1
|
Yang Y, Bo S, Liang L, Deng K, Bai L, Wang T, Wang Y, Liu K, Lu C. Delivery of Interferon β-Encoding Plasmid via Lipid Nanoparticle Restores Interferon β Expression to Enhance Antitumor Immunity in Colon Cancer. ACS NANO 2024. [PMID: 38319978 DOI: 10.1021/acsnano.3c10972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Type I interferon (IFN-I) plays a critical role in host cancer immunosurveillance, but its expression is often impaired in the tumor microenvironment. We aimed at testing the hypothesis that cationic lipid nanoparticle delivery of interferon β (IFNβ)-encoding plasmid to tumors is effective in restoring IFNβ expression to suppress tumor immune evasion. We determined that IFN-I function in tumor suppression depends on the host immune cells. IFN-I activates the expression of Cxcl9 and Cxcl10 to enhance T cell tumor infiltration. RNA-Seq detected a low level of IFNα13 and IFNβ in colon tumor tissue. scRNA-Seq revealed that IFNβ is expressed in immune cell subsets in non-neoplastic human tissues and to a lesser degree in human colon tumor tissues. Forced expression of IFNα13 and IFNβ in colon tumor cells up-regulates major histocompatibility complex I (MHC I) expression and suppresses colon tumor growth in vivo. In human cancer patients, IFNβ expression is positively correlated with human leukocyte antigen (HLA) expression, and IFN-I signaling activation correlates with the patient response to PD-1 blockade immunotherapy. To translate this finding to colon cancer immunotherapy, we formulated a 1,2-dioleoyl-3-trimethylammonium propane (DOTAP)-cholesterol-encapsulated IFNβ-encoding plasmid (IFNBCOL01). IFNBCOL01 transfects colon tumor cells to express IFNβ to increase the level of MHC I expression. IFNBCOL01 therapy transfects tumor cells and tumor-infiltrating immune cells to produce IFNβ to activate MHC I and granzyme B expression and inhibits colon tumor growth in mice. Our data determine that lipid nanoparticle delivery of IFNβ-encoding plasmid DNA enhances tumor immunogenicity and T cell effector function to suppress colon tumor growth in vivo.
Collapse
Affiliation(s)
- Yingcui Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Shixuan Bo
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Liyan Liang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Kaidi Deng
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Liya Bai
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Yinsong Wang
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia 30912, United States
- Georgia Cancer Center, Augusta, Georgia 30912, United States
| | - Chunwan Lu
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Li X, Li J, Li J, Liu N, Zhuang L. Development and validation of epigenetic modification-related signals for the diagnosis and prognosis of colorectal cancer. BMC Genomics 2024; 25:51. [PMID: 38212708 PMCID: PMC10782594 DOI: 10.1186/s12864-023-09815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/18/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the world's most common malignancies. Epigenetics is the study of heritable changes in characteristics beyond the DNA sequence. Epigenetic information is essential for maintaining specific expression patterns of genes and the normal development of individuals, and disorders of epigenetic modifications may alter the expression of oncogenes and tumor suppressor genes and affect the development of cancer. This study elucidates the relationship between epigenetics and the prognosis of CRC patients by developing a predictive model to explore the potential value of epigenetics in the treatment of CRC. METHODS Gene expression data of CRC patients' tumor tissue and controls were downloaded from GEO database. Combined with the 720 epigenetic-related genes (ERGs) downloaded from EpiFactors database, prognosis-related epigenetic genes were selected by univariate cox and LASSO analyses. The Kaplan-Meier and ROC curve were used to analyze the accuracy of the model. Data of 238 CRC samples with survival data downloaded from the GSE17538 were used for validation. Finally, the risk model is combined with the clinical characteristics of CRC patients to perform univariate and multivariate cox regression analysis to obtain independent risk factors and draw nomogram. Then we evaluated the accuracy of its prediction by calibration curves. RESULTS A total of 2906 differentially expressed genes (DEGs) were identified between CRC and control samples. After overlapping DEGs with 720 ERGs, 56 epigenetic-related DEGs (DEERGs) were identified. Combining univariate and LASSO regression analysis, the 8 epigenetic-related genes-based risk score model of CRC was established. The ROC curves and survival difference of high and low risk groups revealed the good performance of the risk score model based on prognostic biomarkers in both training and validation sets. A nomogram with good performance to predict the survival of CRC patients were established based on age, NM stage and risk score. The calibration curves showed that the prognostic model had good predictive performance. CONCLUSION In this study, an epigenetically relevant 8-gene signature was constructed that can effectively predict the prognosis of CRC patients and provide potential directions for targeted therapies for CRC.
Collapse
Affiliation(s)
- Xia Li
- Department of Gastroenterology and Hepatology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Jingjing Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Jie Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang Province, China
| | - Nannan Liu
- Department of Gastroenterology and Hepatology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| | - Liwei Zhuang
- Department of Gastroenterology and Hepatology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
3
|
Kuroda M, Halfmann PJ, Kawaoka Y. Ebola Virus Infection Induces HCAR2 Expression Leading to Cell Death. J Infect Dis 2023; 228:S508-S513. [PMID: 37578011 PMCID: PMC10651187 DOI: 10.1093/infdis/jiad344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023] Open
Abstract
Ebola virus (EBOV) induces cell death not only in infected permissive cells but also in nonpermissive, bystander cells by employing different mechanisms. Hydroxycarboxylic acid receptor 2 (HCAR2) has been reported to be involved in apoptotic cell death. We previously reported an increase in the expression of HCAR2-specific mRNA in EBOV-infected individuals with fatal outcomes. Here, we report that infection with an EBOV lacking the VP30 gene (EBOVΔVP30) results in the upregulation of HCAR2 mRNA expression in human hepatocyte Huh7.0 cells stably expressing VP30. Transient overexpression of HCAR2 reduced the viability of Huh7.0 cells and human embryonic kidney cells. Phosphatidylserine externalization and cell membrane permeabilization by HCAR2 overexpression was also observed. Interestingly, coexpression of HCAR2 with EBOV VP40 further reduced cell viability in transfected cells compared to HCAR2 coexpression with other viral proteins. Our data suggest that HCAR2 may contribute to EBOV-induced cell death.
Collapse
Affiliation(s)
- Makoto Kuroda
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Pandemic Preparedness, Infection, and Advanced Research Center, University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Liu T, Han S, Yao Y, Zhang G. Role of Human Monocarboxylate Transporter 1 (hMCT1) and 4 (hMCT4) in Tumor Cells and the Tumor Microenvironment. Cancer Manag Res 2023; 15:957-975. [PMID: 37693221 PMCID: PMC10487743 DOI: 10.2147/cmar.s421771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023] Open
Abstract
In recent years, the abnormal glucose metabolism of tumor cells has attracted increasing attention. Abnormal glucose metabolism is closely related to the occurrence and development of tumors. Monocarboxylate transporters (MCTs) transport the sugar metabolites lactic acid and pyruvate, which affect glucose metabolism and tumor progression in a variety of ways. Thus, research has recently focused on MCTs and their potential functions in cancer. The MCT superfamily consists of 14 members. MCT1 and MCT4 play a crucial role in the maintenance of intracellular pH in tumor cells by transporting monocarboxylic acids (such as lactate, pyruvate and butyrate). MCT1 and MCT4 are highly expressed in a variety of tumor cells and are involved the proliferation, invasion and migration of tumor cells, which are closely related to the prognosis of cancer. Because of their important functions in tumor cells, MCT1 and MCT4 have become potential targets for cancer treatment. In this review, we focus on the structure, function and regulation of MCT1 and MCT4 and discuss the developed inhibitors of MCT1 and MCT4 to provide more comprehensive information that might aid in the development of strategies targeting MCTs in cancer.
Collapse
Affiliation(s)
- Tian Liu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Shangcong Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, People’s Republic of China
| | - Yu Yao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Guiming Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
5
|
Zhang W, Mackay CR, Gershwin ME. Immunomodulatory Effects of Microbiota-Derived Short-Chain Fatty Acids in Autoimmune Liver Diseases. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1629-1639. [PMID: 37186939 PMCID: PMC10188201 DOI: 10.4049/jimmunol.2300016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/01/2023] [Indexed: 05/17/2023]
Abstract
Nonpathogenic commensal microbiota and their metabolites and components are essential to maintain a tolerogenic environment and promote beneficial health effects. The metabolic environment critically impacts the outcome of immune responses and likely impacts autoimmune and allergic responses. Short-chain fatty acids (SCFAs) are the main metabolites produced by microbial fermentation in the gut. Given the high concentration of SCFAs in the gut and portal vein and their broad immune regulatory functions, SCFAs significantly influence immune tolerance and gut-liver immunity. Alterations of SCFA-producing bacteria and SCFAs have been identified in a multitude of inflammatory diseases. These data have particular significance in primary biliary cholangitis, primary sclerosing cholangitis, and autoimmune hepatitis because of the close proximity of the liver to the gut. In this focused review, we provide an update on the immunologic consequences of SCFA-producing microbiota and in particular on three dominant SCFAs in autoimmune liver diseases.
Collapse
Affiliation(s)
- Weici Zhang
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| | - Charles R. Mackay
- Department of Microbiology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Australia
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| |
Collapse
|
6
|
Chen J, Lin T, Zhang S, Yue X, Liu X, Wu C, Liang Y, Zeng X, Ren M, Chen F, Guan W, Zhang S. Niacin/β-hydroxybutyrate regulates milk fat and milk protein synthesis via the GPR109A/G i/mTORC1 pathway. Food Funct 2023; 14:2642-2656. [PMID: 36866679 DOI: 10.1039/d3fo00127j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
As a crucial receptor of BHBA and niacin, GPR109A is largely expressed in the mammary gland. However, the role of GPR109A in milk synthesis and its underlying mechanism is still largely unknown. In this study, we first investigated the effect of GPR109A agonists (niacin/BHBA) on milk fat and milk protein synthesis in a mouse mammary epithelial cell line (HC11) and PMECs (porcine mammary epithelial cells). The results showed that both niacin and BHBA promote milk fat and milk protein synthesis with the activation of mTORC1 signaling. Importantly, knockdown GPR109A attenuated the niacin-induced increase of milk fat and protein synthesis and the niacin-induced activation of mTORC1 signaling. Furthermore, we found that GPR109A downstream G protein-Gαi and -Gβγ participated in the regulation of milk synthesis and the activation of mTORC1 signaling. Consistent with the finding in vitro, dietary supplementation with niacin increases milk fat and protein synthesis in mice with the activation of GPR109A-mTORC1 signaling. Collectively, GPR109A agonists promote the synthesis of milk fat and milk protein through the GPR109A/Gi/mTORC1 signaling pathway.
Collapse
Affiliation(s)
- Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Tongbin Lin
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Shuchang Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Xianhuai Yue
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - XingHong Liu
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Caichi Wu
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Yunyi Liang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry Center, China Agricultural University, Beijing, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, China
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Sibuh BZ, Quazi S, Panday H, Parashar R, Jha NK, Mathur R, Jha SK, Taneja P, Jha AK. The Emerging Role of Epigenetics in Metabolism and Endocrinology. BIOLOGY 2023; 12:256. [PMID: 36829533 PMCID: PMC9953656 DOI: 10.3390/biology12020256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Each cell in a multicellular organism has its own phenotype despite sharing the same genome. Epigenetics is a somatic, heritable pattern of gene expression or cellular phenotype mediated by structural changes in chromatin that occur without altering the DNA sequence. Epigenetic modification is an important factor in determining the level and timing of gene expression in response to endogenous and exogenous stimuli. There is also growing evidence concerning the interaction between epigenetics and metabolism. Accordingly, several enzymes that consume vital metabolites as substrates or cofactors are used during the catalysis of epigenetic modification. Therefore, altered metabolism might lead to diseases and pathogenesis, including endocrine disorders and cancer. In addition, it has been demonstrated that epigenetic modification influences the endocrine system and immune response-related pathways. In this regard, epigenetic modification may impact the levels of hormones that are important in regulating growth, development, reproduction, energy balance, and metabolism. Altering the function of the endocrine system has negative health consequences. Furthermore, endocrine disruptors (EDC) have a significant impact on the endocrine system, causing the abnormal functioning of hormones and their receptors, resulting in various diseases and disorders. Overall, this review focuses on the impact of epigenetics on the endocrine system and its interaction with metabolism.
Collapse
Affiliation(s)
- Belay Zeleke Sibuh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore 560043, India
- Department of Biomedical Sciences, School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
- Clinical Bioinformatics, School of Health Sciences, The University of Manchester, Manchester M13 9P, UK
- SCAMT Institute, ITMO University, St. Petersburg 197101, Russia
| | - Hrithika Panday
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Ritika Parashar
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Runjhun Mathur
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
| | - Pankaj Taneja
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| |
Collapse
|
8
|
Qian XH, Xie RY, Liu XL, Chen SD, Tang HD. Mechanisms of Short-Chain Fatty Acids Derived from Gut Microbiota in Alzheimer's Disease. Aging Dis 2022; 13:1252-1266. [PMID: 35855330 PMCID: PMC9286902 DOI: 10.14336/ad.2021.1215] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are important metabolites derived from the gut microbiota through fermentation of dietary fiber. SCFAs participate a number of physiological and pathological processes in the human body, such as host metabolism, immune regulation, appetite regulation. Recent studies on gut-brain interaction have shown that SCFAs are important mediators of gut-brain interactions and are involved in the occurrence and development of many neurodegenerative diseases, including Alzheimer's disease. This review summarizes the current research on the potential roles and mechanisms of SCFAs in AD. First, we introduce the metabolic distribution, specific receptors and signaling pathways of SCFAs in human body. The concentration levels of SCFAs in AD patient/animal models are then summarized. In addition, we illustrate the effects and mechanisms of SCFAs on the cognitive level, pathological features (Aβ and tau) and neuroinflammation in AD. Finally, we analyze the translational value of SCFAs as potential therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Xiao-hang Qian
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Ru-yan Xie
- Shanghai Guangci Memorial hospital, Shanghai 200025, China.
| | - Xiao-li Liu
- Department of Neurology, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai 201406, China.
| | - Sheng-di Chen
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
- Correspondence should be addressed to: Dr. Sheng-di Chen () and Dr. Hui-dong Tang (), Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hui-dong Tang
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
- Correspondence should be addressed to: Dr. Sheng-di Chen () and Dr. Hui-dong Tang (), Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
9
|
Cytotoxic effects of butyric acid derivatives through GPR109A receptor in Colorectal Carcinoma cells by in silico and in vitro methods. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Li Y, He P, Liu Y, Qi M, Dong W. Combining Sodium Butyrate With Cisplatin Increases the Apoptosis of Gastric Cancer In Vivo and In Vitro via the Mitochondrial Apoptosis Pathway. Front Pharmacol 2021; 12:708093. [PMID: 34512341 PMCID: PMC8430036 DOI: 10.3389/fphar.2021.708093] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/31/2021] [Indexed: 12/24/2022] Open
Abstract
Introduction: The gastrointestinal malignancy, gastric cancer (GC), has a high incidence worldwide. Cisplatin is a traditional chemotherapeutic drug that is generally applied to treat cancer; however, drug tolerance affects its efficacy. Sodium butyrate is an intestinal flora derivative that has general anti-cancer effects in vitro and in vivo via pro-apoptosis effects and can improve prognosis in combination with traditional chemotherapy drugs. The present study aimed to assess the effect of sodium butyrate combined with cisplatin on GC. Methods: A Cell Counting Kit-8 assay was used to assess the viability of GC cells in vitro. Hoechst 33,258 staining and Annexin V-Phycoerythrin/7-Aminoactinomycin D were used to qualitatively and quantitatively detect apoptosis in GC cells. Intracellular reactive oxygen species (ROS) measurement and a mitochondrial membrane potential (MMP) assay kit were used to qualitatively and quantitatively reflect the function of mitochondria in GC cells. Western blotting was used to verify the above experimental results. A nude mouse xenograft tumor model was used to evaluate the anti-tumor efficacity of sodium and cisplatin butyrate in vivo. Results: Cisplatin combined with sodium butyrate increased the apoptosis of GC cells. In the nude mouse xenograft tumor model, sodium butyrate in combination with cisplatin markedly inhibited the growth of the tumor more effectively than either single agent. The combination of sodium butyrate and cisplatin increased the intracellular ROS, decreased the MMP, and suppressed the invasion and migration abilities of GC cells. Western blotting verified that the combination of sodium butyrate and cisplatin remarkably enhanced the levels of mitochondrial apoptosis-related pathway proteins. Conclusion: Sodium butyrate, a histone acetylation inhibitor produced by intestinal flora fermentation, combined with cisplatin enhanced the apoptosis of GC cells through the mitochondrial apoptosis-related pathway, which might be considered as a therapeutic option for GC.
Collapse
Affiliation(s)
- Yangbo Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, China
| | - Pengzhan He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, China
| | - Yinghui Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, China
| | - Mingming Qi
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, China
| |
Collapse
|
11
|
Swift ML, Beishline K, Azizkhan-Clifford J. Sp1-dependent recruitment of the histone acetylase p300 to DSBs facilitates chromatin remodeling and recruitment of the NHEJ repair factor Ku70. DNA Repair (Amst) 2021; 105:103171. [PMID: 34252870 DOI: 10.1016/j.dnarep.2021.103171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/18/2021] [Accepted: 07/04/2021] [Indexed: 11/18/2022]
Abstract
In response to DNA damage, most factors involved in damage recognition and repair are tightly regulated to ensure proper repair pathway choice. Histone acetylation at DNA double strand breaks (DSBs) by p300 histone acetyltransferase (HAT) is critical for the recruitment of DSB repair proteins to chromatin. Here, we show that phosphorylation of Sp1 by ATM increases its interaction with p300 and that Sp1-dependent recruitment of p300 to DSBs is necessary to modify the histones associated with p300 activity and NHEJ repair factor recruitment and repair. p300 is known to acetylate multiple residues on histones H3 and H4 necessary for NHEJ. Acetylation of H3K18 by p300 is associated with the recruitment of the SWI/SNF chromatin remodeling complex and Ku70 to DSBs for NHEJ repair. Depletion of Sp1 results in decreased acetylation of lysines on histones H3 and H4. Specifically, cells depleted of Sp1 display defects in the acetylation of H3K18, resulting in defective SWI/SNF and Ku70 recruitment to DSBs. These results shed light on mechanisms by which chromatin remodelers are regulated to ensure activation of the appropriate DSB repair pathway.
Collapse
Affiliation(s)
- Michelle L Swift
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kate Beishline
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jane Azizkhan-Clifford
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Carretta MD, Quiroga J, López R, Hidalgo MA, Burgos RA. Participation of Short-Chain Fatty Acids and Their Receptors in Gut Inflammation and Colon Cancer. Front Physiol 2021; 12:662739. [PMID: 33897470 PMCID: PMC8060628 DOI: 10.3389/fphys.2021.662739] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are the main metabolites produced by the bacterial fermentation of dietary fiber, and they play a critical role in the maintenance of intestinal health. SCFAs are also essential for modulating different processes, and they have anti-inflammatory properties and immunomodulatory effects. As the inflammatory process predisposes the development of cancer and promotes all stages of tumorigenesis, an antitumor effect has also been associated with SCFAs. This is strongly supported by epidemiological studies showing that a diet rich in fiber is linked to a reduced risk of colon cancer and has significant clinical benefits in patients with inflammatory bowel disease (IBD). SCFAs may signal through the metabolite-sensing G protein-coupled receptors free fatty acid receptor 3 [FFAR3 or G protein-coupled receptor 41 (GPR41)], FFAR2 (GPR43), and GPR109A (also known as hydroxycarboxylic acid receptor 2 or HCAR2) expressed in the gut epithelium and immune cells. This review summarizes the existing knowledge regarding the SCFA-mediated suppression of inflammation and carcinogenesis in IBD and colon cancer.
Collapse
Affiliation(s)
- María Daniella Carretta
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | | | | | | | - Rafael Agustín Burgos
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
13
|
Short-chain free-fatty acid G protein-coupled receptors in colon cancer. Biochem Pharmacol 2021; 186:114483. [PMID: 33631190 DOI: 10.1016/j.bcp.2021.114483] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/31/2022]
Abstract
The dietary role of macronutrients and their metabolites in cancer has been evident for many decades. Dietary ingestion of fat, carbohydrates, protein, and fiber, as well as probiotics that influence gut microbiota, have all been linked to gastrointestinal (GI) tract health and disease, particularly in the colon, where it has long been known that fat and fiber can regulate inflammation and carcinogenesis. Short-chained fatty acids (SCFA), including acetate, propionate, and butyrate, which are biosynthesized by microbiota-mediated metabolism of dietary fiber, have previously been shown to play important roles in colorectal health, including decreasing inflammation and oxidative stress. Since the 1980s, a growing number of studies have also demonstrated a link between SCFA and colon epithelial cell carcinogenesis and prevention of colorectal cancers (CRC). While the effects of SCFA have historically been associated with their intracellular metabolism and function, the discovery of a family of G protein-coupled free-fatty acid receptors in the early 2000s suggests that many effects of SCFA are cell-surface receptor mediated. Indeed, the SCFA GPCRs FFA2 (previously termed GPR43), FFA3 (previously termed GPR41), and GPR109A are now well established to be expressed within the GI tract, where they modulate a variety of functions in response to luminal SCFA. While the role of SCFA in cancers, including CRC, has been reviewed in detail elsewhere, the goal of this report is to provide a review on the current body of evidence in regard to the effects of SCFA on FFA2, FFA3, and GPR109A in colon cancers.
Collapse
|
14
|
Li Z, McCafferty KJ, Judd RL. Role of HCA 2 in Regulating Intestinal Homeostasis and Suppressing Colon Carcinogenesis. Front Immunol 2021; 12:606384. [PMID: 33708203 PMCID: PMC7940178 DOI: 10.3389/fimmu.2021.606384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/05/2021] [Indexed: 12/23/2022] Open
Abstract
Hydroxycarboxylic acid receptor 2 (HCA2) is vital for sensing intermediates of metabolism, including β-hydroxybutyrate and butyrate. It also regulates profound anti-inflammatory effects in various tissues, indicating that HCA2 may serve as an essential therapeutic target for mediating inflammation-associated diseases. Butyrate and niacin, endogenous and exogenous ligands of HCA2, have been reported to play an essential role in maintaining intestinal homeostasis. HCA2, predominantly expressed in diverse immune cells, is also present in intestinal epithelial cells (IECs), where it regulates the intricate communication network between diet, microbiota, and immune cells. This review summarizes the physiological role of HCA2 in intestinal homeostasis and its pathological role in intestinal inflammation and cancer.
Collapse
Affiliation(s)
- Zhuoyue Li
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Kayleen J McCafferty
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Robert L Judd
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
15
|
Rai N, Singh AK, Keshri PK, Barik S, Kamble SC, Singh SK, Kumar R, Mishra P, Kotiya D, Gautam V. Probiotics for Management of Gastrointestinal Cancers. PROBIOTIC RESEARCH IN THERAPEUTICS 2021:191-209. [DOI: 10.1007/978-981-15-8214-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Vandana UK, Barlaskar NH, Gulzar ABM, Laskar IH, Kumar D, Paul P, Pandey P, Mazumder PB. Linking gut microbiota with the human diseases. Bioinformation 2020; 16:196-208. [PMID: 32405173 PMCID: PMC7196170 DOI: 10.6026/97320630016196] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
The human gut is rich in microbes. Therefore, it is of interest to document data to link known human diseases with the gut microbiota. Various factors like hormones, metabolites and dietary habitats are responsible for shaping the microbiota of the gut. Imbalance in the gut microbiota is responsible for the pathogenesis of various disease types including rheumatoid arthritis, different types of cancer, diabetes mellitus, obesity, and cardiovascular disease. We report a review of known data for the correction of dysbiosis (imbalance in microbe population) towards improved human health.
Collapse
Affiliation(s)
| | | | | | | | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar, Assam, India
| | - Prosenjit Paul
- Department of Biotechnology, Assam University, Silchar, Assam, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam, India
| | | |
Collapse
|
17
|
Zhou W, Pan B, Liu L. Integrated bioinformatics analysis revealing independent prognostic long non-coding RNAs DNAH17-AS1 and RP11-400N13.2 and their potential oncogenic roles in colorectal cancer. Oncol Lett 2019; 18:3705-3715. [PMID: 31516583 PMCID: PMC6732947 DOI: 10.3892/ol.2019.10730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023] Open
Abstract
The aberrant expression of long non-coding RNAs (lncRNAs) has been associated with a variety of malignancies, including colorectal cancer (CRC); however, the key lncRNAs associated with patient prognosis and their biological roles in CRC are yet to be determined. The aim of the present study was to determine the key lncRNAs associated with patient prognosis as well as their biological roles in CRC. Therefore, a dataset from The Cancer Genome Atlas containing the lncRNA expression data of 521 CRC and normal colorectal mucosal tissues, as well as the corresponding clinical data, were screened. A total of 1,180 significantly differentially expressed lncRNAs were associated with CRC as determined by t-tests in edgeR. Kaplan-Meier analysis revealed that 56 of the 1,180 lncRNAs were associated with overall survival (OS); 7 of the 56 lncRNAs were identified as key lncRNAs associated with the Tumor-Node-Metastasis stage of CRC by Kruskal-Wallis test. Subsequent univariate and multivariate Cox regression analyses of the 7 lncRNAs revealed 2 lncRNAs, DNAH17-AS1 and RP11-400N13.2, as potential independent prognostic factors for the OS of patients with CRC. Furthermore, the expression levelsof these 2 lncRNAs were significantly upregulated in CRC compared with those in normal tissues, which suggested that they may serve an oncogenic role in CRC. In addition, networks comprising the 2 lncRNAs and their respective co-expressed protein-coding genes (PCGs) were constructed using cor.test in R. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses of these PCGs were conducted; DNAH17-AS1- and RP11-400N13.2-associated PCGs were reported to be involved in G-protein coupling-related functions. Thus, these independent prognostic lncRNAs and their associated functions identified in the present study may provide novel insight into potential prognostic biomarkers and therapeutic targets for the treatment of CRC.
Collapse
Affiliation(s)
- Wen Zhou
- Clinical Laboratory, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Boyu Pan
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Liren Liu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| |
Collapse
|
18
|
Kazemi Sefat NA, Mohammadi MM, Hadjati J, Talebi S, Ajami M, Daneshvar H. Sodium Butyrate as a Histone Deacetylase Inhibitor Affects Toll-Like Receptor 4 Expression in Colorectal Cancer Cell Lines. Immunol Invest 2019; 48:759-769. [PMID: 31117848 DOI: 10.1080/08820139.2019.1595643] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We assessed the effect of sodium butyrate (SB) as a histone deacetylase inhibitor (HDACi) on Toll-like receptor 4 (TLR4) gene expression levels, in low TLR4 expressing (HCT116) and high TLR4 expressing (SW480) colorectal cancer cells. The cytotoxic effect of SB was assessed by culturing SW480 and HCT116 cell lines using a broad spectrum of times and concentrations of SB. The MTT assay was done to check the cytotoxic properties of different SB concentrations. Gene expression levels of TLR4 was then evaluated for non-cytotoxic SB concentrations. Morphological analysis and MTT assay confirmed that SB concentrations equal to or less than 5mM were not cytotoxic for both cell lines. At 5mM concentration of SB in SW480 cell line and 1mM concentration of SB in HCT116 cell line, TLR4 gene expression level significantly increased from 24 to 48 hrs and decreased significantly from 48 to 72 hrs with an "early increased and late decreased pattern". At 1mM concentration of SB in SW480 cell line and 5mM concentration of SB in HCT116 cell line, TLR4 expression had a "gradually increased pattern". This study focuses on the dose-time-effect of SB in the pathogenesis of colorectal cancer. SB alters the expression level of TLR4 in colorectal cancer cells. This effect may depend on the cell type, treatment duration and SB concentration. The alterations in TLR4 expression may be due to the direct effect of SB on TLR4 and/or the expression changes of in other genes which may indirectly affect the TLR4 expression. Abbreviations: TLR4: Toll-like receptor 4; HDACi: histone deacetylase inhibitor; SB: sodium Butyrate; CRC: colorectal cancer; SCFA: short-chain fatty acid; hrs: hours.
Collapse
Affiliation(s)
- Nazanin Atieh Kazemi Sefat
- Department of Medical Immunology, Faculty of Medicine, Kerman University of Medical Sciences (KMU) , Kerman , Iran.,Department of Medical Immunology, Faculty of Medical Sciences, Tarbiat Modares University (TMU) , Tehran , Iran
| | - Mohammad Mahdi Mohammadi
- Department of Medical Immunology, Faculty of Medicine, Kerman University of Medical Sciences (KMU) , Kerman , Iran.,Kerman Physiology Research Center (KPRC), Kerman University of Medical sciences (KMU) , Kerman , Iran
| | - Jamshid Hadjati
- Department of Medical Immunology, Faculty of Medicine, Tehran University of Medical Sciences (TUMS) , Tehran , Iran
| | - Saeed Talebi
- Department of Medical Genetics and Molecular biology, Iran University of Medical Sciences (IUMS) , Tehran , Iran
| | - Maryam Ajami
- Department of Medical Immunology, Faculty of Medical Sciences, Tarbiat Modares University (TMU) , Tehran , Iran
| | - Hamid Daneshvar
- Department of Medical Immunology, Faculty of Medicine, Kerman University of Medical Sciences (KMU) , Kerman , Iran.,Kerman Physiology Research Center (KPRC), Kerman University of Medical sciences (KMU) , Kerman , Iran
| |
Collapse
|
19
|
H3K18Ac as a Marker of Cancer Progression and Potential Target of Anti-Cancer Therapy. Cells 2019; 8:cells8050485. [PMID: 31121824 PMCID: PMC6562857 DOI: 10.3390/cells8050485] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023] Open
Abstract
Acetylation and deacetylation are posttranslational modifications (PTMs) which affect the regulation of chromatin structure and its remodeling. Acetylation of histone 3 at lysine placed on position 18 (H3K18Ac) plays an important role in driving progression of many types of cancer, including breast, colon, lung, hepatocellular, pancreatic, prostate, and thyroid cancer. The aim of this review is to analyze and discuss the newest findings regarding the role of H3K18Ac and acetylation of other histones in carcinogenesis. We summarize the level of H3K18Ac in different cancer cell lines and analyze its association with patients’ outcomes, including overall survival (OS), progression-free survival (PFS), and disease-free survival (DFS). Finally, we describe future perspectives of cancer therapeutic strategies based on H3K18 modifications.
Collapse
|
20
|
Qin J, Wen B, Liang Y, Yu W, Li H. Histone Modifications and their Role in Colorectal Cancer (Review). Pathol Oncol Res 2019; 26:2023-2033. [PMID: 31055775 PMCID: PMC7471167 DOI: 10.1007/s12253-019-00663-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/11/2019] [Indexed: 12/11/2022]
Abstract
The development of colorectal cancer is a complex and multistep process mediated by a variety of factors including the dysregulation of genetic and epigenetic under the influence of microenvironment. It is evident that epigenetics that affects gene activity and expression has been recognized as a critical role in the carcinogenesis. Aside from DNA methylation, miRNA level, and genomic imprinting, histone modification is increasingly recognized as an essential mechanism underlying the occurrence and development of colorectal cancer. Aberrant regulation of histone modification like acetylation, methylation and phosphorylation levels on specific residues is implicated in a wide spectrum of cancers, including colorectal cancer. In addition, as this process is reversible and accompanied by a plethora of deregulated enzymes, inhibiting those histone-modifying enzymes activity and regulating its level has been thought of as a potential path for tumor therapy. This review provides insight into the basic information of histone modification and its application in the colorectal cancer treatment, thereby offering new potential targets for treatment of colorectal cancer.
Collapse
Affiliation(s)
- Jingchun Qin
- Institute of Spleen and Stomach, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Bin Wen
- Institute of Spleen and Stomach, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| | - Yuqi Liang
- Institute of Spleen and Stomach, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Weitao Yu
- Lianyungang Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Huixuan Li
- Institute of Spleen and Stomach, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| |
Collapse
|
21
|
Wang G, Yu Y, Wang YZ, Wang JJ, Guan R, Sun Y, Shi F, Gao J, Fu XL. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy. J Cell Physiol 2019; 234:17023-17049. [PMID: 30888065 DOI: 10.1002/jcp.28436] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/02/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022]
Abstract
Increased risk of colorectal cancer (CRC) is associated with altered intestinal microbiota as well as short-chain fatty acids (SCFAs) reduction of output The energy source of colon cells relies mainly on three SCFAs, namely butyrate (BT), propionate, and acetate, while CRC transformed cells rely mainly on aerobic glycolysis to provide energy. This review summarizes recent research results for dysregulated glucose metabolism of SCFAs, which could be initiated by gut microbiome of CRC. Moreover, the relationship between SCFA transporters and glycolysis, which may correlate with the initiation and progression of CRC, are also discussed. Additionally, this review explores the linkage of BT to transport of SCFAs expressions between normal and cancerous colonocyte cell growth for tumorigenesis inhibition in CRC. Furthermore, the link between gut microbiota and SCFAs in the metabolism of CRC, in addition, the proteins and genes related to SCFAs-mediated signaling pathways, coupled with their correlation with the initiation and progression of CRC are also discussed. Therefore, targeting the SCFA transporters to regulate lactate generation and export of BT, as well as applying SCFAs or gut microbiota and natural compounds for chemoprevention may be clinically useful for CRCs treatment. Future research should focus on the combination these therapeutic agents with metabolic inhibitors to effectively target the tumor SCFAs and regulate the bacterial ecology for activation of potent anticancer effect, which may provide more effective application prospect for CRC therapy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Yang Yu
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu-Zhu Wang
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Rui Guan
- Information Resources Department, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yan Sun
- Information Resources Department, Hubei University of Medicine, Shiyan, Hubei, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jing Gao
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
22
|
Deciphering the Colorectal Cancer Gut Microbiota: Association vs. Causality. CURRENT COLORECTAL CANCER REPORTS 2019. [DOI: 10.1007/s11888-019-00431-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Cani PD, Jordan BF. Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nat Rev Gastroenterol Hepatol 2018; 15:671-682. [PMID: 29844585 DOI: 10.1038/s41575-018-0025-6] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overweight and obesity are associated with increased risk of developing metabolic disorders such as diabetes and cardiovascular diseases. However, besides these metabolic diseases, excess body weight is also associated with different cancers, including gastrointestinal cancers, such as liver, pancreatic and colon cancers. Inflammation is a common feature of both obesity and cancer; however, the origin of this inflammation has been largely debated. Over the past decade, growing evidence has shown that the composition of the gut microbiota and its activity might be associated not only with the onset of inflammation but also with metabolic disorders and cancer. Here, we review the links between the gut microbiota, gut barrier function and the onset of low-grade inflammation in the development of gastrointestinal cancer. We also describe the mechanisms by which specific microorganism-associated molecular patterns crosstalk with the immune system and how the metabolic activity of bacteria induces specific signalling pathways beyond the gut that eventually trigger carcinogenesis.
Collapse
Affiliation(s)
- Patrice D Cani
- Université catholique de Louvain, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Metabolism and Nutrition Research Group, Brussels, Belgium.
| | - Benedicte F Jordan
- Université catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels, Belgium
| |
Collapse
|
24
|
Priyadarshini M, Kotlo KU, Dudeja PK, Layden BT. Role of Short Chain Fatty Acid Receptors in Intestinal Physiology and Pathophysiology. Compr Physiol 2018; 8:1091-1115. [PMID: 29978895 DOI: 10.1002/cphy.c170050] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nutrient sensing is a mechanism for organisms to sense their environment. In larger animals, including humans, the intestinal tract is a major site of nutrient sensing for the body, not surprisingly, as this is the central location where nutrients are absorbed. In the gut, bacterial fermentation results in generation of short chain fatty acids (SCFAs), a class of nutrients, which are sensed by specific membrane bound receptors, FFA2, FFA3, GPR109a, and Olfr78. These receptors are expressed uniquely throughout the gut and signal through distinct mechanisms. To date, the emerging data suggests a role of these receptors in normal and pathological conditions. The overall function of these receptors is to regulate aspects of intestinal motility, hormone secretion, maintenance of the epithelial barrier, and immune cell function. Besides in intestinal health, a prominent role of these receptors has emerged in modulation of inflammatory and immune responses during pathological conditions. Moreover, these receptors are being revealed to interact with the gut microbiota. This review article updates the current body of knowledge on SCFA sensing receptors in the gut and their roles in intestinal health and disease as well as in whole body energy homeostasis. © 2017 American Physiological Society. Compr Physiol 8:1091-1115, 2018.
Collapse
Affiliation(s)
- Medha Priyadarshini
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Illinois, USA
| | - Kumar U Kotlo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Illinois, USA
| | - Pradeep K Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Illinois, USA.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Brian T Layden
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Illinois, USA.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| |
Collapse
|
25
|
Meng C, Bai C, Brown TD, Hood LE, Tian Q. Human Gut Microbiota and Gastrointestinal Cancer. GENOMICS PROTEOMICS & BIOINFORMATICS 2018. [PMID: 29474889 DOI: 10.1016/j.gpb.2017.06.002.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Human gut microbiota play an essential role in both healthy and diseased states of humans. In the past decade, the interactions between microorganisms and tumors have attracted much attention in the efforts to understand various features of the complex microbial communities, as well as the possible mechanisms through which the microbiota are involved in cancer prevention, carcinogenesis, and anti-cancer therapy. A large number of studies have indicated that microbial dysbiosis contributes to cancer susceptibility via multiple pathways. Further studies have suggested that the microbiota and their associated metabolites are not only closely related to carcinogenesis by inducing inflammation and immune dysregulation, which lead to genetic instability, but also interfere with the pharmacodynamics of anticancer agents. In this article, we mainly reviewed the influence of gut microbiota on cancers in the gastrointestinal (GI) tract (including esophageal, gastric, colorectal, liver, and pancreatic cancers) and the regulation of microbiota by diet, prebiotics, probiotics, synbiotics, antibiotics, or the Traditional Chinese Medicine. We also proposed some new strategies in the prevention and treatment of GI cancers that could be explored in the future. We hope that this review could provide a comprehensive overview of the studies on the interactions between the gut microbiota and GI cancers, which are likely to yield translational opportunities to reduce cancer morbidity and mortality by improving prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Changting Meng
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | - Chunmei Bai
- Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | | | - Leroy E Hood
- Institute for Systems Biology, Seattle, WA 98109, USA; Swedish Cancer Institute, Seattle, WA 98104, USA
| | - Qiang Tian
- Institute for Systems Biology, Seattle, WA 98109, USA; P4 Medicine Institute, Seattle, WA 98109, USA.
| |
Collapse
|
26
|
Bishehsari F, Engen PA, Preite NZ, Tuncil YE, Naqib A, Shaikh M, Rossi M, Wilber S, Green SJ, Hamaker BR, Khazaie K, Voigt RM, Forsyth CB, Keshavarzian A. Dietary Fiber Treatment Corrects the Composition of Gut Microbiota, Promotes SCFA Production, and Suppresses Colon Carcinogenesis. Genes (Basel) 2018; 9:genes9020102. [PMID: 29462896 PMCID: PMC5852598 DOI: 10.3390/genes9020102] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/29/2018] [Accepted: 02/13/2018] [Indexed: 12/26/2022] Open
Abstract
Epidemiological studies propose a protective role for dietary fiber in colon cancer (CRC). One possible mechanism of fiber is its fermentation property in the gut and ability to change microbiota composition and function. Here, we investigate the role of a dietary fiber mixture in polyposis and elucidate potential mechanisms using TS4Cre × cAPCl°x468 mice. Stool microbiota profiling was performed, while functional prediction was done using PICRUSt. Stool short-chain fatty acid (SCFA) metabolites were measured. Histone acetylation and expression of SCFA butyrate receptor were assessed. We found that SCFA-producing bacteria were lower in the polyposis mice, suggesting a decline in the fermentation product of dietary fibers with polyposis. Next, a high fiber diet was given to polyposis mice, which significantly increased SCFA-producing bacteria as well as SCFA levels. This was associated with an increase in SCFA butyrate receptor and a significant decrease in polyposis. In conclusion, we found polyposis to be associated with dysbiotic microbiota characterized by a decline in SCFA-producing bacteria, which was targetable by high fiber treatment, leading to an increase in SCFA levels and amelioration of polyposis. The prebiotic activity of fiber, promoting beneficial bacteria, could be the key mechanism for the protective effects of fiber on colon carcinogenesis. SCFA-promoting fermentable fibers are a promising dietary intervention to prevent CRC.
Collapse
Affiliation(s)
- Faraz Bishehsari
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Phillip A Engen
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Nailliw Z Preite
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Yunus E Tuncil
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN USA.
| | - Ankur Naqib
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, IL USA.
| | - Maliha Shaikh
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Marco Rossi
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Sherry Wilber
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Stefan J Green
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, IL USA.
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL USA.
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN USA.
| | - Khashayarsha Khazaie
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Robin M Voigt
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Christopher B Forsyth
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL USA.
- Department of Physiology, Rush University Medical Center, Chicago, IL USA.
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht Netherlands.
- Department of Pharmacology, Rush University Medical Center, Chicago, IL USA.
| |
Collapse
|
27
|
Meng C, Bai C, Brown TD, Hood LE, Tian Q. Human Gut Microbiota and Gastrointestinal Cancer. GENOMICS, PROTEOMICS & BIOINFORMATICS 2018; 16:33-49. [PMID: 29474889 PMCID: PMC6000254 DOI: 10.1016/j.gpb.2017.06.002] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 06/08/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023]
Abstract
Human gut microbiota play an essential role in both healthy and diseased states of humans. In the past decade, the interactions between microorganisms and tumors have attracted much attention in the efforts to understand various features of the complex microbial communities, as well as the possible mechanisms through which the microbiota are involved in cancer prevention, carcinogenesis, and anti-cancer therapy. A large number of studies have indicated that microbial dysbiosis contributes to cancer susceptibility via multiple pathways. Further studies have suggested that the microbiota and their associated metabolites are not only closely related to carcinogenesis by inducing inflammation and immune dysregulation, which lead to genetic instability, but also interfere with the pharmacodynamics of anticancer agents. In this article, we mainly reviewed the influence of gut microbiota on cancers in the gastrointestinal (GI) tract (including esophageal, gastric, colorectal, liver, and pancreatic cancers) and the regulation of microbiota by diet, prebiotics, probiotics, synbiotics, antibiotics, or the Traditional Chinese Medicine. We also proposed some new strategies in the prevention and treatment of GI cancers that could be explored in the future. We hope that this review could provide a comprehensive overview of the studies on the interactions between the gut microbiota and GI cancers, which are likely to yield translational opportunities to reduce cancer morbidity and mortality by improving prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Changting Meng
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | - Chunmei Bai
- Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | | | - Leroy E Hood
- Institute for Systems Biology, Seattle, WA 98109, USA; Swedish Cancer Institute, Seattle, WA 98104, USA
| | - Qiang Tian
- Institute for Systems Biology, Seattle, WA 98109, USA; P4 Medicine Institute, Seattle, WA 98109, USA.
| |
Collapse
|
28
|
Selinger E, Reiniš M. Epigenetic View on Interferon γ Signalling in Tumour Cells. Folia Biol (Praha) 2018; 64:125-136. [PMID: 30724158 DOI: 10.14712/fb2018064040125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
IFN-γ is a pleiotropic cytokine crucial for both innate and adaptive immunity, which also plays a critical role in immunological surveillance of cancer. Genetic defects or gene silencing in the IFN-γ signal transduction pathways as well as in the expression of IFN-γ-regulated genes represent frequent mechanisms by which tumour cells can escape from immune responses. Epigenetic control of the IFN-γ signalling pathway activation associated with epigenetic changes in the corresponding regulatory gene regions, such as chromatin remodelling, histone acetylation and methylation, and DNA demethylation is frequently dysregulated in tumour cells. Epigenetic silencing of the IFN-γ regulatory pathway components, as well as of the IFN-γ-regulated genes crucial for tumour cell recognition or induction of anti-tumour immune responses, has been documented in various cancer models. Expression of both IFN-γ signalling pathway components and selected IFN-γ-regulated genes can be influenced by epigenetic modifiers, namely DNA methyltransferase and histone deacetylase inhibitors. These agents thus can mimic, restore, or boost the immunomodulatory effects of IFN-γ in tumour cells, which can contribute to their anti-tumour therapeutic efficacies and justifies their potential use in combined epigenetic therapy with immunotherapeutic approaches.
Collapse
Affiliation(s)
- E Selinger
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the ASCR, v. v. i, Prague, Czech Republic
| | - M Reiniš
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the ASCR, v. v. i, Prague, Czech Republic
| |
Collapse
|
29
|
Redd PS, Ibrahim ML, Klement JD, Sharman SK, Paschall AV, Yang D, Nayak-Kapoor A, Liu K. SETD1B Activates iNOS Expression in Myeloid-Derived Suppressor Cells. Cancer Res 2017; 77:2834-2843. [PMID: 28381543 DOI: 10.1158/0008-5472.can-16-2238] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/19/2016] [Accepted: 03/30/2017] [Indexed: 12/15/2022]
Abstract
Inducible nitric oxide synthase (iNOS) generates nitric oxide (NO) in myeloid cells that acts as a defense mechanism to suppress invading microorganisms or neoplastic cells. In tumor-bearing mice, elevated iNOS expression is a hallmark of myeloid-derived suppressor cells (MDSC). MDSCs use NO to nitrate both the T-cell receptor and STAT1, thus inhibiting T-cell activation and the antitumor immune response. The molecular mechanisms underlying iNOS expression and regulation in tumor-induced MDSCs are unknown. We report here that deficiency in IRF8 results in diminished iNOS expression in both mature CD11b+Gr1- and immature CD11b+Gr1+ myeloid cells in vivo Strikingly, although IRF8 was silenced in tumor-induced MDSCs, iNOS expression was significantly elevated in tumor-induced MDSCs, suggesting that the expression of iNOS is regulated by an IRF8-independent mechanism under pathologic conditions. Furthermore, tumor-induced MDSCs exhibited diminished STAT1 and NF-κB Rel protein levels, the essential inducers of iNOS in myeloid cells. Instead, tumor-induced MDSCs showed increased SETD1B expression as compared with their cellular equivalents in tumor-free mice. Chromatin immunoprecipitation revealed that H3K4me3, the target of SETD1B, was enriched at the nos2 promoter in tumor-induced MDSCs, and inhibition or silencing of SETD1B diminished iNOS expression in tumor-induced MDSCs. Our results show how tumor cells use the SETD1B-H3K4me3 epigenetic axis to bypass a normal role for IRF8 expression in activating iNOS expression in MDSCs when they are generated under pathologic conditions. Cancer Res; 77(11); 2834-43. ©2017 AACR.
Collapse
Affiliation(s)
- Priscilla S Redd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Georgia Cancer Center, Augusta University, Augusta, Georgia.,Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Mohammed L Ibrahim
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Sarah K Sharman
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Amy V Paschall
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Georgia Cancer Center, Augusta University, Augusta, Georgia.,Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia.,Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Asha Nayak-Kapoor
- Georgia Cancer Center, Augusta University, Augusta, Georgia.,Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia. .,Georgia Cancer Center, Augusta University, Augusta, Georgia.,Charlie Norwood VA Medical Center, Augusta, Georgia
| |
Collapse
|
30
|
Lu C, Talukder A, Savage NM, Singh N, Liu K. JAK-STAT-mediated chronic inflammation impairs cytotoxic T lymphocyte activation to decrease anti-PD-1 immunotherapy efficacy in pancreatic cancer. Oncoimmunology 2017; 6:e1291106. [PMID: 28405527 DOI: 10.1080/2162402x.2017.1291106] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/27/2017] [Accepted: 01/31/2017] [Indexed: 12/14/2022] Open
Abstract
Human pancreatic cancer does not respond to immune check point blockade immunotherapy. One key feature of pancreatic cancer is the association between its progression and chronic inflammation. Emerging evidence supports a key role for the JAK-STAT pathway in pancreatic cancer inflammation. We aimed at testing the hypothesis that sustained JAK-STAT signaling suppresses cytotoxic T lymphocyte (CTL) activation to counteract anti-PD-1 immunotherapy-induced CTL activity in pancreatic cancer. We show that human pancreatic carcinomas express high level of PD-L1 and exhibit low level of CTL infiltration. JAK-STAT inhibitor Ruxolitinib selectively inhibits STAT1 and STAT3 activation and increases CTL infiltration to induce a Tc1/Th1 immune response in the tumor microenvironment in an orthotopic pancreatic cancer mouse model. Ruxilitinib-mediated tumor suppressive efficacy diminishes in T-cell-deficient mice. Pancreatic tumor grows significantly faster in IFNγ-deficient mice. However, neutralizing IFNγ does not alter tumor growth but diminishes Ruxolitinib-induced tumor suppression in vivo, indicating that lymphocytes and IFNγ are essential for Ruxolitinib-induced host antitumor immune response. Both type I and type II interferons upregulate PD-L1 expression through the JAK-STAT signaling pathway in mouse pancreatic tumor cells. Tumor cells respond to activated T cells by activating STAT3. The inhibition of STAT3 downregulates immune suppressive cytokines production by tumor cells, resulting in increased T cell activation and effector function. Consequently, Ruxolitinib significantly improves the efficacy of anti-PD-1 immunotherapy. Our data demonstrate that Ruxolitinib is effective in the inhibition of systemic inflammation in the tumor microenvironment and therefore upregulates CTL infiltration and activation to overcome pancreatic cancer resistance to anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA; Georgia Cancer Center, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Asif Talukder
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA; Department of Surgery, Pathology, Medical College of Georgia, Augusta, GA, USA
| | | | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA; Georgia Cancer Center, Augusta, GA, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA; Georgia Cancer Center, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| |
Collapse
|
31
|
Lu C, Paschall AV, Shi H, Savage N, Waller JL, Sabbatini ME, Oberlies NH, Pearce C, Liu K. The MLL1-H3K4me3 Axis-Mediated PD-L1 Expression and Pancreatic Cancer Immune Evasion. J Natl Cancer Inst 2017; 109:2962333. [PMID: 28131992 DOI: 10.1093/jnci/djw283] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/21/2016] [Accepted: 10/26/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Pancreatic cancer is one of the cancers where anti-PD-L1/PD-1 immunotherapy has been unsuccessful. What confers pancreatic cancer resistance to checkpoint immunotherapy is unknown. The aim of this study is to elucidate the underlying mechanism of PD-L1 expression regulation in the context of pancreatic cancer immune evasion. METHODS Pancreatic cancer mouse models and human specimens were used to determine PD-L1 and PD-1 expression and cancer immune evasion. Histone methyltransferase inhibitors, RNAi, and overexpression were used to elucidate the underlying molecular mechanism of PD-L1 expression regulation. All statistical tests were two-sided. RESULTS PD-L1 is expressed in 60% to 90% of tumor cells in human pancreatic carcinomas and in nine of 10 human pancreatic cancer cell lines. PD-1 is expressed in 51.2% to 52.1% of pancreatic tumor-infiltrating cytotoxic T lymphocytes (CTLs). Tumors grow statistically significantly faster in FasL-deficient mice than in wild-type mice (P = .03-.001) and when CTLs are neutralized (P = .03-<.001). H3K4 trimethylation (H3K4me3) is enriched in the cd274 promoter in pancreatic tumor cells. MLL1 directly binds to the cd274 promoter to catalyze H3K4me3 to activate PD-L1 transcription in tumor cells. Inhibition or silencing of MLL1 decreases the H3K4me3 level in the cd274 promoter and PD-L1 expression in tumor cells. Accordingly, inhibition of MLL1 in combination with anti-PD-L1 or anti-PD-1 antibody immunotherapy effectively suppresses pancreatic tumor growth in a FasL- and CTL-dependent manner. CONCLUSIONS The Fas-FasL/CTLs and the MLL1-H3K4me3-PD-L1 axis play contrasting roles in pancreatic cancer immune surveillance and evasion. Targeting the MLL1-H3K4me3 axis is an effective approach to enhance the efficacy of checkpoint immunotherapy against pancreatic cancer.
Collapse
Affiliation(s)
- Chunwan Lu
- Affiliations of authors: Department of Biochemistry and Molecular Biology (CL, AVP, KL), Department of Pathology (NS), and Department of Biostatistics and Epidemiology (JLW), Medical College of Georgia, Augusta, GA; Georgia Cancer Center (CL, AVP, HS, KL) and Department of Biological Sciences (MES), Augusta University, Augusta, GA; Charlie Norwood VA Medical Center, Augusta, GA (CL, AVP, KL); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC (NHO); Mycosynthetix, Inc., Hillsborough, NC (CP)
| | - Amy V Paschall
- Affiliations of authors: Department of Biochemistry and Molecular Biology (CL, AVP, KL), Department of Pathology (NS), and Department of Biostatistics and Epidemiology (JLW), Medical College of Georgia, Augusta, GA; Georgia Cancer Center (CL, AVP, HS, KL) and Department of Biological Sciences (MES), Augusta University, Augusta, GA; Charlie Norwood VA Medical Center, Augusta, GA (CL, AVP, KL); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC (NHO); Mycosynthetix, Inc., Hillsborough, NC (CP)
| | - Huidong Shi
- Affiliations of authors: Department of Biochemistry and Molecular Biology (CL, AVP, KL), Department of Pathology (NS), and Department of Biostatistics and Epidemiology (JLW), Medical College of Georgia, Augusta, GA; Georgia Cancer Center (CL, AVP, HS, KL) and Department of Biological Sciences (MES), Augusta University, Augusta, GA; Charlie Norwood VA Medical Center, Augusta, GA (CL, AVP, KL); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC (NHO); Mycosynthetix, Inc., Hillsborough, NC (CP)
| | - Natasha Savage
- Affiliations of authors: Department of Biochemistry and Molecular Biology (CL, AVP, KL), Department of Pathology (NS), and Department of Biostatistics and Epidemiology (JLW), Medical College of Georgia, Augusta, GA; Georgia Cancer Center (CL, AVP, HS, KL) and Department of Biological Sciences (MES), Augusta University, Augusta, GA; Charlie Norwood VA Medical Center, Augusta, GA (CL, AVP, KL); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC (NHO); Mycosynthetix, Inc., Hillsborough, NC (CP)
| | - Jennifer L Waller
- Affiliations of authors: Department of Biochemistry and Molecular Biology (CL, AVP, KL), Department of Pathology (NS), and Department of Biostatistics and Epidemiology (JLW), Medical College of Georgia, Augusta, GA; Georgia Cancer Center (CL, AVP, HS, KL) and Department of Biological Sciences (MES), Augusta University, Augusta, GA; Charlie Norwood VA Medical Center, Augusta, GA (CL, AVP, KL); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC (NHO); Mycosynthetix, Inc., Hillsborough, NC (CP)
| | - Maria E Sabbatini
- Affiliations of authors: Department of Biochemistry and Molecular Biology (CL, AVP, KL), Department of Pathology (NS), and Department of Biostatistics and Epidemiology (JLW), Medical College of Georgia, Augusta, GA; Georgia Cancer Center (CL, AVP, HS, KL) and Department of Biological Sciences (MES), Augusta University, Augusta, GA; Charlie Norwood VA Medical Center, Augusta, GA (CL, AVP, KL); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC (NHO); Mycosynthetix, Inc., Hillsborough, NC (CP)
| | - Nicholas H Oberlies
- Affiliations of authors: Department of Biochemistry and Molecular Biology (CL, AVP, KL), Department of Pathology (NS), and Department of Biostatistics and Epidemiology (JLW), Medical College of Georgia, Augusta, GA; Georgia Cancer Center (CL, AVP, HS, KL) and Department of Biological Sciences (MES), Augusta University, Augusta, GA; Charlie Norwood VA Medical Center, Augusta, GA (CL, AVP, KL); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC (NHO); Mycosynthetix, Inc., Hillsborough, NC (CP)
| | - Cedric Pearce
- Affiliations of authors: Department of Biochemistry and Molecular Biology (CL, AVP, KL), Department of Pathology (NS), and Department of Biostatistics and Epidemiology (JLW), Medical College of Georgia, Augusta, GA; Georgia Cancer Center (CL, AVP, HS, KL) and Department of Biological Sciences (MES), Augusta University, Augusta, GA; Charlie Norwood VA Medical Center, Augusta, GA (CL, AVP, KL); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC (NHO); Mycosynthetix, Inc., Hillsborough, NC (CP)
| | - Kebin Liu
- Affiliations of authors: Department of Biochemistry and Molecular Biology (CL, AVP, KL), Department of Pathology (NS), and Department of Biostatistics and Epidemiology (JLW), Medical College of Georgia, Augusta, GA; Georgia Cancer Center (CL, AVP, HS, KL) and Department of Biological Sciences (MES), Augusta University, Augusta, GA; Charlie Norwood VA Medical Center, Augusta, GA (CL, AVP, KL); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC (NHO); Mycosynthetix, Inc., Hillsborough, NC (CP)
| |
Collapse
|
32
|
Lu C, Redd PS, Lee JR, Savage N, Liu K. The expression profiles and regulation of PD-L1 in tumor-induced myeloid-derived suppressor cells. Oncoimmunology 2016; 5:e1247135. [PMID: 28123883 DOI: 10.1080/2162402x.2016.1247135] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/27/2016] [Accepted: 10/05/2016] [Indexed: 12/22/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) is an inhibitory ligand that binds to PD-1 to suppress T cell activation. PD-L1 is constitutively expressed and inducible in tumor cells, but the expression profiles and regulatory mechanism of PD-L1 in myeloid-derived suppressor cells (MDSCs) are largely unknown. We report that PD-L1 is abundantly expressed in tumor-infiltrating leukocytes in human patients with both microsatellite instable and microsatellite stable colon cancer. About 60% CD11b+CD33+HLA-DR- MDSCs from peripheral blood of human colon cancer patients are PD-L1+. PD-L1+ MDSCs are also significantly higher in tumor-bearing mice than in tumor-free mice. Interestingly, the highest PD-L1+ MDSCs were observed in the tumor microenvironment in which 56-71% tumor-infiltrating MDSCs are PD-L1+in vivo. In contrast, PD-L1+ MDSCs are significantly less in secondary lymphoid organs and peripheral blood as compared to the tumor tissues, whereas bone marrow MDSCs are essentially PD-L1- in tumor-bearing mice. IFNγ is highly expressed in cells of the tumor tissues and IFNγ neutralization significantly decreased PD-L1+ MDSCs in the tumor microenvironment in vivo. However, IFNγ-activated pSTAT1 does not bind to the cd274 promoter in MDSCs. Instead, pSTAT1 activates expression of IRF1, IRF5, IRF7 and IRF8 in MDSCs, and only pSTAT1-activated IRF1 binds to a unique IRF-binding sequence element in vitro and chromatin in vivo in the cd274 promoter to activate PD-L1 transcription. Our data determine that PD-L1 is highly expressed in tumor-infiltrating MDSCs and in a lesser degree in lymphoid organs, and the pSTAT1-IRF1 axis regulates PD-L1 expression in MDSCs.
Collapse
Affiliation(s)
- Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Priscilla S Redd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA; Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Jeffrey R Lee
- Charlie Norwood VA Medical Center, Augusta, GA, USA; Pathology, Medical College of Georgia, Augusta, GA, USA
| | - Natasha Savage
- Pathology, Medical College of Georgia , Augusta, GA, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA; Georgia Cancer Center, Augusta University, Augusta, GA, USA
| |
Collapse
|
33
|
Wang N, Guo DY, Tian X, Lin HP, Li YP, Chen SJ, Fu YC, Xu WC, Wei CJ. Niacin receptor GPR109A inhibits insulin secretion and is down-regulated in type 2 diabetic islet beta-cells. Gen Comp Endocrinol 2016; 237:98-108. [PMID: 27570060 DOI: 10.1016/j.ygcen.2016.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/18/2016] [Accepted: 08/24/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVES We previously found niacin receptor GPR109A was expressed in murine islet beta-cells, and signaling through GPR109A inhibited glucose stimulated insulin secretion (GSIS). However, the expression of GPR109A in human islets and its functional relevance is still not known. METHODS The expression of GPR109A was examined by antibody staining and in situ hybridization on pancreatic paraffin sections. GPR109A was cloned and expressed in INS-1 islet beta-cells. Intracellular cAMP and GSIS were determined using enzyme-linked immunosorbent assay (ELISA). RESULTS The expression of GPR109A was confirmed in murine islet beta-cells and further detected in human counterparts by using commercially available polyclonal antibodies. In situ hybridization study detected the transcripts of GPR109A, but not that of closely related GPR109B. Furthermore, GPR109A was significantly reduced in islets from diabetic individuals and animal model of db/db mice as compared to their respective controls. Further, GPR109A levels in insulinoma were also reduced dramatically as compared to islets found in corresponding non-tumor normal tissues. Quantitative RT-PCR analysis demonstrated that GPR109A transcripts were severely down-regulated in rodent insulinoma cell lines as compared to that of freshly isolated islets from mice. Finally, human and murine GPR109A expression cassettes were transfected into INS-1 cells, which resulted in reduced accumulation of cAMP and insulin secretion after incubation with niacin. The effect could be completely abrogated by pretreatment with pertussis toxin. CONCLUSIONS These results demonstrate that GPR109A is functionally expressed in both human and murine islet beta-cells. However, the role of GPR109A in the prevention of diabetes or insulinoma needs further study.
Collapse
Affiliation(s)
- Na Wang
- Multidisciplinary Research Center, Shantou University, Shantou 515063, Guangdong, China
| | - De-Yu Guo
- Department of Pathology, Xinan Hospital of Chongqing, Chongqing 400038, China
| | - Xiong Tian
- Multidisciplinary Research Center, Shantou University, Shantou 515063, Guangdong, China
| | - Hao-Peng Lin
- Multidisciplinary Research Center, Shantou University, Shantou 515063, Guangdong, China
| | - Yun-Pan Li
- Multidisciplinary Research Center, Shantou University, Shantou 515063, Guangdong, China
| | - Shao-Jun Chen
- Multidisciplinary Research Center, Shantou University, Shantou 515063, Guangdong, China
| | - Yu-Cai Fu
- Laboratory of Cell Senescence, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Wen-Can Xu
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China.
| | - Chi-Ju Wei
- Multidisciplinary Research Center, Shantou University, Shantou 515063, Guangdong, China.
| |
Collapse
|
34
|
Ceramide mediates FasL-induced caspase 8 activation in colon carcinoma cells to enhance FasL-induced cytotoxicity by tumor-specific cytotoxic T lymphocytes. Sci Rep 2016; 6:30816. [PMID: 27487939 PMCID: PMC4973238 DOI: 10.1038/srep30816] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/11/2016] [Indexed: 12/13/2022] Open
Abstract
FasL-mediated cytotoxicity is one of the mechanisms that CTLs use to kill tumor cells. However, human colon carcinoma often deregulates the Fas signaling pathway to evade host cancer immune surveillance. We aimed at testing the hypothesis that novel ceramide analogs effectively modulate Fas function to sensitize colon carcinoma cells to FasL-induced apoptosis. We used rational design and synthesized twenty ceramide analogs as Fas function modulators. Five ceramide analogs, IG4, IG7, IG14, IG17, and IG19, exhibit low toxicity and potent activity in sensitization of human colon carcinoma cells to FasL-induced apoptosis. Functional deficiency of Fas limits both FasL and ceramide analogs in the induction of apoptosis. Ceramide enhances FasL-induced activation of the MAPK, NF-κB, and caspase 8 despite induction of potent tumor cell death. Finally, a sublethal dose of several ceramide analogs significantly increased CTL-mediated and FasL-induced apoptosis of colon carcinoma cells. We have therefore developed five novel ceramide analogs that act at a sublethal dose to enhance the efficacy of tumor-specific CTLs, and these ceramide analogs hold great promise for further development as adjunct agents in CTL-based colon cancer immunotherapy.
Collapse
|
35
|
Simon PS, Bardhan K, Chen MR, Paschall AV, Lu C, Bollag RJ, Kong FC, Jin J, Kong FM, Waller JL, Pollock RE, Liu K. NF-κB functions as a molecular link between tumor cells and Th1/Tc1 T cells in the tumor microenvironment to exert radiation-mediated tumor suppression. Oncotarget 2016; 7:23395-415. [PMID: 27014915 PMCID: PMC5029635 DOI: 10.18632/oncotarget.8246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/28/2016] [Indexed: 12/12/2022] Open
Abstract
Radiation modulates both tumor cells and immune cells in the tumor microenvironment to exert its anti-tumor activity; however, the molecular connection between tumor cells and immune cells that mediates radiation-exerted tumor suppression activity in the tumor microenvironment is largely unknown. We report here that radiation induces rapid activation of the p65/p50 and p50/p50 NF-κB complexes in human soft tissue sarcoma (STS) cells. Radiation-activated p65/p50 and p50/p50 bind to the TNFα promoter to activate its transcription in STS cells. Radiation-induced TNFα induces tumor cell death in an autocrine manner. A sublethal dose of Smac mimetic BV6 induces cIAP1 and cIAP2 degradation to increase tumor cell sensitivity to radiation-induced cell death in vitro and to enhance radiation-mediated suppression of STS xenografts in vivo. Inhibition of caspases, RIP1, or RIP3 blocks radiation/TNFα-induced cell death, whereas inhibition of RIP1 blocks TNFα-induced caspase activation, suggesting that caspases and RIP1 act sequentially to mediate the non-compensatory cell death pathways. Furthermore, we determined in a syngeneic sarcoma mouse model that radiation up-regulates IRF3, IFNβ, and the T cell chemokines CCL2 and CCL5 in the tumor microenvironment, which are associated with activation and increased infiltration of Th1/Tc1 T cells in the tumor microenvironment. Moreover, tumor-infiltrating T cells are in their active form since both the perforin and FasL pathways are activated in irradiated tumor tissues. Consequently, combined BV6 and radiation completely suppressed tumor growth in vivo. Therefore, radiation-induced NF-κB functions as a molecular link between tumor cells and immune cells in the tumor microenvironment for radiation-mediated tumor suppression.
Collapse
Affiliation(s)
- Priscilla S. Simon
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
- Cancer Center, Georgia Regents University, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Kankana Bardhan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
| | - May R. Chen
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
| | - Amy V. Paschall
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
- Cancer Center, Georgia Regents University, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Roni J. Bollag
- Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Feng-Chong Kong
- Radiation Oncology, Medical College of Georgia, Augusta, GA, USA
- Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - JianYue Jin
- Radiation Oncology, Medical College of Georgia, Augusta, GA, USA
- Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Feng-Ming Kong
- Radiation Oncology, Medical College of Georgia, Augusta, GA, USA
- Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Jennifer L. Waller
- Biostatistics and Epidemiology, Medical College of Georgia, Augusta, GA, USA
| | | | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
- Cancer Center, Georgia Regents University, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| |
Collapse
|
36
|
Suzuki K, Kaneko-Kawano T. Biological roles and therapeutic potential of G protein-coupled receptors for free fatty acids and metabolic intermediates. ACTA ACUST UNITED AC 2016. [DOI: 10.7600/jpfsm.5.213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Kenji Suzuki
- College of Pharmaceutical Sciences, Ritsumeikan University
| | | |
Collapse
|
37
|
Simon PS, Sharman SK, Lu C, Yang D, Paschall AV, Tulachan SS, Liu K. The NF-κB p65 and p50 homodimer cooperate with IRF8 to activate iNOS transcription. BMC Cancer 2015; 15:770. [PMID: 26497740 PMCID: PMC4619452 DOI: 10.1186/s12885-015-1808-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/16/2015] [Indexed: 01/23/2023] Open
Abstract
Background Inducible nitric oxide synthase (iNOS) metabolizes L-arginine to produce nitric oxide (NO) which was originally identified in myeloid cells as a host defense mechanism against pathogens. Recent studies, however, have revealed that iNOS is often induced in tumor cells and myeloid cells in the tumor microenvironment. Compelling experimental data have shown that iNOS promotes tumor development in certain cellular context and suppresses tumor development in other cellular conditions. The molecular mechanisms underlying these contrasting functions of iNOS is unknown. Because iNOS is often induced by inflammatory signals, it is therefore likely that these contrasting functions of iNOS could be controlled by the inflammatory signaling pathways, which remains to be determined. Methods iNOS is expressed in colon carcinoma and myeloid cells in the tumor microenvironment. Colon carcinoma and myeloid cell lines were used to elucidate the molecular mechanisms underlying iNOS expression. Chromatin immunoprecipitation and electrophoretic mobility shift assay were used to determine the IFNγ-activated pSTAT1 and NF-κB association with the chromatin DNA of the nos2 promoter. Results We show here that iNOS is dramatically up-regulated in inflammed human colon tissues and in human colon carcinoma as compared to normal colon tissue. iNOS is expressed in either the colon carcinoma cells or immune cells within the tumor microenvironment. On the molecular level, the proinflammatory IFNγ and NF-κB signals induce iNOS expression in human colon cancer cells. We further demonstrate that NF-κB directly binds to the NOS2 promoter to regulate iNOS expression. Although neither the IFNγ signaling pathway nor the NF-κB signaling pathway alone is sufficient to induce iNOS expression in myeloid cells, IFNγ and NF-κB synergistically induce iNOS expression in myeloid cells. Furthermore, we determine that IFNγ up-regulates IRF8 expression to augment NF-κB induction of iNOS expression. More interestingly, we observed that the p65/p65 and p50/p50 homodimers, not the canonical p65/p50 heterodimer, directly binds to the nos2 promoter to regulate iNOS expression in myeloid cells. Conclusions IFNγ-induced IRF8 acts in concert with NF-κB to regulate iNOS expression in both colon carcinoma and myeloid cells. In myeloid cells, the NF-κB complexes that bind to the nos2 promoter are p65/p65 and p50/p50 homodimers.
Collapse
Affiliation(s)
- Priscilla S Simon
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA. .,Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA. .,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| | - Sarah K Sharman
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA. .,Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA.
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA. .,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA. .,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| | - Amy V Paschall
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA. .,Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA. .,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| | - Sidhartha S Tulachan
- Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA.
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA. .,Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA. .,Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA.
| |
Collapse
|
38
|
Abstract
Colorectal cancer stem cells (CSCs) were initially considered to be a subset of undifferentiated tumor cells with well-defined phenotypic and molecular markers. However, emerging evidence indicates instead that colorectal CSCs are heterogeneous subsets of tumor cells that are continuously reshaped by the dynamic interactions between genetic, epigenetic, and immune factors in the tumor microenvironment. Thus, the colorectal CSC phenotypes and responsiveness to therapy may not only be a tumor cell-intrinsic feature, but also depend on tumor-extrinsic microenvironmental factors. Furthermore, emerging evidence also implicates colorectal CSCs in potential immune evasion. Therefore, understanding how colorectal CSC-intrinsic mechanisms cooperate with the extrinsic microenvironmental factors to dynamically shape colorectal CSC resistance to chemotherapy and immunotherapy holds great promise for development of targeted CSC therapies of advanced human CRC.
Collapse
|