1
|
Cordas Dos Santos DM, Toenges R, Bertamini L, Alberge JB, Ghobrial IM. New horizons in our understanding of precursor multiple myeloma and early interception. Nat Rev Cancer 2024:10.1038/s41568-024-00755-x. [PMID: 39414947 DOI: 10.1038/s41568-024-00755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/18/2024]
Abstract
Multiple myeloma is an incurable plasma cell malignancy that evolves over decades through the selection and malignant transformation of monoclonal plasma cells. The evolution from precursor states to symptomatic disease is characterized by an increasing complexity of genomic alterations within the plasma cells and a remodelling of the microenvironment towards an immunosuppressive state. Notably, in patients with advanced disease, similar mechanisms of tumour escape and immune dysfunction mediate resistance to modern T cell-based therapies, such as T cell-engaging bispecific antibodies and chimeric antigen receptor (CAR)-T cells. Thus, an increasing number of clinical trials are assessing the efficiency and safety of these therapies in individuals with newly diagnosed multiple myeloma and high-risk smoldering multiple myeloma. In this Review, we summarize the current knowledge about tumour intrinsic and extrinsic processes underlying progression from precursor states to symptomatic myeloma and discuss the rationale for early interception including the use of T cell-redirecting therapies.
Collapse
Affiliation(s)
- David M Cordas Dos Santos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Rosa Toenges
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Luca Bertamini
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Hematology, Erasmus MC Cancer Institute Rotterdam, Rotterdam, The Netherlands
| | - Jean-Baptiste Alberge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
2
|
Barzegari A, Salemi F, Kamyab A, Aratikatla A, Nejati N, Valizade M, Eltouny E, Ebrahimi A. The efficacy and applicability of chimeric antigen receptor (CAR) T cell-based regimens for primary bone tumors: A comprehensive review of current evidence. J Bone Oncol 2024; 48:100635. [PMID: 39381633 PMCID: PMC11460493 DOI: 10.1016/j.jbo.2024.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
Primary bone tumors (PBT), although rare, could pose significant mortality and morbidity risks due to their high incidence of lung metastasis. Survival rates of patients with PBTs may vary based on the tumor type, therapeutic interventions, and the time of diagnosis. Despite advances in the management of patients with these tumors over the past four decades, the survival rates seem not to have improved significantly, implicating the need for novel therapeutic interventions. Surgical resection with wide margins, radiotherapy, and systemic chemotherapy are the main lines of treatment for PBTs. Neoadjuvant and adjuvant chemotherapy, along with emerging immunotherapeutic approaches such as chimeric antigen receptor (CAR)-T cell therapy, have the potential to improve the treatment outcomes for patients with PBTs. CAR-T cell therapy has been introduced as an option in hematologic malignancies, with FDA approval for several CD19-targeting CAR-T cell products. This review aims to highlight the potential of immunotherapeutic strategies, specifically CAR T cell therapy, in managing PBTs.
Collapse
Affiliation(s)
| | - Fateme Salemi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Adarsh Aratikatla
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, County Dublin, Ireland
| | - Negar Nejati
- Pediatric Cell and Gene Therapy Research Centre, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Iran
| | - Mojgan Valizade
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehab Eltouny
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Alireza Ebrahimi
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Kailayangiri S, Altvater B, Farwick N, Meltzer J, Hartmann W, Rossig C. Protocol for assessing GD2 on formalin-fixed paraffin-embedded tissue sections using immunofluorescence staining. STAR Protoc 2024; 5:103199. [PMID: 39046881 PMCID: PMC11321291 DOI: 10.1016/j.xpro.2024.103199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
The detection of disialoganglioside GD2 on tumor biopsies, especially in paraffin-embedded tissues, has been challenging due to the glycolipid structure of GD2 and its membrane anchorage. Here, we present an immunofluorescence protocol for the reliable assessment of GD2 on formalin-fixed paraffin-embedded (FFPE) tissues. We describe steps for antigen retrieval with Tris-EDTA buffer and staining with unconjugated anti-GD2 antibody (clone 14.G2a) and horse radish peroxidase (HRP)-conjugated secondary antibody. We then detail procedures for signal amplification using the tyramide signal amplification technique. For complete details on the use and execution of this protocol, please refer to Fischer-Riepe et al.1.
Collapse
Affiliation(s)
- Sareetha Kailayangiri
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Nicole Farwick
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Jutta Meltzer
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute of Pathology, University of Muenster, Muenster, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Institute of Transfusion Medicine and Cell Therapy, University Hospital Muenster, Muenster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany.
| |
Collapse
|
4
|
Kang X, Mita N, Zhou L, Wu S, Yue Z, Babu RJ, Chen P. Nanotechnology in Advancing Chimeric Antigen Receptor T Cell Therapy for Cancer Treatment. Pharmaceutics 2024; 16:1228. [PMID: 39339264 PMCID: PMC11435308 DOI: 10.3390/pharmaceutics16091228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as a groundbreaking treatment for hematological cancers, yet it faces significant hurdles, particularly regarding its efficacy in solid tumors and concerning associated adverse effects. This review provides a comprehensive analysis of the advancements and ongoing challenges in CAR-T therapy. We highlight the transformative potential of nanotechnology in enhancing CAR-T therapy by improving targeting precision, modulating the immune-suppressive tumor microenvironment, and overcoming physical barriers. Nanotechnology facilitates efficient CAR gene delivery into T cells, boosting transfection efficiency and potentially reducing therapy costs. Moreover, nanotechnology offers innovative solutions to mitigate cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Cutting-edge nanotechnology platforms for real-time monitoring of CAR-T cell activity and cytokine release are also discussed. By integrating these advancements, we aim to provide valuable insights and pave the way for the next generation of CAR-T cell therapies to overcome current limitations and enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Xuejia Kang
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
| | - Nur Mita
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
- Faculty of Pharmacy, Mulawarman University, Samarinda 75119, Kalimantan Timur, Indonesia
| | - Lang Zhou
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
| | - Siqi Wu
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
| | - Zongliang Yue
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
| |
Collapse
|
5
|
Pérez-Peláez B, Jiménez-Cortegana C, de la Cruz-Merino L, Sánchez-Margalet V. Role of Nutrients Regulating Myeloid Derived Suppressor Cells in Cancer: A Scoping Review. Curr Issues Mol Biol 2024; 46:9286-9297. [PMID: 39329901 PMCID: PMC11429620 DOI: 10.3390/cimb46090549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature cells with an immunosuppressive function. MDSCs have been related to inflammation in many settings, including infections, transplantation, obesity, aging, or cancer. In oncological settings, MDSCs participate in tumor immunoescape, growth, and metastasis. Certain nutrients can modify chronic inflammation by their interaction with MDSCs. Therefore, the possible influence of certain nutrients on immune surveillance by their actions on MDSCs and how this may affect the prognosis of cancer patients were evaluated in this scoping review. We identified seven papers, six of which were murine model studies and only one was a human clinical trial. Globally, a significant reduction in cancer growth and progression was observed after achieving a reduction in both MDSCs and their immunosuppressive ability with nutrients such as selected vegetables, icaritin, retinoic acid, curdlan, active vitamin D, soy isoflavones, and green tea. In conclusion, the consumption of certain nutrients may have effects on MDSCs, with beneficial results not only in the prevention of tumor development and growth but also in improving patients' response.
Collapse
Affiliation(s)
- Beatriz Pérez-Peláez
- Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, Clinical Biochemistry Service, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, Clinical Biochemistry Service, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Department of Medicine, School of Medicine, Clinical Oncology Service, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, CSIC, University of Seville, 41013 Seville, Spain
| | - Víctor Sánchez-Margalet
- Department of Medicine, School of Medicine, Clinical Oncology Service, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, CSIC, University of Seville, 41013 Seville, Spain
| |
Collapse
|
6
|
Fischer-Riepe L, Kailayangiri S, Zimmermann K, Pfeifer R, Aigner M, Altvater B, Kretschmann S, Völkl S, Hartley J, Dreger C, Petry K, Bosio A, von Döllen A, Hartmann W, Lode H, Görlich D, Mackensen A, Jungblut M, Schambach A, Abken H, Rossig C. Preclinical Development of CAR T Cells with Antigen-Inducible IL18 Enforcement to Treat GD2-Positive Solid Cancers. Clin Cancer Res 2024; 30:3564-3577. [PMID: 38593230 DOI: 10.1158/1078-0432.ccr-23-3157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 01/30/2024] [Indexed: 04/11/2024]
Abstract
PURPOSE Cytokine-engineering of chimeric antigen receptor-redirected T cells (CAR T cells) is a promising principle to overcome the limited activity of canonical CAR T cells against solid cancers. EXPERIMENTAL DESIGN We developed an investigational medicinal product, GD2IL18CART, consisting of CAR T cells directed against ganglioside GD2 with CAR-inducible IL18 to enhance their activation response and cytolytic effector functions in the tumor microenvironment. To allow stratification of patients according to tumor GD2 expression, we established and validated immunofluorescence detection of GD2 on paraffin-embedded tumor tissues. RESULTS Lentiviral all-in-one vector engineering of human T cells with the GD2-specific CAR with and without inducible IL18 resulted in cell products with comparable proportions of CAR-expressing central memory T cells. Production of IL18 strictly depends on GD2 antigen engagement. GD2IL18CART respond to interaction with GD2-positive tumor cells with higher IFNγ and TNFα cytokine release and more effective target cytolysis compared with CAR T cells without inducible IL18. GD2IL18CART further have superior in vivo antitumor activity, with eradication of GD2-positive tumor xenografts. Finally, we established GMP-compliant manufacturing of GD2IL18CART and found it to be feasible and efficient at clinical scale. CONCLUSIONS These results pave the way for clinical investigation of GD2IL18CART in pediatric and adult patients with neuroblastoma and other GD2-positive cancers (EU CT 2022- 501725-21-00). See related commentary by Locatelli and Quintarelli, p. 3361.
Collapse
Affiliation(s)
- Lena Fischer-Riepe
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Sareetha Kailayangiri
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Katharina Zimmermann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Rita Pfeifer
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Michael Aigner
- Department of Internal Medicine 5 - Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Sascha Kretschmann
- Department of Internal Medicine 5 - Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Simon Völkl
- Department of Internal Medicine 5 - Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jordan Hartley
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy (LIT) and University of Regensburg, Regensburg, Germany
| | - Celine Dreger
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy (LIT) and University of Regensburg, Regensburg, Germany
| | - Katja Petry
- Miltenyi Biomedicine GmbH, Bergisch Gladbach, Germany
| | - Andreas Bosio
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Angelika von Döllen
- Institute of Transfusion Medicine and Cell Therapy, University Hospital Muenster, Muenster, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute of Pathology, University of Muenster, Muenster, Germany
| | - Holger Lode
- Pediatric Hematology-Oncology Department, University Medicine Greifswald, Greifswald, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Muenster
| | - Andreas Mackensen
- Department of Internal Medicine 5 - Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Hinrich Abken
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy (LIT) and University of Regensburg, Regensburg, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
- Institute of Transfusion Medicine and Cell Therapy, University Hospital Muenster, Muenster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
7
|
Das AK, Sinha M, Singh SK, Chaudhary A, Boro AK, Agrawal M, Bhardwaj S, Kishore S, Kumari K. CAR T-cell therapy: a potential treatment strategy for pediatric midline gliomas. Acta Neurol Belg 2024; 124:1251-1261. [PMID: 38669002 DOI: 10.1007/s13760-024-02519-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/24/2024] [Indexed: 07/25/2024]
Abstract
Pediatric brain tumors are the primary cause of death in children with cancer. Diffuse midline glioma (DMG) and diffuse intrinsic pontine glioma (DIPG) are frequently unresectable due to their difficult access location, and 5-year survival remains less than 20%. Despite significant advances in tumor biology and genetics, treatment options remain limited and ineffective. Immunotherapy using T cells with a chimeric antigen receptor (CAR) that has been genetically engineered is quickly emerging as a new treatment option for these patients. High levels of expression were detected for both disialoganglioside (GD2) and B7-H3 in pediatric DMG/DIPG. Numerous studies have been conducted in recent years employing various generations of GD2-CAR T cells. The two most prevalent adverse effects found with this therapy are cytokine release syndrome, which varies in severity from mild constitutional symptoms to a high-grade disease associated with potentially fatal multi-organ failure, and neurotoxicity, known as CAR T-cell-related encephalopathy syndrome. During the acute phase of anticancer action, peri-tumoral neuro-inflammation might cause deadly hydrocephalus. The initial results of clinical trials show that the outcomes are not highly encouraging as B cell malignancies and myelomas. In vivo research on CAR T-cell therapy for DIPG has yielded encouraging results, but in human trials, the early results have shown potentially fatal side effects and very modest, but fleeting improvements. Solid tumors present a hindrance to CAR T-cell therapy because of the antigenic dilemma and the strong immune-suppressing tumor microenvironment.
Collapse
Affiliation(s)
- Anand Kumar Das
- All India Institute of Medical Sciences, Phulwari Sharif, Patna, Bihar, 801507, India
| | - Mainak Sinha
- All India Institute of Medical Sciences, Phulwari Sharif, Patna, Bihar, 801507, India
| | - Saraj Kumar Singh
- All India Institute of Medical Sciences, Phulwari Sharif, Patna, Bihar, 801507, India.
| | | | | | - Manish Agrawal
- SMS Medical College and Hospital, Jaipur, Rajasthan, India
| | - Sona Bhardwaj
- ESIC Medical College and Hospital, Patna, Bihar, India
| | - Simmi Kishore
- Indira Gandhi Institute of Medical Sciences, Patna, Bihar, India
| | - Katyayani Kumari
- Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
8
|
Spiga M, Martini E, Maffia MC, Ciceri F, Ruggiero E, Potenza A, Bonini C. Harnessing the tumor microenvironment to boost adoptive T cell therapy with engineered lymphocytes for solid tumors. Semin Immunopathol 2024; 46:8. [PMID: 39060547 DOI: 10.1007/s00281-024-01011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/18/2024] [Indexed: 07/28/2024]
Abstract
Adoptive cell therapy (ACT) using Chimeric Antigen Receptor (CAR) and T Cell Receptor (TCR) engineered T cells represents an innovative therapeutic approach for the treatment of hematological malignancies, yet its application for solid tumors is still suboptimal. The tumor microenvironment (TME) places several challenges to overcome for a satisfactory therapeutic effect, such as physical barriers (fibrotic capsule and stroma), and inhibitory signals impeding T cell function. Some of these obstacles can be faced by combining ACT with other anti-tumor approaches, such as chemo/radiotherapy and checkpoint inhibitors. On the other hand, cutting edge technological tools offer the opportunity to overcome and, in some cases, take advantage of TME intrinsic characteristics to boost ACT efficacy. These include: the exploitation of chemokine gradients and integrin expression for preferential T-cell homing and extravasation; metabolic changes that have direct or indirect effects on TCR-T and CAR-T cells by increasing antigen presentation and reshaping T cell phenotype; introduction of additional synthetic receptors on TCR-T and CAR-T cells with the aim of increasing T cells survival and fitness.
Collapse
Affiliation(s)
- Martina Spiga
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Martini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Chiara Maffia
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessia Potenza
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Chiara Bonini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
9
|
Dreyzin A, Rankin AW, Luciani K, Gavrilova T, Shah NN. Overcoming the challenges of primary resistance and relapse after CAR-T cell therapy. Expert Rev Clin Immunol 2024; 20:745-763. [PMID: 38739466 PMCID: PMC11180598 DOI: 10.1080/1744666x.2024.2349738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION While CAR T-cell therapy has led to remarkable responses in relapsed B-cell hematologic malignancies, only 50% of patients ultimately have a complete, sustained response. Understanding the mechanisms of resistance and relapse after CAR T-cell therapy is crucial to future development and improving outcomes. AREAS COVERED We review reasons for both primary resistance and relapse after CAR T-cell therapies. Reasons for primary failure include CAR T-cell manufacturing problems, suboptimal fitness of autologous T-cells themselves, and intrinsic features of the underlying cancer and tumor microenvironment. Relapse after initial response to CAR T-cell therapy may be antigen-positive, due to CAR T-cell exhaustion or limited persistence, or antigen-negative, due to antigen-modulation on the target cells. Finally, we discuss ongoing efforts to overcome resistance to CAR T-cell therapy with enhanced CAR constructs, manufacturing methods, alternate cell types, combinatorial strategies, and optimization of both pre-infusion conditioning regimens and post-infusion consolidative strategies. EXPERT OPINION There is a continued need for novel approaches to CAR T-cell therapy for both hematologic and solid malignancies to obtain sustained remissions. Opportunities for improvement include development of new targets, optimally combining existing CAR T-cell therapies, and defining the role for adjunctive immune modulators and stem cell transplant in enhancing long-term survival.
Collapse
Affiliation(s)
- Alexandra Dreyzin
- Pediatric Oncology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Pediatric Oncology, Children's National Hospital, Washington DC, USA
| | - Alexander W Rankin
- Pediatric Oncology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katia Luciani
- School of Medicine, University of Limerick, Limerick, Ireland
| | | | - Nirali N Shah
- Pediatric Oncology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Zhong H, Zhou S, Yin S, Qiu Y, Liu B, Yu H. Tumor microenvironment as niche constructed by cancer stem cells: Breaking the ecosystem to combat cancer. J Adv Res 2024:S2090-1232(24)00251-0. [PMID: 38866179 DOI: 10.1016/j.jare.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/27/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are a distinct subpopulation of cancer cells with the capacity to constantly self-renew and differentiate, and they are the main driver in the progression of cancer resistance and relapse. The tumor microenvironment (TME) constructed by CSCs is the "soil" adapted to tumor growth, helping CSCs evade immune killing, enhance their chemical resistance, and promote cancer progression. AIM OF REVIEW We aim to elaborate the tight connection between CSCs and immunosuppressive components of the TME. We attempt to summarize and provide a therapeutic strategy to eradicate CSCs based on the destruction of the tumor ecological niche. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three main key concepts. First, we highlight that CSCs recruit and transform normal cells to construct the TME, which further provides ecological niche support for CSCs. Second, we describe the main characteristics of the immunosuppressive components of the TME, targeting strategies and summarize the progress of corresponding drugs in clinical trials. Third, we explore the multilevel insights of the TME to serve as an ecological niche for CSCs.
Collapse
Affiliation(s)
- Hao Zhong
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Shiyue Zhou
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Shuangshuang Yin
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Haiyang Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, China.
| |
Collapse
|
11
|
Liang H, Cui M, Tu J, Chen X. Advancements in osteosarcoma management: integrating immune microenvironment insights with immunotherapeutic strategies. Front Cell Dev Biol 2024; 12:1394339. [PMID: 38915446 PMCID: PMC11194413 DOI: 10.3389/fcell.2024.1394339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
Osteosarcoma, a malignant bone tumor predominantly affecting children and adolescents, presents significant therapeutic challenges, particularly in metastatic or recurrent cases. Conventional surgical and chemotherapeutic approaches have achieved partial therapeutic efficacy; however, the prognosis for long-term survival remains bleak. Recent studies have highlighted the imperative for a comprehensive exploration of the osteosarcoma immune microenvironment, focusing on the integration of diverse immunotherapeutic strategies-including immune checkpoint inhibitors, tumor microenvironment modulators, cytokine therapies, tumor antigen-specific interventions, cancer vaccines, cellular therapies, and antibody-based treatments-that are directly pertinent to modulating this intricate microenvironment. By targeting tumor cells, modulating the tumor microenvironment, and activating host immune responses, these innovative approaches have demonstrated substantial potential in enhancing the effectiveness of osteosarcoma treatments. Although most of these novel strategies are still in research or clinical trial phases, they have already demonstrated significant potential for individuals with osteosarcoma, suggesting the possibility of developing new, more personalized and effective treatment options. This review aims to provide a comprehensive overview of the current advancements in osteosarcoma immunotherapy, emphasizing the significance of integrating various immunotherapeutic methods to optimize therapeutic outcomes. Additionally, it underscores the imperative for subsequent research to further investigate the intricate interactions between the tumor microenvironment and the immune system, aiming to devise more effective treatment strategies. The present review comprehensively addresses the landscape of osteosarcoma immunotherapy, delineating crucial scientific concerns and clinical challenges, thereby outlining potential research directions.
Collapse
Affiliation(s)
- Hang Liang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Cui
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Zhou D, Zhu X, Xiao Y. Advances in research on factors affecting chimeric antigen receptor T-cell efficacy. Cancer Med 2024; 13:e7375. [PMID: 38864474 PMCID: PMC11167615 DOI: 10.1002/cam4.7375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy is becoming an effective technique for the treatment of patients with relapsed/refractory hematologic malignancies. After analyzing patients with tumor progression and sustained remission after CAR-T cell therapy, many factors were found to be associated with the efficacy of CAR-T therapy. This paper reviews the factors affecting the effect of CAR-T such as tumor characteristics, tumor microenvironment and immune function of patients, CAR-T cell structure, construction method and in vivo expansion values, lymphodepletion chemotherapy, and previous treatment, and provides a preliminary outlook on the corresponding therapeutic strategies.
Collapse
Affiliation(s)
- Delian Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
13
|
Butterfield LH, Najjar YG. Immunotherapy combination approaches: mechanisms, biomarkers and clinical observations. Nat Rev Immunol 2024; 24:399-416. [PMID: 38057451 PMCID: PMC11460566 DOI: 10.1038/s41577-023-00973-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
The approval of the first immune checkpoint inhibitors provided a paradigm shift for the treatment of malignancies across a broad range of indications. Whereas initially, single-agent immune checkpoint inhibition was used, increasing numbers of patients are now treated with combination immune checkpoint blockade, where non-redundant mechanisms of action of the individual agents generally lead to higher response rates. Furthermore, immune checkpoint therapy has been combined with various other therapeutic modalities, including chemotherapy, radiotherapy and other immunotherapeutics such as vaccines, adoptive cellular therapies, cytokines and others, in an effort to maximize clinical efficacy. Currently, a large number of clinical trials test combination therapies with an immune checkpoint inhibitor as a backbone. However, proceeding without inclusion of broad, if initially exploratory, biomarker investigations may ultimately slow progress, as so far, few combinations have yielded clinical successes based on clinical data alone. Here, we present the rationale for combination therapies and discuss clinical data from clinical trials across the immuno-oncology spectrum. Moreover, we discuss the evolution of biomarker approaches and highlight the potential new directions that comprehensive biomarker studies can yield.
Collapse
Affiliation(s)
- Lisa H Butterfield
- University of California San Francisco, Microbiology and Immunology, San Francisco, CA, USA.
| | | |
Collapse
|
14
|
Perzolli A, Koedijk JB, Zwaan CM, Heidenreich O. Targeting the innate immune system in pediatric and adult AML. Leukemia 2024; 38:1191-1201. [PMID: 38459166 PMCID: PMC11147779 DOI: 10.1038/s41375-024-02217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
While the introduction of T cell-based immunotherapies has improved outcomes in many cancer types, the development of immunotherapies for both adult and pediatric AML has been relatively slow and limited. In addition to the need to identify suitable target antigens, a better understanding of the immunosuppressive tumor microenvironment is necessary for the design of novel immunotherapy approaches. To date, most immune characterization studies in AML have focused on T cells, while innate immune lineages such as monocytes, granulocytes and natural killer (NK) cells, received less attention. In solid cancers, studies have shown that innate immune cells, such as macrophages, myeloid-derived suppressor cells and neutrophils are highly plastic and may differentiate into immunosuppressive cells depending on signals received in their microenvironment, while NK cells appear to be functionally impaired. Hence, an in-depth characterization of the innate immune compartment in the TME is urgently needed to guide the development of immunotherapeutic interventions for AML. In this review, we summarize the current knowledge on the innate immune compartment in AML, and we discuss how targeting its components may enhance T cell-based- and other immunotherapeutic approaches.
Collapse
Affiliation(s)
- Alicia Perzolli
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC/Sophia Children's Hospital, 3015 GD, Rotterdam, The Netherlands
| | - Joost B Koedijk
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC/Sophia Children's Hospital, 3015 GD, Rotterdam, The Netherlands
| | - C Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus MC/Sophia Children's Hospital, 3015 GD, Rotterdam, The Netherlands
| | - Olaf Heidenreich
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands.
- Wolfson Childhood Cancer Research Centre, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
15
|
Murphy C, Devis-Jauregui L, Struck R, Boloix A, Gallagher C, Gavin C, Cottone F, Fernandez AS, Madden S, Roma J, Segura MF, Piskareva O. In vivo cisplatin-resistant neuroblastoma metastatic model reveals tumour necrosis factor receptor superfamily member 4 (TNFRSF4) as an independent prognostic factor of survival in neuroblastoma. PLoS One 2024; 19:e0303643. [PMID: 38809883 PMCID: PMC11135766 DOI: 10.1371/journal.pone.0303643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Neuroblastoma is the most common solid extracranial tumour in children. Despite major advances in available therapies, children with drug-resistant and/or recurrent neuroblastoma have a dismal outlook with 5-year survival rates of less than 20%. Therefore, tackling relapsed tumour biology by developing and characterising clinically relevant models is a priority in finding targetable vulnerability in neuroblastoma. Using matched cisplatin-sensitive KellyLuc and resistant KellyCis83Luc cell lines, we developed a cisplatin-resistant metastatic MYCN-amplified neuroblastoma model. The average number of metastases per mouse was significantly higher in the KellyCis83Luc group than in the KellyLuc group. The vast majority of sites were confirmed as having lymph node metastasis. Their stiffness characteristics of lymph node metastasis values were within the range reported for the patient samples. Targeted transcriptomic profiling of immuno-oncology genes identified tumour necrosis factor receptor superfamily member 4 (TNFRSF4) as a significantly dysregulated MYCN-independent gene. Importantly, differential TNFRSF4 expression was identified in tumour cells rather than lymphocytes. Low TNFRSF4 expression correlated with poor prognostic indicators in neuroblastoma, such as age at diagnosis, stage, and risk stratification and significantly associated with reduced probability of both event-free and overall survival in neuroblastoma. Therefore, TNFRSF4 Low expression is an independent prognostic factor of survival in neuroblastoma.
Collapse
Affiliation(s)
- Catherine Murphy
- Department of Anatomy and Regenerative Medicine, Cancer Bioengineering Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Laura Devis-Jauregui
- Faculty of Medicine, Cell Biology Unit, Department of Pathology and Experimental Therapeutics, University of Barcelona, Campus Bellvitge, Feixa Llarga s/n, L’Hospitalet de Llobregat, Spain
| | - Ronja Struck
- Department of Anatomy and Regenerative Medicine, Cancer Bioengineering Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Ariadna Boloix
- Vall d’Hebron Research Institute, Group of Childhood Cancer & Blood Disorders, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ciara Gallagher
- Department of Anatomy and Regenerative Medicine, Cancer Bioengineering Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Cian Gavin
- Department of Anatomy and Regenerative Medicine, Cancer Bioengineering Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Federica Cottone
- Department of Anatomy and Regenerative Medicine, Cancer Bioengineering Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Aroa Soriano Fernandez
- Vall d’Hebron Research Institute, Group of Childhood Cancer & Blood Disorders, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Stephen Madden
- Data Science Centre, School of Population Health, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Josep Roma
- Vall d’Hebron Research Institute, Group of Childhood Cancer & Blood Disorders, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miguel F. Segura
- Vall d’Hebron Research Institute, Group of Childhood Cancer & Blood Disorders, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olga Piskareva
- Department of Anatomy and Regenerative Medicine, Cancer Bioengineering Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| |
Collapse
|
16
|
Zhu Y, Wang K, Yue L, Zuo D, Sheng J, Lan S, Zhao Z, Dong S, Hu S, Chen X, Feng M. Mesothelin CAR-T cells expressing tumor-targeted immunocytokine IL-12 yield durable efficacy and fewer side effects. Pharmacol Res 2024; 203:107186. [PMID: 38641176 DOI: 10.1016/j.phrs.2024.107186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Chimeric antigen receptor (CAR)-modified T cell therapy has achieved remarkable efficacy in treating hematological malignancies, but it confronts many challenges in treating solid tumors, such as the immunosuppressive microenvironment of the solid tumors. These factors reduce the antitumor activity of CAR-T cells in clinical trials. Therefore, we used the immunocytokine interleukin-12 (IL-12) to enhance the efficacy of CAR-T cell therapy. In this study, we engineered CAR-IL12R54 T cells that targeted mesothelin (MSLN) and secreted a single-chain IL-12 fused to a scFv fragment R54 that recognized a different epitope on mesothelin. The evaluation of the anti-tumor activity of the CAR-IL12R54 T cells alone or in combination with anti-PD-1 antibody in vitro and in vivo was followed by the exploration of the functional mechanism by which the immunocytokine IL-12 enhanced the antitumor activity. CAR-IL12R54 T cells had potency to lyse mesothelin positive tumor cells in vitro. In vivo studies demonstrated that CAR-IL12R54 T cells were effective in controlling the growth of established tumors in a xenograft mouse model with fewer side effects than CAR-T cells that secreted naked IL-12. Furthermore, combination of PD-1 blockade antibody with CAR-IL12R54 T cells elicited durable anti-tumor responses. Mechanistic studies showed that IL12R54 enhanced Interferon-γ (IFN-γ) production and dampened the activity of regulatory T cells (Tregs). IL12R54 also upregulated CXCR6 expression in the T cells through the NF-κB pathway, which facilitated T cell infiltration and persistence in the tumor tissues. In summary, the studies provide a good therapeutic option for the clinical treatment of solid tumors.
Collapse
Affiliation(s)
- Yuankui Zhu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ke Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Linghe Yue
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dianbao Zuo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Junfeng Sheng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Sina Lan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zilong Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shuang Dong
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Sheng Hu
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China.
| | - Xin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Mingqian Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
17
|
Yu T, Jiang W, Wang Y, Zhou Y, Jiao J, Wu M. Chimeric antigen receptor T cells in the treatment of osteosarcoma (Review). Int J Oncol 2024; 64:40. [PMID: 38390935 PMCID: PMC10919759 DOI: 10.3892/ijo.2024.5628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Osteosarcoma (OS) is a frequently occurring primary bone tumor, mostly affecting children, adolescents and young adults. Before 1970, surgical resection was the main treatment method for OS, but the clinical results were not promising. Subsequently, the advent of chemotherapy has improved the prognosis of patients with OS. However, there is still a high incidence of metastasis or recurrence, and chemotherapy has several side effects, thus making the 5‑year survival rate markedly low. Recently, chimeric antigen receptor T (CAR‑T) cell therapy represents an alternative immunotherapy approach with significant potential for hematologic malignancies. Nevertheless, the application of CAR‑T cells in the treatment of OS faces numerous challenges. The present review focused on the advances in the development of CAR‑T cells to improve their clinical efficacy, and discussed ways to overcome the difficulties faced by CAR T‑cell therapy for OS.
Collapse
Affiliation(s)
- Tong Yu
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Weibo Jiang
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yang Wang
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Ying Zhou
- Department of Operating Room, The Third Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, P.R. China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Minfei Wu
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
18
|
Shen K, Yang L, Ke S, Gao W. Visual analysis of bone malignancies immunotherapy: A bibliometric analysis from 2010 to 2023. Medicine (Baltimore) 2024; 103:e37269. [PMID: 38552042 PMCID: PMC10977522 DOI: 10.1097/md.0000000000037269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/24/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Bone malignancies (BM), including osteosarcoma, Ewing's sarcoma, chondrosarcoma, and chordoma, are characterized by high rates of recurrence and mortality, despite the availability of diverse treatment approaches. Immunotherapy has gained increasing importance in cancer treatment. However, there is a lack of comprehensive studies that utilize bibliometric analysis to explore immunotherapy for BM. METHODS A literature search of English studies on BM and immunotherapy from 2010 to 2023 was conducted in the Web of Science Core Collection database. Bibliometric analysis tools such as VOSviewer, CiteSpace, and R Studio were utilized to examine global trends and research hotspots in this field. RESULTS A total of 719 eligible articles, including 528 original research articles and 191 reviews, were analyzed. The number of publications has shown an increasing trend over the past 14 years, particularly in the last 5 years. The majority of the published articles on this topic originated from China (284 articles), followed by the United States and Japan. The institution with the highest number of publications and citations was the University of Texas MD Anderson Cancer Center (30 articles; 1638 citations). Dean A. Lee (12 articles) and Richard Gorlick (576 citations) were the authors with the highest contribution in terms of article count and citation count, respectively. Among these journals, Frontiers in Oncology had the highest number of articles (39 articles), while the Journal of Clinical Oncology had the highest number of citations (1878 citations). Additionally, there has been a shift in the keywords from "antitumor activity" and "NK cells" to popular topics such as "PD-L1," "open label," and "single arm." CONCLUSION A better understanding of the current status and prospects of immunotherapy for BM is crucial for the rationale selection of appropriate BM patients for immunotherapy. This study is expected to help clinical physicians and researchers gain comprehensive insights into the developmental trends of BM immunotherapy, providing practical guidance for the application of immunotherapy in BM patients.
Collapse
Affiliation(s)
- Kaiyu Shen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Liu Yang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuaiyi Ke
- Department of Internal Medicine, XianJu People’s Hospital, XianJu, China
| | - Wencang Gao
- Department of Oncology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
19
|
Philippova J, Shevchenko J, Sennikov S. GD2-targeting therapy: a comparative analysis of approaches and promising directions. Front Immunol 2024; 15:1371345. [PMID: 38558810 PMCID: PMC10979305 DOI: 10.3389/fimmu.2024.1371345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Disialoganglioside GD2 is a promising target for immunotherapy with expression primarily restricted to neuroectodermal and epithelial tumor cells. Although its role in the maintenance and repair of neural tissue is well-established, its functions during normal organism development remain understudied. Meanwhile, studies have shown that GD2 plays an important role in tumorigenesis. Its functions include proliferation, invasion, motility, and metastasis, and its high expression and ability to transform the tumor microenvironment may be associated with a malignant phenotype. Structurally, GD2 is a glycosphingolipid that is stably expressed on the surface of tumor cells, making it a suitable candidate for targeting by antibodies or chimeric antigen receptors. Based on mouse monoclonal antibodies, chimeric and humanized antibodies and their combinations with cytokines, toxins, drugs, radionuclides, nanoparticles as well as chimeric antigen receptor have been developed. Furthermore, vaccines and photoimmunotherapy are being used to treat GD2-positive tumors, and GD2 aptamers can be used for targeting. In the field of cell therapy, allogeneic immunocompetent cells are also being utilized to enhance GD2 therapy. Efforts are currently being made to optimize the chimeric antigen receptor by modifying its design or by transducing not only αβ T cells, but also γδ T cells, NK cells, NKT cells, and macrophages. In addition, immunotherapy can combine both diagnostic and therapeutic methods, allowing for early detection of disease and minimal residual disease. This review discusses each immunotherapy method and strategy, its advantages and disadvantages, and highlights future directions for GD2 therapy.
Collapse
Affiliation(s)
| | | | - Sergey Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
20
|
Li G, Wang H, Meftahpour V. Overall review of curative impact and barriers of CAR-T cells in osteosarcoma. EXCLI JOURNAL 2024; 23:364-383. [PMID: 38655095 PMCID: PMC11036068 DOI: 10.17179/excli2023-6760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/27/2024] [Indexed: 04/26/2024]
Abstract
Osteosarcoma (OS) is a rare form of cancer and primary bone malignancy in children and adolescents. Current therapies include surgery, chemotherapy, and amputation. Therefore, a new therapeutic strategy is needed to dramatically change cancer treatment. Recently, chimeric antigen receptor T cells (CAR-T cells) have been of considerable interest as it has provided auspicious results and patients suffering from low side effects after injection that resolve with current therapy. However, there are reports that cytokine release storm (CRS) can be observed in some patients. In addition, as researchers have faced problems that limit and suppress T cells, further studies are required to resolve these problems. In addition, to maximize the therapeutic benefit of CAR-T cell therapy, researchers have suggested that combination therapy could be better used to treat cancer by overcoming any problems and reducing side effects as much as possible. This review summarizes these problems, barriers, and the results of some studies on the evaluation of CAR-T cells in patients with osteosarcoma.
Collapse
Affiliation(s)
- Guilin Li
- Xinyang Vocational and Technical College, Xinyang Henan 464000 China
| | - Hong Wang
- Xinyang Vocational and Technical College, Xinyang Henan 464000 China
| | - Vafa Meftahpour
- Medical Immunology, Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
21
|
Cheng S, Wang H, Kang X, Zhang H. Immunotherapy Innovations in the Fight against Osteosarcoma: Emerging Strategies and Promising Progress. Pharmaceutics 2024; 16:251. [PMID: 38399305 PMCID: PMC10892906 DOI: 10.3390/pharmaceutics16020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Immunosuppressive elements within the tumor microenvironment are the primary drivers of tumorigenesis and malignant advancement. The presence, as well as the crosstalk between myeloid-derived suppressor cells (MDSCs), osteosarcoma-associated macrophages (OS-Ms), regulatory T cells (Tregs), and endothelial cells (ECs) with osteosarcoma cells cause the poor prognosis of OS. In addition, the consequent immunosuppressive factors favor the loss of treatment potential. Nanoparticles offer a means to dynamically and locally manipulate immuno-nanoparticles, which present a promising strategy for transforming OS-TME. Additionally, chimeric antigen receptor (CAR) technology is effective in combating OS. This review summarizes the essential mechanisms of immunosuppressive cells in the OS-TME and the current immune-associated strategies. The last part highlights the limitations of existing therapies and offers insights into future research directions.
Collapse
Affiliation(s)
- Shigao Cheng
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Orthopedics, Hunan Loudi Central Hospital, Loudi 417000, China
| | - Huiyuan Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Hui Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
22
|
Ong SY, Chen Y, Tan MSY, Ho AYL, Hwang WYK, Lim FLWI. Current perspectives on resistance to chimeric antigen receptor T-cell therapy and strategies to improve efficacy in B-cell lymphoma. Eur J Haematol 2024; 112:144-152. [PMID: 36987995 DOI: 10.1111/ejh.13964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
Although chimeric antigen receptor (CAR) T-cell therapy has demonstrated remarkable efficacy in patients with chemo-refractory B-cell lymphoma, a significant portion is refractory or relapse. Resistance is a major barrier to improving treatment efficacy and long-term survival in CAR T-cell therapy, and clinicians have very limited tools to discriminate a priori patients who will or will not respond to treatment. While CD19-negative relapses due to loss of target antigen is well described, it accounts for only about 30% of cases with treatment failure. Recent efforts have shed light on mechanisms of CD19-positive relapse due to tumor intrinsic resistance, T-cell quality/manufacturing, or CAR T-cell exhaustion mediated by hostile tumor microenvironment. Here, we review the latest updates of preclinical and clinical trials to investigate the mechanisms of resistance and relapse post CAR T-cell therapy in B cell lymphoma and discuss novel treatment strategies to overcome resistance as well as advances that are useful for a CAR T therapist to optimize and personalize CAR T-cell therapy.
Collapse
Affiliation(s)
- Shin Yeu Ong
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Yunxin Chen
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Melinda Si Yun Tan
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | | | - William Ying Khee Hwang
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | | |
Collapse
|
23
|
Yang Z, Sun L, Chen H, Sun C, Xia L. New progress in the treatment of diffuse midline glioma with H3K27M alteration. Heliyon 2024; 10:e24877. [PMID: 38312649 PMCID: PMC10835306 DOI: 10.1016/j.heliyon.2024.e24877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Diffuse midline glioma with H3K27 M alteration is a primary malignant tumor located along the linear structure of the brain, predominantly manifesting in children and adolescents. The mortality rate is exceptionally high, with a mere 1 % 5-year survival rate for newly diagnosed patients. Beyond conventional surgery, radiotherapy, and chemotherapy, novel approaches are imperative to enhance patient prognosis. This article comprehensively reviews current innovative treatment modalities and provides updates on the latest research advancements in preclinical studies and clinical trials focusing on H3K27M-altered diffuse midline glioma. The goal is to contribute positively to clinical treatment strategies.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Liang Sun
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Haibin Chen
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Caixing Sun
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Liang Xia
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| |
Collapse
|
24
|
Rossig C, Pearson AD, Vassal G, Scobie N, Bird N, Blanc P, Vormoor HJ, Calkoen FG, Locatelli F, Bufalo FD, Rives S, Jacoby E, Balduzzi A, Bourquin JP, Baruchel A. Chimeric Antigen Receptor (CAR) T-Cell Products for Pediatric Cancers: Why Alternative Development Paths Are Needed. J Clin Oncol 2024; 42:253-257. [PMID: 38011605 DOI: 10.1200/jco.23.01314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/14/2023] [Accepted: 10/02/2023] [Indexed: 11/29/2023] Open
Affiliation(s)
- Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Gilles Vassal
- ACCELERATE, Brussels, Belgium
- Department of Paediatric and Adolescent Oncology, Institut Gustave Roussy and Paris-Saclay University, Villejuif, France
| | | | - Nick Bird
- Solving Kids' Cancer UK, London, United Kingdom
| | | | - H Josef Vormoor
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
| | - Friso G Calkoen
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Franco Locatelli
- Department of Pediatric Haematology/Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Francesca Del Bufalo
- Department of Pediatric Haematology/Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
- AND Catholic University of the Sacred Heart, Rome, Italy
| | - Susana Rives
- CAR T-cell Unit, Leukemia and Lymphoma Department, Pediatric Cancer Center Barcelona /Hospital Sant Joan de Déu, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Elad Jacoby
- The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adriana Balduzzi
- Pediatrics, Hematopoietic Stem Cell Transplantation Unit, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Jean-Pierre Bourquin
- Department of Pediatric Hematology and Oncology, Immunology and Stem Cell Transplantation, University Children's Hospital, Zurich, Switzerland
| | - André Baruchel
- Department of Pediatric Hemato-Immunology, Hôpital Universitaire Robert Debré (APHP and Université Paris Cité), Paris, France
| |
Collapse
|
25
|
Kaczanowska S, Murty T, Alimadadi A, Contreras CF, Duault C, Subrahmanyam PB, Reynolds W, Gutierrez NA, Baskar R, Wu CJ, Michor F, Altreuter J, Liu Y, Jhaveri A, Duong V, Anbunathan H, Ong C, Zhang H, Moravec R, Yu J, Biswas R, Van Nostrand S, Lindsay J, Pichavant M, Sotillo E, Bernstein D, Carbonell A, Derdak J, Klicka-Skeels J, Segal JE, Dombi E, Harmon SA, Turkbey B, Sahaf B, Bendall S, Maecker H, Highfill SL, Stroncek D, Glod J, Merchant M, Hedrick CC, Mackall CL, Ramakrishna S, Kaplan RN. Immune determinants of CAR-T cell expansion in solid tumor patients receiving GD2 CAR-T cell therapy. Cancer Cell 2024; 42:35-51.e8. [PMID: 38134936 PMCID: PMC10947809 DOI: 10.1016/j.ccell.2023.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/18/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Chimeric antigen receptor T cells (CAR-Ts) have remarkable efficacy in liquid tumors, but limited responses in solid tumors. We conducted a Phase I trial (NCT02107963) of GD2 CAR-Ts (GD2-CAR.OX40.28.z.iC9), demonstrating feasibility and safety of administration in children and young adults with osteosarcoma and neuroblastoma. Since CAR-T efficacy requires adequate CAR-T expansion, patients were grouped into good or poor expanders across dose levels. Patient samples were evaluated by multi-dimensional proteomic, transcriptomic, and epigenetic analyses. T cell assessments identified naive T cells in pre-treatment apheresis associated with good expansion, and exhausted T cells in CAR-T products with poor expansion. Myeloid cell assessment identified CXCR3+ monocytes in pre-treatment apheresis associated with good expansion. Longitudinal analysis of post-treatment samples identified increased CXCR3- classical monocytes in all groups as CAR-T numbers waned. Together, our data uncover mediators of CAR-T biology and correlates of expansion that could be utilized to advance immunotherapies for solid tumor patients.
Collapse
Affiliation(s)
- Sabina Kaczanowska
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tara Murty
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ahmad Alimadadi
- La Jolla Institute for Immunology, La Jolla, CA, USA; Immunology Center of Georgia, Augusta University, Augusta, GA, USA; Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Cristina F Contreras
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Department of Oncology, University of Oxford, Oxford, UK
| | - Caroline Duault
- Stanford Human Immune Monitoring Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Priyanka B Subrahmanyam
- Stanford Human Immune Monitoring Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Warren Reynolds
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Reema Baskar
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Catherine J Wu
- Broad Institute, Cambridge, MA, USA; Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Yang Liu
- Broad Institute, Cambridge, MA, USA
| | | | - Vandon Duong
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Hima Anbunathan
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Claire Ong
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hua Zhang
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Radim Moravec
- Cancer Therapy Evaluation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joyce Yu
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | - Mina Pichavant
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA
| | - Elena Sotillo
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Donna Bernstein
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amanda Carbonell
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joanne Derdak
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacquelyn Klicka-Skeels
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julia E Segal
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie A Harmon
- Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Baris Turkbey
- Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bita Sahaf
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean Bendall
- Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Holden Maecker
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA
| | - Steven L Highfill
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - David Stroncek
- Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - John Glod
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Melinda Merchant
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Catherine C Hedrick
- La Jolla Institute for Immunology, La Jolla, CA, USA; Immunology Center of Georgia, Augusta University, Augusta, GA, USA; Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Sneha Ramakrishna
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Rosandra N Kaplan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
26
|
Ventin M, Cattaneo G, Maggs L, Arya S, Wang X, Ferrone CR. Implications of High Tumor Burden on Chimeric Antigen Receptor T-Cell Immunotherapy: A Review. JAMA Oncol 2024; 10:115-121. [PMID: 37943567 DOI: 10.1001/jamaoncol.2023.4504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Importance Chimeric antigen receptor (CAR) T-cell therapy has redefined the therapeutic landscape of several hematologic malignant tumors. Despite its clinical efficacy, many patients with cancer experience nonresponse to CAR T-cell treatment, disease relapse within months, or severe adverse events. Furthermore, CAR T-cell therapy has demonstrated minimal to no clinical efficacy in the treatment of solid tumors in clinical trials. Observations A complex interplay between high tumor burden and the systemic and local tumor microenvironment on clinical outcomes of CAR T-cell therapy is emerging from preclinical and clinical data. The hallmarks of advanced cancers-namely, inflammation and immune dysregulation-sustain cancer progression. They negatively affect the production, expansion, antitumor activity, and persistence of CAR T-cell products. Understanding of CAR T-cell therapy, mechanisms underlying its failure, and adverse events under conditions of high tumor burden is critical for realizing the full potential of this novel treatment approach. Conclusions and Relevance This review focuses on linking the efficacy and safety of CAR T-cell therapy with tumor burden. Its limitations relative to high tumor burden, systemic inflammation, and immune dysregulation are discussed. Emerging clinical approaches to overcome these obstacles and more effectively incorporate this therapeutic strategy into the treatment paradigm of patients with solid malignant tumors are also described.
Collapse
Affiliation(s)
- Marco Ventin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Giulia Cattaneo
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Luke Maggs
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Shahrzad Arya
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Xinhui Wang
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Cristina R Ferrone
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
27
|
Walker K, Simister SK, Carr-Ascher J, Monument MJ, Thorpe SW, Randall RL. Emerging innovations and advancements in the treatment of extremity and truncal soft tissue sarcomas. J Surg Oncol 2024; 129:97-111. [PMID: 38010997 DOI: 10.1002/jso.27526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
In this special edition update on soft tissue sarcomas (STS), we cover classifications, emerging technologies, prognostic tools, radiation schemas, and treatment disparities in extremity and truncal STS. We discuss the importance of enhancing local control and reducing complications, including the role of innovative imaging, surgical guidance, and hypofractionated radiation. We review advancements in systemic and immunotherapeutic treatments and introduce disparities seen in this vulnerable population that must be considered to improve overall patient care.
Collapse
Affiliation(s)
- Kyle Walker
- Department of Orthopaedics, University of California, Davis, Sacramento, California, USA
| | - Samuel K Simister
- Department of Orthopaedics, University of California, Davis, Sacramento, California, USA
| | - Janai Carr-Ascher
- Department of Hematology and Oncology, University of California, Davis, Sacramento, California, USA
| | - Michael J Monument
- Department of Surgery, The University of Calgary, Calgary, Alberta, Canada
| | - Steven W Thorpe
- Department of Orthopaedics, University of California, Davis, Sacramento, California, USA
| | - R Lor Randall
- Department of Orthopaedics, University of California, Davis, Sacramento, California, USA
| |
Collapse
|
28
|
Li S, Zhang H, Shang G. Current status and future challenges of CAR-T cell therapy for osteosarcoma. Front Immunol 2023; 14:1290762. [PMID: 38187386 PMCID: PMC10766856 DOI: 10.3389/fimmu.2023.1290762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Osteosarcoma, the most common bone malignancy in children and adolescents, poses considerable challenges in terms of prognosis, especially for patients with metastatic or recurrent disease. While surgical intervention and adjuvant chemotherapy have improved survival rates, limitations such as impractical tumor removal or chemotherapy resistance hinder the treatment outcomes. Chimeric antigen receptor (CAR)-T cell therapy, an innovative immunotherapy approach that involves targeting tumor antigens and releasing immune factors, has shown significant advancements in the treatment of hematological malignancies. However, its application in solid tumors, including osteosarcoma, is constrained by factors such as low antigen specificity, limited persistence, and the complex tumor microenvironment. Research on osteosarcoma is ongoing, and some targets have shown promising results in pre-clinical studies. This review summarizes the current status of research on CAR-T cell therapy for osteosarcoma by compiling recent literature. It also proposes future research directions to enhance the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Shizhe Li
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - He Zhang
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guanning Shang
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
29
|
Majumder A. Evolving CAR-T-Cell Therapy for Cancer Treatment: From Scientific Discovery to Cures. Cancers (Basel) 2023; 16:39. [PMID: 38201467 PMCID: PMC10777914 DOI: 10.3390/cancers16010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
In recent years, chimeric antigen receptor (CAR)-T-cell therapy has emerged as the most promising immunotherapy for cancer that typically uses patients' T cells and genetically engineered them to target cancer cells. Although recent improvements in CAR-T-cell therapy have shown remarkable success for treating hematological malignancies, the heterogeneity in tumor antigens and the immunosuppressive nature of the tumor microenvironment (TME) limits its efficacy in solid tumors. Despite the enormous efforts that have been made to make CAR-T-cell therapy more effective and have minimal side effects for treating hematological malignancies, more research needs to be conducted regarding its use in the clinic for treating various other types of cancer. The main concern for CAR-T-cell therapy is severe toxicities due to the cytokine release syndrome, whereas the other challenges are associated with complexity and immune-suppressing TME, tumor antigen heterogeneity, the difficulty of cell trafficking, CAR-T-cell exhaustion, and reduced cytotoxicity in the tumor site. This review discussed the latest discoveries in CAR-T-cell therapy strategies and combination therapies, as well as their effectiveness in different cancers. It also encompasses ongoing clinical trials; current challenges regarding the therapeutic use of CAR-T-cell therapy, especially for solid tumors; and evolving treatment strategies to improve the therapeutic application of CAR-T-cell therapy.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
30
|
Babulic JL, Kofsky JM, Boddington ME, Kim Y, Leblanc EV, Cook MG, Garnier CR, Emberley-Korkmaz S, Colpitts CC, Capicciotti CJ. One-Step Selective Labeling of Native Cell Surface Sialoglycans by Exogenous α2,8-Sialylation. ACS Chem Biol 2023; 18:2418-2429. [PMID: 37934063 DOI: 10.1021/acschembio.3c00475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Exo-enzymatic glycan labeling strategies have emerged as versatile tools for efficient and selective installation of terminal glyco-motifs onto live cell surfaces. Through employing specific enzymes and nucleotide-sugar probes, cells can be equipped with defined glyco-epitopes for modulating cell function or selective visualization and enrichment of glycoconjugates. Here, we identifyCampylobacter jejunisialyltransferase Cst-II I53S as a tool for cell surface glycan modification, expanding the exo-enzymatic labeling toolkit to include installation of α2,8-disialyl epitopes. Labeling with Cst-II was achieved with biotin- and azide-tagged CMP-Neu5Ac derivatives on a model glycoprotein and native sialylated cell surface glycans across a panel of cell lines. The introduction of modified Neu5Ac derivatives onto cells by Cst-II was also retained on the surface for 6 h. By examining the specificity of Cst-II on cell surfaces, it was revealed that the α2,8-sialyltransferase primarily labeled N-glycans, with O-glycans labeled to a lesser extent, and there was an apparent preference for α2,3-linked sialosides on cells. This approach thus broadens the scope of tools for selective exo-enzymatic labeling of native sialylated glycans and is highly amenable for the construction of cell-based arrays.
Collapse
Affiliation(s)
- Jonathan L Babulic
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Joshua M Kofsky
- Department of Chemistry, Queen's University, Kingston K7L 3N6, Canada
| | - Marie E Boddington
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Youjin Kim
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Emmanuelle V Leblanc
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Madeleine G Cook
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Cole R Garnier
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Sophie Emberley-Korkmaz
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Che C Colpitts
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Chantelle J Capicciotti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
- Department of Chemistry, Queen's University, Kingston K7L 3N6, Canada
- Department of Surgery, Queen's University, Kingston K7L 3N6, Canada
| |
Collapse
|
31
|
Zhu Y, Zuo D, Wang K, Lan S, He H, Chen L, Chen X, Feng M. Mesothelin-targeted CAR-T therapy combined with irinotecan for the treatment of solid cancer. J Cancer Res Clin Oncol 2023; 149:15027-15038. [PMID: 37612388 DOI: 10.1007/s00432-023-05279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cell therapy has shown promising results in treating blood cancers, but it has limited efficacy against solid tumors that express mesothelin (MSLN). One of the reasons is the immunosuppressive tumor microenvironment, which consists of physical barriers, multiple mechanisms of immune evasion, and various biochemical factors that favor tumor growth and survival. These factors reduce the antitumor activity of MSLN-targeted CAR T cells in clinical trials. Therefore, new therapeutic strategies are needed to enhance the effectiveness of MSLN-targeted CAR T cell therapy. METHODS To investigate whether the antitumor efficacy of anti-MSLN CAR-T cells depends on the epitopes they recognize, we generated MSLN-targeted CAR T cells that bind to different regions of MSLN (Region I, II, III and Full length). We then evaluated the antitumor activity of MSLN-targeted CAR T cells alone or in combination with the chemotherapeutic drug irinotecan or an anti-PD-1 antibody in vitro and in vivo. RESULTS We found that MSLN-targeted CAR T cells effectively killed MSLN-positive cancer cells (H9, H226 and Panc-1), but not MSLN-negative cells (A431) in vitro. In a mouse model of H9 tumor xenografts, all CAR T cells showed similar tumor suppression, but an MSLN-targeted scFv with Region I epitope, R47, performed slightly better. Combining irinotecan with CAR_R47 T cells enhanced tumor control synergistically in both H9 xenograft mice and patient-derived xenograft mice. CONCLUSIONS Our results suggest that irinotecan can enhance the antitumor activity of MSLN-targeted CAR T cells, and offer a promising combination therapy strategy for MSLN-positive solid tumors.
Collapse
Affiliation(s)
- Yuankui Zhu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dianbao Zuo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ke Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Sina Lan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Huixia He
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Liu Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Mingqian Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
32
|
Zappa E, Vitali A, Anders K, Molenaar JJ, Wienke J, Künkele A. Adoptive cell therapy in paediatric extracranial solid tumours: current approaches and future challenges. Eur J Cancer 2023; 194:113347. [PMID: 37832507 PMCID: PMC10695178 DOI: 10.1016/j.ejca.2023.113347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 10/15/2023]
Abstract
Immunotherapy has ignited hope to cure paediatric solid tumours that resist traditional therapies. Among the most promising methods is adoptive cell therapy (ACT). Particularly, ACT using T cells equipped with chimeric antigen receptors (CARs) has moved into the spotlight in clinical studies. However, the efficacy of ACT is challenged by ACT-intrinsic factors, like lack of activation or T cell exhaustion, as well as immune evasion strategies of paediatric solid tumours, such as their highly immunosuppressive microenvironment. Novel strategies, including ACT using innate-like lymphocytes, innovative cell engineering techniques, and ACT combination therapies, are being developed and will be crucial to overcome these challenges. Here, we discuss the main classes of ACT for the treatment of paediatric extracranial solid tumours, reflect on the available preclinical and clinical evidence supporting promising strategies, and address the challenges that ACT is still facing. Ultimately, we highlight state-of-the-art developments and opportunities for new therapeutic options, which hold great potential for improving outcomes in this challenging patient population.
Collapse
Affiliation(s)
- Elisa Zappa
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Alice Vitali
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.
| | - Kathleen Anders
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Judith Wienke
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
33
|
Sun R, Sun Y, Wu C, Liu Y, Zhou M, Dong Y, Du G, Luo H, Shi B, Jiang H, Li Z. CXCR4-modified CAR-T cells suppresses MDSCs recruitment via STAT3/NF-κB/SDF-1α axis to enhance efficacy against pancreatic cancer. Mol Ther 2023; 31:3193-3209. [PMID: 37735875 PMCID: PMC10638076 DOI: 10.1016/j.ymthe.2023.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/02/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Claudin18.2 (CLDN18.2)-specific chimeric antigen receptor (CAR-T) cells displayed limited efficacy in CLDN18.2-positive pancreatic ductal adenocarcinoma (PDAC). Strategies are needed to improve the trafficking capacity of CLDN18.2-specific CAR-T cells. PDAC has a unique microenvironment that consists of abundant cancer-associated fibroblasts (CAFs), which could secrete stromal cell-derived factor 1α (SDF-1α), the ligand of CXCR4. Then, we constructed and explored CLDN18.2-targeted CAR-T cells with CXCR4 co-expression in treating immunocompetent mouse models of PDAC. The results indicated that CXCR4 could promote the infiltration of CAR-T cells and enhance their efficacy in vivo. Mechanistically, the activation of signal transducer and activator of transcription 3 (STAT3) signaling was impaired in CXCR4 CAR-T cells, which reduced the release of inflammatory factors, such as tumor necrosis factor-α, IL-6, and IL-17A. Then, the lower release of inflammatory factors suppressed SDF-1α secretion in CAFs via the nuclear factor κB (NF-κB) pathway. Therefore, the decreased secretion of SDF-1α in feedback decreased the migration of myeloid-derived suppressor cells (MDSCs) in tumor sites. Overall, our study demonstrated that CXCR4 CAR-T cells could traffic more into tumor sites and also suppress MDSC migration via the STAT3/NF-κB/SDF-1α axis to obtain better efficacy in treating CLDN18.2-positive pancreatic cancer. Our findings provide a theoretical rationale for CXCR4 CAR-T cell therapy in PDAC.
Collapse
Affiliation(s)
- Ruixin Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yansha Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Chuanlong Wu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yifan Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Min Zhou
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Yiwei Dong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Guoxiu Du
- CARsgen Therapeutics, Shanghai 200032, China
| | - Hong Luo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Bizhi Shi
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; CARsgen Therapeutics, Shanghai 200032, China
| | - Hua Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; CARsgen Therapeutics, Shanghai 200032, China.
| | - Zonghai Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; CARsgen Therapeutics, Shanghai 200032, China.
| |
Collapse
|
34
|
Singh N, Maus MV. Synthetic manipulation of the cancer-immunity cycle: CAR-T cell therapy. Immunity 2023; 56:2296-2310. [PMID: 37820585 DOI: 10.1016/j.immuni.2023.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Synthetic immunity to cancer has been pioneered by the application of chimeric antigen receptor (CAR) engineering into autologous T cells. CAR T cell therapy is highly amenable to molecular engineering to bypass barriers of the cancer immunity cycle, such as endogenous antigen presentation, immune priming, and natural checkpoints that constrain immune responses. Here, we review CAR T cell design and the mechanisms that drive sustained CAR T cell effector activity and anti-tumor function. We discuss engineering approaches aimed at improving anti-tumor function through a variety of mechanistic interventions for both hematologic and solid tumors. The ability to engineer T cells in such a variety of ways, including by modifying their trafficking, antigen recognition, costimulation, and addition of synthetic genes, circuits, knockouts and base edits to finely tune complex functions, is arguably the most powerful way to manipulate the cancer immunity cycle in patients.
Collapse
Affiliation(s)
- Nathan Singh
- Division of Oncology, Washington University in St Louis School of Medicine, St. Louis, MO 63110, USA.
| | - Marcela V Maus
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
35
|
Altvater B, Kailayangiri S, Spurny C, Flügge M, Meltzer J, Greune L, Urban K, Schwöppe C, Brand C, Schliemann C, Hintelmann H, Harrach S, Hartmann W, Abken H, Kuehle J, Schambach A, Görlich D, Berdel WE, Rossig C. CAR T cells as micropharmacies against solid cancers: Combining effector T-cell mediated cell death with vascular targeting in a one-step engineering process. Cancer Gene Ther 2023; 30:1355-1368. [PMID: 37391502 PMCID: PMC10581901 DOI: 10.1038/s41417-023-00642-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
To enhance the potency of chimeric antigen receptor (CAR) engineered T cells in solid cancers, we designed a novel cell-based combination strategy with an additional therapeutic mode of action. CAR T cells are used as micropharmacies to produce a targeted pro-coagulatory fusion protein, truncated tissue factor (tTF)-NGR, which exerts pro-coagulatory activity and hypoxia upon relocalization to the vascular endothelial cells that invade tumor tissues. Delivery by CAR T cells aimed to induce locoregional tumor vascular infarction for combined immune-mediated and hypoxic tumor cell death. Human T cells that were one-vector gene-modified to express a GD2-specific CAR along with CAR-inducible tTF-NGR exerted potent GD2-specific effector functions while secreting tTF-NGR that activates the extrinsic coagulation pathway in a strictly GD2-dependent manner. In murine models, the CAR T cells infiltrated GD2-positive tumor xenografts, secreted tTF-NGR into the tumor microenvironment and showed a trend towards superior therapeutic activity compared with control cells producing functionally inactive tTF-NGR. In vitro evidence supports a mechanism of hypoxia-mediated enhancement of T cell cytolytic activity. We conclude that combined CAR T cell targeting with an additional mechanism of antitumor action in a one-vector engineering strategy is a promising approach to be further developed for targeted treatment of solid cancers.
Collapse
Affiliation(s)
- Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Sareetha Kailayangiri
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Christian Spurny
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Maike Flügge
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Jutta Meltzer
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Lea Greune
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Katja Urban
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | | | - Caroline Brand
- Department of Medicine A, University of Muenster, Muenster, Germany
| | | | - Heike Hintelmann
- Department of Medicine A, University of Muenster, Muenster, Germany
| | - Saliha Harrach
- Department of Medicine A, University of Muenster, Muenster, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Hinrich Abken
- Division of Genetic Immunotherapy, Leibniz Institute for Immunotherapy (LIT), and University of Regensburg, Regensburg, Germany
| | - Johannes Kuehle
- Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Muenster, Muenster, Germany
| | - Wolfgang E Berdel
- Department of Medicine A, University of Muenster, Muenster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany.
- Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany.
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
36
|
Park JA, Cheung NKV. Promise and Challenges of T Cell Immunotherapy for Osteosarcoma. Int J Mol Sci 2023; 24:12520. [PMID: 37569894 PMCID: PMC10419531 DOI: 10.3390/ijms241512520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The cure rate for metastatic or relapsed osteosarcoma has not substantially improved over the past decades despite the exploitation of multimodal treatment approaches, allowing long-term survival in less than 30% of cases. Patients with osteosarcoma often develop resistance to chemotherapeutic agents, where personalized targeted therapies should offer new hope. T cell immunotherapy as a complementary or alternative treatment modality is advancing rapidly in general, but its potential against osteosarcoma remains largely unexplored. Strategies incorporating immune checkpoint inhibitors (ICIs), chimeric antigen receptor (CAR) modified T cells, and T cell engaging bispecific antibodies (BsAbs) are being explored to tackle relapsed or refractory osteosarcoma. However, osteosarcoma is an inherently heterogeneous tumor, both at the intra- and inter-tumor level, with no identical driver mutations. It has a pro-tumoral microenvironment, where bone cells, stromal cells, neovasculature, suppressive immune cells, and a mineralized extracellular matrix (ECM) combine to derail T cell infiltration and its anti-tumor function. To realize the potential of T cell immunotherapy in osteosarcoma, an integrated approach targeting this complex ecosystem needs smart planning and execution. Herein, we review the current status of T cell immunotherapies for osteosarcoma, summarize the challenges encountered, and explore combination strategies to overcome these hurdles, with the ultimate goal of curing osteosarcoma with less acute and long-term side effects.
Collapse
Affiliation(s)
- Jeong A Park
- Department of Pediatrics, Inha University College of Medicine, Incheon 22212, Republic of Korea
| | - Nai-Kong V. Cheung
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
37
|
Hidalgo L, Somovilla-Crespo B, Garcia-Rodriguez P, Morales-Molina A, Rodriguez-Milla MA, Garcia-Castro J. Switchable CAR T cell strategy against osteosarcoma. Cancer Immunol Immunother 2023; 72:2623-2633. [PMID: 37062034 PMCID: PMC10361906 DOI: 10.1007/s00262-023-03437-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/22/2023] [Indexed: 04/17/2023]
Abstract
Immunotherapy with chimeric antigen receptor T (CAR T) cells has changed the treatment of hematological malignances, but they are still a challenge for solid tumors, including pediatric sarcomas. Here, we report a switchable CAR T cell strategy based on anti-FITC CAR T cells and a switch molecule conjugated with FITC for targeting osteosarcoma (OS) tumors. As a potential target, we analyzed the expression of B7-H3, an immune checkpoint inhibitor, in OS cell lines. In addition, we evaluate the capacity of an anti-B7-H3 monoclonal antibody conjugated with FITC (anti-B7-H3-FITC mAb) to control the antitumor activity of anti-FITC CAR T cells. The effector functions of anti-FITC CAR T cells against OS, measured in vitro by tumor cell killing activity and cytokine production, are dependent on the presence of the anti-B7-H3-FITC mAb switch. Moreover, OS cells stimulate anti-FITC CAR T cells migration. In vivo, anti-B7-H3 mAb penetrates in the tumor and binds 143B OS tumor cells. Furthermore, anti-FITC CAR T cells reach tumor region and exert antitumor effect in an OS NSG mouse model only in the presence of the switch molecule. We demonstrate that anti-B7-H3-FITC mAb redirects the cytotoxic activity of anti-FITC CAR T cells against OS tumors suggesting that switchable CAR T cell platforms might be a plausible strategy against OS.
Collapse
Affiliation(s)
- Laura Hidalgo
- Cellular Biotechnology Unit, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (ISCIII), 28220, Madrid, Spain.
| | - Beatriz Somovilla-Crespo
- Cellular Biotechnology Unit, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (ISCIII), 28220, Madrid, Spain
| | - Patricia Garcia-Rodriguez
- Cellular Biotechnology Unit, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (ISCIII), 28220, Madrid, Spain
- Universidad Nacional de Educación a Distancia (UNED), 28015, Madrid, Spain
| | - Alvaro Morales-Molina
- Cellular Biotechnology Unit, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (ISCIII), 28220, Madrid, Spain
| | - Miguel Angel Rodriguez-Milla
- Cellular Biotechnology Unit, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (ISCIII), 28220, Madrid, Spain
| | - Javier Garcia-Castro
- Cellular Biotechnology Unit, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (ISCIII), 28220, Madrid, Spain.
| |
Collapse
|
38
|
Gao D, Hong F, He A. The role of bone marrow microenvironment on CAR-T efficacy in haematologic malignancies. Scand J Immunol 2023; 98:e13273. [PMID: 39007933 DOI: 10.1111/sji.13273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 07/16/2024]
Abstract
In recent years, chimeric antigen receptor-T (CAR-T) cell therapy has emerged as a novel immunotherapy method. It has shown significant therapeutic efficacy in the treatment of haematological B cell malignancies. In particular, the CAR-T therapy targeting CD19 has yielded unprecedented efficacy for acute B-lymphocytic leukaemia (B-ALL) and non-Hodgkin's lymphoma (NHL). In haematologic malignancies, tumour stem cells are more prone to stay in the regulatory bone marrow (BM) microenvironment (called niches), which provides a protective environment against immune attack. However, how the BM microenvironment affects the anti-tumour efficacy of CAR-T cells and its underlying mechanism is worthy of attention. In this review, we discuss the role of the BM microenvironment on the efficacy of CAR-T in haematological malignancies and propose corresponding strategies to enhance the anti-tumour activity of CAR-T therapy.
Collapse
Affiliation(s)
- Dandan Gao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fei Hong
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National-Local Joint Engineering Research Center of Biodiagnostics & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
39
|
Li X, Luo X, Chen S, Chen J, Deng X, Zhong J, Wu H, Huang X, Wang C. All-trans-retinoic acid inhibits hepatocellular carcinoma progression by targeting myeloid-derived suppressor cells and inhibiting angiogenesis. Int Immunopharmacol 2023; 121:110413. [PMID: 37301119 DOI: 10.1016/j.intimp.2023.110413] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Hepatocellular carcinoma is characterized by a high infiltration of myeloid-derived suppressor cells (MDSC), which are key drivers of maintaining the immunosuppressive tumor microenvironment. Therefore, targeting MDSCs will improve immunotherapies for cancers. It has been shown that all-trans retinoic acid (ATRA) can differentiate MDSCs into mature myeloid cells. However, whether ATRA suppression of MDSCs function could inhibit the growth of liver cancer remains unknown. Here we found that ATRA significantly inhibited hepatocellular carcinoma promotion, tumor cell proliferation, and angiogenesis markers. Moreover, ATRA decreased the number of mononuclear myeloid-derived suppressor cells (M-MDSCs), granulocytic myeloid-derived suppressor cells (G-MDSCs) and tumor-associated macrophages (TAMs) in spleens. In addition, ATRA significantly reduced the intratumoral infiltrating G-MDSCs and the expression of protumor immunosuppressive molecules (arginase 1, iNOS, IDO and S100A8 + A9), which was accompanied by increased cytotoxic T cell infiltration. Our study demonstrates that ATRA not only has direct intrinsic inhibitory effect on tumor angiogenesis and fibrosis, but also reeducates the tumor microenvironment toward an antitumor phenotype by altering the relative proportion between protumor and antitumor immune cells. This information introduces ATRA as a potential druggable target for treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xueyan Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Geriatric Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiaoqi Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Geriatric Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Siru Chen
- Department of Traditional Chinese Medicine, Guangdong Geriatric Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiayi Chen
- Department of Traditional Chinese Medicine, Guangdong Geriatric Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Geriatric Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiahui Zhong
- Department of Traditional Chinese Medicine, Guangdong Geriatric Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Wu
- Department of Traditional Chinese Medicine, Guangdong Geriatric Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; School of Medicine, South China University of Technology, Guangzhou, China
| | - Xuhui Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Geriatric Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Changjun Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Geriatric Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
40
|
Yin L, Chen GL, Xiang Z, Liu YL, Li XY, Bi JW, Wang Q. Current progress in chimeric antigen receptor-modified T cells for the treatment of metastatic breast cancer. Biomed Pharmacother 2023; 162:114648. [PMID: 37023621 DOI: 10.1016/j.biopha.2023.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Breast cancer is the leading cancer in women. Around 20-30% breast cancer patients undergo invasion or metastasis after radical surgical resection and eventually die. Number of breast cancer patients show poor sensitivity toward treatments despite the advances in chemotherapy, endocrine therapy, and molecular targeted treatments. Therapeutic resistance and tumor recurrence or metastasis develop with the ongoing treatments. Conducive treatment strategies are thus required. Chimeric antigen receptor (CAR)-modified T-cell therapy has progressed as a part of tumor immunotherapy. However, CAR-T treatment has not been effective in solid tumors because of tumor microenvironment complexity, inhibitory effects of extracellular matrix, and lacking ideal tumor antigens. Herein, the prospects of CAR-T cell therapy for metastatic breast cancer are discussed, and the targets for CAR-T therapy in breast cancer (HER-2, C-MET, MSLN, CEA, MUC1, ROR1, EGFR) at clinical level are reviewed. Moreover, solutions are proposed for the challenges of breast cancer CAR-T therapy regarding off-target effects, heterogeneous antigen expression by tumor cells and immunosuppressive tumor microenvironment. Ideas for improving the therapeutics of CAR-T cell therapy in metastatic breast cancer are suggested.
Collapse
Affiliation(s)
- Li Yin
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China; Shandong University of Traditional Chinese Medicine, 250355 Jinan, China
| | - Gui-Lai Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Zhuo Xiang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Yu-Lin Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Xing-Yu Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China
| | - Jing-Wang Bi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China.
| | - Qiang Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China.
| |
Collapse
|
41
|
Wang Y, Zhao Y, Li M, Hou H, Jian Z, Li W, Li P, Ma F, Liu M, Liu H, Xue H. Conversion of primary liver cancer after targeted therapy for liver cancer combined with AFP-targeted CAR T-cell therapy: a case report. Front Immunol 2023; 14:1180001. [PMID: 37256142 PMCID: PMC10225497 DOI: 10.3389/fimmu.2023.1180001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Primary liver cancer (PLC) that originates in the liver is a malignant tumor with the worst prognosis. Hepatocellular carcinoma (HCC) is the most common type of PLC. Most PLC cases are diagnosed at advanced stages mainly due to their insidious onset and rapid progression. Patients with PLC undergo surgical intervention or localized treatment, but their survival is often affected by its high relapse rate. Medical treatment is the primary option for patients with liver cancer, especially with advanced extrahepatic metastases. Molecular targeted therapy exerts an anti-tumor effect by acting on various signaling pathways involved in molecular pathogenesis; however, high drug resistance and low therapeutic responsiveness of PLC to molecular targets challenge the treatment option. In recent years, after surgical intervention, radiotherapy, chemotherapy, and/or molecular targeted therapy, autologous cell immunotherapy has been adopted for PLC. As a typical autologous cell immunotherapy, CAR T-cell therapy uses genetically modified T cells to express tumor-specific chimeric antigen receptors (CARs). Its targeting ability, persistent nature, and tumor-killing function result in a significant impact on the treatment of hematological tumors. However, no breakthrough has happened in the research specific to the curation of lung cancer, liver cancer, breast cancer, and other common solid tumors. In this context, a combination of molecular targeted therapy and CAR T-cell therapy was used to treat a patient with advanced HCC to achieve a partial remission(PR) and facilitate further liver transplantation.
Collapse
|
42
|
Bareke H, Ibáñez-Navarro A, Guerra-García P, González Pérez C, Rubio-Aparicio P, Plaza López de Sabando D, Sastre-Urgelles A, Ortiz-Cruz EJ, Pérez-Martínez A. Prospects and Advances in Adoptive Natural Killer Cell Therapy for Unmet Therapeutic Needs in Pediatric Bone Sarcomas. Int J Mol Sci 2023; 24:ijms24098324. [PMID: 37176035 PMCID: PMC10178897 DOI: 10.3390/ijms24098324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Malignant bone tumors are aggressive tumors, with a high tendency to metastasize, that are observed most frequently in adolescents during rapid growth spurts. Pediatric patients with malignant bone sarcomas, Ewing sarcoma and osteosarcoma, who present with progressive disease have dire survival rates despite aggressive therapy. These therapies can have long-term effects on bone growth, such as decreased bone mineral density and reduced longitudinal growth. New therapeutic approaches are therefore urgently needed for targeting pediatric malignant bone tumors. Harnessing the power of the immune system against cancer has improved the survival rates dramatically in certain cancer types. Natural killer (NK) cells are a heterogeneous group of innate effector cells that possess numerous antitumor effects, such as cytolysis and cytokine production. Pediatric sarcoma cells have been shown to be especially susceptible to NK-cell-mediated killing. NK-cell adoptive therapy confers numerous advantages over T-cell adoptive therapy, including a good safety profile and a lack of major histocompatibility complex restriction. NK-cell immunotherapy has the potential to be a new therapy for pediatric malignant bone tumors. In this manuscript, we review the general characteristics of osteosarcoma and Ewing sarcoma, discuss the long-term effects of sarcoma treatment on bones, and the barriers to effective immunotherapy in bone sarcomas. We then present the laboratory and clinical studies on NK-cell immunotherapy for pediatric malignant bone tumors. We discuss the various donor sources and NK-cell types, the engineering of NK cells and combinatorial treatment approaches that are being studied to overcome the current challenges in adoptive NK-cell therapy, while suggesting approaches for future studies on NK-cell immunotherapy in pediatric bone tumors.
Collapse
Affiliation(s)
- Halin Bareke
- Translational Research Group in Pediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Adrián Ibáñez-Navarro
- Translational Research Group in Pediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Pilar Guerra-García
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
| | - Carlos González Pérez
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
| | - Pedro Rubio-Aparicio
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
| | | | - Ana Sastre-Urgelles
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
| | - Eduardo José Ortiz-Cruz
- Department of Orthopedic Surgery and Traumatology, La Paz University Hospital, 28046 Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research Group in Pediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
- School of Medicine, Autonomous University of Madrid, 28046 Madrid, Spain
| |
Collapse
|
43
|
Tharakan S, Raja I, Pietraru A, Sarecha E, Gresita A, Petcu E, Ilyas A, Hadjiargyrou M. The Use of Hydrogels for the Treatment of Bone Osteosarcoma via Localized Drug-Delivery and Tissue Regeneration: A Narrative Review. Gels 2023; 9:gels9040274. [PMID: 37102886 PMCID: PMC10137556 DOI: 10.3390/gels9040274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Osteosarcoma is a malignant tumor of bone that leads to poor mortality and morbidity. Management of this cancer through conventional methods involves invasive treatment options that place patients at an increased risk of adverse events. The use of hydrogels to target osteosarcoma has shown promising results both in vitro and in vivo to eradicate tumor cells while promoting bone regeneration. The loading of hydrogels with chemotherapeutic drugs provides a route for site-specific targeted therapy for osteosarcoma. Current studies demonstrate tumor regression in vivo and lysis of tumor cells in vitro when exposed to doped hydrogel scaffolds. Additionally, novel stimuli-responsive hydrogels are able to react with the tissue microenvironment to facilitate the controlled release of anti-tumor drugs and with biomechanical properties that can be modulated. This narrative review of the current literature discusses both in vitro and in vivo studies of different hydrogels, including stimuli-responsive, designed to treat bone osteosarcoma. Future applications to address patient treatment for this bone cancer are also discussed.
Collapse
Affiliation(s)
- Shebin Tharakan
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA (I.R.); (A.G.)
| | - Iman Raja
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA (I.R.); (A.G.)
| | - Annette Pietraru
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Elina Sarecha
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Andrei Gresita
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA (I.R.); (A.G.)
| | - Eugen Petcu
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA (I.R.); (A.G.)
| | - Azhar Ilyas
- Department of Electrical and Computing Engineering, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
- Correspondence: ; Tel.: +1-516-686-7738
| |
Collapse
|
44
|
Yin X, He L, Guo Z. T-cell exhaustion in CAR-T-cell therapy and strategies to overcome it. Immunology 2023. [PMID: 36942414 DOI: 10.1111/imm.13642] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Tumour immunotherapy has achieved good therapeutic effects in clinical practice and has received increased attention. Cytotoxic T cells undoubtedly play an important role in tumour immunotherapy. As a revolutionary tumour immunotherapy approach, chimeric antigen receptor T-cell (CAR-T-cell) therapy has made breakthroughs in the treatment of haematological cancers. However, T cells are easily exhausted in vivo, especially after they enter solid tumours. The exhaustion of T cells can lead to poor results of CAR-T-cell therapy in the treatment of solid tumours. Here, we review the reasons for T-cell exhaustion and how T-cell exhaustion develops. We also review and discuss ways to improve CAR-T-cell therapy effects by regulating T-cell exhaustion.
Collapse
Affiliation(s)
- Xuechen Yin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- CAR-T R&D, Nanjing Blue Shield Biotechnology Co., Ltd., Nanjing, 210023, China
| |
Collapse
|
45
|
CAR T-Cell Therapy in Children with Solid Tumors. J Clin Med 2023; 12:jcm12062326. [PMID: 36983330 PMCID: PMC10051963 DOI: 10.3390/jcm12062326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The limited efficacy of traditional cancer treatments, including chemotherapy, radiotherapy, and surgery, emphasize the significance of employing innovative methods. CAR (Chimeric Antigen Receptor) T-cell therapy remains the most revolutionizing treatment of pediatric hematological malignancies and solid tumors. Patient’s own lymphocytes are modified ex-vivo using gene transfer techniques and programmed to recognize and destroy specific tumor cells regardless of MHC receptor, which probably makes CAR-T the most personalized therapy for the patient. With continued refinement and optimization, CAR-T cell therapy has the potential to significantly improve outcomes and quality of life for children with limited treatment options. It has shown remarkable success in treating hematological malignancies, such as acute lymphoblastic leukemia (ALL) and non-Hodgkin lymphoma (NHL). However, its effectiveness in treating solid tumors is still being investigated and remains an area of active research. In this review we focus on solid tumors and explain the concept of CAR modified T cells, and discuss some novel CAR designs that are being considered to enhance the safety of CAR T-cell therapy in under-mentioned cancers. Furthermore, we summarize the most crucial recent reports concerning the solid tumors treatment in children. In the end we provide a short summary of many challenges that limit the therapeutic efficacy of CAR-T in solid tumors, such as antigen escape, immunosuppressive microenvironment, poor trafficking, and tumor infiltration, on-target off-tumor effects and general toxicity.
Collapse
|
46
|
Cruz Cruz J, Allison KC, Page LS, Jenkins AJ, Wang X, Earp HS, Frye SV, Graham DK, Verneris MR, Lee-Sherick AB. Inhibiting efferocytosis reverses macrophage-mediated immunosuppression in the leukemia microenvironment. Front Immunol 2023; 14:1146721. [PMID: 36960055 PMCID: PMC10027704 DOI: 10.3389/fimmu.2023.1146721] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Background Previous studies show that the spleen and bone marrow can serve as leukemia microenvironments in which macrophages play a significant role in immune evasion and chemoresistance. We hypothesized that the macrophage driven tolerogenic process of efferocytosis is a major contributor to the immunosuppressive leukemia microenvironment and that this was driven by aberrant phosphatidylserine expression from cell turnover and cell membrane dysregulation. Methods Since MerTK is the prototypic efferocytosis receptor, we assessed whether the MerTK inhibitor MRX2843, which is currently in clinical trials, would reverse immune evasion and enhance immune-mediated clearance of leukemia cells. Results We found that inhibition of MerTK decreased leukemia-associated macrophage expression of M2 markers PD-L1, PD-L2, Tim-3, CD163 and Arginase-1 compared to vehicle-treated controls. Additionally, MerTK inhibition led to M1 macrophage repolarization including elevated CD86 and HLA-DR expression, and increased production of T cell activating cytokines, including IFN-β, IL-18, and IL-1β through activation of NF-κB. Collectively, this macrophage repolarization had downstream effects on T cells within the leukemia microenvironment, including decreased PD-1+Tim-3+ and LAG3+ checkpoint expression, and increased CD69+CD107a+ expression. Discussion These results demonstrate that MerTK inhibition using MRX2843 altered the leukemia microenvironment from tumor-permissive toward immune responsiveness to leukemia and culminated in improved immune-mediated clearance of AML.
Collapse
Affiliation(s)
- Joselyn Cruz Cruz
- Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Aurora, CO, United States
| | - Kristen C. Allison
- Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Aurora, CO, United States
| | - Lauren S. Page
- Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Aurora, CO, United States
| | - Alexis J. Jenkins
- Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Aurora, CO, United States
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - H. Shelton Earp
- Lineberger Comprehensive Cancer Center, Departments of Medicine and Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephen V. Frye
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Douglas K. Graham
- Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - Michael R. Verneris
- Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Aurora, CO, United States
| | - Alisa B. Lee-Sherick
- Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Aurora, CO, United States
| |
Collapse
|
47
|
Guzman G, Pellot K, Reed MR, Rodriguez A. CAR T-cells to treat brain tumors. Brain Res Bull 2023; 196:76-98. [PMID: 36841424 DOI: 10.1016/j.brainresbull.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Tremendous success using CAR T therapy in hematological malignancies has garnered significant interest in developing such treatments for solid tumors, including brain tumors. This success, however, has yet to be mirrored in solid organ neoplasms. CAR T function has shown limited efficacy against brain tumors due to several factors including the immunosuppressive tumor microenvironment, blood-brain barrier, and tumor-antigen heterogeneity. Despite these considerations, CAR T-cell therapy has the potential to be implemented as a treatment modality for brain tumors. Here, we review adult and pediatric brain tumors, including glioblastoma, diffuse midline gliomas, and medulloblastomas that continue to portend a grim prognosis. We describe insights gained from different preclinical models using CAR T therapy against various brain tumors and results gathered from ongoing clinical trials. Furthermore, we outline the challenges limiting CAR T therapy success against brain tumors and summarize advancements made to overcome these obstacles.
Collapse
Affiliation(s)
- Grace Guzman
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Megan R Reed
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
48
|
The Receptor for Advanced Glycation Endproducts (RAGE) and Its Ligands S100A8/A9 and High Mobility Group Box Protein 1 (HMGB1) Are Key Regulators of Myeloid-Derived Suppressor Cells. Cancers (Basel) 2023; 15:cancers15041026. [PMID: 36831371 PMCID: PMC9954573 DOI: 10.3390/cancers15041026] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Immunotherapies including checkpoint blockade immunotherapy (CBI) and chimeric antigen receptor T cells (CAR-T) have revolutionized cancer treatment for patients with certain cancers. However, these treatments are not effective for all cancers, and even for those cancers that do respond, not all patients benefit. Most cancer patients have elevated levels of myeloid-derived suppressor cells (MDSCs) that are potent inhibitors of antitumor immunity, and clinical and animal studies have demonstrated that neutralization of MDSCs may restore immune reactivity and enhance CBI and CAR-T immunotherapies. MDSCs are homeostatically regulated in that elimination of mature circulating and intratumoral MDSCs results in increased production of MDSCs from bone marrow progenitor cells. Therefore, targeting MDSC development may provide therapeutic benefit. The pro-inflammatory molecules S100A8/A9 and high mobility group box protein 1 (HMGB1) and their receptor RAGE are strongly associated with the initiation and progression of most cancers. This article summarizes the literature demonstrating that these molecules are integrally involved in the early development, accumulation, and suppressive activity of MDSCs, and postulates that S100A8/A9 and HMGB1 serve as early biomarkers of disease and in conjunction with RAGE are potential targets for reducing MDSC levels and enhancing CBI and CAR-T immunotherapies.
Collapse
|
49
|
Maalej KM, Merhi M, Inchakalody VP, Mestiri S, Alam M, Maccalli C, Cherif H, Uddin S, Steinhoff M, Marincola FM, Dermime S. CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances. Mol Cancer 2023; 22:20. [PMID: 36717905 PMCID: PMC9885707 DOI: 10.1186/s12943-023-01723-z] [Citation(s) in RCA: 144] [Impact Index Per Article: 144.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
In the last decade, Chimeric Antigen Receptor (CAR)-T cell therapy has emerged as a promising immunotherapeutic approach to fight cancers. This approach consists of genetically engineered immune cells expressing a surface receptor, called CAR, that specifically targets antigens expressed on the surface of tumor cells. In hematological malignancies like leukemias, myeloma, and non-Hodgkin B-cell lymphomas, adoptive CAR-T cell therapy has shown efficacy in treating chemotherapy refractory patients. However, the value of this therapy remains inconclusive in the context of solid tumors and is restrained by several obstacles including limited tumor trafficking and infiltration, the presence of an immunosuppressive tumor microenvironment, as well as adverse events associated with such therapy. Recently, CAR-Natural Killer (CAR-NK) and CAR-macrophages (CAR-M) were introduced as a complement/alternative to CAR-T cell therapy for solid tumors. CAR-NK cells could be a favorable substitute for CAR-T cells since they do not require HLA compatibility and have limited toxicity. Additionally, CAR-NK cells might be generated in large scale from several sources which would suggest them as promising off-the-shelf product. CAR-M immunotherapy with its capabilities of phagocytosis, tumor-antigen presentation, and broad tumor infiltration, is currently being investigated. Here, we discuss the emerging role of CAR-T, CAR-NK, and CAR-M cells in solid tumors. We also highlight the advantages and drawbacks of CAR-NK and CAR-M cells compared to CAR-T cells. Finally, we suggest prospective solutions such as potential combination therapies to enhance the efficacy of CAR-cells immunotherapy.
Collapse
Affiliation(s)
- Karama Makni Maalej
- grid.413548.f0000 0004 0571 546XTranslational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar
| | - Maysaloun Merhi
- grid.413548.f0000 0004 0571 546XTranslational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar
| | - Varghese P. Inchakalody
- grid.413548.f0000 0004 0571 546XTranslational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar
| | - Sarra Mestiri
- grid.413548.f0000 0004 0571 546XTranslational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar
| | - Majid Alam
- grid.413548.f0000 0004 0571 546XTranslational Research Institute, Academic Health System, Dermatology Institute, Hamad Medical Corporation, Doha, Qatar ,grid.413548.f0000 0004 0571 546XDepartment of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Cristina Maccalli
- grid.467063.00000 0004 0397 4222Laboratory of Immune and Biological Therapy, Research Department, Sidra Medicine, Doha, Qatar
| | - Honar Cherif
- grid.413548.f0000 0004 0571 546XDepartment of Hematology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- grid.413548.f0000 0004 0571 546XTranslational Research Institute, Academic Health System, Dermatology Institute, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- grid.413548.f0000 0004 0571 546XTranslational Research Institute, Academic Health System, Dermatology Institute, Hamad Medical Corporation, Doha, Qatar ,grid.413548.f0000 0004 0571 546XDepartment of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar ,grid.416973.e0000 0004 0582 4340Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar ,grid.412603.20000 0004 0634 1084College of Medicine, Qatar University, Doha, Qatar ,grid.5386.8000000041936877XDepartment of Dermatology, Weill Cornell Medicine, New York, USA
| | - Francesco M. Marincola
- grid.418227.a0000 0004 0402 1634Global Head of Research, Kite Pharma, Santa Monica, California USA
| | - Said Dermime
- grid.413548.f0000 0004 0571 546XTranslational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box: 3050, Doha, Qatar ,grid.452146.00000 0004 1789 3191College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
50
|
Zhang K, Chen H, Li F, Huang S, Chen F, Li Y. Bright future or blind alley? CAR-T cell therapy for solid tumors. Front Immunol 2023; 14:1045024. [PMID: 36761757 PMCID: PMC9902507 DOI: 10.3389/fimmu.2023.1045024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells therapy has emerged as a significant breakthrough in adoptive immunotherapy for hematological malignancies with FDA approval. However, the application of CAR-T cell therapy in solid tumors remains challenging, mostly due to lack of suitable CAR-T target antigens, insufficient trafficking and extravasation to tumor sites, and limited CAR-T survival in the hostile tumor microenvironment (TME). Herein, we reviewed the development of CARs and the clinical trials in solid tumors. Meanwhile, a "key-and-lock" relationship was used to describe the recognition of tumor antigen via CAR T cells. Some strategies, including dual-targets and receptor system switches or filter, have been explored to help CAR T cells matching targets specifically and to minimize on-target/off-tumor toxicities in normal tissues. Furthermore, the complex TME restricts CAT T cells activity through dense extracellular matrix, suppressive immune cells and cytokines. Recent innovations in engineered CARs to shield the inhibitory signaling molecules were also discussed, which efficiently promote CAR T functions in terms of expansion and survival to overcome the hurdles in the TME of solid tumors.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan, China,Graduate School, Kunming Medical University, Kunming, Yunnan, China
| | - Hong Chen
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan, China
| | - Fuqiang Li
- Department of Traditional Chinese Medicine, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan, China
| | - Sheng Huang
- Department of Breast Surgery, Breast Cancer Center of the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Fei Chen
- Department of Medical Oncology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yi Li
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan, China,Graduate School, Kunming Medical University, Kunming, Yunnan, China,*Correspondence: Yi Li,
| |
Collapse
|