1
|
Mansilla-Soto J, Milone MC. Concept CARs are picking up speed. Mol Ther 2025:S1525-0016(25)00378-8. [PMID: 40340247 DOI: 10.1016/j.ymthe.2025.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/01/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025] Open
Abstract
The field of adoptive T cell immunotherapy has been dominated by a chimeric antigen receptor (CAR) design that combines antigen recognition through antibody-derived domains and signaling into a single polypeptide. This conventional design redirects the immense cytotoxic potential of T cells toward tumors, and it is the core of several commercially marketed CAR-T cell products. Recent research in the field has been focused on developing more effective CAR designs, especially for solid tumors. Although most approaches have layered on top of the conventional CAR design, recent studies have taken a step back and redesigned the basic CAR to retain more of the natural structure of immunoreceptors such as the T cell receptor or killer immunoglobulin-like receptors. These redesigned CARs promote enhanced function in preclinical models compared with conventional CAR designs, including in the more challenging solid tumor setting, and several have entered the clinic with emerging data on their activity. These observations highlight the importance of considering CAR design and looking beyond conventional CARs when developing new T cell immunotherapy approaches.
Collapse
Affiliation(s)
- Jorge Mansilla-Soto
- Departments of Immunology, Bioengineering, and BMT and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Michael C Milone
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Tual M, Bellemare-Pelletier A, Moore S, Guipouy D, Farzam-Kia N, Jafarzadeh L, Quenneville J, Barrette B, Saba-El-Leil MK, Delisle JS, Gagnon E. MARC, a novel modular chimeric antigen receptor, improves T cell-based cancer immunotherapies by preventing early T cell exhaustion and enhancing persistence. J Immunother Cancer 2025; 13:e011829. [PMID: 40254394 PMCID: PMC12010287 DOI: 10.1136/jitc-2025-011829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Chimeric antigen receptor T cell (CAR-T)-based immunotherapies have reshaped the therapeutic landscape of cancer treatment, in particular for patients afflicted with leukemia. However, defects in CAR behaviors and clinical complications have hindered their widespread application across diverse cancer types. Chief among these defects is high tonic signaling, absent in native activating immune receptors, which accelerates T cell exhaustion and undermines treatment efficacy. We hypothesized that these limitations arise because current CAR architectures fail to replicate the modular design of native activating immune receptors, which integrate distinct receptor and signaling modules. This modular assembly is crucial for maintaining proper receptor regulation and function. METHODS Therefore, we set forth to develop a modular chimeric antigen receptor leveraging the same assembly principles found in native activating immune receptors to reestablish the intrinsic safeguards in receptor expression and signaling. RESULTS The resulting Modular Actuation Receptor Complex (MARC) displayed surface expression levels akin to its native immune receptor counterpart, the NK cell receptor KIR2DS3, while eliminating tonic signaling. In a clinically relevant mouse leukemia model, MARC-T cells exhibited remarkable long-term persistence and a less exhausted phenotype compared with conventional CAR-T cells. CONCLUSIONS With its modular architecture, the MARC offers unparalleled opportunities for optimization and broad applicability across different cell types, paving the way for transformative advancements in cell-based therapies. This innovation holds immense promise as a next-generation therapeutic tool in clinical settings.
Collapse
Affiliation(s)
- Margaux Tual
- Département de microbiologie, Université de Montréal, Montreal, Quebec, Canada
- Université de Montréal Institut de Recherche en Immunologie et en Cancérologie, Montréal, Québec, Canada
| | | | - Susan Moore
- Université de Montréal Institut de Recherche en Immunologie et en Cancérologie, Montréal, Québec, Canada
| | | | | | - Leila Jafarzadeh
- Médicine, Maisonneuve-Rosemont Hospital Research Centre, Montréal, Québec, Canada
| | - Jordan Quenneville
- Université de Montréal Institut de Recherche en Immunologie et en Cancérologie, Montréal, Québec, Canada
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Benoit Barrette
- Département de biologie et pathologie cellulaire, Université de Montréal, Montreal, Quebec, Canada
| | - Marc K Saba-El-Leil
- Université de Montréal Institut de Recherche en Immunologie et en Cancérologie, Montréal, Québec, Canada
| | | | - Etienne Gagnon
- Université de Montréal Institut de Recherche en Immunologie et en Cancérologie, Montréal, Québec, Canada
- Département de microbiobologie, infectriologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
3
|
Moore AE, Nault H, Cummings D, Bojovic B, Serniuck N, Baker CL, Aarts C, Venugopal C, Singh SK, Hammill JA, Bramson JL. DAP12-associated synthetic antigen receptors enable multi-targeting of T cells with independent chimeric receptors in a small genetic payload. iScience 2025; 28:112142. [PMID: 40201126 PMCID: PMC11978328 DOI: 10.1016/j.isci.2025.112142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/30/2024] [Accepted: 02/26/2025] [Indexed: 04/10/2025] Open
Abstract
We describe a series of DAP12-associated receptors that can be used to achieve multi-targeting within a small genetic payload. Empirical evaluation of scaffold/binder combinations is required to define the optimal synthetic receptor configuration. When two DAP12-associated synthetic receptors were expressed in T cells from a single vector, the surface levels of individual receptors was reduced when compared to T cells engineered with vectors that express a single receptor. The reduction in receptor expression had a pronounced effect on early, but not late, signaling events and primarily affected cytokine production. The functional deficiency was overcome by increasing synthetic receptor levels demonstrating that there is no fundamental issue related to co-expression of multiple DAP12-associated synthetic receptors in a single T cell. Our data show that T cells can be engineered with multiple recombinant DAP12-based receptors to yield multi-target specific T cells, however, thoughtful design and optimization are necessary.
Collapse
Affiliation(s)
- Allyson E. Moore
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Hayley Nault
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Derek Cummings
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Bonnie Bojovic
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Nick Serniuck
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Christopher L. Baker
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Craig Aarts
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Chitra Venugopal
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Sheila K. Singh
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Joanne A. Hammill
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jonathan L. Bramson
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON L8S 4K1, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
4
|
Roex G, Gordon KS, Lion E, Birnbaum ME, Anguille S. Expanding the CAR toolbox with high throughput screening strategies for CAR domain exploration: a comprehensive review. J Immunother Cancer 2025; 13:e010658. [PMID: 40210240 PMCID: PMC11987143 DOI: 10.1136/jitc-2024-010658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/06/2025] [Indexed: 04/12/2025] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy has been highly successful in the treatment of B-cell hematological malignancies. CARs are modular synthetic molecules that can redirect immune cells towards target cells with antibody-like specificity. Despite their modularity, CARs used in the clinic are currently composed of a limited set of domains, mostly derived from IgG, CD8α, 4-1BB, CD28 and CD3ζ. The current low throughput CAR screening workflows are labor-intensive and time-consuming, and lie at the basis of the limited toolbox of CAR building blocks available. High throughput screening methods facilitate simultaneous investigation of hundreds of thousands of CAR domain combinations, allowing discovery of novel domains and increasing our understanding of how they behave in the context of a CAR. Here we review the growing body of reports that employ these high throughput screening and computational methods to advance CAR design. We summarize and highlight the important differences between the different studies and discuss their limitations and future considerations for further improvements. In conclusion, while still in its infancy, high throughput screening of CARs has the capacity to vastly expand the CAR domain toolbox and improve our understanding of CAR design. This knowledge could be foundational for translating CAR therapy beyond hematological malignancies and push the frontiers in personalized medicine.
Collapse
Affiliation(s)
- Gils Roex
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Khloe S Gordon
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology Centre, Singapore
| | - Eva Lion
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
- Center for Cell Therapy and Regenerative Medicine, University Hospital Antwerp, Edegem, Belgium
| | - Michael E Birnbaum
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology Centre, Singapore
- Ragon Institute of Mass General MIT and Harvard, Cambridge, Massachusetts, USA
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
- Center for Cell Therapy and Regenerative Medicine, University Hospital Antwerp, Edegem, Belgium
- Division of Hematology, University Hospital Antwerp, Edegem, Belgium
| |
Collapse
|
5
|
Zhu S, Hu J, Lin J, Wang C, Wang E. Co-Expression of Dominant-Negative TGF-β Receptor 2 Enhances the Therapeutic Efficacy of Novel TREM1/DAP12-BB-Based CAR-T Cells in Solid Tumours. Immunology 2025; 174:310-321. [PMID: 39746895 DOI: 10.1111/imm.13888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has exhibited remarkable efficacy in the treatment of haematological malignancies, yet its application in solid tumours is hindered by the immunosuppressive tumour microenvironment (TME). In this study, a novel SS1-TREM1/DAP12-BB CAR-T cell was devised to target ovarian cancer and further engineered to co-express the dominant-negative TGF-β receptor 2 (DNR) to combat CAR-T cell exhaustion in TME. The incorporation of DNR effectively blocked TGF-β signalling, thereby enhancing CAR-T cell survival and antitumor activity in a TGF-β1-rich environment. In vivo evaluations demonstrated that DNR co-expression potentiated the antitumor efficacy of TREM1/DAP12-BB CAR-T cells and conferred resilience against tumour rechallenge. These findings underscore the broad potential of DNR co-expression in CAR design, presenting a novel therapeutic strategy for patients with recurrent ovarian cancer.
Collapse
MESH Headings
- Humans
- Female
- Animals
- Immunotherapy, Adoptive/methods
- Ovarian Neoplasms/therapy
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/pathology
- Tumor Microenvironment/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Mice
- Receptor, Transforming Growth Factor-beta Type II/genetics
- Receptor, Transforming Growth Factor-beta Type II/metabolism
- Cell Line, Tumor
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Triggering Receptor Expressed on Myeloid Cells-1/genetics
- Triggering Receptor Expressed on Myeloid Cells-1/immunology
- Triggering Receptor Expressed on Myeloid Cells-1/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- T-Lymphocytes/metabolism
- Xenograft Model Antitumor Assays
- Signal Transduction
Collapse
Affiliation(s)
- Sichao Zhu
- Nanjing CART Medical Technology Co. Ltd., Nanjing, P.R. China
| | - Jianping Hu
- Nanjing CART Medical Technology Co. Ltd., Nanjing, P.R. China
| | - Jie Lin
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, P.R. China
| | - Chen Wang
- Nanjing CART Medical Technology Co. Ltd., Nanjing, P.R. China
| | - Enxiu Wang
- Nanjing CART Medical Technology Co. Ltd., Nanjing, P.R. China
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, P.R. China
- Clinical Pathological Diagnosis & Research Center, Youjiang Medical University for Nationalities, Baise, P.R. China
- The Key Laboratory of Molecular Pathology (Hepatobiliary Diseases) of Guangxi, Baise, P.R. China
| |
Collapse
|
6
|
Khalifeh M, Salman H. Engineering resilient CAR T cells for immunosuppressive environment. Mol Ther 2025:S1525-0016(25)00039-5. [PMID: 39863931 DOI: 10.1016/j.ymthe.2025.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/29/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized cancer treatment and is now being explored for other diseases, such as autoimmune disorders. While the tumor microenvironment (TME) in cancer is often immunosuppressive, in autoimmune diseases, the environment is typically inflammatory. Both environments can negatively impact CAR T cell survival: the former through direct suppression, hypoxia, and nutrient deprivation, and the latter through chronic T cell receptor (TCR) engagement, risking exhaustion. Mechanisms of resistance include T cell exhaustion, dysfunction, and the impact of the TME. Chronic antigenic stimulation leads to CAR T cell exhaustion. CAR construct design, including co-stimulatory domains, hinge, transmembrane regions, promoters, the affinity of the binder site, and on/off rate plays a crucial role in modulating CAR T cell function and resistance. This review discusses the impact of the in vitro development of CAR T cells, albeit in relation to the TME, on therapeutic outcomes. The use of alternative cell sources, multi-antigen targeting, and reengineering the TME, are discussed. The review emphasizes the need for continued innovation in CAR T cell design and manufacturing to optimize therapeutic efficacy and durability, especially in the face of varying environmental challenges.
Collapse
Affiliation(s)
- Malak Khalifeh
- Brown Center for Immunotherapy. IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, 975 W. Walnut St., IB554A, Indianapolis, IN 46202, USA
| | - Huda Salman
- Brown Center for Immunotherapy. IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, 975 W. Walnut St., IB554A, Indianapolis, IN 46202, USA.
| |
Collapse
|
7
|
Yao P, Liu YG, Huang G, Hao L, Wang R. The development and application of chimeric antigen receptor natural killer (CAR-NK) cells for cancer therapy: current state, challenges and emerging therapeutic advances. Exp Hematol Oncol 2024; 13:118. [PMID: 39633491 PMCID: PMC11616395 DOI: 10.1186/s40164-024-00583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
Immunotherapy has transformed the landscape of cancer treatment, with chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy emerging as a front runner in addressing some hematological malignancies. Despite its considerable efficacy, the occurrence of severe adverse effects associated with CAR-T cell therapy has limited their scope and prompted the exploration of alternative therapeutic strategies. Natural killer (NK) cells, characterized by both their innate cytotoxicity and ability to lyse target cells without the constraint of peptide specificity conferred by a major histocompatibility complex (MHC), have similarly garnered attention as a viable immunotherapy. As such, another therapeutic approach has recently emerged that seeks to combine the continued success of CAR-T cell therapy with the flexibility of NK cells. Clinical trials involving CAR-engineered NK (CAR-NK) cell therapy have exhibited promising efficacy with fewer deleterious side effects. This review aims to provide a concise overview of the cellular and molecular basis of NK cell biology, facilitating a better understanding of advancements in CAR design and manufacturing. The focus is on current approaches and strategies employed in CAR-NK cell development, exploring at both preclinical and clinical settings. We will reflect upon the achievements, advantages, and challenges intrinsic to CAR-NK cell therapy. Anticipating the maturation of CAR-NK cell therapy technology, we foresee its encouraging prospects for a broader range of cancer patients and other conditions. It is our belief that this CAR-NK progress will bring us closer to making significant strides in the treatment of refractory and recurrent cancers, as well as other immune-mediated disorders.
Collapse
Affiliation(s)
- Pin Yao
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Ya-Guang Liu
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Gang Huang
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Liangchun Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Runan Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
8
|
Obajdin J, Larcombe-Young D, Glover M, Kausar F, Hull CM, Flaherty KR, Tan G, Beatson RE, Dunbar P, Mazza R, Bove C, Taylor C, Bille A, Spillane KM, Cozzetto D, Vigilante A, Schurich A, Davies DM, Maher J. Solid tumor immunotherapy using NKG2D-based adaptor CAR T cells. Cell Rep Med 2024; 5:101827. [PMID: 39566469 PMCID: PMC11604534 DOI: 10.1016/j.xcrm.2024.101827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 09/03/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024]
Abstract
NKG2D ligands (NKG2DLs) are broadly expressed in cancer. To target these, we describe an adaptor chimeric antigen receptor (CAR) termed NKG2D/Dap10-12. Herein, T cells are engineered to co-express NKG2D with a fusion protein that comprises Dap10 joined to a Dap12 endodomain. NKG2D/Dap10-12 T cells elicit compelling efficacy, eradicating or controlling NKG2DL-expressing tumors in several established xenograft models. Importantly, durable responses, long-term survival, and rejection of tumor re-challenge are reproducibly achieved. Efficacy is markedly superior to a clinical stage CAR analog, comprising an NKG2D-CD3ζ fusion. Structure-function analysis using an extended CAR panel demonstrates that potency is dependent on membrane proximity of signaling units, high NKG2D cell surface expression, adaptor structure, provision of exogenous Dap10, and inclusion of one rather than three immune tyrosine activation motifs per signaling unit. Potent therapeutic impact of NKG2D/Dap10-12 T cells is also underpinned by enhanced oxidative phosphorylation, reduced senescence, and transcriptomic re-programming for increased ribosomal biogenesis.
Collapse
Affiliation(s)
- Jana Obajdin
- King's College London, School of Cancer and Pharmaceutical Sciences, CAR Mechanics Lab, London SE1 9RT, UK
| | - Daniel Larcombe-Young
- King's College London, School of Cancer and Pharmaceutical Sciences, CAR Mechanics Lab, London SE1 9RT, UK
| | - Maya Glover
- Leucid Bio Ltd, Guy's Hospital, London SE1 9RT, UK
| | | | | | - Katie R Flaherty
- King's College London, Department of Infectious Diseases, School of Immunology and Microbial Sciences, Guy's Hospital, London SE1 9RT, UK
| | - Ge Tan
- King's College London, School of Cancer and Pharmaceutical Sciences, CAR Mechanics Lab, London SE1 9RT, UK
| | - Richard E Beatson
- Department of Respiratory Medicine, Division of Medicinal Sciences, University College London, London, UK
| | | | | | - Camilla Bove
- Leucid Bio Ltd, Guy's Hospital, London SE1 9RT, UK
| | | | - Andrea Bille
- Department of Thoracic Surgery, Guy's and St. Thomas' NHS Trust Foundation, London SE1 9RT, UK
| | | | - Domenico Cozzetto
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Alessandra Vigilante
- King's College London, Centre for Stem Cells and Regenerative Medicine & Institute for Liver Studies, Guy's Hospital, London SE1 9RT, UK
| | - Anna Schurich
- King's College London, Department of Infectious Diseases, School of Immunology and Microbial Sciences, Guy's Hospital, London SE1 9RT, UK
| | | | - John Maher
- King's College London, School of Cancer and Pharmaceutical Sciences, CAR Mechanics Lab, London SE1 9RT, UK; Leucid Bio Ltd, Guy's Hospital, London SE1 9RT, UK; Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne, East Sussex BN21 2UD, UK.
| |
Collapse
|
9
|
Xu T, Tian T, Wang C, Chen X, Zuo X, Zhou H, Bai J, Zhao C, Fu S, Sun C, Wang T, Zhu L, Zhang J, Wang E, Sun M, Shu Y. Efficacy and safety of novel multiple-chain DAP-CAR-T cells targeting mesothelin in ovarian cancer and mesothelioma: a single-arm, open-label and first-in-human study. Genome Med 2024; 16:133. [PMID: 39548510 PMCID: PMC11568615 DOI: 10.1186/s13073-024-01405-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Despite remarkable achievements in applying chimeric antigen receptor (CAR)-T cells to treat hematological malignancies, they remain much less effective against solid tumors, facing several challenges affecting their clinical use. We previously showed that multichain DNAX-activating protein (DAP) CAR structures could enhance the safety and efficacy of CAR-T cells when used against solid tumors. In particular, mesothelin (MSLN)-targeted CAR-T cell therapy has therapeutic potential in MSLN-positive solid tumors, including ovarian cancer and mesothelioma. METHODS In vitro cell killing assays and xenograft model were utilized to determine the anti-tumor efficacy of MSLN targeting DAP-CAR-T cells and other CAR-T cells. ELISA and flow cytometry analysis were used to assess the cytokine secretion capacity and proliferation ability. Eight patients with MSLN expression were enrolled to evaluate the safety and efficacy of MSLN-DAP CAR-T cell therapy. Single-cell sequencing was performed to explore the dynamics of immune cells in patients during treatment and to identify the transcriptomic signatures associated with efficacy and toxicity. RESULTS We found that multichain DAP-CAR formed by combining a natural killer cell immunoglobulin-like receptor truncator and DAP12 exhibited better cytotoxicity and tumor-killing capacity than other natural killer cell-activated receptors associated with DAP12, DAP10, or CD3Z. The safety and efficacy of MSLN-DAP CAR-T cell therapy in patients with ovarian cancer and mesothelioma were evaluated in a single-arm, open-label clinical trial (ChiCTR2100046544); two patients achieved partial response, while four patients had a stable disease status. Furthermore, single-cell sequencing analysis indicated that KT032 CAR-T cell infusion could recruit more immune cells and temporarily remodel the TME. CONCLUSIONS Our study highlights the safety and therapeutic efficacy of multiple-chain DAP-CAR-T cell therapy targeting MSLN to treat patients with ovarian cancer and mesothelioma. TRIAL REGISTRATION ChiCTR.org.cn, ChiCTR2100046544 . May 21, 2021.
Collapse
Affiliation(s)
- Tongpeng Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.
| | - Tian Tian
- Department of Geriatric Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Chen Wang
- Nanjing CART Medical Technology Co., Ltd, Nanjing, 210032, People's Republic of China
| | - Xiaofeng Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Xiangrong Zuo
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Hanyu Zhou
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
- Department of Oncology, Gusu School, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, People's Republic of China
| | - Jianan Bai
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Chenhui Zhao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Sujie Fu
- The Second Affiliated Hospitalof , Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Chongqi Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Ting Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Ling Zhu
- Department of Oncology, Xishan People's Hospital of Wuxi City, Wuxi, People's Republic of China
| | - Jingzhi Zhang
- Nanjing CART Medical Technology Co., Ltd, Nanjing, 210032, People's Republic of China
| | - Enxiu Wang
- Nanjing CART Medical Technology Co., Ltd, Nanjing, 210032, People's Republic of China.
| | - Ming Sun
- Suzhou Cancer Center Core Laboratory, Gusu School, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, People's Republic of China.
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
10
|
Looi CK, Loo EM, Lim HC, Chew YL, Chin KY, Cheah SC, Goh BH, Mai CW. Revolutionizing the treatment for nasopharyngeal cancer: the impact, challenges and strategies of stem cell and genetically engineered cell therapies. Front Immunol 2024; 15:1484535. [PMID: 39450176 PMCID: PMC11499120 DOI: 10.3389/fimmu.2024.1484535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a distinct malignancy of the nasopharynx and is consistently associated with the Epstein-Barr virus (EBV) infection. Its unique anatomical location and complex aetiology often result in advanced-stage disease at first diagnosis. While radiotherapy (RT) and chemotherapy have been the mainstays of treatment, they often fail to prevent tumour recurrence and metastasis, leading to high rates of treatment failure and mortality. Recent advancement in cell-based therapies, such as chimeric antigen receptor (CAR)-T cell therapy, have shown great promise in hematological malignancies and are now being investigated for NPC. However, challenges such as targeting specific tumour antigens, limited T cell persistence and proliferation, and managing treatment-related toxicities must be addressed. Extensive research is needed to enhance the effectiveness and safety of these therapies, paving the way for their integration into standard clinical practice for better management of NPC and a better quality of life for human health.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Ee-Mun Loo
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
- Advanced Genomics Laboratory, AGTC Genomics, Kuala Lumpur, Malaysia
| | - Heng-Chee Lim
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Yik-Ling Chew
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Port Dickson, Negeri Sembilan, Malaysia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, China
| | - Chun-Wai Mai
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Serniuck NJ, Kapcan E, Moogk D, Moore AE, Lake BP, Denisova G, Hammill JA, Bramson JL, Rullo AF. Electrophilic proximity-inducing synthetic adapters enhance universal T cell function by covalently enforcing immune receptor signaling. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200842. [PMID: 39045028 PMCID: PMC11264187 DOI: 10.1016/j.omton.2024.200842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024]
Abstract
Proximity-induction of cell-cell interactions via small molecules represents an emerging field in basic and translational sciences. Covalent anchoring of these small molecules represents a useful chemical strategy to enforce proximity; however, it remains largely unexplored for driving cell-cell interactions. In immunotherapeutic applications, bifunctional small molecules are attractive tools for inducing proximity between immune effector cells like T cells and tumor cells to induce tumoricidal function. We describe a two-component system composed of electrophilic bifunctional small molecules and paired synthetic antigen receptors (SARs) that elicit T cell activation. The molecules, termed covalent immune recruiters (CIRs), were designed to affinity label and covalently engage SARs. We evaluated the utility of CIRs to direct anti-tumor function of human T cells engineered with three biologically distinct classes of SAR. Irrespective of the electrophilic chemistry, tumor-targeting moiety, or SAR design, CIRs outperformed equivalent non-covalent bifunctional adapters, establishing a key role for covalency in maximizing functionality. We determined that covalent linkage enforced early T cell activation events in a manner that was dependent upon each SARs biology and signaling threshold. These results provide a platform to optimize universal SAR-T cell functionality and more broadly reveal new insights into how covalent adapters modulate cell-cell proximity-induction.
Collapse
Affiliation(s)
- Nickolas J. Serniuck
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Eden Kapcan
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Duane Moogk
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Allyson E. Moore
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Benjamin P.M. Lake
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Galina Denisova
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Joanne A. Hammill
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jonathan L. Bramson
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Anthony F. Rullo
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
12
|
Xiong Y, Libby KA, Su X. The physical landscape of CAR-T synapse. Biophys J 2024; 123:2199-2210. [PMID: 37715447 PMCID: PMC11331049 DOI: 10.1016/j.bpj.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cells form dynamic immunological synapses with their cancer cell targets. After a CAR-antigen engagement, the CAR-T synapse forms, matures, and finally disassembles, accompanied by substantial remodeling of cell surface proteins, lipids, and glycans. In this review, we provide perspectives for understanding protein distribution, membrane topology, and force transmission across the CAR-T synapse. We highlight the features of CAR-T synapses that differ from T cell receptor synapses, including the disorganized protein pattern, adjustable synapse width, diverse mechano-responding properties, and resulting signaling consequences. Through a range of examples, we illustrate how revealing the biophysical nature of the CAR-T synapse could guide the design of CAR-Ts with improved anti-tumor function.
Collapse
Affiliation(s)
- Yiwei Xiong
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| | - Kendra A Libby
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut; Yale Cancer Center, Yale University, New Haven, Connecticut; Yale Stem Cell Center, Yale University, New Haven, Connecticut.
| |
Collapse
|
13
|
Taylor CA, Glover M, Maher J. CAR-T cell technologies that interact with the tumour microenvironment in solid tumours. Expert Rev Clin Immunol 2024; 20:849-871. [PMID: 39021098 DOI: 10.1080/1744666x.2024.2380894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
INTRODUCTION Chimeric antigen receptor (CAR) T-cells have emerged as a ground-breaking therapy for the treatment of hematological malignancies due to their capacity for rapid tumor-specific killing and long-lasting tumor immunity. However, the same success has not been observed in patients with solid tumors. Largely, this is due to the additional challenges imposed by safe and uniform target selection, inefficient CAR T-cell access to sites of disease and the presence of a hostile immunosuppressive tumor microenvironment. AREAS COVERED Literature was reviewed on the PubMed database from the first description of a CAR by Kuwana, Kurosawa and colleagues in December 1987 through to the present day. This literature indicates that in order to tackle solid tumors, CAR T-cells can be further engineered with additional armoring strategies that facilitate trafficking to and infiltration of malignant lesions together with reversal of suppressive immune checkpoints that operate within solid tumor lesions. EXPERT OPINION In this review, we describe a number of recent advances in CAR T-cell technology that set out to combat the problems imposed by solid tumors including tumor recruitment, infiltration, immunosuppression, metabolic compromise, and hypoxia.
Collapse
Affiliation(s)
| | | | - John Maher
- Leucid Bio Ltd, Guy's Hospital, London, UK
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, UK
- Department of Immunology, Eastbourne Hospital, Eastbourne, East Sussex, UK
| |
Collapse
|
14
|
Nie F, Chen Y, Hu Y, Huang P, Shi X, Cai J, Qiu M, Wang E, Lu K, Sun M. TREM1/DAP12 based novel multiple chain CAR-T cells targeting DLL3 show robust anti-tumour efficacy for small cell lung cancer. Immunology 2024; 172:362-374. [PMID: 38469682 DOI: 10.1111/imm.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Small cell lung cancer (SCLC), recognized as the most aggressive subtype of lung cancer, presents an extremely poor prognosis. Currently, patients with small cell lung cancer face a significant dearth of effective alternative treatment options once they experience recurrence and progression after first-line therapy. Despite the promising efficacy of immunotherapy, particularly immune checkpoint inhibitors in non-small cell lung cancer (NSCLC) and various other tumours, its impact on significantly enhancing the prognosis of SCLC patients remains elusive. DLL3 has emerged as a compelling target for targeted therapy in SCLC due to its high expression on the membranes of SCLC and other neuroendocrine carcinoma cells, with minimal to no expression in normal cells. Our previous work led to the development of a novel multiple chain chimeric antigen receptor (CAR) leveraging the TREM1 receptor and DAP12, which efficiently activated T cells and conferred potent cell cytotoxicity. In this study, we have developed a DLL3-TREM1/DAP12 CAR-T (DLL3-DT CAR-T) therapy, demonstrating comparable anti-tumour efficacy against SCLC cells in vitro. In murine xenograft and patient-derived xenograft models, DLL3-DT CAR-T cells exhibited a more robust tumour eradication efficiency than second-generation DLL3-BBZ CAR-T cells. Furthermore, we observed elevated memory phenotypes, induced durable responses, and activation under antigen-presenting cells in DLL3-DT CAR-T cells. Collectively, these findings suggest that DLL3-DT CAR-T cells may offer a novel and potentially effective therapeutic strategy for treating DLL3-expressing SCLC and other solid tumours.
Collapse
Affiliation(s)
- Fengqi Nie
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Oncology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yuli Chen
- Suzhou Cancer Center Core Laboratory, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yanming Hu
- Suzhou Cancer Center Core Laboratory, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Peng Huang
- Suzhou Cancer Center Core Laboratory, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, China
- Huzhou Key Laboratory of Precision Diagnosis and Treatment in Respiratory Diseases, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Jingsheng Cai
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital, Beijing, China
| | - Enxiu Wang
- Nanjing CART Medical Technology Co., Ltd., Nanjing, China
| | - Kaihua Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Sun
- Suzhou Cancer Center Core Laboratory, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
15
|
Valentić B, Kelly A, Shestov AA, Gan Z, Shen F, Chatoff A, Jaccard A, Crispim CV, Scholler J, Heeke S, Snyder NW, Ghassemi S, Jones N, Gill S, O'Connor RS. The Glucose Transporter 5 Enhances CAR-T Cell Metabolic Function and Anti-tumour Durability. RESEARCH SQUARE 2024:rs.3.rs-4342820. [PMID: 38766088 PMCID: PMC11100898 DOI: 10.21203/rs.3.rs-4342820/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Activated T cells undergo a metabolic shift to aerobic glycolysis to support the energetic demands of proliferation, differentiation, and cytolytic function. Transmembrane glucose flux is facilitated by glucose transporters (GLUT) that play a vital role in T cell metabolic reprogramming and anti-tumour function. GLUT isoforms are regulated at the level of expression and subcellular distribution. GLUTs also display preferential selectivity for carbohydrate macronutrients including glucose, galactose, and fructose. GLUT5, which selectively transports fructose over glucose, has never been explored as a genetic engineering strategy to enhance CAR-T cells in fructose-rich tumour environments. Fructose levels are significantly elevated in the bone marrow and the plasma of acute myeloid leukaemia (AML) patients. Here, we demonstrate that the expression of wild-type GLUT5 restores T cell metabolic fitness in glucose-free, high fructose conditions. We find that fructose supports maximal glycolytic capacity and ATP replenishment rates in GLUT5-expressing T cells. Using steady state tracer technology, we show that 13C6 fructose supports glycolytic reprogramming and TCA anaplerosis in CAR-T cells undergoing log phase expansion. In cytotoxicity assays, GLUT5 rescues T cell cytolytic function in glucose-free medium. The fructose/GLUT5 metabolic axis also supports maximal migratory velocity, which provides mechanistic insight into why GLUT5-expressing CAR-Ts have superior effector function as they undergo "hit-and-run" serial killing. These findings translate to superior anti-tumour function in a xenograft model of AML. In fact, we found that GLUT5 enhances CAR-T cell anti-tumour function in vivo without any need for fructose intervention. Accordingly, we hypothesize that GLUT5 is sufficient to enhance CAR-T resilience by increasing the cells' competitiveness for glucose at physiologic metabolite levels. Our findings have immediate translational relevance by providing the first evidence that GLUT5 confers a competitive edge in a fructose-enriched milieu, and is a novel approach to overcome glucose depletion in hostile tumour microenvironments (TMEs).
Collapse
Affiliation(s)
- Bakir Valentić
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andre Kelly
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander A Shestov
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhiyang Gan
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Feng Shen
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Haematology-Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam Chatoff
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Alison Jaccard
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Claudia V Crispim
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - John Scholler
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simon Heeke
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nathaniel W Snyder
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Saba Ghassemi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, UK
| | - Saar Gill
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Haematology-Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roddy S O'Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Cutri-French C, Nasioudis D, George E, Tanyi JL. CAR-T Cell Therapy in Ovarian Cancer: Where Are We Now? Diagnostics (Basel) 2024; 14:819. [PMID: 38667465 PMCID: PMC11049291 DOI: 10.3390/diagnostics14080819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The success of chimeric antigen receptor T-cell (CAR-T) therapies in the treatment of hematologic malignancies has led to the investigation of their potential in the treatment of solid tumors, including ovarian cancer. While the immunosuppressive microenvironment of ovarian cancer has been a barrier in their implementation, several early phase clinical trials are currently evaluating CAR-T cell therapies targeting mesothelin, folate receptor a, HER2, MUC16, and B7H3. Ongoing challenges include cytokine-associated and "on-target, off-tumor" toxicities, while most common adverse events include cytokine release syndrome, hemophagocytic lymphohistiocytosis/macrophage activation-like syndrome (HLH/MAS), and neurotoxicity. In the present review, we summarize the current status of CAR-T therapy in ovarian cancer and discuss future directions.
Collapse
Affiliation(s)
- Clare Cutri-French
- Department of Obstetrics and Gynecology, University of Pennsylvania Health System, Philadelphia, PA 19104, USA;
| | - Dimitrios Nasioudis
- Division of Gynecologic Oncology, University of Pennsylvania Health System, Philadelphia, PA 19104, USA
| | - Erin George
- Moffitt Cancer Center, Richard M. Schulze Family Foundation Outpatient Center at McKinley Campus, 10920 McKinley Dr, Tampa, FL 33612, USA
| | - Janos L. Tanyi
- Division of Gynecologic Oncology, University of Pennsylvania Health System, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Yu T, Nie FQ, Zhang Q, Yu SK, Zhang ML, Wang Q, Wang EX, Lu KH, Sun M. Effects of methionine deficiency on B7H3-DAP12-CAR-T cells in the treatment of lung squamous cell carcinoma. Cell Death Dis 2024; 15:12. [PMID: 38182561 PMCID: PMC10770166 DOI: 10.1038/s41419-023-06376-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
Lung squamous cell carcinoma (LUSC) is a subtype of lung cancer for which precision therapy is lacking. Chimeric antigen receptor T-cells (CAR-T) have the potential to eliminate cancer cells by targeting specific antigens. However, the tumor microenvironment (TME), characterized by abnormal metabolism could inhibit CAR-T function. Therefore, the aim of this study was to improve CAR-T efficacy in solid TME by investigating the effects of amino acid metabolism. We found that B7H3 was highly expressed in LUSC and developed DAP12-CAR-T targeting B7H3 based on our previous findings. When co-cultured with B7H3-overexpressing LUSC cells, B7H3-DAP12-CAR-T showed significant cell killing effects and released cytokines including IFN-γ and IL-2. However, LUSC cells consumed methionine (Met) in a competitive manner to induce a Met deficiency. CAR-T showed suppressed cell killing capacity, reduced cytokine release and less central memory T phenotype in medium with lower Met, while the exhaustion markers were up-regulated. Furthermore, the gene NKG7, responsible for T cell cytotoxicity, was downregulated in CAR-T cells at low Met concentration due to a decrease in m5C modification. NKG7 overexpression could partially restore the cytotoxicity of CAR-T in low Met. In addition, the anti-tumor efficacy of CAR-T was significantly enhanced when co-cultured with SLC7A5 knockdown LUSC cells at low Met concentration. In conclusion, B7H3 is a prospective target for LUSC, and B7H3-DAP12-CAR-T cells are promising for LUSC treatment. Maintaining Met levels in CAR-T may help overcome TME suppression and improve its clinical application potential.
Collapse
Affiliation(s)
- Tao Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Feng-Qi Nie
- Department of Oncology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qi Zhang
- Department of Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Shao-Kun Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Mei-Ling Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - Qian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China
| | - En-Xiu Wang
- Nanjing CART Medical Technology Co., Ltd, Nanjing, China
| | - Kai-Hua Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, China.
| | - Ming Sun
- Suzhou Cancer Center Core Laboratory, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.
| |
Collapse
|
18
|
Ebbinghaus M, Wittich K, Bancher B, Lebedeva V, Appelshoffer A, Femel J, Helm MS, Kollet J, Hardt O, Pfeifer R. Endogenous Signaling Molecule Activating (ESMA) CARs: A Novel CAR Design Showing a Favorable Risk to Potency Ratio for the Treatment of Triple Negative Breast Cancer. Int J Mol Sci 2024; 25:615. [PMID: 38203786 PMCID: PMC10779313 DOI: 10.3390/ijms25010615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
As chimeric antigen receptor (CAR) T cell therapy continues to gain attention as a valuable treatment option against different cancers, strategies to improve its potency and decrease the side effects associated with this therapy have become increasingly relevant. Herein, we report an alternative CAR design that incorporates transmembrane domains with the ability to recruit endogenous signaling molecules, eliminating the need for stimulatory signals within the CAR structure. These endogenous signaling molecule activating (ESMA) CARs triggered robust cytotoxic activity and proliferation of the T cells when directed against the triple-negative breast cancer (TNBC) cell line MDA-MB-231 while exhibiting reduced cytokine secretion and exhaustion marker expression compared to their cognate standard second generation CARs. In a NOD SCID Gamma (NSG) MDA-MB-231 xenograft mouse model, the lead candidate maintained longitudinal therapeutic efficacy and an enhanced T cell memory phenotype. Profound tumor infiltration by activated T cells repressed tumor growth, further manifesting the proliferative capacity of the ESMA CAR T cell therapy. Consequently, ESMA CAR T cells entail promising features for improved clinical outcome as a solid tumor treatment option.
Collapse
Affiliation(s)
- Mira Ebbinghaus
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany; (M.E.); (K.W.); (B.B.); (V.L.); (A.A.); (J.F.); (M.S.H.); (J.K.)
- School of Applied Biosciences and Chemistry, HAN University of Applied Sciences, 6525 EM Nijmegen, The Netherlands
| | - Katharina Wittich
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany; (M.E.); (K.W.); (B.B.); (V.L.); (A.A.); (J.F.); (M.S.H.); (J.K.)
| | - Benjamin Bancher
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany; (M.E.); (K.W.); (B.B.); (V.L.); (A.A.); (J.F.); (M.S.H.); (J.K.)
| | - Valeriia Lebedeva
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany; (M.E.); (K.W.); (B.B.); (V.L.); (A.A.); (J.F.); (M.S.H.); (J.K.)
| | - Anijutta Appelshoffer
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany; (M.E.); (K.W.); (B.B.); (V.L.); (A.A.); (J.F.); (M.S.H.); (J.K.)
| | - Julia Femel
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany; (M.E.); (K.W.); (B.B.); (V.L.); (A.A.); (J.F.); (M.S.H.); (J.K.)
| | - Martin S. Helm
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany; (M.E.); (K.W.); (B.B.); (V.L.); (A.A.); (J.F.); (M.S.H.); (J.K.)
| | - Jutta Kollet
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany; (M.E.); (K.W.); (B.B.); (V.L.); (A.A.); (J.F.); (M.S.H.); (J.K.)
| | - Olaf Hardt
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany; (M.E.); (K.W.); (B.B.); (V.L.); (A.A.); (J.F.); (M.S.H.); (J.K.)
| | - Rita Pfeifer
- Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany; (M.E.); (K.W.); (B.B.); (V.L.); (A.A.); (J.F.); (M.S.H.); (J.K.)
| |
Collapse
|
19
|
Albelda SM. CAR T cell therapy for patients with solid tumours: key lessons to learn and unlearn. Nat Rev Clin Oncol 2024; 21:47-66. [PMID: 37904019 DOI: 10.1038/s41571-023-00832-4] [Citation(s) in RCA: 154] [Impact Index Per Article: 154.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/01/2023]
Abstract
Chimeric antigen receptor (CAR) T cells have been approved for use in patients with B cell malignancies or relapsed and/or refractory multiple myeloma, yet efficacy against most solid tumours remains elusive. The limited imaging and biopsy data from clinical trials in this setting continues to hinder understanding, necessitating a reliance on imperfect preclinical models. In this Perspective, I re-evaluate current data and suggest potential pathways towards greater success, drawing lessons from the few successful trials testing CAR T cells in patients with solid tumours and the clinical experience with tumour-infiltrating lymphocytes. The most promising approaches include the use of pluripotent stem cells, co-targeting multiple mechanisms of immune evasion, employing multiple co-stimulatory domains, and CAR ligand-targeting vaccines. An alternative strategy focused on administering multiple doses of short-lived CAR T cells in an attempt to pre-empt exhaustion and maintain a functional effector pool should also be considered.
Collapse
Affiliation(s)
- Steven M Albelda
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Grover P, Nunez-Cruz S, Leferovich J, Wentz T, Bagchi A, Milone MC, Greene MI. F77 antigen is a promising target for adoptive T cell therapy of prostate cancer. Biochem Biophys Res Commun 2023; 680:51-60. [PMID: 37717341 PMCID: PMC10591779 DOI: 10.1016/j.bbrc.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Adoptive immunotherapy using chimeric antigen receptor (CAR) T cells has made significant success in treating hematological malignancies, paving the way for solid tumors like prostate cancer. However, progress is impeded by a paucity of suitable target antigens. A novel carbohydrate antigen, F77, is expressed on both androgen-dependent and androgen-independent prostate cancer cells, making it a potential immunotherapy target. This study entails the generation and evaluation of a second-generation CAR against a carbohydrate antigen on malignant prostate cancer cells. Using a single chain fragment variable (scFv) from an F77-specific mouse monoclonal antibody, we created second-generation CARs with CD28 and CD137 (4-1BB) costimulatory signals. F77 expressing lentiviral CAR T cells produce cytokines and kill tumor cells in a F77 expression-dependent manner. These F77-specific CAR T cells eradicate prostate tumors in a human xenograft model employing PC3 cells. These findings validate F77 as a promising immunotherapeutic target for prostate cancer and other malignancies with this aberrant carbohydrate structure.
Collapse
Affiliation(s)
- Payal Grover
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Selene Nunez-Cruz
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Leferovich
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tyra Wentz
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Atrish Bagchi
- Loxo Oncology @ Lilly, South San Francisco, CA, 94080, USA
| | - Michael C Milone
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mark I Greene
- Department of Pathology and Lab Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Garcia JM, Burnett CE, Roybal KT. Toward the clinical development of synthetic immunity to cancer. Immunol Rev 2023; 320:83-99. [PMID: 37491719 DOI: 10.1111/imr.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/07/2023] [Indexed: 07/27/2023]
Abstract
Synthetic biology (synbio) tools, such as chimeric antigen receptors (CARs), have been designed to target, activate, and improve immune cell responses to tumors. These therapies have demonstrated an ability to cure patients with blood cancers. However, there are significant challenges to designing, testing, and efficiently translating these complex cell therapies for patients who do not respond or have immune refractory solid tumors. The rapid progress of synbio tools for cell therapy, particularly for cancer immunotherapy, is encouraging but our development process should be tailored to increase translational success. Particularly, next-generation cell therapies should be rooted in basic immunology, tested in more predictive preclinical models, engineered for potency with the right balance of safety, educated by clinical findings, and multi-faceted to combat a range of suppressive mechanisms. Here, we lay out five principles for engineering future cell therapies to increase the probability of clinical impact, and in the context of these principles, we provide an overview of the current state of synbio cell therapy design for cancer. Although these principles are anchored in engineering immune cells for cancer therapy, we posit that they can help guide translational synbio research for broad impact in other disease indications with high unmet need.
Collapse
Affiliation(s)
- Julie M Garcia
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Department of Anesthesia, University of California, San Francisco, San Francisco, California, USA
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, California, USA
- UCSF Cell Design Institute, San Francisco, California, USA
| | - Cassandra E Burnett
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Department of Anesthesia, University of California, San Francisco, San Francisco, California, USA
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, California, USA
- UCSF Cell Design Institute, San Francisco, California, USA
| | - Kole T Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Department of Anesthesia, University of California, San Francisco, San Francisco, California, USA
- Gladstone-UCSF Institute for Genomic Immunology, San Francisco, California, USA
- UCSF Cell Design Institute, San Francisco, California, USA
| |
Collapse
|
22
|
Chen Y, Zhu X, Liu H, Wang C, Chen Y, Wang H, Fang Y, Wu X, Xu Y, Li C, Lv X, Huang J, Han X, Li R, Hong W, Yu Z, Wei W, Tu J. The application of HER2 and CD47 CAR-macrophage in ovarian cancer. J Transl Med 2023; 21:654. [PMID: 37740183 PMCID: PMC10517545 DOI: 10.1186/s12967-023-04479-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/28/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND The chimeric antigen receptor (CAR)-T therapy has a limited therapeutic effect on solid tumors owing to the limited CAR-T cell infiltration into solid tumors and the inactivation of CAR-T cells by the immunosuppressive tumor microenvironment. Macrophage is an important component of the innate and adaptive immunity, and its unique phagocytic function has been explored to construct CAR macrophages (CAR-Ms) against solid tumors. This study aimed to investigate the therapeutic application of CAR-Ms in ovarian cancer. METHODS In this study, we constructed novel CAR structures, which consisted of humanized anti-HER2 or CD47 scFv, CD8 hinge region and transmembrane domains, as well as the 4-1BB and CD3ζ intracellular domains. We examined the phagocytosis of HER2 CAR-M and CD47 CAR-M on ovarian cancer cells and the promotion of adaptive immunity. Two syngeneic tumor models were used to estimate the in vivo antitumor activity of HER2 CAR-M and CD47 CAR-M. RESULTS We constructed CAR-Ms targeting HER2 and CD47 and verified their phagocytic ability to ovarian cancer cells in vivo and in vitro. The constructed CAR-Ms showed antigen-specific phagocytosis of ovarian cancer cells in vitro and could activate CD8+ cytotoxic T lymphocyte (CTL) to secrete various anti-tumor factors. For the in vivo model, mice with human-like immune systems were used. We found that CAR-Ms enhanced CD8+ T cell activation, affected tumor-associated macrophage (TAM) phenotype, and led to tumor regression. CONCLUSIONS We demonstrated the inhibition effect of our constructed novel HER2 CAR-M and CD47 CAR-M on target antigen-positive ovarian cancer in vitro and in vivo, and preliminarily verified that this inhibitory effect is due to phagocytosis, promotion of adaptive immunity and effect on tumor microenvironment.
Collapse
Affiliation(s)
- Yizhao Chen
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, #81 Meishan Road, Shushan District, Hefei, China
| | - Xiangling Zhu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, #81 Meishan Road, Shushan District, Hefei, China
| | - Hanze Liu
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Shushan District, Hefei, China
| | - Cunzhi Wang
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Shushan District, Hefei, China
| | - Yu Chen
- Department of Gynecology, Health Science Center, The First Affiliated Hospital of Shenzhen University, #3002 Sungangxi Road, Futian District, Shenzhen, China
| | - Huihui Wang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, #81 Meishan Road, Shushan District, Hefei, China
| | - Yilong Fang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, #81 Meishan Road, Shushan District, Hefei, China
| | - Xuming Wu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, #81 Meishan Road, Shushan District, Hefei, China
| | - Yuting Xu
- Department of Gynecology, Health Science Center, The First Affiliated Hospital of Shenzhen University, #3002 Sungangxi Road, Futian District, Shenzhen, China
| | - Chunhua Li
- Department of Gynecology, Health Science Center, The First Affiliated Hospital of Shenzhen University, #3002 Sungangxi Road, Futian District, Shenzhen, China
| | - Xinyue Lv
- Department of Gynecology, Health Science Center, The First Affiliated Hospital of Shenzhen University, #3002 Sungangxi Road, Futian District, Shenzhen, China
| | - Jinghua Huang
- Department of Gynecology, Health Science Center, The First Affiliated Hospital of Shenzhen University, #3002 Sungangxi Road, Futian District, Shenzhen, China
| | - Xintong Han
- Department of Gynecology, Health Science Center, The First Affiliated Hospital of Shenzhen University, #3002 Sungangxi Road, Futian District, Shenzhen, China
| | - Ruilin Li
- Department of Pharmacy, The Third Affiliated Hospital of Anhui Medical University, Hefei First People's Hospital, Hefei, China
| | - Wenming Hong
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Shushan District, Hefei, China.
| | - Zhiying Yu
- Department of Gynecology, Health Science Center, The First Affiliated Hospital of Shenzhen University, #3002 Sungangxi Road, Futian District, Shenzhen, China.
- Shenzhen Second People's Hospital, #3002 Sungangxi Road, Futian District, Shenzhen, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, #81 Meishan Road, Shushan District, Hefei, China.
| | - Jiajie Tu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, #81 Meishan Road, Shushan District, Hefei, China.
| |
Collapse
|
23
|
Xu T, Wang C, Wang X, Wang E, Wang B, Sun M. A novel TREM1/DAP12-based multiple chain CAR-T cell targets PTK7 in ovarian cancer therapy. Med Oncol 2023; 40:226. [PMID: 37405498 DOI: 10.1007/s12032-023-02084-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023]
Abstract
While CAR-T cell therapy has shown success against hematological tumors, its effectiveness for solid tumors, including ovarian cancer, remains unsatisfactory. This study aimed to develop and evaluate the efficacy of novel chimeric antigen receptor T (CAR-T) cells targeting PTK7 through TREM1/DAP12 signaling against ovarian cancer. The expression of PTK7 in ovarian cancer tissues and cells was evaluated using immunohistochemical staining and flow cytometric analysis. The anti-tumor effects of PTK7 CAR-T cells were assessed in vitro using real-time cell analysis and enzyme-linked immunosorbent assay, and in vivo using a xenograft tumor model. PTK7 was significantly expressed in ovarian cancer tissues and cells. PTK7-targeting CAR-T cells based on TREM1/DAP12 signaling exhibited potent cytotoxicity against ovarian cancer cells expressing PTK7 in vitro, and effectively eradicated tumors in vivo. Our findings suggest that TREM1/DAP12-based PTK7 CAR-T cells have potential as a treatment strategy for ovarian cancer. Further studies are needed to evaluate the safety and efficacy of this approach in clinical trials.
Collapse
Affiliation(s)
- Tongpeng Xu
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chen Wang
- Nanjing CART Medical Technology Co., Ltd, Nanjing, 210032, People's Republic of China
| | - Xiaoyan Wang
- Reproductive Center, Qingdao Women and Children's Hospital, Qingdao Women and Children's Hospital Affiliated to Qingdao University, Qingdao, 266034, China
| | - Enxiu Wang
- Nanjing CART Medical Technology Co., Ltd, Nanjing, 210032, People's Republic of China.
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
- Clinical Pathological Diagnosis & Research Center, Youjiang Medical University for Nationalities, Baise, 533000, China.
- The Key Laboratory of Molecular Pathology (Hepatobiliary Diseases) of Guangxi, Baise, 533000, China.
| | - Bo Wang
- Department of Medical Oncology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China.
| | - Ming Sun
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou Municipal Hospital, Gusu School, Baita West Road #16, Suzhou, 215001, People's Republic of China.
| |
Collapse
|
24
|
Shahvali S, Rahiman N, Jaafari MR, Arabi L. Targeting fibroblast activation protein (FAP): advances in CAR-T cell, antibody, and vaccine in cancer immunotherapy. Drug Deliv Transl Res 2023; 13:2041-2056. [PMID: 36840906 DOI: 10.1007/s13346-023-01308-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 02/26/2023]
Abstract
Fibroblast activation protein (FAP) is a serine protease with dual enzymatic activities overexpressed in cancer-associated fibroblasts (CAFs) in several tumor types, while its expression in healthy adult tissues is scarce. FAP overexpression on CAFs is associated with poor prognosis and plays an important role in tumor development, progression, and invasion. Therefore, FAP is considered a robust therapeutic target for cancer therapy. Here, we try to review and highlight the recent advances in immunotherapies for FAP targeting including the anti-FAP antibodies and immunoconjugates, FAP chimeric antigen receptor (CAR)-T cell, and various FAP vaccines in a preclinical and clinical setting. Subsequently, a discussion on the challenges and prospects associated with the development and translation of effective and safe therapies for targeting and depletion of FAP is provided. We proposed that new CAR-T cell engineering strategies and nanotechnology-based systems as well as advanced functional biomaterials can be used to improve the efficiency and safety of CAR-T cells and vaccines against FAP for more personalized immunotherapy. This review emphasizes the immune targeting of FAP as an emerging stromal candidate and one of the crucial elements in immunotherapy and shows the potential for improvement of current cancer therapy. A summary of different immunotherapy approaches to target fibroblast activation protein (FAP) for cancer therapy.
Collapse
Affiliation(s)
- Sedigheh Shahvali
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloufar Rahiman
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Xu T, Wang C, Chen X, Bai J, Wang E, Sun M. Coexpression of c-Jun in multiple-chain DAP-CAR-engineered T-cells for solid tumor therapy. Immunotherapy 2022; 14:1457-1466. [PMID: 36597720 DOI: 10.2217/imt-2022-0171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aim: This work was designed to explore whether c-Jun overexpression could improve the persistence and antitumor efficacy of DAP chimeric antigen receptor T-cell (CAR-T) cells. Methods: The in vitro and in vivo antitumor effects of mesothelin (MSLN) targeting DAP-CAR-T cells were verified by ELISA, real-time cell analysis and in a xenograft model. Results: c-Jun overexpression did not affect DAP-CAR-T cell expansion while slightly increasing IL-2 secretion. Moreover, c-Jun did not improve the antitumor efficacy of DAP-CAR-T cells in vitro or in vivo, but reduced LAG3 expression and increased the ratio of Tcm and Tn/Tscm cells in vivo. Conclusion: The findings indicate that coexpression with c-Jun in DAP-CAR-T cells slightly improves T-cell exhaustion and central memory phenotype maintenance, which may be useful for DAP-CAR-T cell therapy in solid tumors.
Collapse
Affiliation(s)
- Tongpeng Xu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China
| | - Chen Wang
- Nanjing CART Medical Technology Co., Ltd, Nanjing, 210032, China
| | - Xiaomei Chen
- Nanjing CART Medical Technology Co., Ltd, Nanjing, 210032, China
| | - Jian Bai
- Nanjing CART Medical Technology Co., Ltd, Nanjing, 210032, China
| | - Enxiu Wang
- Nanjing CART Medical Technology Co., Ltd, Nanjing, 210032, China.,Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.,Clinical Pathological Diagnosis & Research Center, Youjiang Medical University for Nationalities, Baise, 533000, China.,The Key Laboratory of Molecular Pathology (Hepatobiliary Diseases) of Guangxi, Baise, 533000, China
| | - Ming Sun
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Baita West Road #16, Suzhou, 215001, China
| |
Collapse
|
26
|
Wei W, Yang D, Chen X, Liang D, Zou L, Zhao X. Chimeric antigen receptor T-cell therapy for T-ALL and AML. Front Oncol 2022; 12:967754. [PMID: 36523990 PMCID: PMC9745195 DOI: 10.3389/fonc.2022.967754] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/14/2022] [Indexed: 11/10/2023] Open
Abstract
Non-B-cell acute leukemia is a term that encompasses T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML). Currently, the therapeutic effectiveness of existing treatments for refractory or relapsed (R/R) non-B-cell acute leukemia is limited. In such situations, chimeric antigen receptor (CAR)-T cell therapy may be a promising approach to treat non-B-cell acute leukemia, given its promising results in B-cell acute lymphoblastic leukemia (B-ALL). Nevertheless, fratricide, malignant contamination, T cell aplasia for T-ALL, and specific antigen selection and complex microenvironment for AML remain significant challenges in the implementation of CAR-T therapy for T-ALL and AML patients in the clinic. Therefore, designs of CAR-T cells targeting CD5 and CD7 for T-ALL and CD123, CD33, and CLL1 for AML show promising efficacy and safety profiles in clinical trials. In this review, we summarize the characteristics of non-B-cell acute leukemia, the development of CARs, the CAR targets, and their efficacy for treating non-B-cell acute leukemia.
Collapse
Affiliation(s)
- Wenwen Wei
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
- Department of Medical Oncology of Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Dong Yang
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Xi Chen
- Department of Radiotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Dandan Liang
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Liqun Zou
- Department of Medical Oncology of Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xudong Zhao
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Mazinani M, Rahbarizadeh F. CAR-T cell potency: from structural elements to vector backbone components. Biomark Res 2022; 10:70. [PMID: 36123710 PMCID: PMC9487061 DOI: 10.1186/s40364-022-00417-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy, in which a patient’s own T lymphocytes are engineered to recognize and kill cancer cells, has achieved remarkable success in some hematological malignancies in preclinical and clinical trials, resulting in six FDA-approved CAR-T products currently available in the market. Once equipped with a CAR construct, T cells act as living drugs and recognize and eliminate the target tumor cells in an MHC-independent manner. In this review, we first described all structural modular of CAR in detail, focusing on more recent findings. We then pointed out behind-the-scene elements contributing to CAR expression and reviewed how CAR expression can be drastically affected by the elements embedded in the viral vector backbone.
Collapse
Affiliation(s)
- Marzieh Mazinani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran. .,Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
28
|
Chen K, Wang S, Qi D, Ma P, Fang Y, Jiang N, Wu E, Li N. Clinical Investigations of CAR-T Cell Therapy for Solid Tumors. Front Immunol 2022; 13:896685. [PMID: 35924243 PMCID: PMC9339623 DOI: 10.3389/fimmu.2022.896685] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cell therapy is a distinguished targeted immunotherapy with great potential to treat solid tumors in the new era of cancer treatment. Cell therapy products include genetically engineered cell products and non-genetically engineered cell products. Several recent cell therapies, especially chimeric antigen receptor (CAR)-T cell therapies, have been approved as novel treatment strategies for cancer. Many clinical trials on cell therapies, in the form of cell therapy alone or in combination with other treatments, in solid tumors, have been conducted or ongoing. However, there are still challenges since adverse events and the limited efficacy of cell therapies have also been observed. Here, we concisely summarize the clinical milestones of the conducted and ongoing clinical trials of cell therapy, introduce the evolution of CARs, discuss the challenges and limitations of these therapeutic modalities taking CAR-T as the main focus, and analyze the disparities in the regulatory policies in different countries.
Collapse
Affiliation(s)
- Kun Chen
- National Health Commission (NHC) Key Laboratory of Pulmonary Immune-Related Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Shuhang Wang
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Qi
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, United States
| | - Peiwen Ma
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Fang
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Jiang
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Erxi Wu
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, United States
- Texas A&M University Colleges of Medicine and Pharmacy, College Station, TX, United States
- LIVESTRONG Cancer Institutes and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Ning Li
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Yu T, Yu SK, Xiang Y, Lu KH, Sun M. Revolution of CAR Engineering For Next-Generation Immunotherapy In Solid Tumors. Front Immunol 2022; 13:936496. [PMID: 35903099 PMCID: PMC9315443 DOI: 10.3389/fimmu.2022.936496] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 01/01/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cells have enormous potentials for clinical therapies. The CAR-T therapy has been approved for treating hematological malignancies. However, their application is limited in solid tumors owing to antigen loss and mutation, physical barriers, and an immunosuppressive tumor microenvironment. To overcome the challenges of CAR-T, increasing efforts are put into developing CAR-T to expand its applied ranges. Varied receptors are utilized for recognizing tumor-associated antigens and relieving immunosuppression. Emerging co-stimulatory signaling is employed for CAR-T activation. Furthermore, other immune cells such as NK cells and macrophages have manifested potential for delivering CAR. Hence, we collected and summarized the last advancements of CAR engineering from three aspects, namely, the ectodomains, endogenous domains, and immune cells, aiming to inspire the design of next-generation adoptive immunotherapy for treating solid tumors.
Collapse
Affiliation(s)
- Tao Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shao-kun Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Xiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai-Hua Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Kai-Hua Lu, ; Ming Sun,
| | - Ming Sun
- Suzhou Cancer Center Core Laboratory, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- *Correspondence: Kai-Hua Lu, ; Ming Sun,
| |
Collapse
|
30
|
Gordon KS, Kyung T, Perez CR, Holec PV, Ramos A, Zhang AQ, Agarwal Y, Liu Y, Koch CE, Starchenko A, Joughin BA, Lauffenburger DA, Irvine DJ, Hemann MT, Birnbaum ME. Screening for CD19-specific chimaeric antigen receptors with enhanced signalling via a barcoded library of intracellular domains. Nat Biomed Eng 2022; 6:855-866. [PMID: 35710755 PMCID: PMC9389442 DOI: 10.1038/s41551-022-00896-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 05/03/2022] [Indexed: 02/06/2023]
Abstract
The immunostimulatory intracellular domains (ICDs) of chimaeric antigen receptors (CARs) are essential for converting antigen recognition into antitumoural function. Although there are many possible combinations of ICDs, almost all current CARs rely on combinations of CD3𝛇, CD28 and 4-1BB. Here we show that a barcoded library of 700,000 unique CD19-specific CARs with diverse ICDs cloned into lentiviral vectors and transduced into Jurkat T cells can be screened at high throughput via cell sorting and next-generation sequencing to optimize CAR signalling for antitumoural functions. By using this screening approach, we identified CARs with new ICD combinations that, compared with clinically available CARs, endowed human primary T cells with comparable tumour control in mice and with improved proliferation, persistence, exhaustion and cytotoxicity after tumour rechallenge in vitro. The screening strategy can be adapted to other disease models, cell types and selection conditions, and could be used to improve adoptive cell therapies and to expand their utility to new disease indications.
Collapse
Affiliation(s)
- Khloe S Gordon
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Taeyoon Kyung
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caleb R Perez
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Patrick V Holec
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Azucena Ramos
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Angela Q Zhang
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Health, Science, and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yash Agarwal
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yunpeng Liu
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Catherine E Koch
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alina Starchenko
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian A Joughin
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MIT, MGH and Harvard, Cambridge, MA, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MIT, MGH and Harvard, Cambridge, MA, USA
| | - Michael T Hemann
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael E Birnbaum
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore.
- Ragon Institute of MIT, MGH and Harvard, Cambridge, MA, USA.
| |
Collapse
|
31
|
Ex Vivo Generation of CAR Macrophages from Hematopoietic Stem and Progenitor Cells for Use in Cancer Therapy. Cells 2022; 11:cells11060994. [PMID: 35326445 PMCID: PMC8947001 DOI: 10.3390/cells11060994] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapies have shown impressive results in patients with hematological malignancies; however, little success has been achieved in the treatment of solid tumors. Recently, macrophages (MΦs) were identified as an additional candidate for the CAR approach, and initial proof of concept studies using peripheral blood-derived monocytes showed antigen-redirected activation of CAR MΦs. However, some patients may not be suitable for monocyte-apheresis, and prior cancer treatment regimens may negatively affect immune cell number and functionality. To address this problem, we here introduce primary human hematopoietic stem and progenitor cells (HSPCs) as a cell source to generate functional CAR MΦs ex vivo. Our data showed successful CAR expression in cord blood (CB)-derived HSPCs, with considerable cell expansion during differentiation to CAR MΦs. HSPC-derived MΦs showed typical MΦ morphology, phenotype, and basic anti-bacterial functionality. CAR MΦs targeting the carcinoembryonic antigen (CEA) and containing either a DAP12- or a CD3ζ-derived signaling domain showed antigen redirected activation as they secreted pro-inflammatory cytokines specifically upon contact with CEA+ target cells. In addition, CD3ζ-expressing CAR MΦs exhibited significantly enhanced phagocytosis of CEA+ HT1080 cells. Our data establish human HSPCs as a suitable cell source to generate functional CAR MΦs and further support the use of CAR MΦs in the context of solid tumor therapy.
Collapse
|
32
|
Andrea AE, Chiron A, Mallah S, Bessoles S, Sarrabayrouse G, Hacein-Bey-Abina S. Advances in CAR-T Cell Genetic Engineering Strategies to Overcome Hurdles in Solid Tumors Treatment. Front Immunol 2022; 13:830292. [PMID: 35211124 PMCID: PMC8861853 DOI: 10.3389/fimmu.2022.830292] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
During this last decade, adoptive transfer of T lymphocytes genetically modified to express chimeric antigen receptors (CARs) emerged as a valuable therapeutic strategy in hematological cancers. However, this immunotherapy has demonstrated limited efficacy in solid tumors. The main obstacle encountered by CAR-T cells in solid malignancies is the immunosuppressive tumor microenvironment (TME). The TME impedes tumor trafficking and penetration of T lymphocytes and installs an immunosuppressive milieu by producing suppressive soluble factors and by overexpressing negative immune checkpoints. In order to overcome these hurdles, new CAR-T cells engineering strategies were designed, to potentiate tumor recognition and infiltration and anti-cancer activity in the hostile TME. In this review, we provide an overview of the major mechanisms used by tumor cells to evade immune defenses and we critically expose the most optimistic engineering strategies to make CAR-T cell therapy a solid option for solid tumors.
Collapse
Affiliation(s)
- Alain E. Andrea
- Laboratoire de Biochimie et Thérapies Moléculaires, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut, Lebanon
| | - Andrada Chiron
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| | - Sarah Mallah
- Faculty of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Stéphanie Bessoles
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
| | - Guillaume Sarrabayrouse
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
| | - Salima Hacein-Bey-Abina
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| |
Collapse
|
33
|
Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F. Addressing the obstacles of CAR T cell migration in solid tumors: wishing a heavy traffic. Crit Rev Biotechnol 2021; 42:1079-1098. [PMID: 34957875 DOI: 10.1080/07388551.2021.1988509] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has been recognized as one of the most prosperous treatment options against certain blood-based malignancies. However, the same clinical and commercial success have been out of range in the case of solid tumors. The main contributing factor in this regard is the hostile environment the tumor cells impose that results in the exhaustion of immune effector cells alongside the abrogation of their infiltration capacity. The discovery of the underlying mechanisms and the development of reliable counterstrategies to overcome the inaccessibility of CAR-Ts to their target cells might correlate with encouraging clinical outcomes in advanced solid tumors. Here, we highlight the successive physical and metabolic barriers that systemically administered CAR-Ts face on their journey toward their target cells. Moreover, we propose meticulously-devised countertactics and combination therapies that can be applied to maximize the therapeutic benefits of CAR-T therapies against solid tumors.
Collapse
Affiliation(s)
- Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.,Student Research Committee, Medical Biotechnology Research Center, School of Nursing, Midwifery, and Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
34
|
Zhang Q, Hresko ME, Picton LK, Su L, Hollander MJ, Nunez-Cruz S, Zhang Z, Assenmacher CA, Sockolosky JT, Garcia KC, Milone MC. A human orthogonal IL-2 and IL-2Rβ system enhances CAR T cell expansion and antitumor activity in a murine model of leukemia. Sci Transl Med 2021; 13:eabg6986. [PMID: 34936380 PMCID: PMC9116279 DOI: 10.1126/scitranslmed.abg6986] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Interleukin-2 (IL-2) is a central T cell cytokine that promotes T cell proliferation and effector function; however, toxicity due to its pluripotency limits its application to enhance CAR T cell immunotherapy. Previously, mouse IL-2 and its cognate receptor were engineered to create an orthogonal (ortho) cytokine-cytokine receptor pair capable of delivering an IL-2 signal without toxicity. Here, we engineered a human orthogonal IL-2 (ortho-hIL-2) and human orthogonal IL-2Rβ (ortho-hIL-2Rβ) pair, containing human-specific mutations. Ortho-hIL-2 is selective toward ortho-hIL-2Rβ–expressing cells with no appreciable signaling on wild-type T cells. Ortho-hIL-2 induces IL-2 receptor signaling and supports proliferation of both an IL-2–dependent cell line and primary T cells transduced to express the ortho-hIL-2Rβ. Using CD19-specific chimeric antigen receptor (CAR) T cells, we show that ortho-hIL-2 induces a dose-dependent increase in ortho-hIL-2Rβ+ CAR T cell expansion in vivo by as much as 1000-fold at 2 weeks after adoptive transfer into immunodeficient mice bearing CD19+ Nalm6 leukemia xenografts. Ortho-hIL-2 can rescue the antileukemic effect of an otherwise suboptimal CAR T cell dose. In addition, ortho-hIL-2 administration initiated at the time of leukemic relapse after CAR T cell therapy can rescue an otherwise failed antileukemic response. These data highlight the potential of combining an orthogonal cytokine approach with T cell–based immunotherapies to augment the antitumor efficacy of engineered T cells.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Morgan E. Hresko
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Lora K Picton
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leon Su
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael J. Hollander
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Selene Nunez-Cruz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Zheng Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | | | - Jonathan T Sockolosky
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K. Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael C. Milone
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
35
|
Sun M, Xu P, Wang E, Zhou M, Xu T, Wang J, Wang Q, Wang B, Lu K, Wang C, Chen B. Novel two-chain structure utilizing KIRS2/DAP12 domain improves the safety and efficacy of CAR-T cells in adults with r/r B-ALL. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:96-106. [PMID: 34703879 PMCID: PMC8517091 DOI: 10.1016/j.omto.2021.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
Abstract
Engineered T cells that express chimeric antigen receptors (CARs) have been a promising therapy for hematologic malignancies. The optimization of CAR structure using different signaling domains can alter a wide range of CAR-T cell properties, including anti-tumor activity, long-term persistence, and safety. In this study, we developed a novel CAR structure based on KIRS2/Dap12 for B cell acute lymphoblastic leukemia (B-ALL) antigen CD19 and compared the anti-tumor efficacy and safety of this construct in transduced T cells with standard second-generation CAR-T cells targeting CD19 for B-ALL in vitro and in vivo and in adult relapsed/refractory (r/r) B-ALL patients. We discovered that KIRS2/Dap12 receptor infused with 4-1BB co-stimulation domain could enhance anti-tumor efficacy by remarkably increasing the production of pro-inflammatory interleukin-2 (IL-2), especially when co-cultured with antigen-positive tumor cells. In addition, CD19-KIRS2/Dap12-BB CAR-T cells showed the inspiring outcome that complete responses were seen in 4 of 4 (100%) patients without neurotoxicity and a high rate of severe cytokine release syndrome (CRS) after CAR-T infusion in a phase I clinical trial. Given these encouraging findings, CD19-KIRS2/Dap12-BB CAR-T cells are safe and can lead to clinical responses in adult patients with r/r B-ALL, indicating that further assessment of this therapy is warranted.
Collapse
Affiliation(s)
- Ming Sun
- Department of Oncology Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Suzhou, PR China.,Nanjing CART Medical Technology Co., Ltd., Nanjing 210032, PR China
| | - Peipei Xu
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, PR China.,Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nnajing 210008, PR China
| | - Enxiu Wang
- Nanjing CART Medical Technology Co., Ltd., Nanjing 210032, PR China.,Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, PR China.,Clinical Pathological Diagnosis & Research Center, Youjiang Medical University for Nationalities, Baise 533000, PR China.,The Key Laboratory of Molecular Pathology (Hepatobiliary Diseases) of Guangxi, Baise 533000, PR China
| | - Min Zhou
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, PR China
| | - Tongpeng Xu
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing, PR China
| | - Jing Wang
- Jiangsu Runtian Pharmaceutical Chain Pharmacy Co., Ltd., Nanjing 210000, PR China
| | - Qian Wang
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing, PR China
| | - Bo Wang
- Department of Medical Oncology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Kaihua Lu
- Department of Oncology, First Affiliated Hospital, Nanjing Medical University, Nanjing, PR China
| | - Chen Wang
- Nanjing CART Medical Technology Co., Ltd., Nanjing 210032, PR China.,Department of Research and Development, Nanjing Aide Institute of Immunotherapy, Nanjing 211808, PR China
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, PR China
| |
Collapse
|
36
|
Xiao BF, Zhang JT, Zhu YG, Cui XR, Lu ZM, Yu BT, Wu N. Chimeric Antigen Receptor T-Cell Therapy in Lung Cancer: Potential and Challenges. Front Immunol 2021; 12:782775. [PMID: 34790207 PMCID: PMC8591168 DOI: 10.3389/fimmu.2021.782775] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has exhibited a substantial clinical response in hematological malignancies, including B-cell leukemia, lymphoma, and multiple myeloma. Therefore, the feasibility of using CAR-T cells to treat solid tumors is actively evaluated. Currently, multiple basic research projects and clinical trials are being conducted to treat lung cancer with CAR-T cell therapy. Although numerous advances in CAR-T cell therapy have been made in hematological tumors, the technology still entails considerable challenges in treating lung cancer, such as on−target, of−tumor toxicity, paucity of tumor-specific antigen targets, T cell exhaustion in the tumor microenvironment, and low infiltration level of immune cells into solid tumor niches, which are even more complicated than their application in hematological tumors. Thus, progress in the scientific understanding of tumor immunology and improvements in the manufacture of cell products are advancing the clinical translation of these important cellular immunotherapies. This review focused on the latest research progress of CAR-T cell therapy in lung cancer treatment and for the first time, demonstrated the underlying challenges and future engineering strategies for the clinical application of CAR-T cell therapy against lung cancer.
Collapse
Affiliation(s)
- Bu-Fan Xiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jing-Tao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu-Ge Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xin-Run Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhe-Ming Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ben-Tong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Nan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
37
|
Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F. Optimizing the Clinical Impact of CAR-T Cell Therapy in B-Cell Acute Lymphoblastic Leukemia: Looking Back While Moving Forward. Front Immunol 2021; 12:765097. [PMID: 34777381 PMCID: PMC8581403 DOI: 10.3389/fimmu.2021.765097] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has been successful in creating extraordinary clinical outcomes in the treatment of hematologic malignancies including relapsed or refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL). With several FDA approvals, CAR-T therapy is recognized as an alternative treatment option for particular patients with certain conditions of B-ALL, diffuse large B-cell lymphoma, mantle cell lymphoma, follicular lymphoma, or multiple myeloma. However, CAR-T therapy for B-ALL can be surrounded by challenges such as various adverse events including the life-threatening cytokine release syndrome (CRS) and neurotoxicity, B-cell aplasia-associated hypogammaglobulinemia and agammaglobulinemia, and the alloreactivity of allogeneic CAR-Ts. Furthermore, recent advances such as improvements in media design, the reduction of ex vivo culturing duration, and other phenotype-determining factors can still create room for a more effective CAR-T therapy in R/R B-ALL. Herein, we review preclinical and clinical strategies with a focus on novel studies aiming to address the mentioned hurdles and stepping further towards a milestone in CAR-T therapy of B-ALL.
Collapse
Affiliation(s)
- Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.,Student Research Committee, Medical Biotechnology Research Center, School of Nursing, Midwifery, and Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
38
|
Tong C, Wang Y, Han WD. [Structural optimization and prospect of chimeric antigen receptor T cells]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:771-777. [PMID: 34753236 PMCID: PMC8607033 DOI: 10.3760/cma.j.issn.0253-2727.2021.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- C Tong
- The First Medical Center, The Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Y Wang
- The First Medical Center, The Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - W D Han
- The First Medical Center, The Chinese People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
39
|
CAR T-Cells Depend on the Coupling of NADH Oxidation with ATP Production. Cells 2021; 10:cells10092334. [PMID: 34571983 PMCID: PMC8472053 DOI: 10.3390/cells10092334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/29/2022] Open
Abstract
The metabolic milieu of solid tumors provides a barrier to chimeric antigen receptor (CAR) T-cell therapies. Excessive lactate or hypoxia suppresses T-cell growth, through mechanisms including NADH buildup and the depletion of oxidized metabolites. NADH is converted into NAD+ by the enzyme Lactobacillus brevis NADH Oxidase (LbNOX), which mimics the oxidative function of the electron transport chain without generating ATP. Here we determine if LbNOX promotes human CAR T-cell metabolic activity and antitumor efficacy. CAR T-cells expressing LbNOX have enhanced oxygen as well as lactate consumption and increased pyruvate production. LbNOX renders CAR T-cells resilient to lactate dehydrogenase inhibition. But in vivo in a model of mesothelioma, CAR T-cell's expressing LbNOX showed no increased antitumor efficacy over control CAR T-cells. We hypothesize that T cells in hostile environments face dual metabolic stressors of excessive NADH and insufficient ATP production. Accordingly, futile T-cell NADH oxidation by LbNOX is insufficient to promote tumor clearance.
Collapse
|
40
|
Shademan B, Karamad V, Nourazarian A, Avcı CB. CAR T Cells: Cancer Cell Surface Receptors Are the Target for Cancer Therapy. Adv Pharm Bull 2021; 12:476-489. [PMID: 35935042 PMCID: PMC9348524 DOI: 10.34172/apb.2022.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/12/2021] [Accepted: 08/17/2021] [Indexed: 11/09/2022] Open
Abstract
Immunotherapy has become a prominent strategy for the treatment of cancer. A method that improves the immune system's ability to attack a tumor (Enhances antigen binding). Targeted killing of malignant cells by adoptive transfer of chimeric antigen receptor (CAR) T cells is a promising immunotherapy technique in the treatment of cancers. For this purpose, the patient's immune cells, with genetic engineering aid, are loaded with chimeric receptors that have particular antigen binding and activate cytotoxic T lymphocytes. That increases the effectiveness of immune cells and destroying cancer cells. This review discusses the basic structure and function of CAR-T cells and how antigenic targets are identified to treat different cancers and address the disadvantages of this treatment for cancer.
Collapse
Affiliation(s)
- Behrouz Shademan
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Vahidreza Karamad
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Alireza Nourazarian
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Cigir Biray Avcı
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| |
Collapse
|
41
|
Zam W, Assaad A. Chimeric antigen receptor T-cells (CARs) in cancer treatment. Curr Mol Pharmacol 2021; 15:532-546. [PMID: 34382510 DOI: 10.2174/1874467214666210811150255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is one of the leading causes of death worldwide. Chemotherapy, radiation therapy, and stem cell transplantation were the main cancer treatment approaches for several years but due to their limited effectiveness, there was a constant search for new therapeutic approaches. Cancer immunotherapy that utilizes and enhances the normal capacity of the patient's immune system was used to fight against cancer. Genetically engineered T-cells that express chimeric antigen receptors (CARs) showed remarkable anti-tumor activity against hematologic malignancies and is now being investigated in a variety of solid tumors. The use of this therapy in the last few years has been successful, achieving a great success in improving the quality of life and prolonging the survival time of patients with a reduction in remission rates. However, many challenges still need to be resolved in order for this technology to gain widespread adoption. <P> Objective: This review summarizes various experimental approaches towards the use of CAR T-cells in hematologic malignancies and solid tumors. <P> Conclusion: Finally, we address the challenges posed by CAR T-cells and discuss strategies for improving the performance of these T cells in fighting cancers.
Collapse
Affiliation(s)
- Wissam Zam
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Al-Wadi International University, Homs. Syrian Arab Republic
| | - Amany Assaad
- 2. Department of Analytical and Food Chemistry, Faculty of Pharmacy,Tartous University, Tartous. Syrian Arab Republic
| |
Collapse
|
42
|
Bughda R, Dimou P, D'Souza RR, Klampatsa A. Fibroblast Activation Protein (FAP)-Targeted CAR-T Cells: Launching an Attack on Tumor Stroma. Immunotargets Ther 2021; 10:313-323. [PMID: 34386436 PMCID: PMC8354246 DOI: 10.2147/itt.s291767] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/20/2021] [Indexed: 12/23/2022] Open
Abstract
Fibroblast activation protein (FAP) is a membrane protease that is highly expressed by cancer-associated fibroblasts (CAFs). FAP can modulate the tumor microenvironment (TME) by remodeling the extracellular matrix (ECM), and its overexpression on CAFs is associated with poor prognosis in various cancers. The TME is in part accountable for the limited efficacy of chimeric antigen receptor (CAR)-T cell therapy in treatment of solid tumors. Targeting FAP with CAR-T cells is one of the strategies being researched to overcome the challenges in the TME. This review describes the role of FAP in the TME and its potential as a target in CAR-T cell immunotherapy, summarizes the preclinical studies and clinical trials of anti-FAP-CAR-T cells to date, and reviews possible optimizations to augment their cytotoxic efficiency in solid tumors.
Collapse
Affiliation(s)
- Reyisa Bughda
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Paraskevi Dimou
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Reena R D'Souza
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Astero Klampatsa
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| |
Collapse
|
43
|
Park CH. Making Potent CAR T Cells Using Genetic Engineering and Synergistic Agents. Cancers (Basel) 2021; 13:cancers13133236. [PMID: 34209505 PMCID: PMC8269169 DOI: 10.3390/cancers13133236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Immunotherapies are emerging as powerful weapons for the treatment of malignancies. Chimeric antigen receptor (CAR)-engineered T cells have shown dramatic clinical results in patients with hematological malignancies. However, it is still challenging for CAR T cell therapy to be successful in several types of blood cancer and most solid tumors. Many attempts have been made to enhance the efficacy of CAR T cell therapy by modifying the CAR construct using combination agents, such as compounds, antibodies, or radiation. At present, technology to improve CAR T cell therapy is rapidly developing. In this review, we particularly emphasize the most recent studies utilizing genetic engineering and synergistic agents to improve CAR T cell therapy.
Collapse
Affiliation(s)
- Chi Hoon Park
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Daejeon 34114, Korea; ; Tel.: +82-42-860-7416; Fax: +82-42-861-4246
- Medicinal & Pharmaceutical Chemistry, Korea University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
44
|
Akhoundi M, Mohammadi M, Sahraei SS, Sheykhhasan M, Fayazi N. CAR T cell therapy as a promising approach in cancer immunotherapy: challenges and opportunities. Cell Oncol (Dordr) 2021; 44:495-523. [PMID: 33759063 DOI: 10.1007/s13402-021-00593-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-modified T cell therapy has shown great potential in the immunotherapy of patients with hematologic malignancies. In spite of this striking achievement, there are still major challenges to overcome in CAR T cell therapy of solid tumors, including treatment-related toxicity and specificity. Also, other obstacles may be encountered in tackling solid tumors, such as their immunosuppressive microenvironment, the heterogeneous expression of cell surface markers, and the cumbersome arrival of T cells at the tumor site. Although several strategies have been developed to overcome these challenges, aditional research aimed at enhancing its efficacy with minimum side effects, the design of precise yet simplified work flows and the possibility to scale-up production with reduced costs and related risks is still warranted. CONCLUSIONS Here, we review main strategies to establish a balance between the toxicity and activity of CAR T cells in order to enhance their specificity and surpass immunosuppression. In recent years, many clinical studies have been conducted that eventually led to approved products. To date, the FDA has approved two anti-CD19 CAR T cell products for non-Hodgkin lymphoma therapy, i.e., axicbtagene ciloleucel and tisagenlecleucel. With all the advances that have been made in the field of CAR T cell therapy for hematologic malignancies therapy, ongoing studies are focused on optimizing its efficacy and specificity, as well as reducing the side effects. Also, the efforts are poised to broaden CAR T cell therapeutics for other cancers, especially solid tumors.
Collapse
Affiliation(s)
- Maryam Akhoundi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Mohammadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh Saeideh Sahraei
- Department of Reproductive Biology, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
| | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran.
| | - Nashmin Fayazi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
45
|
Schubert ML, Rohrbach R, Schmitt M, Stein-Thoeringer CK. The Potential Role of the Intestinal Micromilieu and Individual Microbes in the Immunobiology of Chimeric Antigen Receptor T-Cell Therapy. Front Immunol 2021; 12:670286. [PMID: 34135898 PMCID: PMC8200823 DOI: 10.3389/fimmu.2021.670286] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022] Open
Abstract
Cellular immunotherapy with chimeric antigen receptor (CAR)-T cells (CARTs) represents a breakthrough in the treatment of hematologic malignancies. CARTs are genetically engineered hybrid receptors that combine antigen-specificity of monoclonal antibodies with T cell function to direct patient-derived T cells to kill malignant cells expressing the target (tumor) antigen. CARTs have been introduced into clinical medicine as CD19-targeted CARTs for refractory and relapsed B cell malignancies. Despite high initial response rates, current CART therapies are limited by a long-term loss of antitumor efficacy, the occurrence of toxicities, and the lack of biomarkers for predicting therapy and toxicity outcomes. In the past decade, the gut microbiome of mammals has been extensively studied and evidence is accumulating that human health, apart from our own genome, largely depends on microbes that are living in and on the human body. The microbiome encompasses more than 1000 bacterial species who collectively encode a metagenome that guides multifaceted, bidirectional host-microbiome interactions, primarily through the action of microbial metabolites. Increasing knowledge has been accumulated on the role of the gut microbiome in T cell-driven anticancer immunotherapy. It has been shown that antibiotics, dietary components and gut microbes reciprocally affect the efficacy and toxicity of allogeneic hematopoietic cell transplantation (allo HCT) as the prototype of T cell-based immunotherapy for hematologic malignancies, and that microbiome diversity metrics can predict clinical outcomes of allo HCTs. In this review, we will provide a comprehensive overview of the principles of CD19-CART immunotherapy and major aspects of the gut microbiome and its modulators that impact antitumor T cell transfer therapies. We will outline i) the extrinsic and intrinsic variables that can contribute to the complex interaction of the gut microbiome and host in CART immunotherapy, including ii) antibiotic administration affecting loss of colonization resistance, expansion of pathobionts and disturbed mucosal and immunological homeostasis, and ii) the role of specific gut commensals and their microbial virulence factors in host immunity and inflammation. Although the role of the gut microbiome in CART immunotherapy has only been marginally explored so far, this review may open a new chapter and views on putative connections and mechanisms.
Collapse
Affiliation(s)
- Maria-Luisa Schubert
- Klinik fuer Haematologie, Onkologie und Rheumatologie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Roman Rohrbach
- Research Division Microbiome and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Michael Schmitt
- Klinik fuer Haematologie, Onkologie und Rheumatologie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Christoph K Stein-Thoeringer
- Research Division Microbiome and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany.,Klinik fuer Medizinische Onkologie, Nationales Centrum für Tumorerkrankungen (NCT), Heidelberg, Germany
| |
Collapse
|
46
|
Orvain C, Boulch M, Bousso P, Allanore Y, Avouac J. Is there a place for CAR-T cells in the treatment of chronic autoimmune rheumatic diseases? Arthritis Rheumatol 2021; 73:1954-1965. [PMID: 34042325 DOI: 10.1002/art.41812] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 05/11/2021] [Indexed: 11/09/2022]
Abstract
Chimeric-Antigen-Receptor T cell therapy or CAR-T cell is based on a specific targeting of tumor antigen leading to lysis and destruction of tumor cells development. CAR-T cells have demonstrated high potency for the management of B cell malignancies. This successful story was followed by the development of new CAR-T cell-derived constructions that have the ability to eradicate pathogenic B cells or restore tolerance. The objective of the herein manuscript is to review and discuss how the knowledge and technology generated by the use of CAR-T cells may be translated and integrated in the ongoing therapeutic strategies of autoimmune rheumatic diseases. To this end, we will introduce CAR-T cell technology, describe the meaningful achievements of CAR-T cells observed in onco-hematology and discuss preliminary data obtained with CAR-T cells and their derivative constructions in experimental models of autoimmune diseases. Then, we will focus on how CAR-T cell engineering is interfering with the pathogenesis of three chronic autoimmune rheumatic disorders - rheumatoid arthritis, systemic lupus erythematosus and systemic sclerosis - and discuss whether these constructs may permit to gain efficacy compared to current treatments and overcome their adverse events.
Collapse
Affiliation(s)
- Cindy Orvain
- INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France
| | - Morgane Boulch
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, 75015, Paris, France
| | - Philippe Bousso
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, 75015, Paris, France
| | - Yannick Allanore
- INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France.,Université de Paris, Université Paris Descartes, Paris, France.,Service de Rhumatologie, Hôpital Cochin, AP-HP.CUP, Paris, France
| | - Jérôme Avouac
- INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France.,Université de Paris, Université Paris Descartes, Paris, France.,Service de Rhumatologie, Hôpital Cochin, AP-HP.CUP, Paris, France
| |
Collapse
|
47
|
CAR T-cell therapy for pleural mesothelioma: Rationale, preclinical development, and clinical trials. Lung Cancer 2021; 157:48-59. [PMID: 33972125 DOI: 10.1016/j.lungcan.2021.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/17/2022]
Abstract
The aim of adoptive T-cell therapy is to promote tumor-infiltrating immune cells following the transfer of either tumor-harvested or genetically engineered T lymphocytes. A new chapter in adoptive T-cell therapy began with the success of chimeric antigen receptor (CAR) T-cell therapy. T cells harvested from peripheral blood are transduced with genetically engineered CARs that render the ability to recognize cancer cell-surface antigen and lyse cancer cells. The successes in CAR T-cell therapy for B-cell leukemia and lymphoma have led to efforts to expand this therapy to solid tumors. Herein, we discuss the rationale behind the preclinical development and clinical trials of T-cell therapies in patients with malignant pleural mesothelioma. Furthermore, we highlight the ongoing investigation of combination immunotherapy strategies to synergistically potentiate endogenous as well as adoptively transferred immunity.
Collapse
|
48
|
Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F, Khoshtinat Nikkhoi S. Strategies for Dodging the Obstacles in CAR T Cell Therapy. Front Oncol 2021; 11:627549. [PMID: 33869011 PMCID: PMC8047470 DOI: 10.3389/fonc.2021.627549] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has offered cancer patients a new alternative therapeutic choice in recent years. This novel type of therapy holds tremendous promise for the treatment of various hematologic malignancies including B-cell acute lymphoblastic leukemia (B-ALL) and lymphoma. However, CAR T cell therapy has experienced its ups and downs in terms of toxicities and efficacy shortcomings. Adverse events such as cytokine release syndrome (CRS), neurotoxicity, graft rejection, on-target off-tumor toxicities, and tumor relapse have tied the rescuing hands of CAR T cell therapies. Moreover, in the case of solid tumor treatment, CAR T cell therapies have not yielded encouraging results mainly due to challenges such as the formidable network of the tumor microenvironments (TME) that operates in a suppressive fashion resulting in CAR T cell dysfunction. In this review, we tend to shine a light on emerging strategies and solutions for addressing the mentioned barriers. These solutions might dramatically help shorten the gap between a successful clinical outcome and the hope for it.
Collapse
Affiliation(s)
- Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.,Student Research Committee, Medical Biotechnology Research Center, School of Nursing, Midwifery, and Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
49
|
Castelletti L, Yeo D, van Zandwijk N, Rasko JEJ. Anti-Mesothelin CAR T cell therapy for malignant mesothelioma. Biomark Res 2021; 9:11. [PMID: 33588928 PMCID: PMC7885509 DOI: 10.1186/s40364-021-00264-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/31/2021] [Indexed: 12/14/2022] Open
Abstract
Malignant mesothelioma (MM) is a treatment-resistant tumor originating in the mesothelial lining of the pleura or the abdominal cavity with very limited treatment options. More effective therapeutic approaches are urgently needed to improve the poor prognosis of MM patients. Chimeric Antigen Receptor (CAR) T cell therapy has emerged as a novel potential treatment for this incurable solid tumor. The tumor-associated antigen mesothelin (MSLN) is an attractive target for cell therapy in MM, as this antigen is expressed at high levels in the diseased pleura or peritoneum in the majority of MM patients and not (or very modestly) present in healthy tissues. Clinical trials using anti-MSLN CAR T cells in MM have shown that this potential therapeutic is relatively safe. However, efficacy remains modest, likely due to the MM tumor microenvironment (TME), which creates strong immunosuppressive conditions and thus reduces anti-MSLN CAR T cell tumor infiltration, efficacy and persistence. Various approaches to overcome these challenges are reviewed here. They include local (intratumoral) delivery of anti-MSLN CAR T cells, improved CAR design and co-stimulation, and measures to avoid T cell exhaustion. Combination therapies with checkpoint inhibitors as well as oncolytic viruses are also discussed. Preclinical studies have confirmed that increased efficacy of anti-MSLN CAR T cells is within reach and offer hope that this form of cellular immunotherapy may soon improve the prognosis of MM patients.
Collapse
Affiliation(s)
- Laura Castelletti
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District (SLHD), Camperdown, Australia
| | - Dannel Yeo
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District (SLHD), Camperdown, Australia
| | - Nico van Zandwijk
- Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District (SLHD), Camperdown, Australia.,Concord Repatriation General Hospital, Sydney Local Health District (SLHD), Concord, Australia
| | - John E J Rasko
- Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, Australia. .,Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia. .,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District (SLHD), Camperdown, Australia. .,Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, Australia.
| |
Collapse
|
50
|
Canzonetta C, Pelosi A, Di Matteo S, Veneziani I, Tumino N, Vacca P, Munari E, Pezzullo M, Theuer C, De Vito R, Pistoia V, Tomao L, Locatelli F, Moretta L, Caruana I, Azzarone B. Identification of neuroblastoma cell lines with uncommon TAZ +/mesenchymal stromal cell phenotype with strong suppressive activity on natural killer cells. J Immunother Cancer 2021; 9:jitc-2020-001313. [PMID: 33452207 PMCID: PMC7813384 DOI: 10.1136/jitc-2020-001313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background Neuroblastoma (NB) is the most common, extracranial childhood solid tumor arising from neural crest progenitor cells and is a primary cause of death in pediatric patients. In solid tumors, stromal elements recruited or generated by the cancer cells favor the development of an immune-suppressive microenvironment. Herein, we investigated in NB cell lines and in NB biopsies, the presence of cancer cells with mesenchymal phenotype and determined the immune-suppressive properties of these tumor cells on natural killer (NK) cells. Methods We assessed the mesenchymal stromal cell (MSC)-like phenotype and function of five human NB cell lines and the presence of this particular subset of neuroblasts in NB biopsies using flow-cytometry, immunohistochemistry, RT-qPCR, cytotoxicity assays, western blot and silencing strategy. We corroborated our data consulting a public gene-expression dataset. Results Two NB cell lines, SK-N-AS and SK-N-BE(2)C, exhibited an unprecedented MSC phenotype (CD105+/CD90+/CD73+/CD29+/CD146+/GD2+/TAZ+). In these NB-MSCs, the ectoenzyme CD73 and the oncogenic/immune-regulatory transcriptional coactivator TAZ were peculiar markers. Their MSC-like nature was confirmed by their adipogenic and osteogenic differentiation potential. Immunohistochemical analysis confirmed the presence of neuroblasts with MSC phenotype (CD105+/CD73+/TAZ+). Moreover, a public gene-expression dataset revealed that, in stage IV NB, a higher expression of TAZ and CD105 strongly correlated with a poorer outcome. Among the NB-cell lines analyzed, only NB-MSCs exhibited multifactorial resistance to NK-mediated lysis, inhibition of activating NK receptors, signal adaptors and of NK-cell cytotoxicity through cell-cell contact mediated mechanisms. The latter property was controlled partially by TAZ, since its silencing in NB cells efficiently rescued NK-cell cytotoxic activity, while its overexpression induced opposite effects in non-NB-MSC cells. Conclusions We identified a novel NB immunoregulatory subset that: (i) displayed phenotypic and functional properties of MSC, (ii) mediated multifactorial resistance to NK-cell-induced killing and (iii) efficiently inhibited, in coculture, the cytotoxic activity of NK cells against target cells through a TAZ-dependent mechanism. These findings indicate that targeting novel cellular and molecular components may disrupt the immunomodulatory milieu of the NB microenvironment ameliorating the response to conventional treatments as well as to advanced immunotherapeutic approaches, including adoptive transfer of NK cells and chimeric antigen receptor T or NK cells.
Collapse
Affiliation(s)
| | - Andrea Pelosi
- Immunology Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sabina Di Matteo
- Immunology Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Irene Veneziani
- Immunology Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Nicola Tumino
- Immunology Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paola Vacca
- Immunology Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Enrico Munari
- Pathology Department, IRCCS Sacro Cuore Don Calabria, Negrar, Verona, Veneto, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marco Pezzullo
- Core Facilities, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Rita De Vito
- Anatomical Pathology Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Vito Pistoia
- Immunology Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Luigi Tomao
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Gynaecology/Obstetrics and Paediatrics, Sapienza, University of Rome, Rome, Italy
| | - Lorenzo Moretta
- Immunology Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ignazio Caruana
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy .,Department of Paediatric Haematology, Oncology and Stem Cell Transplantation University Children's Hospital of Würzburg, Würzburg, Germany
| | - Bruno Azzarone
- Immunology Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|