enzyme involved in the synthesis of l-ornithine, polyamine, and l-proline but may play a putative role in blood pressure control, at least in mice. The immunosuppressive role of arginase-mediated arginine depletion is a promising target for cancer treatment. This review critically revises and discusses the biochemistry, pharmacology, and in vivo function of arginases, focusing on the insights gained from the analysis of cell-specific Arg1 and Arg2 knockout mice and human studies using arginase inhibitors or pegylated recombinant arginase. SIGNIFICANCE STATEMENT: Further basic and translational research is needed to deepen our understanding of the regulation of Arg1 and Arg2 in different cell types in consideration of their localization, species-specificity, and multiple biochemical and physiological roles. This will lead to better pharmacological strategies to target arginase activity in liver, cardiovascular, hematological, immune/infectious diseases, and cancer.
Collapse
Affiliation(s)
- Sophia K Heuser
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Junjie Li
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Silke Pudewell
- Department of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anthea LoBue
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Zhixin Li
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Miriam M Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf, Düsseldorf, Germany; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Brummer C, Singer K, Henrich F, Peter K, Strobl C, Neueder B, Bruss C, Renner K, Pukrop T, Herr W, Aigner M, Kreutz M. The Tumor Metabolite 5'-Deoxy-5'Methylthioadenosine (MTA) Inhibits Maturation and T Cell-Stimulating Capacity of Dendritic Cells. Cells 2024; 13:2114. [PMID: 39768204 PMCID: PMC11727219 DOI: 10.3390/cells13242114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Metabolite accumulation in the tumor microenvironment fosters immune evasion and limits the efficiency of immunotherapeutic approaches. Methylthioadenosine phosphorylase (MTAP), which catalyzes the degradation of 5'-deoxy-5'methylthioadenosine (MTA), is downregulated in many cancer entities. Consequently, MTA accumulates in the microenvironment of MTAP-deficient tumors, where it is known to inhibit tumor-infiltrating T cells and NK cells. However, the impact of MTA on other intra-tumoral immune cells has not yet been fully elucidated. To study the effects of MTA on dendritic cells (DCs), human monocytes were maturated into DCs with (MTA-DC) or without MTA (co-DC) and analyzed for activation, differentiation, and T cell-stimulating capacity. MTA altered the cytokine secretion profile of monocytes and impaired their maturation into dendritic cells. MTA-DCs produced less IL-12 and showed a more immature-like phenotype characterized by decreased expression of the co-stimulatory molecules CD80, CD83, and CD86 and increased expression of the monocyte markers CD14 and CD16. Consequently, MTA reduced the capability of DCs to stimulate T cells. Mechanistically, the MTA-induced effects on monocytes and DCs were mediated by a mechanism beyond adenosine receptor signaling. These results provide new insights into how altered polyamine metabolism impairs the maturation of monocyte-derived DCs and impacts the crosstalk between T and dendritic cells.
Collapse
Affiliation(s)
- Christina Brummer
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Katrin Singer
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Frederik Henrich
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
- Department of Internal Medicine 5, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Katrin Peter
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Carolin Strobl
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
- Department of Internal Medicine 5, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Bernadette Neueder
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Christina Bruss
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Kathrin Renner
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
- Department of Otorhinolaryngology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
- Comprehensive Cancer Center Eastern Bavaria (CCCO), 93053 Regensburg, Germany
- Center of Translational Oncology (CTO), 93053 Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Michael Aigner
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
- Department of Internal Medicine 5, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
13
|
Zhang J, Chen M, Yang Y, Liu Z, Guo W, Xiang P, Zeng Z, Wang D, Xiong W. Amino acid metabolic reprogramming in the tumor microenvironment and its implication for cancer therapy. J Cell Physiol 2024; 239:e31349. [PMID: 38946173 DOI: 10.1002/jcp.31349] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Amino acids are essential building blocks for proteins, crucial energy sources for cell survival, and key signaling molecules supporting the resistant growth of tumor cells. In tumor cells, amino acid metabolic reprogramming is characterized by the enhanced uptake of amino acids as well as their aberrant synthesis, breakdown, and transport, leading to immune evasion and malignant progression of tumor cells. This article reviews the altered amino acid metabolism in tumor cells and its impact on tumor microenvironment, and also provides an overview of the current clinical applications of amino acid metabolism. Innovative drugs targeting amino acid metabolism hold great promise for precision and personalized cancer therapy.
Collapse
Affiliation(s)
- Jiarong Zhang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Mingjian Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yuxin Yang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Ziqi Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wanni Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Pingjuan Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Dan Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
14
|
Sharma V, Fernando V, Zheng X, Sweef O, Choi ES, Thomas V, Furuta S. Immunogenic shift of arginine metabolism triggers systemic metabolic and immunological reprogramming to prevent HER2+ breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619827. [PMID: 39484369 PMCID: PMC11527010 DOI: 10.1101/2024.10.23.619827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Arginine metabolism in tumors is often shunted into the pathway producing pro-tumor and immune suppressive polyamines (PAs), while downmodulating the alternative nitric oxide (NO) synthesis pathway. Aiming to correct arginine metabolism in tumors, arginine deprivation therapy and inhibitors of PA synthesis have been developed. Despite some therapeutic advantages, these approaches have often yielded severe side effects, making it necessary to explore an alternative strategy. We previously reported that supplementing SEP, the endogenous precursor of BH4 (the essential NO synthase cofactor), could correct arginine metabolism in tumor cells and tumor-associated macrophages (TAMs) and induce their metabolic and phenotypic reprogramming. We saw that oral SEP treatment effectively suppressed the growth of HER2-positive mammary tumors in animals. SEP also has no reported dose-dependent toxicity in clinical trials for metabolic disorders. In the present study, we report that a long-term use of SEP in animals susceptible to HER2-positive mammary tumors effectively prevented tumor occurrence. These SEP-treated animals had undergone reprogramming of the systemic metabolism and immunity, elevating total T cell counts in the circulation and bone marrow. Given that bone marrow-resident T cells are mostly memory T cells, it is plausible that chronic SEP treatment promoted memory T cell formation, leading to a potent tumor prevention. These findings suggest the possible roles of the SEP/BH4/NO axis in promoting memory T cell formation and its potential therapeutic utility for preventing HER2-positive breast cancer.
Collapse
Affiliation(s)
- Vandana Sharma
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
- Department of Zoology and Physiology, University of Wyoming, 1000 E. University Ave, Biological Science Building, Room 319F, Laramie, WY 82071
| | - Veani Fernando
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
- Division of Rheumatology, University of Colorado, Anschutz Medical Campus Barbara Davis Center, Mail Stop B115, 1775 Aurora Court, Aurora, Colorado 80045
| | - Xunzhen Zheng
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
| | - Osama Sweef
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, 2500 MetroHealth Drive, Cleveland, OH 44109
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Eun-Seok Choi
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, 2500 MetroHealth Drive, Cleveland, OH 44109
| | - Venetia Thomas
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, 2500 MetroHealth Drive, Cleveland, OH 44109
| | - Saori Furuta
- Department of Cell & Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave. Toledo, OH 43614, USA
- MetroHealth Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, 2500 MetroHealth Drive, Cleveland, OH 44109
| |
Collapse
|
15
|
Ji G, Liu J, Zhao Z, Lan J, Yang Y, Wang Z, Feng H, Ji K, Jiang X, Xia H, Wei G, Zhang Y, Zhang Y, Du X, Wang Y, Yang Y, Liu Z, Zhang K, Mei Q, Sun R, Lu H. Polyamine Anabolism Promotes Chemotherapy-Induced Breast Cancer Stem Cell Enrichment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404853. [PMID: 39058337 PMCID: PMC11516096 DOI: 10.1002/advs.202404853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Breast cancer patients may initially benefit from cytotoxic chemotherapy but experience treatment resistance and relapse. Chemoresistant breast cancer stem cells (BCSCs) play a pivotal role in cancer recurrence and metastasis, however, identification and eradication of BCSC population in patients are challenging. Here, an mRNA-based BCSC signature is developed using machine learning strategy to evaluate cancer stemness in primary breast cancer patient samples. Using the BCSC signature, a critical role of polyamine anabolism in the regulation of chemotherapy-induced BCSC enrichment, is elucidated. Mechanistically, two key polyamine anabolic enzymes, ODC1 and SRM, are directly activated by transcription factor HIF-1 in response to chemotherapy. Genetic inhibition of HIF-1-controlled polyamine anabolism blocks chemotherapy-induced BCSC enrichment in vitro and in xenograft mice. A novel specific HIF-1 inhibitor britannin is identified through a natural compound library screening, and demonstrate that coadministration of britannin efficiently inhibits chemotherapy-induced HIF-1 transcriptional activity, ODC1 and SRM expression, polyamine levels, and BCSC enrichment in vitro and in xenograft and autochthonous mouse models. The findings demonstrate the key role of polyamine anabolism in BCSC regulation and provide a new strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Guangyu Ji
- The Second Hospital and Advanced Medical Research InstituteCheeloo College of MedicineShandong UniversityJinan250012China
- School of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinan250012China
| | - Jia Liu
- The Second Hospital and Advanced Medical Research InstituteCheeloo College of MedicineShandong UniversityJinan250012China
| | - Zhiqun Zhao
- The Second Hospital and Advanced Medical Research InstituteCheeloo College of MedicineShandong UniversityJinan250012China
| | - Jie Lan
- Department of Radiation OncologyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041China
| | - You Yang
- Department of Pediatrics (Children Hematological Oncology)Birth Defects and Childhood Hematological Oncology LaboratoryThe Affiliated Hospital of Southwest Medical UniversitySichuan Clinical Research Center for Birth DefectsLuzhou646000China
| | - Zheng Wang
- Department of UrologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan250021China
| | - Huijing Feng
- Cancer Center, Shanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032China
| | - Kai Ji
- Shandong Helix Matrix Data TechnologyJinan250014China
| | - Xiaofeng Jiang
- Youth League CommitteeQilu HospitalShandong UniversityJinan250012China
| | - Huize Xia
- The Second Hospital and Advanced Medical Research InstituteCheeloo College of MedicineShandong UniversityJinan250012China
| | - Guangyao Wei
- The Second Hospital and Advanced Medical Research InstituteCheeloo College of MedicineShandong UniversityJinan250012China
| | - Yajing Zhang
- The Second Hospital and Advanced Medical Research InstituteCheeloo College of MedicineShandong UniversityJinan250012China
| | - Yuhong Zhang
- The Second Hospital and Advanced Medical Research InstituteCheeloo College of MedicineShandong UniversityJinan250012China
| | - Xinlong Du
- The Second Hospital and Advanced Medical Research InstituteCheeloo College of MedicineShandong UniversityJinan250012China
| | - Yawen Wang
- Department of Breast Surgery, General SurgeryQilu HospitalShandong UniversityJinan250012China
| | - Yuanyuan Yang
- Shandong Artificial Intelligence InstituteQilu University of Technology (Shandong Academy of Sciences)Jinan250399China
| | - Zhaojian Liu
- School of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinan250012China
| | - Kai Zhang
- Department of Breast Surgery, General SurgeryQilu HospitalShandong UniversityJinan250012China
| | - Qi Mei
- Cancer Center, Shanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032China
- Department of Oncology, Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Rong Sun
- The Second Hospital and Advanced Medical Research InstituteCheeloo College of MedicineShandong UniversityJinan250012China
| | - Haiquan Lu
- The Second Hospital and Advanced Medical Research InstituteCheeloo College of MedicineShandong UniversityJinan250012China
- Key Laboratory for Experimental Teratology of the Ministry of EducationCheeloo College of MedicineShandong UniversityJinan250012China
- Center for Reproductive MedicineShandong UniversityJinan250001China
| |
Collapse
|
16
|
Singh P, Choi JY, Wang W, T Lam T, Lechner P, Vanderwal CD, Pou S, Nilsen A, Ben Mamoun C. A fluorescence-based assay for measuring polyamine biosynthesis aminopropyl transferase-mediated catalysis. J Biol Chem 2024; 300:107832. [PMID: 39342998 PMCID: PMC11541840 DOI: 10.1016/j.jbc.2024.107832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
Polyamines are polycationic molecules that are crucial in a wide array of cellular functions. Their biosynthesis is mediated by aminopropyl transferases (APTs), which are promising targets for antimicrobial, antineoplastic, and antineurodegenerative therapies. A major limitation in studying APT enzymes, however, is the lack of high-throughput assays to measure their activity. We have developed the first fluorescence-based assay, diacetyl benzene (DAB)-APT, for the measurement of APT activity using 1,2-DAB, which forms fluorescent conjugates with putrescine, spermidine, and spermine, with fluorescence intensity increasing with the carbon chain length. The assay has been validated using APT enzymes from Saccharomyces cerevisiae and Plasmodium falciparum, and the data further validated by mass spectrometry and TLC. Using mass spectrometry analysis, the structures of the fluorescent putrescine, spermidine, and spermine 1,2-DAB adducts were determined to be substituted 1,3-dimethyl isoindoles. The DAB-APT assay is optimized for high-throughput screening, facilitating the evaluation of large chemical libraries. Given the critical roles of APTs in infectious diseases, oncology, and neurobiology, the DAB-APT assay offers a powerful tool with broad applicability, poised to drive advancements in research and drug discovery.
Collapse
Affiliation(s)
- Pallavi Singh
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jae-Yeon Choi
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Weiwei Wang
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, Connecticut, USA
| | - Tukiet T Lam
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, Connecticut, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Philip Lechner
- Department of Chemistry, University of California, Irvine, California, USA
| | - Christopher D Vanderwal
- Department of Chemistry, University of California, Irvine, California, USA; Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
| | - Sovitj Pou
- VA Healthcare System, Medical Research Service, Portland, Oregon, USA
| | - Aaron Nilsen
- VA Healthcare System, Medical Research Service, Portland, Oregon, USA; Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, USA; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
17
|
Deng H, Xie K, Hu L, Liu X, Li Q, Xie D, Xiang F, Liu W, Zheng W, Xiao S, Zheng J, Tan X. Polyamine Derived Photosensitizer: A Novel Approach for Photodynamic Therapy of Cancer. Molecules 2024; 29:4277. [PMID: 39275124 PMCID: PMC11397399 DOI: 10.3390/molecules29174277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/28/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Polyamines play a pivotal role in cancer cell proliferation. The excessive polyamine requirement of these malignancies is satisfied through heightened biosynthesis and augmented extracellular uptake via the polyamine transport system (PTS) present on the cell membrane. Meanwhile, photodynamic therapy (PDT) emerges as an effective anti-cancer treatment devoid of drug resistance. Recognizing these intricacies, our study devised a novel polyamine-derived photosensitizer (PS) for targeted photodynamic treatment, focusing predominantly on pancreatic cancer cells. We synthesized and evaluated novel spermine-derived fluorescent probes (N2) and PS (N3), exhibiting selectivity towards pancreatic cancer cells via PTS. N3 showed minimal dark toxicity but significant phototoxicity upon irradiation, effectively causing cell death in vitro. A significant reduction in tumor volume was observed post-treatment with no pronounced dark toxicity using the pancreatic cancer CDX mouse model, affirming the therapeutic potential of N3. Overall, our findings introduce a promising new strategy for cancer treatment, highlighting the potential of polyamine-derived PSs in PDT.
Collapse
Affiliation(s)
- Hao Deng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China; (H.D.)
- The First College of Clinical Medical Science, China Three Gorges University, Yichang 443003, China (J.Z.)
| | - Ke Xie
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China; (H.D.)
- The First College of Clinical Medical Science, China Three Gorges University, Yichang 443003, China (J.Z.)
| | - Liling Hu
- The First College of Clinical Medical Science, China Three Gorges University, Yichang 443003, China (J.Z.)
| | - Xiaowen Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China; (H.D.)
| | - Qingyun Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China; (H.D.)
| | - Donghui Xie
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China; (H.D.)
| | - Fengyi Xiang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China; (H.D.)
| | - Wei Liu
- The First College of Clinical Medical Science, China Three Gorges University, Yichang 443003, China (J.Z.)
| | - Weihong Zheng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China; (H.D.)
| | - Shuzhang Xiao
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Jun Zheng
- The First College of Clinical Medical Science, China Three Gorges University, Yichang 443003, China (J.Z.)
| | - Xiao Tan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China; (H.D.)
- The First College of Clinical Medical Science, China Three Gorges University, Yichang 443003, China (J.Z.)
| |
Collapse
|
18
|
Liu TA, Stewart TM, Casero RA. The Synergistic Benefit of Combination Strategies Targeting Tumor Cell Polyamine Homeostasis. Int J Mol Sci 2024; 25:8173. [PMID: 39125742 PMCID: PMC11311409 DOI: 10.3390/ijms25158173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Mammalian polyamines, including putrescine, spermidine, and spermine, are positively charged amines that are essential for all living cells including neoplastic cells. An increasing understanding of polyamine metabolism, its molecular functions, and its role in cancer has led to the interest in targeting polyamine metabolism as an anticancer strategy, as the metabolism of polyamines is frequently dysregulated in neoplastic disease. In addition, due to compensatory mechanisms, combination therapies are clinically more promising, as agents can work synergistically to achieve an effect beyond that of each strategy as a single agent. In this article, the nature of polyamines, their association with carcinogenesis, and the potential use of targeting polyamine metabolism in treating and preventing cancer as well as combination therapies are described. The goal is to review the latest strategies for targeting polyamine metabolism, highlighting new avenues for exploiting aberrant polyamine homeostasis for anticancer therapy and the mechanisms behind them.
Collapse
Affiliation(s)
- Ting-Ann Liu
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Tracy Murray Stewart
- The Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
| | - Robert A. Casero
- The Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
| |
Collapse
|
19
|
Uher O, Hadrava Vanova K, Taïeb D, Calsina B, Robledo M, Clifton-Bligh R, Pacak K. The Immune Landscape of Pheochromocytoma and Paraganglioma: Current Advances and Perspectives. Endocr Rev 2024; 45:521-552. [PMID: 38377172 PMCID: PMC11244254 DOI: 10.1210/endrev/bnae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors derived from neural crest cells from adrenal medullary chromaffin tissues and extra-adrenal paraganglia, respectively. Although the current treatment for PPGLs is surgery, optimal treatment options for advanced and metastatic cases have been limited. Hence, understanding the role of the immune system in PPGL tumorigenesis can provide essential knowledge for the development of better therapeutic and tumor management strategies, especially for those with advanced and metastatic PPGLs. The first part of this review outlines the fundamental principles of the immune system and tumor microenvironment, and their role in cancer immunoediting, particularly emphasizing PPGLs. We focus on how the unique pathophysiology of PPGLs, such as their high molecular, biochemical, and imaging heterogeneity and production of several oncometabolites, creates a tumor-specific microenvironment and immunologically "cold" tumors. Thereafter, we discuss recently published studies related to the reclustering of PPGLs based on their immune signature. The second part of this review discusses future perspectives in PPGL management, including immunodiagnostic and promising immunotherapeutic approaches for converting "cold" tumors into immunologically active or "hot" tumors known for their better immunotherapy response and patient outcomes. Special emphasis is placed on potent immune-related imaging strategies and immune signatures that could be used for the reclassification, prognostication, and management of these tumors to improve patient care and prognosis. Furthermore, we introduce currently available immunotherapies and their possible combinations with other available therapies as an emerging treatment for PPGLs that targets hostile tumor environments.
Collapse
Affiliation(s)
- Ondrej Uher
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - Katerina Hadrava Vanova
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - David Taïeb
- Department of Nuclear Medicine, CHU de La Timone, Marseille 13005, France
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Familiar Cancer Clinical Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain
| | - Roderick Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital, Sydney 2065, NSW, Australia
- Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney 2065, NSW, Australia
| | - Karel Pacak
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| |
Collapse
|
20
|
González A, Odriozola I, Fullaondo A, Odriozola A. Microbiota and detrimental protein derived metabolites in colorectal cancer. ADVANCES IN GENETICS 2024; 112:255-308. [PMID: 39396838 DOI: 10.1016/bs.adgen.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is the third leading cancer in incidence and the second leading cancer in mortality worldwide. There is growing scientific evidence to support the crucial role of the gut microbiota in the development of CRC. The gut microbiota is the complex community of microorganisms that inhabit the host gut in a symbiotic relationship. Diet plays a crucial role in modulating the risk of CRC, with a high intake of red and processed meat being a risk factor for the development of CRC. The production of metabolites derived from protein fermentation by the gut microbiota is considered a crucial element in the interaction between red and processed meat consumption and the development of CRC. This paper examines several metabolites derived from the bacterial fermentation of proteins associated with an increased risk of CRC. These metabolites include ammonia, polyamines, trimethylamine N-oxide (TMAO), N-nitroso compounds (NOC), hydrogen sulphide (H2S), phenolic compounds (p-cresol) and indole compounds (indolimines). These compounds are depicted and reviewed for their association with CRC risk, possible mechanisms promoting carcinogenesis and their relationship with the gut microbiota. Additionally, this paper analyses the evidence related to the role of red and processed meat intake and CRC risk and the factors and pathways involved in bacterial proteolytic fermentation in the large intestine.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| |
Collapse
|
21
|
Zhou M, Yin X, Chen B, Hu S, Zhou W. A PET probe targeting polyamine transport system for precise tumor diagnosis and therapy. Asian J Pharm Sci 2024; 19:100924. [PMID: 38903130 PMCID: PMC11186966 DOI: 10.1016/j.ajps.2024.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/02/2024] [Accepted: 03/04/2024] [Indexed: 06/22/2024] Open
Abstract
Polyamine metabolism dysregulation is a hallmark of many cancers, offering a promising avenue for early tumor theranostics. This study presents the development of a nuclear probe derived from spermidine (SPM) for dual-purpose tumor PET imaging and internal radiation therapy. The probe, radiolabeled with either [68Ga]Ga for diagnostic applications or [177Lu]Lu for therapeutic use, was synthesized with exceptional purity, stability, and specific activity. Extensive testing involving 12 different tumor cell lines revealed remarkable specificity towards B16 melanoma cells, showcasing outstanding tumor localization and target-to-non-target ratio. Mechanistic investigations employing polyamines, non-labeled precursor, and polyamine transport system (PTS) inhibitor, consistently affirmed the probe's targetability through recognition of the PTS. Notably, while previous reports indicated PTS upregulation in various tumor types for targeted therapy, this study observed no positive signals, highlighting a concentration-dependent discrepancy between targeting for therapy and diagnosis. Furthermore, when labeled with [177Lu], the probe demonstrated its therapeutic potential by effectively controlling tumor growth and extending mouse survival. Investigations into biodistribution, excretion, and biosafety in healthy humans laid a robust foundation for clinical translation. This study introduces a versatile SPM-based nuclear probe with applications in precise tumor theranostics, offering promising prospects for clinical implementation.
Collapse
Affiliation(s)
- Ming Zhou
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xiaoqin Yin
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Bei Chen
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha 410008, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- National Clinical Research Center for Geriatric Disorders (Xiangya), Changsha 410008, China
| |
Collapse
|
22
|
Holbert CE, Casero RA, Stewart TM. Polyamines: the pivotal amines in influencing the tumor microenvironment. Discov Oncol 2024; 15:173. [PMID: 38761252 PMCID: PMC11102423 DOI: 10.1007/s12672-024-01034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/11/2024] [Indexed: 05/20/2024] Open
Abstract
Cellular proliferation, function and survival is reliant upon maintaining appropriate intracellular polyamine levels. Due to increased metabolic needs, cancer cells elevate their polyamine pools through coordinated metabolism and uptake. High levels of polyamines have been linked to more immunosuppressive tumor microenvironments (TME) as polyamines support the growth and function of many immunosuppressive cell types such as MDSCs, macrophages and regulatory T-cells. As cancer cells and other pro-tumorigenic cell types are highly dependent on polyamines for survival, pharmacological modulation of polyamine metabolism is a promising cancer therapeutic strategy. This review covers the roles of polyamines in various cell types of the TME including both immune and stromal cells, as well as how competition for nutrients, namely polyamine precursors, influences the cellular landscape of the TME. It also details the use of polyamines as biomarkers and the ways in which polyamine depletion can increase the immunogenicity of the TME and reprogram tumors to become more responsive to immunotherapy.
Collapse
Affiliation(s)
- Cassandra E Holbert
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Robert A Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tracy Murray Stewart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
23
|
Singh P, Choi JY, Mamoun CB. DAB-APT: a Fluorescence-Based Assay for Determining Aminopropyl Transferase Activity and Inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588734. [PMID: 38645036 PMCID: PMC11030440 DOI: 10.1101/2024.04.09.588734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Polyamines are polycationic molecules that are crucial in a wide array of cellular functions. Their biosynthesis is mediated by aminopropyl transferases (APTs), promising targets in antimicrobial, antineoplastic and antineurodegenerative therapies. A major limitation, however, is the lack of high-throughput assays to measure their activity. We developed the first fluorescence-based assay, DAB-APT, for measurement of APT activity using 1,2-diacetyl benzene, which forms fluorescent conjugates with putrescine, spermidine and spermine with fluorescence intensity increasing with increasing carbon chain length. The assay has been validated using APT enzymes from S. cerevisiae and P. falciparum and is suitable for high-throughput screening of large chemical libraries. Given the importance of APTs in infectious diseases, cancer and neurobiology, our DAB-APT assay has broad applications, holding promise for advancing research and drug discovery efforts.
Collapse
|
24
|
Liu X, Xiang R, Fang X, Wang G, Zhou Y. Advances in Metabolic Regulation of Macrophage Polarization State. Immunol Invest 2024; 53:416-436. [PMID: 38206296 DOI: 10.1080/08820139.2024.2302828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Macrophages are significant immune-related cells that are essential for tissue growth, homeostasis maintenance, pathogen resistance, and damage healing. The studies on the metabolic control of macrophage polarization state in recent years and the influence of polarization status on the development and incidence of associated disorders are expounded upon in this article. Firstly, we reviewed the origin and classification of macrophages, with particular attention paid to how the tricarboxylic acid cycle and the three primary metabolites affect macrophage polarization. The primary metabolic hub that controls macrophage polarization is the tricarboxylic acid cycle. Finally, we reviewed the polarization state of macrophages influences the onset and progression of cancers, inflammatory disorders, and other illnesses.
Collapse
Affiliation(s)
- Xin Liu
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Ruoxuan Xiang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Xue Fang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Guodong Wang
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| | - Yuyan Zhou
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu, China
| |
Collapse
|
25
|
Zeng J, Zhang Y, Fang Y, Lian J, Zhang H, Zhang S, Lin B, Ye Z, Li C, Qiu X, Liang Y. Natural Product Quercetin-3-methyl ether Promotes Colorectal Cancer Cell Apoptosis by Downregulating Intracellular Polyamine Signaling. Int J Med Sci 2024; 21:904-913. [PMID: 38617002 PMCID: PMC11008483 DOI: 10.7150/ijms.93903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024] Open
Abstract
Dysregulation of cellular metabolism is a key marker of cancer, and it is suggested that metabolism should be considered as a targeted weakness of colorectal cancer. Increased polyamine metabolism is a common metabolic change in tumors. Thus, targeting polyamine metabolism for anticancer therapy, particularly polyamine blockade therapy, has gradually become a hot topic. Quercetin-3-methyl ether is a natural compound existed in various plants with diverse biological activities like antioxidant and antiaging. Here, we reported that Quercetin-3-methyl ether inhibits colorectal cancer cell viability, and promotes apoptosis in a dose-dependent and time-dependent manner. Intriguingly, the polyamine levels, including spermidine and spermine, in colorectal cancer cells were reduced upon treatment of Quercetin-3-methyl ether. This is likely resulted from the downregulation of SMOX, a key enzyme in polyamine metabolism that catalyzes the oxidation of spermine to spermidine. These findings suggest Quercetin-3-methyl ether decreases cellular polyamine level by suppressing SMOX expression, thereby inducing colorectal cancer cell apoptosis. Our results also reveal a correlation between the anti-tumor activity of Quercetin-3-methyl ether and the polyamine metabolism modulation, which may provide new insights into a better understanding of the pharmacological activity of Quercetin-3-methyl ether and how it reprograms cellular polyamine metabolism.
Collapse
Affiliation(s)
- Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Yuancheng Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Dongguan Proof-of-Concept Centers for Medical Use, Guangdong Xinghai Institute of Cell, Dongguan 523808, China
| | - Yuming Fang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Department of Pathology, Binhaiwan Central Hospital of Dongguan, Dongguan 523000, China
- Department of Clinical Laboratory, Yuedong Hospital, The Third Affiliated Hospital of Sun Yat-sen University, China
| | - Jiachun Lian
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Hailiang Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Department of Pathology, Binhaiwan Central Hospital of Dongguan, Dongguan 523000, China
| | - Shaobing Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Dongguan Proof-of-Concept Centers for Medical Use, Guangdong Xinghai Institute of Cell, Dongguan 523808, China
| | - Bihua Lin
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Ziyu Ye
- Dongguan Proof-of-Concept Centers for Medical Use, Guangdong Xinghai Institute of Cell, Dongguan 523808, China
| | - Caihong Li
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Xianxiu Qiu
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Yanfang Liang
- Department of Pathology, Binhaiwan Central Hospital of Dongguan, Dongguan 523000, China
| |
Collapse
|
26
|
Burk AC, Apostolova P. Metabolic instruction of the graft-versus-leukemia immunity. Front Immunol 2024; 15:1347492. [PMID: 38500877 PMCID: PMC10944922 DOI: 10.3389/fimmu.2024.1347492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/05/2024] [Indexed: 03/20/2024] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is frequently performed to cure hematological malignancies, such as acute myeloid leukemia (AML), through the graft-versus-leukemia (GVL) effect. In this immunological process, donor immune cells eliminate residual cancer cells in the patient and exert tumor control through immunosurveillance. However, GVL failure and subsequent leukemia relapse are frequent and associated with a dismal prognosis. A better understanding of the mechanisms underlying AML immune evasion is essential for developing novel therapeutic strategies to boost the GVL effect. Cellular metabolism has emerged as an essential regulator of survival and cell fate for both cancer and immune cells. Leukemia and T cells utilize specific metabolic programs, including the orchestrated use of glucose, amino acids, and fatty acids, to support their growth and function. Besides regulating cell-intrinsic processes, metabolism shapes the extracellular environment and plays an important role in cell-cell communication. This review focuses on recent advances in the understanding of how metabolism might affect the anti-leukemia immune response. First, we provide a general overview of the mechanisms of immune escape after allo-HCT and an introduction to leukemia and T cell metabolism. Further, we discuss how leukemia and myeloid cell metabolism contribute to an altered microenvironment that impairs T cell function. Next, we review the literature linking metabolic processes in AML cells with their inhibitory checkpoint ligand expression. Finally, we focus on recent findings concerning the role of systemic metabolism in sustained GVL efficacy. While the majority of evidence in the field still stems from basic and preclinical studies, we discuss translational findings and propose further avenues for bridging the gap between bench and bedside.
Collapse
Affiliation(s)
- Ann-Cathrin Burk
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, Freiburg, Germany
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Petya Apostolova
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
27
|
Zhi Y, Wang Q, Zi M, Zhang S, Ge J, Liu K, Lu L, Fan C, Yan Q, Shi L, Chen P, Fan S, Liao Q, Guo C, Wang F, Gong Z, Xiong W, Zeng Z. Spatial Transcriptomic and Metabolomic Landscapes of Oral Submucous Fibrosis-Derived Oral Squamous Cell Carcinoma and its Tumor Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306515. [PMID: 38229179 PMCID: PMC10966560 DOI: 10.1002/advs.202306515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/19/2023] [Indexed: 01/18/2024]
Abstract
In South and Southeast Asia, the habit of chewing betel nuts is prevalent, which leads to oral submucous fibrosis (OSF). OSF is a well-established precancerous lesion, and a portion of OSF cases eventually progress to oral squamous cell carcinoma (OSCC). However, the specific molecular mechanisms underlying the malignant transformation of OSCC from OSF are poorly understood. In this study, the leading-edge techniques of Spatial Transcriptomics (ST) and Spatial Metabolomics (SM) are integrated to obtain spatial location information of cancer cells, fibroblasts, and immune cells, as well as the transcriptomic and metabolomic landscapes in OSF-derived OSCC tissues. This work reveals for the first time that some OSF-derived OSCC cells undergo partial epithelial-mesenchymal transition (pEMT) within the in situ carcinoma (ISC) region, eventually acquiring fibroblast-like phenotypes and participating in collagen deposition. Complex interactions among epithelial cells, fibroblasts, and immune cells in the tumor microenvironment are demonstrated. Most importantly, significant metabolic reprogramming in OSF-derived OSCC, including abnormal polyamine metabolism, potentially playing a pivotal role in promoting tumorigenesis and immune evasion is discovered. The ST and SM data in this study shed new light on deciphering the mechanisms of OSF-derived OSCC. The work also offers invaluable clues for the prevention and treatment of OSCC.
Collapse
Affiliation(s)
- Yuan Zhi
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunan410078China
| | - Qian Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunan410078China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine SciencesCentral South UniversityChangshaHunan410078China
| | - Moxin Zi
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunan410078China
| | - Shanshan Zhang
- Department of StomatologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Junshang Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine SciencesCentral South UniversityChangshaHunan410078China
| | - Keyue Liu
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Linsong Lu
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Chunmei Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine SciencesCentral South UniversityChangshaHunan410078China
| | - Qijia Yan
- Department of StomatologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Lei Shi
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunan410078China
| | - Songqing Fan
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunan410078China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine SciencesCentral South UniversityChangshaHunan410078China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine SciencesCentral South UniversityChangshaHunan410078China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunan410011China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine SciencesCentral South UniversityChangshaHunan410078China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunan410078China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine SciencesCentral South UniversityChangshaHunan410078China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunan410078China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine SciencesCentral South UniversityChangshaHunan410078China
| |
Collapse
|
28
|
Dussold C, Zilinger K, Turunen J, Heimberger AB, Miska J. Modulation of macrophage metabolism as an emerging immunotherapy strategy for cancer. J Clin Invest 2024; 134:e175445. [PMID: 38226622 PMCID: PMC10786697 DOI: 10.1172/jci175445] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Immunometabolism is a burgeoning field of research that investigates how immune cells harness nutrients to drive their growth and functions. Myeloid cells play a pivotal role in tumor biology, yet their metabolic influence on tumor growth and antitumor immune responses remains inadequately understood. This Review explores the metabolic landscape of tumor-associated macrophages, including the immunoregulatory roles of glucose, fatty acids, glutamine, and arginine, alongside the tools used to perturb their metabolism to promote antitumor immunity. The confounding role of metabolic inhibitors on our interpretation of myeloid metabolic phenotypes will also be discussed. A binary metabolic schema is currently used to describe macrophage immunological phenotypes, characterizing inflammatory M1 phenotypes, as supported by glycolysis, and immunosuppressive M2 phenotypes, as supported by oxidative phosphorylation. However, this classification likely underestimates the variety of states in vivo. Understanding these nuances will be critical when developing interventional metabolic strategies. Future research should focus on refining drug specificity and targeted delivery methods to maximize therapeutic efficacy.
Collapse
|
29
|
Liu Q, Yan X, Li R, Yuan Y, Wang J, Zhao Y, Fu J, Su J. Polyamine Signal through HCC Microenvironment: A Key Regulator of Mitochondrial Preservation and Turnover in TAMs. Int J Mol Sci 2024; 25:996. [PMID: 38256070 PMCID: PMC10816144 DOI: 10.3390/ijms25020996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, and, with increasing research on the tumor immune microenvironment (TIME), the immunosuppressive micro-environment of HCC hampers further application of immunotherapy, even though immunotherapy can provide survival benefits to patients with advanced liver cancer. Current studies suggest that polyamine metabolism is not only a key metabolic pathway for the formation of immunosuppressive phenotypes in tumor-associated macrophages (TAMs), but it is also profoundly involved in mitochondrial quality control signaling and the energy metabolism regulation process, so it is particularly important to further investigate the role of polyamine metabolism in the tumor microenvironment (TME). In this review, by summarizing the current research progress of key enzymes and substrates of the polyamine metabolic pathway in regulating TAMs and T cells, we propose that polyamine biosynthesis can intervene in the process of mitochondrial energy metabolism by affecting mitochondrial autophagy, which, in turn, regulates macrophage polarization and T cell differentiation. Polyamine metabolism may be a key target for the interactive dialog between HCC cells and immune cells such as TAMs, so interfering with polyamine metabolism may become an important entry point to break intercellular communication, providing new research space for developing polyamine metabolism-based therapy for HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basical Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130012, China; (Q.L.); (X.Y.); (R.L.); (Y.Y.); (J.W.); (Y.Z.); (J.F.)
| |
Collapse
|
30
|
Wolpaw AJ, Dang CV. Pathways Involved in the Effect of Eflornithine in Neuroblastoma. J Clin Oncol 2024; 42:116-119. [PMID: 37883720 DOI: 10.1200/jco.23.01783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 10/28/2023] Open
Affiliation(s)
- Adam J Wolpaw
- Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Chi V Dang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD
- Ludwig Institute for Cancer Research, New York, NY
| |
Collapse
|
31
|
Liu J, Tian R, Sun C, Guo Y, Dong L, Li Y, Song X. Microbial metabolites are involved in tumorigenesis and development by regulating immune responses. Front Immunol 2023; 14:1290414. [PMID: 38169949 PMCID: PMC10758836 DOI: 10.3389/fimmu.2023.1290414] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The human microbiota is symbiotic with the host and can create a variety of metabolites. Under normal conditions, microbial metabolites can regulate host immune function and eliminate abnormal cells in a timely manner. However, when metabolite production is abnormal, the host immune system might be unable to identify and get rid of tumor cells at the early stage of carcinogenesis, which results in tumor development. The mechanisms by which intestinal microbial metabolites, including short-chain fatty acids (SCFAs), microbial tryptophan catabolites (MTCs), polyamines (PAs), hydrogen sulfide, and secondary bile acids, are involved in tumorigenesis and development by regulating immune responses are summarized in this review. SCFAs and MTCs can prevent cancer by altering the expression of enzymes and epigenetic modifications in both immune cells and intestinal epithelial cells. MTCs can also stimulate immune cell receptors to inhibit the growth and metastasis of the host cancer. SCFAs, MTCs, bacterial hydrogen sulfide and secondary bile acids can control mucosal immunity to influence the occurrence and growth of tumors. Additionally, SCFAs, MTCs, PAs and bacterial hydrogen sulfide can also affect the anti-tumor immune response in tumor therapy by regulating the function of immune cells. Microbial metabolites have a good application prospect in the clinical diagnosis and treatment of tumors, and our review provides a good basis for related research.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ruxian Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Caiyu Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ying Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Lei Dong
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yumei Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| |
Collapse
|
32
|
Xuan M, Gu X, Li J, Huang D, Xue C, He Y. Polyamines: their significance for maintaining health and contributing to diseases. Cell Commun Signal 2023; 21:348. [PMID: 38049863 PMCID: PMC10694995 DOI: 10.1186/s12964-023-01373-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/29/2023] [Indexed: 12/06/2023] Open
Abstract
Polyamines are essential for the growth and proliferation of mammalian cells and are intimately involved in biological mechanisms such as DNA replication, RNA transcription, protein synthesis, and post-translational modification. These mechanisms regulate cellular proliferation, differentiation, programmed cell death, and the formation of tumors. Several studies have confirmed the positive effect of polyamines on the maintenance of health, while others have demonstrated that their activity may promote the occurrence and progression of diseases. This review examines a variety of topics, such as polyamine source and metabolism, including metabolism, transport, and the potential impact of polyamines on health and disease. In addition, a brief summary of the effects of oncogenes and signaling pathways on tumor polyamine metabolism is provided. Video Abstract.
Collapse
Affiliation(s)
- Mengjuan Xuan
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, College of Clinical Medicine, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Juan Li
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chen Xue
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
33
|
Van Dingenen L, Segers C, Wouters S, Mysara M, Leys N, Kumar-Singh S, Malhotra-Kumar S, Van Houdt R. Dissecting the role of the gut microbiome and fecal microbiota transplantation in radio- and immunotherapy treatment of colorectal cancer. Front Cell Infect Microbiol 2023; 13:1298264. [PMID: 38035338 PMCID: PMC10687483 DOI: 10.3389/fcimb.2023.1298264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and poses a major burden on the human health worldwide. At the moment, treatment of CRC consists of surgery in combination with (neo)adjuvant chemotherapy and/or radiotherapy. More recently, immune checkpoint blockers (ICBs) have also been approved for CRC treatment. In addition, recent studies have shown that radiotherapy and ICBs act synergistically, with radiotherapy stimulating the immune system that is activated by ICBs. However, both treatments are also associated with severe toxicity and efficacy issues, which can lead to temporary or permanent discontinuation of these treatment programs. There's growing evidence pointing to the gut microbiome playing a role in these issues. Some microorganisms seem to contribute to radiotherapy-associated toxicity and hinder ICB efficacy, while others seem to reduce radiotherapy-associated toxicity or enhance ICB efficacy. Consequently, fecal microbiota transplantation (FMT) has been applied to reduce radio- and immunotherapy-related toxicity and enhance their efficacies. Here, we have reviewed the currently available preclinical and clinical data in CRC treatment, with a focus on how the gut microbiome influences radio- and immunotherapy toxicity and efficacy and if these treatments could benefit from FMT.
Collapse
Affiliation(s)
- Lena Van Dingenen
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Charlotte Segers
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Shari Wouters
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Mohamed Mysara
- Bioinformatics Group, Center for Informatics Science, School of Information Technology and Computer Science, Nile University, Giza, Egypt
| | - Natalie Leys
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Samir Kumar-Singh
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Rob Van Houdt
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| |
Collapse
|
34
|
Karno B, Edwards DN, Chen J. Metabolic control of cancer metastasis: role of amino acids at secondary organ sites. Oncogene 2023; 42:3447-3456. [PMID: 37848626 PMCID: PMC11323979 DOI: 10.1038/s41388-023-02868-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Most cancer-related deaths are caused by the metastases, which commonly develop at multiple organ sites including the brain, bone, and lungs. Despite longstanding observations that the spread of cancer is not random, our understanding of the mechanisms that underlie metastatic spread to specific organs remains limited. However, metabolism has recently emerged as an important contributor to metastasis. Amino acids are a significant nutrient source to cancer cells and their metabolism which can serve to fuel biosynthetic pathways capable of facilitating cell survival and tumor expansion while also defending against oxidative stress. Compared to the primary tumor, each of the common metastatic sites exhibit vastly different nutrient compositions and environmental stressors, necessitating the need of cancer cells to metabolically thrive in their new environment during colonization and outgrowth. This review seeks to summarize the current literature on amino acid metabolism pathways that support metastasis to common secondary sites, including impacts on immune responses. Understanding the role of amino acids in secondary organ sites may offer opportunities for therapeutic inhibition of cancer metastasis.
Collapse
Affiliation(s)
- Breelyn Karno
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Deanna N Edwards
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jin Chen
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
35
|
Wu W, Wang J, Hu Z, Zhao Y, Wang X, Bai N, Chen L, Gao P. High WFDC3 gene expression is associated with poor prognosis and reduced immune cells infiltration in pancreatic adenocarcinoma: A study using the TCGA database and bioinformatics analysis. Medicine (Baltimore) 2023; 102:e35595. [PMID: 37861515 PMCID: PMC10589585 DOI: 10.1097/md.0000000000035595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Whey-acidic-protein (WAP) four-disulfide core domain protein 3 (WFDC3) is one of the WAP family proteins. This protein family is associated with the development of solid tumors and affects the tumor immunological microenvironment. However, the prognostic value of WFDC3 in pancreatic adenocarcinoma (PAAD) and its effect on the tumor immune microenvironment is yet to be clarified. The Cancer Genome Atlas database and Genotype-Tissue Expression database were used to analyze the differential expression of WFDC3 between the tumor and adjacent tissues. The clinical significance of WFDC3 was analyzed in The Cancer Genome Atlas and International Cancer Genome Consortium database using WFDC3 transcripts and clinical information. In order to elucidate the underlying mechanisms, gene set enrichment analysis was conducted to determine potential activated pathways. Immune score evaluation and publicly available pharmacogenomics database [the Genomics of Drug Sensitivity in Cancer] were utilized to quantify immune cell infiltration and the effect on chemotherapeutic drug sensitivity. WFDC3 levels were higher in PAAD tissues than in normal pancreatic tissues. High levels of WFDC3 expression progressively increased as PAAD tumor stages progressed. Patients with elevated WFDC3 expression showed a poor prognosis. The gene set enrichment analysis analysis revealed that glutamate, arginine, and proline, and histidine metabolism levels were elevated in patients with a high WFDC3 expression phenotype. B, CD4+ T, and CD8+ T cell infiltration was diminished in PAAD tissues with elevated WFDC3 expression. According to pharmacogenomics, PAAD tissues with high WFDC3 expression are susceptible to gemcitabine. WFDC3 is highly expressed in PAAD, and patients with a high level of WFDC3 expression have a shorter overall survival time, indicating a poorer prognosis. High expression of WFDC3 may lead to the development of PAAD by affecting the amino acid metabolism and the tumor immunological microenvironment. WFDC3 may serve as a potential diagnostic and prognostic biomarker for PAAD patients.
Collapse
Affiliation(s)
- Wei Wu
- Department of General Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Jiayuan Wang
- Department of Medical Oncology, Peking University Shougang Hospital, Beijing, China
| | - Zhiping Hu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Yiguo Zhao
- Department of General Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Xin Wang
- Department of General Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Nan Bai
- Department of General Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Lei Chen
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing, China
| | - Pengji Gao
- Department of General Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
36
|
Alexander ET, Fahey E, Phanstiel O, Gilmour SK. Loss of Anti-Tumor Efficacy by Polyamine Blocking Therapy in GCN2 Null Mice. Biomedicines 2023; 11:2703. [PMID: 37893077 PMCID: PMC10604246 DOI: 10.3390/biomedicines11102703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
GCN2 is one of the main sensors of amino acid starvation stress, and its activation in the stressful tumor microenvironment plays a crucial role in tumor survival and progression. We hypothesized that elevated polyamine biosynthesis and subsequent depletion of precursor arginine activates GCN2, thus rewiring metabolism to support tumor cell survival and drive myeloid immunosuppressive function. We sought to determine if the anti-tumor efficacy of a polyamine blocking therapy (PBT) may be mediated by its effect on GCN2. Unlike wild-type mice, PBT treatment in GCN2 knockout mice bearing syngeneic B16.F10 or EG7 tumors resulted in no tumor growth inhibition and no changes in the profile of infiltrating tumor immune cells. Studies with murine bone marrow cell cultures showed that increased polyamine metabolism and subsequent arginine depletion and GCN2 activation played an essential role in the generation and cytoprotective autophagy of myeloid derived suppressor cells (MDSCs) as well as the M2 polarization and survival of macrophages, all of which were inhibited by PBT. In all, our data suggest that polyamine-dependent GCN2 signaling in stromal cells promotes tumor growth and the development of the immunosuppressive tumor microenvironment, and that the PBT anti-tumor effect is mediated, at least in part, by targeting GCN2.
Collapse
Affiliation(s)
- Eric T. Alexander
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA 19096, USA; (E.T.A.)
| | - Erin Fahey
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA 19096, USA; (E.T.A.)
| | - Otto Phanstiel
- Department of Medical Education, College of Medicine, University of Central Florida, Biomolecular Research Annex, 12722 Research Parkway, Orlando, FL 32826, USA;
| | - Susan K. Gilmour
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA 19096, USA; (E.T.A.)
| |
Collapse
|
37
|
Riviere-Cazaux C, Neth BJ, Hoplin MD, Wessel B, Miska J, Kizilbash SH, Burns TC. Glioma Metabolic Feedback In Situ: A First-In-Human Pharmacodynamic Trial of Difluoromethylornithine + AMXT-1501 Through High-Molecular Weight Microdialysis. Neurosurgery 2023; 93:932-938. [PMID: 37246885 PMCID: PMC10637404 DOI: 10.1227/neu.0000000000002511] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND AND OBJECTIVES No new drug has improved survival for glioblastoma since temozolomide in 2005, due in part to the relative inaccessibility of each patient's individualized tumor biology and its response to therapy. We have identified a conserved extracellular metabolic signature of enhancing high-grade gliomas enriched for guanidinoacetate (GAA). GAA is coproduced with ornithine, the precursor to protumorigenic polyamines through ornithine decarboxylase (ODC). AMXT-1501 is a polyamine transporter inhibitor that can overcome tumoral resistance to the ODC inhibitor, difluoromethylornithine (DFMO). We will use DFMO with or without AMXT-1501 to identify candidate pharmacodynamic biomarkers of polyamine depletion in patients with high-grade gliomas in situ . We aim to determine (1) how blocking polyamine production affects intratumoral extracellular guanidinoacetate abundance and (2) the impact of polyamine depletion on the global extracellular metabolome within live human gliomas in situ. METHODS DFMO, with or without AMXT-1501, will be administered postoperatively in 15 patients after clinically indicated subtotal resection for high-grade glioma. High-molecular weight microdialysis catheters implanted into residual tumor and adjacent brain will be used for postoperative monitoring of extracellular GAA and polyamines throughout therapeutic intervention from postoperative day (POD) 1 to POD5. Catheters will be removed on POD5 before discharge. EXPECTED OUTCOMES We anticipate that GAA will be elevated in tumor relative to adjacent brain although it will decrease within 24 hours of ODC inhibition with DFMO. If AMXT-1501 effectively increases the cytotoxic impact of ODC inhibition, we expect an increase in biomarkers of cytotoxicity including glutamate with DFMO + AMXT-1501 treatment when compared with DFMO alone. DISCUSSION Limited mechanistic feedback from individual patients' gliomas hampers clinical translation of novel therapies. This pilot Phase 0 study will provide in situ feedback during DFMO + AMXT-1501 treatment to determine how high-grade gliomas respond to polyamine depletion.
Collapse
Affiliation(s)
| | - Bryan J. Neth
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew D. Hoplin
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Bambi Wessel
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Jason Miska
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois, USA
| | | | - Terry C. Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
38
|
Zeng J, Ye Z, Shi S, Liang Y, Meng Q, Zhang Q, Le AD. Targeted inhibition of eIF5A hpu suppresses tumor growth and polarization of M2-like tumor-associated macrophages in oral cancer. Cell Death Dis 2023; 14:579. [PMID: 37653021 PMCID: PMC10471704 DOI: 10.1038/s41419-023-06109-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Eukaryotic initiation factor 5A2 (eIF5A2) is overexpressed in many types of cancer, and spermidine-mediated eIF5A hypusination (eIF5Ahpu) appears to be essential to most of eIF5A's biological functions, including its important role in regulating cancer cell proliferation, epithelial-mesenchymal transition (EMT), and cancer stem cell (CSC) properties as well as immune cell functions. Here we investigated the role of eIF5Ahpu in the growth of oral squamous cell carcinoma cells (OSCCs) and OSCC-induced polarization of M2-like tumor-associated macrophages (TAMs). TCGA dataset analysis revealed an overall upregulation in the mRNA expression of eIF5A2 and several key enzymes involved in polyamine (PA) metabolism in HNSCC, which was confirmed by Western blot and IHC studies. Blocking eIF5Ahpu by GC-7 but not the upstream key enzyme activities of PA metabolism, remarkably inhibited cell proliferation and the expression of EMT- and CSC-related genes in OSCC cells. In addition, blocking eIF5Ahpu robustly inhibited OSCC-induced M2-like TAM polarization in vitro. More Importantly, blocking eIF5Ahpu dramatically retarded tumor growth and infiltration/polarization of M2-like TAM in a syngeneic orthotopic murine tongue SCC model. Thus, eIF5Ahpu plays dual functions in regulating tumor cell growth and polarization of M2-TAMs in OSCC.
Collapse
Affiliation(s)
- Jincheng Zeng
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Ziyu Ye
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Shihong Shi
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Yanfang Liang
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Bin-haiwan Central Hospital of Dongguan, 523905, Dongguan, China
| | - Qingyu Meng
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Qunzhou Zhang
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA.
| | - Anh D Le
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA.
- Department of Oral & Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, PA, USA.
| |
Collapse
|
39
|
Davuluri GVN, Chan CH. Regulation of intrinsic and extrinsic metabolic pathways in tumour-associated macrophages. FEBS J 2023; 290:3040-3058. [PMID: 35486022 PMCID: PMC10711806 DOI: 10.1111/febs.16465] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/08/2022] [Accepted: 04/26/2022] [Indexed: 02/03/2023]
Abstract
Tumour-associated macrophages (TAMs) are highly plastic and are broadly grouped into two major functional states, namely the pro-inflammatory M1-type and the pro-tumoural M2-type. Conversion of the functional states of TAMs is regulated by various cytokines, chemokines growth factors and other secreted factors in the microenvironment. Dysregulated metabolism is a hallmark of cancer. Emerging evidence suggests that metabolism governs the TAM differentiation and functional conversation in support of tumour growth and metastasis. Aside from the altered metabolism reprogramming in TAMs, extracellular metabolites secreted by cancer, stromal and/or other cells within the tumour microenvironment have been found to regulate TAMs through passive competition for metabolite availability and direct regulation via receptor/transporter-mediated signalling reaction. In this review, we focus on the regulatory roles of different metabolites and metabolic pathways in TAM conversion and function. We also discuss if the dysregulated metabolism in TAMs can be exploited for the development of new therapeutic strategies against cancer.
Collapse
Affiliation(s)
| | - Chia-Hsin Chan
- Department of Molecular and Cellular Biology, Roswell Park Cancer Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
40
|
Kumar V, Stewart JH. Immunometabolic reprogramming, another cancer hallmark. Front Immunol 2023; 14:1125874. [PMID: 37275901 PMCID: PMC10235624 DOI: 10.3389/fimmu.2023.1125874] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Molecular carcinogenesis is a multistep process that involves acquired abnormalities in key biological processes. The complexity of cancer pathogenesis is best illustrated in the six hallmarks of the cancer: (1) the development of self-sufficient growth signals, (2) the emergence of clones that are resistant to apoptosis, (3) resistance to the antigrowth signals, (4) neo-angiogenesis, (5) the invasion of normal tissue or spread to the distant organs, and (6) limitless replicative potential. It also appears that non-resolving inflammation leads to the dysregulation of immune cell metabolism and subsequent cancer progression. The present article delineates immunometabolic reprogramming as a critical hallmark of cancer by linking chronic inflammation and immunosuppression to cancer growth and metastasis. We propose that targeting tumor immunometabolic reprogramming will lead to the design of novel immunotherapeutic approaches to cancer.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
| | - John H. Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
- Louisiana State University- Louisiana Children’s Medical Center, Stanley S. Scott, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
| |
Collapse
|
41
|
Ganjoo S, Gupta P, Corbali HI, Nanez S, Riad TS, Duong LK, Barsoumian HB, Masrorpour F, Jiang H, Welsh JW, Cortez MA. The role of tumor metabolism in modulating T-Cell activity and in optimizing immunotherapy. Front Immunol 2023; 14:1172931. [PMID: 37180129 PMCID: PMC10169689 DOI: 10.3389/fimmu.2023.1172931] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Immunotherapy has revolutionized cancer treatment and revitalized efforts to harness the power of the immune system to combat a variety of cancer types more effectively. However, low clinical response rates and differences in outcomes due to variations in the immune landscape among patients with cancer continue to be major limitations to immunotherapy. Recent efforts to improve responses to immunotherapy have focused on targeting cellular metabolism, as the metabolic characteristics of cancer cells can directly influence the activity and metabolism of immune cells, particularly T cells. Although the metabolic pathways of various cancer cells and T cells have been extensively reviewed, the intersections among these pathways, and their potential use as targets for improving responses to immune-checkpoint blockade therapies, are not completely understood. This review focuses on the interplay between tumor metabolites and T-cell dysfunction as well as the relationship between several T-cell metabolic patterns and T-cell activity/function in tumor immunology. Understanding these relationships could offer new avenues for improving responses to immunotherapy on a metabolic basis.
Collapse
Affiliation(s)
- Shonik Ganjoo
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Priti Gupta
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Halil Ibrahim Corbali
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Selene Nanez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Thomas S. Riad
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lisa K. Duong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hampartsoum B. Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hong Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James W. Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
42
|
Lee MS, Dennis C, Naqvi I, Dailey L, Lorzadeh A, Ye G, Zaytouni T, Adler A, Hitchcock DS, Lin L, Hoffman MT, Bhuiyan AM, Barth JL, Machacek ME, Mino-Kenudson M, Dougan SK, Jadhav U, Clish CB, Kalaany NY. Ornithine aminotransferase supports polyamine synthesis in pancreatic cancer. Nature 2023; 616:339-347. [PMID: 36991126 PMCID: PMC10929664 DOI: 10.1038/s41586-023-05891-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/24/2023] [Indexed: 03/30/2023]
Abstract
There is a need to develop effective therapies for pancreatic ductal adenocarcinoma (PDA), a highly lethal malignancy with increasing incidence1 and poor prognosis2. Although targeting tumour metabolism has been the focus of intense investigation for more than a decade, tumour metabolic plasticity and high risk of toxicity have limited this anticancer strategy3,4. Here we use genetic and pharmacological approaches in human and mouse in vitro and in vivo models to show that PDA has a distinct dependence on de novo ornithine synthesis from glutamine. We find that this process, which is mediated through ornithine aminotransferase (OAT), supports polyamine synthesis and is required for tumour growth. This directional OAT activity is usually largely restricted to infancy and contrasts with the reliance of most adult normal tissues and other cancer types on arginine-derived ornithine for polyamine synthesis5,6. This dependency associates with arginine depletion in the PDA tumour microenvironment and is driven by mutant KRAS. Activated KRAS induces the expression of OAT and polyamine synthesis enzymes, leading to alterations in the transcriptome and open chromatin landscape in PDA tumour cells. The distinct dependence of PDA, but not normal tissue, on OAT-mediated de novo ornithine synthesis provides an attractive therapeutic window for treating patients with pancreatic cancer with minimal toxicity.
Collapse
Affiliation(s)
- Min-Sik Lee
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Courtney Dennis
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Insia Naqvi
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lucas Dailey
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alireza Lorzadeh
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - George Ye
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tamara Zaytouni
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashley Adler
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel S Hitchcock
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lin Lin
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
| | - Megan T Hoffman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Aladdin M Bhuiyan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jaimie L Barth
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Miranda E Machacek
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Unmesh Jadhav
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Clary B Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nada Y Kalaany
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
43
|
Niekamp P, Kim CH. Microbial Metabolite Dysbiosis and Colorectal Cancer. Gut Liver 2023; 17:190-203. [PMID: 36632785 PMCID: PMC10018301 DOI: 10.5009/gnl220260] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 01/13/2023] Open
Abstract
The global burden of colorectal cancer (CRC) is expected to continuously increase. Through research performed in the past decades, the effects of various environmental factors on CRC development have been well identified. Diet, the gut microbiota and their metabolites are key environmental factors that profoundly affect CRC development. Major microbial metabolites with a relevance for CRC prevention and pathogenesis include dietary fiber-derived short-chain fatty acids, bile acid derivatives, indole metabolites, polyamines, trimethylamine-N-oxide, formate, and hydrogen sulfide. These metabolites regulate various cell types in the intestine, leading to an altered intestinal barrier, immunity, chronic inflammation, and tumorigenesis. The physical, chemical, and metabolic properties of these metabolites along with their distinct functions to trigger host receptors appear to largely determine their effects in regulating CRC development. In this review, we will discuss the current advances in our understanding of the major CRC-regulating microbial metabolites, focusing on their production and interactive effects on immune responses and tumorigenesis in the colon.
Collapse
Affiliation(s)
- Patrick Niekamp
- Department of Pathology and Mary H. Weiser Food Allergy Center, Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Chang H. Kim
- Department of Pathology and Mary H. Weiser Food Allergy Center, Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| |
Collapse
|
44
|
Huang P, Wang M, Lu Z, Shi S, Wei X, Bi C, Wang G, Liu H, Hu T, Wang B. Putrescine accelerates the differentiation of bone marrow derived dendritic cells via inhibiting phosphorylation of STAT3 at Tyr705. Int Immunopharmacol 2023; 116:109739. [PMID: 36706590 DOI: 10.1016/j.intimp.2023.109739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/27/2023]
Abstract
Dendritic cells (DCs) play pivotal roles in immune responses. The differentiation and function of DCs are regulated by environmental metabolites. Putrescine is ubiquitous in various metabolic microenvironments and its immunoregulation has been of increasing interest. However, the mechanisms associated with its DC-induced immunoregulation remain unclear. In this study, we found putrescine promoted induction of immature bone marrow derived DCs (BMDCs), along with the increased phagocytosis and migration, and altered cytokine secretion in immature BMDCs. Transcriptomic profiles indicated significantly impaired inflammatory-related pathways, elevated oxidative phosphorylation, and decreased p-STAT3 (Tyr705) expression. Additionally, putrescine performed minor influence on the lipopolysaccharide (LPS)-induced maturation of BMDCs but significantly impaired LPS-induced DC-elicited allogeneic T-cell proliferation as well as the cytokine secretion. Furthermore, molecular docking and dynamics on the conjugation between putrescine and STAT3 revealed that putrescine could be stably bound to the hydrophilic cavity in STAT3 and performed significant influence on the Tyr705 phosphorylation. CUT&Tag analysis uncovered altered motifs, downregulated IFN-γ response, and upregulated p53 pathway in Putrescine group compared with Control group. In summary, our results demonstrated for the first time that putrescine might accelerate the differentiation of BMDCs by inhibiting the phosphorylation of STAT3 at Tyr705. Given that both DCs and putrescine have ubiquitous and distinct roles in various immune responses and pathogeneses, our findings may provide more insights into polyamine immunoregulation on DCs, as well as distinct strategies in the clinical utilization of DCs by targeting polyamines.
Collapse
Affiliation(s)
- Panpan Huang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Mengyang Wang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Zixuan Lu
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Shaojie Shi
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Xia Wei
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Chenxiao Bi
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Guoyan Wang
- Medical Laboratory Science, Yantai Affiliated Hospital of ao'deBinzhou Medical University, Yantai, China
| | - Hong Liu
- The 2nd Medical College of Binzhou Medical University, Binzhou Medical University, Yantai, China
| | - Tao Hu
- Department of Immunology, Binzhou Medical University, Yantai, China.
| | - Bin Wang
- Department of Immunology, Binzhou Medical University, Yantai, China.
| |
Collapse
|
45
|
Wang X, Zhang Q, Zhou J, Xiao Z, Liu J, Deng S, Hong X, Huang W, Cai M, Guo Y, Huang J, Wang Y, Lin L, Zhu K. T cell-mediated targeted delivery of tadalafil regulates immunosuppression and polyamine metabolism to overcome immune checkpoint blockade resistance in hepatocellular carcinoma. J Immunother Cancer 2023; 11:jitc-2022-006493. [PMID: 36813307 PMCID: PMC9950981 DOI: 10.1136/jitc-2022-006493] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) monotherapy provides poor survival benefit in hepatocellular carcinoma (HCC) due to ICB resistance caused by immunosuppressive tumor microenvironment (TME) and drug discontinuation resulting from immune-related side effects. Thus, novel strategies that can simultaneously reshape immunosuppressive TME and ameliorate side effects are urgently needed. METHODS Both in vitro and orthotopic HCC models were used to explore and demonstrate the new role of a conventional, clinically used drug, tadalafil (TA), in conquering immunosuppressive TME. In detail, the effect of TA on M2 polarization and polyamine metabolism in tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) was identified. After making clear the aforementioned immune regulatory effect of TA, we introduced a nanomedicine-based strategy of tumor-targeted drug delivery to make better use of TA to reverse immunosuppressive TME and overcome ICB resistance for HCC immunotherapy. A dual pH-sensitive nanodrug simultaneously carrying both TA and programmed cell death receptor 1 antibody (aPD-1) was developed, and its ability for tumor-targeted drug delivery and TME-responsive drug release was evaluated in an orthotopic HCC model. Finally, the immune regulatory effect, antitumor therapeutic effect, as well as side effects of our nanodrug combining both TA and aPD-1 were analyzed. RESULTS TA exerted a new role in conquering immunosuppressive TME by inhibiting M2 polarization and polyamine metabolism in TAMs and MDSCs. A dual pH-sensitive nanodrug was successfully synthesized to simultaneously carry both TA and aPD-1. On one hand, the nanodrug realized tumor-targeted drug delivery by binding to circulating programmed cell death receptor 1-positive T cells and following their infiltration into tumor. On the other hand, the nanodrug facilitated efficient intratumoral drug release in acidic TME, releasing aPD-1 for ICB and leaving TA-encapsulated nanodrug to dually regulate TAMs and MDSCs. By virtue of the combined application of TA and aPD-1, as well as the efficient tumor-targeted drug delivery, our nanodrug effectively inhibited M2 polarization and polyamine metabolism in TAMs and MDSCs to conquer immunosuppressive TME, which contributed to remarkable ICB therapeutic efficacy with minimal side effects in HCC. CONCLUSIONS Our novel tumor-targeted nanodrug expands the application of TA in tumor therapy and holds great potential to break the logjam of ICB-based HCC immunotherapy.
Collapse
Affiliation(s)
- Xiaobin Wang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiaoyun Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Jingwen Zhou
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zecong Xiao
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianxin Liu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shaohui Deng
- PCFM Lab of Ministry of Education School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyang Hong
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wensou Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mingyue Cai
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongjian Guo
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jingjun Huang
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yong Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Liteng Lin
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Kangshun Zhu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Interventional Cancer Center, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
46
|
Liu P, Liu X, Zhang L, Yan G, Zhang H, Xu D, Wu Y, Zhang G, Wang P, Zeng Q, Wang X. ALA-PDT augments intense inflammation in the treatment of acne vulgaris by COX2/TREM1 mediated M1 macrophage polarization. Biochem Pharmacol 2023; 208:115403. [PMID: 36592708 DOI: 10.1016/j.bcp.2022.115403] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Severe acne vulgaris is a common chronic inflammatory skin disease worldwide. 5-Aminolaevulinic acid photodynamic therapy (ALA-PDT) is effective and safe for severe acne. However, the mechanism is not fully understood. Intense acute inflammatory response at 24 h after ALA-PDT is reported positively correlated to the effectiveness. Inflammation regulation influence the progression or outcome of diseases. ALA-PDT may exert its therapeutic effect by augmenting intense inflammation and break the chronic inflammation. This study was set out to explore the mechanism of ALA-PDT augmenting intense acute inflammation in the treatment of acne. As a result, transcriptome microarrays analysis of severe acne patients showed that ALA-PDT significantly up-regulated expression of various inflammation-related genes, especially TREM1 and PTGS2, which were further confirmed by a C.acnes induced acne-like mouse ear model. The subsequent experiments demonstrated that ALA-PDT could trigger pro-inflammatory M1 polarization of macrophages in vitro and in vivo. Additionally, the crosstalk between keratinocytes and macrophages studied by a transwell co-culture system indicated that PGE2 secreted by ALA-PDT treated HaCaT cells could promote THP-1 macrophages M1 polarization by COX2/PGE2/TLR4/TREM1 axis to augment inflammation. Our study provides a novel insight that ALA-PDT could amplify inflammation by COX2/TREM1 mediated macrophages M1 polarization for the treatment of acne. It is hoped that this research will decipher the mechanism of ALA-PDT for the treatment of acne and provide a theoretical basis for optimizing the clinical ALA-PDT management.
Collapse
Affiliation(s)
- Pei Liu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiaojing Liu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Linglin Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Guorong Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Haiyan Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Detian Xu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yun Wu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Guolong Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Qingyu Zeng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
47
|
Abstract
Trillions of microbes are indigenous to the human gastrointestinal tract, together forming an ecological community known as the gut microbiota. The gut microbiota is involved in dietary digestion to produce various metabolites. In healthy condition, microbial metabolites have unneglectable roles in regulating host physiology and intestinal homeostasis. However, increasing studies have reported the correlation between metabolites and the development of colorectal cancer (CRC), with the identification of oncometabolites. Meanwhile, metabolites can also influence the efficacy of cancer treatments. In this review, metabolites derived from microbes-mediated metabolism of dietary carbohydrates, proteins, and cholesterol, are introduced. The roles of pro-tumorigenic (secondary bile acids and polyamines) and anti-tumorigenic (short-chain fatty acids and indole derivatives) metabolites in CRC development are then discussed. The impacts of metabolites on chemotherapy and immunotherapy are further elucidated. Collectively, given the importance of microbial metabolites in CRC, therapeutic approaches that target metabolites may be promising to improve patient outcome.
Collapse
Affiliation(s)
- Yali Liu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| |
Collapse
|
48
|
Wang D, Wan X. Progress in research on the role of amino acid metabolic reprogramming in tumour therapy: A review. Biomed Pharmacother 2022; 156:113923. [DOI: 10.1016/j.biopha.2022.113923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/16/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2022] Open
|
49
|
Hofer SJ, Simon AK, Bergmann M, Eisenberg T, Kroemer G, Madeo F. Mechanisms of spermidine-induced autophagy and geroprotection. NATURE AGING 2022; 2:1112-1129. [PMID: 37118547 DOI: 10.1038/s43587-022-00322-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/28/2022] [Indexed: 04/30/2023]
Abstract
Aging involves the systemic deterioration of all known cell types in most eukaryotes. Several recently discovered compounds that extend the healthspan and lifespan of model organisms decelerate pathways that govern the aging process. Among these geroprotectors, spermidine, a natural polyamine ubiquitously found in organisms from all kingdoms, prolongs the lifespan of fungi, nematodes, insects and rodents. In mice, it also postpones the manifestation of various age-associated disorders such as cardiovascular disease and neurodegeneration. The specific features of spermidine, including its presence in common food items, make it an interesting candidate for translational aging research. Here, we review novel insights into the geroprotective mode of action of spermidine at the molecular level, as we discuss strategies for elucidating its clinical potential.
Collapse
Affiliation(s)
- Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Anna Katharina Simon
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Max Delbrück Center, Berlin, Germany
| | - Martina Bergmann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
| |
Collapse
|
50
|
Dobrovolskaite A, Moots H, Tantak MP, Shah K, Thomas J, Dinara S, Massaro C, Hershberger PM, Maloney PR, Peddibhotla S, Sugarman E, Litherland S, Arnoletti JP, Jha RK, Levens D, Phanstiel O. Discovery of Anthranilic Acid Derivatives as Difluoromethylornithine Adjunct Agents That Inhibit Far Upstream Element Binding Protein 1 (FUBP1) Function. J Med Chem 2022; 65:15391-15415. [PMID: 36382923 PMCID: PMC10512781 DOI: 10.1021/acs.jmedchem.2c01350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polyamine biosynthesis is regulated by ornithine decarboxylase (ODC), which is transcriptionally activated by c-Myc. A large library was screened to find molecules that potentiate the ODC inhibitor, difluoromethylornithine (DFMO). Anthranilic acid derivatives were identified as DFMO adjunct agents. Further studies identified the far upstream binding protein 1 (FUBP1) as the target of lead compound 9. FUBP1 is a single-stranded DNA/RNA binding protein and a master controller of specific genes including c-Myc and p21. We showed that 9 does not inhibit 3H-spermidine uptake yet works synergistically with DFMO to limit cell growth in the presence of exogenous spermidine. Compound 9 was also shown to inhibit the KH4 FUBP1-FUSE interaction in a gel shift assay, bind to FUBP1 in a ChIP assay, reduce both c-Myc mRNA and protein expression, increase p21 mRNA and protein expression, and deplete intracellular polyamines. This promising hit opens the door to new FUBP1 inhibitors with increased potency.
Collapse
Affiliation(s)
- Aiste Dobrovolskaite
- University of Central Florida, Biomolecular Research Annex, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Holly Moots
- University of Central Florida, Biomolecular Research Annex, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Mukund P Tantak
- University of Central Florida, Biomolecular Research Annex, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Kunal Shah
- University of Central Florida, Biomolecular Research Annex, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Jenna Thomas
- University of Central Florida, Biomolecular Research Annex, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Sharifa Dinara
- University of Central Florida, Biomolecular Research Annex, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Chelsea Massaro
- University of Central Florida, Biomolecular Research Annex, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Paul M Hershberger
- Sanford Burnham Medical Research Institute, 6400 Sanger Road, Orlando, Florida 32827, United States
| | - Patrick R Maloney
- Sanford Burnham Medical Research Institute, 6400 Sanger Road, Orlando, Florida 32827, United States
| | | | - Eliot Sugarman
- Sanford Burnham Medical Research Institute, 6400 Sanger Road, Orlando, Florida 32827, United States
| | - Sally Litherland
- Advent Health Cancer Institute, 2520 North Orange Ave, Suite 104, Orlando, Florida 32804, United States
| | - Juan Pablo Arnoletti
- Advent Health Cancer Institute, 2520 North Orange Ave, Suite 104, Orlando, Florida 32804, United States
| | - Rajiv Kumar Jha
- Laboratory of Pathology, Center for Cancer Research, 10 Center Drive, Building 10, Room 2N106, Bethesda, Maryland 20892-1500, United States
| | - David Levens
- Laboratory of Pathology, Center for Cancer Research, 10 Center Drive, Building 10, Room 2N106, Bethesda, Maryland 20892-1500, United States
| | - Otto Phanstiel
- University of Central Florida, Biomolecular Research Annex, 12722 Research Parkway, Orlando, Florida 32826, United States
| |
Collapse
|